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Unit |

Transportation Models and its Variants: Definition of the Transportation Model-Non- Traditional
Transportation Model-Transportation Algorithm- The Assignment Model.

Chapter 1: Sections 1.1-1.4

1.1.Definition of the Transportation Model:

The general problem is represented by the network in Figure 1.1. There are m sources
and n destinations, each represented by a node. The arcs represent the routes linking the sources
the transportation cost per unit, Cjj, and the amount shipped, Xij' The amount of supply at
source i is ai and the amount of demand at destination j is bj. The objective of the model is to
determine the unknowns Xij that will minimize the total transportation cost while satisfying all the
supply and demand restrictions.

Example 1:

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution
centers in Denver and Miami. The capacities of the three plants during the next quarter are 1000,
1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400 cars.
The mileage chart between the plants and the distribution centers is given in Table 1.1. The trucking
company in charge of transporting the cars charges 8 cents per mile per car. The transportation
costs per car on the different routes, rounded to the closest dollar, are given in Table 1.2.

The LP model of the problem is given as

Minimize z= 80x;; + 215x,, + 100x,; + 108x,, + 102x3; + 68x3,

Denver Miami

Los Angeles 1000 2690
Detroit 1250 1350
New Orleans 1275 850

Table 1.1 Mileage Chart
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Los Angeles(1) 80 215
Detroit (2) 100 108
New Orleans (3) | 102 68

Table 1.2 Transportation Cost per Car
Subject to
X171 + x4 = 1000 (Los Angeles)
X971 + x5, = 1500 (Detroit)
X371 + x3, = 1200  (New Orleans)

X171 + X1 + x3, = 2300 (Denver)
X1z + X35 + X35, = 1400  (Miami)
x;>0,i=123,j=12
These constraints are all equations because the total supply from the three sources
(= 1000 + 1500 + 1200 = 3700 cars) equals the total demand at the two destinations
(= 2300 + 1400 = 3700 cars).
The LP model can be solved by the simplex method. However, with the special structure of the
constraints we can solve the problem more conveniently using the transportation tableau shown
in Table 1.3.

Denver(1) Miami(2) Supply
Los Angeles(1) 80 215 1000
X11 X12
Detroit (2) 100 108 1500
X21 X22
New Orleans (3) 102 68 1200
X31 X32
Demand 2300 1400
Table 1.3
MG Transportation Model
4
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New Orleans

Figure 1.1
Optimal solution of MG Auto model
The optimal solution in Figure 1.1 (obtained by TORA) calls for shipping 1000 cars from Los
Angeles to Denver, 1300 from Detroit to Denver, 200 from Detroit to Miami, and 1200 from New
Orleans to Miami. The associated minimum transportation cost is computed as 1000 x $80 + 1300
x $100 + 200 x $108 + 1200 x $68 = $313,200.

Balancing the Transportation Model. The transportation algorithm is based on the assumption
that the model is balanced, meaning that the total demand equals the total supply. If the model is
unbalanced, we can always add a dummy source or a dummy destination to restore balance.

Example 2:

In the MG model, suppose that the Detroit plant capacity is 1300 cars (instead of 1500). The total
supply (= 3500 cars) is less than the total demand (= 3700 cars), meaning that part of the demand
at Denver and Miami will not be satisfied.

Because the demand exceeds the supply, a dummy source (plant) with a capacity of 200 cars
(= 3700 - 3500) is added to balance the transportation model. The unit transportation costs from
the dummy plant to the two destinations are zero because the plant does not exist.

Table 1.4 gives the balanced model together with its optimum solution. The solution shows that
the dummy plant ships 200 cars to Miami, which means that Miami will be 200 cars short of
satisfying its demand of 1400 cars. We can make sure that a specific destination does not

experience shortage by assigning a very high unit transportation cost from the dummy source to
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that destination. For example, a penalty of $1000 in the Dummy-Miami cell will prevent shortage

at Miami. Of course, we cannot use this "trick" with all the destinations, because shortage must
occur somewhere in the system.

The case where the supply exceeds the demand can be demonstrated by assuming that the demand
at Denver is 1900 cars only. In this case, we need to add a dummy distribution center to "receive"
the surplus supply. Again, the unit transportation costs to the dummy distribution center are zero,
unless we require a factory to "ship out” completely. In this case, we must assign a high unit

transportation cost from the designated factory to the dummy destination.

Denver Miami Supply
Los Angeles 80 215 1000
1000
Detroit 100 108 1300
1300
New Orleans 102 68 1200
1200
Dummy Plant 0 0 200
200
Demand 2300 1400

Table 1.4 MG Model with dummy Plant
Denver Miami Dummy Supply

Los Angeles 80 215 1000
1000 0
Detroit 100 108 | 0 1500
1300 400
New Orleans 102 68 |0 1200
1200
Demand 2300 1400 400

Table 1.5 MG Model with dummy Destination
Table 1.5 gives the new model and its optimal solution. The solution shows that the Detroit plant

will have a surplus of 400 cars.
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1.2. Non-traditional Transportation Models:

The application of the transportation model is not limited to transporting commaodities between
geographical sources and destinations. This section presents two applications in the areas of
production-inventory control and tool sharpening service.

Example 3:(Production-Inventory Control)

Boralis manufactures backpacks for serious hikers. The demand for its product occurs during
March to June of each year. Boralis estimates the demand for the four months to be 100, 200, 180,
and 300 units, respectively. The company uses part-time labor to manufacture the backpacks and,
accordingly, its production capacity varies monthly. It is estimated that Boralis can produce 50,
180,280, and 270 units in March through June. Because the production capacity and demand for
the different months do not match, a current month's demand may be satisfied in one of three ways.
a) Current month's production.

b)  Surplus production in an earlier month.

c) Surplus production in a later month (backordering).

In the first case, the production cost per backpack is $40. The second case incurs an additional
holding cost of $.50 per backpack per month. In the third case, an additional penalty cost of $2.00
per backpack is incurred for each month delay. Boralis wishes to determine the optimal production
schedule for the four months.

The situation can be modeled as a transportation model by recognizing the following parallels

between the elements of the production-inventory problem and the transportation model:

Transportation Production-inventory

1.Source i 1.Production period i
2.Destination 2.Demand period j

3.Supply amount at source i 3.Production capacity of period i
4. Demand at destination j 4. Demand for period j

5.Unit transportation cost from source i to 5.Unit cost (production+ inventory +penalty)

destination j in period i for period j
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1 2 3 4 Capacity

1 . .

2 | $4200 4000  $4050  $41.00 | 180
3| $400 54200  $4000  $4050 | 280
4 | $4600  $4400  $4200  §4000 | 270

Table 1.6 Transportation Model for Example 3

Supply 50 180 280 270
Supply period 3 (4)
’ 2T %
/ /
50| 50,7 130] 70,7 180 30%, 270
/ 7/ ™
’ / .
Demand period o
Demand 100 200 180
Figure 1.2

Optimal solution of the production- inventory model
The unit “transportation” cost from period i to period is computed as

Production costini,i = j
cij = { Production cost in i + holding cost fromitoj,i <j
Production cost in i + penalty cost fromitoj,i>j

For example,

c11 = $40.00

co4 = $40.00+($0.50+$0.50) =$ 41.00

41 = $40.00 + ($2.00 + $2.00 + $2.00) = $46.00

The optimal solution is summarized in Figure 1.2. The dashed lines indicate back-ordering, the
dotted lines indicate production for a future period, and the solid lines show production in a period
for itself. The total cost is $31,455.
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Example 4:(Tool Sharpening)

Arkansas Pacific operates a medium-sized saw mill. The mill prepares different types of wood
that range from soft pine to hard oak according to a weekly schedule. Depending on the type of
wood being milled, the demand for sharp blades varies from day to day according to the following
I-week (7-day) data:

Day Mon Tue Wed Thu Fri  Sat Sun
Demand (blades) 24 12 14 20 18 14 22

The mill can satisfy the daily demand in the following manner:

a) Buy new blades at the cost of $12 a blade.

b) Use an overnight sharpening service at the cost of $6 a blade.

c) Use aslow 2-day sharpening service at the cost of $3 a blade.

The situation can be represented as a transportation model with eight sources and seven
destinations. The destinations represent the 7 days of the week. The sources of the model are
defined as follows: Source 1 corresponds to buying new blades, which, in the extreme case, can
provide sufficient supply to cover the demand for all 7 days (=24 +12+14+20+ 18 + 14 + 22
= 124). Sources 2 to 8 correspond to the 7 days of the week. The amount of supply for each of
these sources equals the number of used blades at the end of the associated day. For ex-ample,
source 2 (i.e., Monday) will have a supply of used blades equal to the demand for Mon-day. The
unit "transportation cost” for the model is $12, $6, or $3, depending on whether the blade is
supplied from new blades, overnight sharpening, or 2-day sharpening. Notice that the overnight
service means that used blades sent at the end of day i will be available for use at the start of
dayi+1 or dayi+ 2, because the slow 2-day service will not be available until the start of
day i + 3. The "disposal™ column is a dummy destination needed to balance the model. The

complete model and its solution are given in Table 1.7
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Mon. Tue, Wed. Thu. Fri. Sat. Sun. Disposal
$12 $12 $12 $12 $12 $12 $12 30
i-New
98 124
$0
2-Mon.
24
$0
3-Tue.
12
$0
4-Wed.
= 14
30
5-Thu.
20
$0
6-Fri.
4 18
$0
7-Sat.
14
$0
8-Sun.
22 22
m‘

Table 1.7 Tool Sharpening Problem Expressed as a Transportation Model
The problem has alternative optima at a cost of $840.The following table summarizes one such

solution.

Number of sharp blades (Target day)

Perio\f New Overnight 2day  Disposal
Moan. 24 (Mon.) 10(Tue.) + 8{Wed)  6(Thu.) 0
Tues. 2 (Tue.) 6 (Wed.) 6 (Fri.) 0
Wed. 0 14 (Thu.) 0 0
Thu. 0 12 (Fri.) 8 (Sun.) 0
Fri. 0 14 (Sat.) 0 4
Sat. 0 14 (Sun.) 0 0
Sun, 0 0 0 22

Remarks. The model in Table 1.7 is suitable only for the first week of operation because it does
not take into account the rotational nature of the days of the week, in the sense that this week's
days can act as sources for next week's demand. One way to handle this situation is to assume that
the very first week of operation starts with all new blades for each day. From then on, we use a
model consisting of exactly 7 sources and 7 destinations corresponding to the days of the week.
The new model will be similar to Table 1.7 less source "New" and destination "Disposal.” Also,

10
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only diagonal cells will be blocked (unit cosE = M). The remaining cells will have a unit cost of
either $3.00 or $6.00. For example, the unit cost for cell (Sat., Mon.) is $6.00 and that for cells
(Sat., Tue.), (Sat., Wed.), (Sat., Thu.), and (Sat., Fri.) is $3.00. The table below gives the solution

costing $372. As expected, the optimum solution will always use the 2-day service only.

Week i+ 1

Week i Mon. Tue. Wed. Thu. Fri. Sat.  Sun. Total

Mon. 6 18 24
Tue. 8 4 12
Wed. 12 2 14
Thu. 8 12 20
Fri. 4 14 18
Sat. 14 14
Sun, 10 12 2
Total 24 12 14 20 18 14 2

1.3.The Transportation Algorithm:

The transportation algorithm follows the exact steps of the simplex method. However, instead of
using the regular simplex tableau, we take advantage of the special structure of the transportation
model to organize the computations in a more convenient form.

The special transportation algorithm was developed early on when hand computations were the
norm and the shortcuts were warranted. Today, we have powerful computer codes that can solve
a transportation model of any size as a regular Lp' Nevertheless, the transportation algorithm, aside
from its historical significance, does pro-vide insight into the use of the theoretical primal-dual
relationships to achieve a practical end result, that of improving hand computations. The details of

the algorithm are explained using the following numeric example.

11
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4 Supply

10 2 20 11
1
X X2 X3 X4 15
12 7 9 20
Silo 2
X2 X2 X3 X24 25
4 14 16 18
3
X4 Xy X33 X34 10
Demand 5 15 15 15

Table 1.8. SunRay Transportation Model

Example 5: (SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos to four mills. The supply

(in truckloads) and the demand (also in truckloads) together with the unit transportation costs per
truckload on the different routes are summarized in the transportation model in Table 5.16. The
unit transportation costs, eij, (shown in the northeast corner of each box) are in hundreds of dollars.
The model seeks the minimum-cost shipping schedule Xij between silo i and mill j (i=1,2,3;
j=1.234).

Summary of the Transportation Algorithm. The steps of the transportation algorithm are exact
parallels of the simplex algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.

Step 2. Use the optimality condition of the simplex method to determine the entering
variable from among all the non-basic variables. If the optimality condition is satisfied, stop.
Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving variable from
among all the current basic variables, and find the new basic solution. Return to step 2.

1. Determination of the Starting Solution
A general transportation model with m sources and n destinations has m + n constraint equations,
one for each source and each destination. However, because the transportation model is always
balanced (sum of the supply = sum of the demand), one of these equations is redundant. Thus, the

model has m + n - 1 independent constraint equations, which means that the starting basic solution

12
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consists of m + n - 1 basic variables. Thus, in Example 5.3-1, the starting solutionhas3 +4-1=16

basic variables.

The special structure of the transportation problem allows securing a non-artificial starting basic
solution using one of three methods:

a) Northwest-corner method

b) Least-cost method

c) Vogel approximation method

The three methods differ in the "quality™ of the starting basic solution they produce, in the sense
that a better starting solution yields a smaller objective value. In general, though not always, the
VVogel method yields the best starting basic solution, and the northwest-corner method yields the
worst. The trade-off is that the northwest-corner method involves the least amount of
computations.

Northwest-Corner Method. The method starts at the northwest-corner cell (route) of the tableau
(variable x11).

Step 1. Allocate as much as possible to the selected cell, and adjust the associated amounts of
supply and demand by subtracting the allocated amount.

Step 2. Cross out the row or column with zero supply or demand to indicate that no further
assignments can be made in that row or column. If both a row and a column net to zero
simultaneously, cross out one only, and leave a zero sup-ply (demand) in the uncrossed-
out TOW (column).

Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move to the cell to the
right if a column has just been crossed out or below if a row has been crossed out. Go to step 1.
Example 6:

The application of the procedure to the model of Example 5. gives the starting basic solution in
Table 1.9 The arrows show the order in which the allocated amounts are generated.

The starting basic solution is
X11 = 5, X12 = 10,
Xop = 5, X3 = 15, Xog = 5

X34 = 10

13
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The associated cost of the schedule is
z=5%xXx10+10%x2+5%x7+15Xx9+5%x20+10x18 =520
Example 7:

Using North west comer method find a basic feasible Solution to the following Transportation

Problem:
Wi W2 Wi Supply(ai)
Fi 8 10 12 200
Fz 12 13 12 1000
F3 14 10 11 1200

Demand 1200 1000 900

Solution
Wi W Wi Supply(ai)
Fi 8 10 2 000
2 12 13 12 1000
F3 14 10 11 1200

Demand (bj)1200 1000 900
Xa;=900+1000+1200
=3100
Zbj=1200+1000+900
=3100

Zai=Zbj

14
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The Transportation problem is balanced basic feasible Solution.

Wi W2 Wi Supply
Fi A7 | 9000
F 12 13 12 1000
Demand
1200/300 1000 900
Wi W W3 Supply
F2 anl2 | 13 12 1000/700
Fs /A/ 10 11 | 1200
Demand  300/0 1000 900
W2, Wi Supply
F2 mol3 | 12 700/0
Fs 10 11 1200/900
Demand 1000/300 900
W2 Wi Supply
Fa 30010 | 900ll 1200
Demand 300 200

15
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Initial basic feasible Solution is given in the following table

Wi Wa Wi Supply
B e 2w B, 1000
Fy 1200
14 |10 | U

Demand1200  1000900x1=900,
x21=300, x22=700 x32=300,
x33=2000

The Total transportation cost is
=) B 22 G
=8x900+12x300+13x700+10x300+11x900
=T7200+3600+9100+3000+9900

=32800

Least-Cost Method:

The least-cost method finds a better starting solution by concentrating on the cheapest routes. The
method assigns as much as possible to the cell with the smallest unit cost (ties are broken
arbitrarily). Next, the satisfied row or column is crossed out and the amounts of supply and demand

are adjusted accordingly.

: - 3 4 Supply
20 i1
] 15
9 20
i - S 380E | 2
|
4 14 16 * 18
. 5265 | 10
Demand 3 1s - =

Table 1.9. Northwest-Corner Starting Solution

16
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If both a row and a column are satisfied simultaneously, only one is crossed out, the same as in the

northwest-corner method. Next, look for the uncrossed-out cell with the smallest unit cost and
repeat the process until exactly one row or column is left uncrossed out.

Example 8:

The least-cost method is applied to Example 5 in the following manner:

1. Cell (1, 2) has the least unit cost in the tableau (= $2). The most that can be shipped through
(1,2) is X12 = 15 truckloads, which happens to satisfy both row 1 and column 2 simultaneously.
We arbitrarily cross out column 2 and adjust the supply in row 1 to 0.

2. Cell (3,1) has the smallest uncrossed-out unit cost (= $4). Assign Xs1 =5, and cross out column
1 because it is satisfied, and adjust the demand of row 3 to 10 - 5 = 5 truckloads.

3. Continuing in the same manner, we successively assign 15 truckloads to cell (2, 3), 0 truckloads
to cell (1,4), 5 truckloads to cell (3, 4), and 10 truckloads to cell (2,4) (verify!).

The resulting starting solution is summarized in Table 1.10. The arrows show the order in which
the allocations are made. The starting solution (consisting of 6 basic variables)
IS X12 = 15, X14 = 0, X23 = 15, X24 = 10, x31 = 5, X34 = 5. The associated objective value is
z=15x2+0x11+15x9+10x20+5x4+5x18

=30+0+135+200+20+90

= $475

The quality of the least-cost starting solution is better than that of the northwest-corner method
(Example 6) because it yields a smaller value of z ($475 versus $520 in the northwest-corner
method).

Example 9:

Solve the following transportation problem by using least cost method

Wi W» W3 Supply
Fi 8 10 12 900
Fa 12 13 12 1000
F3 14 10 11 1200

Demand 1200 1000 9200

17

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Solution

Wi W2 W3 Supply
Fio [ 8| 167|127 9000
k2 12 13 12 1000
Fs3 14 10 11 1200

Demand 1200/3001000 900

Wi W2 W3 Supply Row penalty
F2 12 )3/ 12 1000 (0)
F3 14 | 11 1200/200 (1

Demand 300  1000/0 900

Column  (2) (3) (1)
T

Penalty
Wi W3 Supply Row penalty
P 12 12 1000 ©)
] 200 200 (3)(_

Demand 300 900/700
Column 2 M
Penalty

18
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W1 Ws Supply Row penalty

F2 12 12 1000 (0)

Demand 300 700

Column (12) (12)
Penalty

Initial Basic Feasible Solution

W1 W2 W3 Supplyaz
Fi son 8 10 12 900
P2 30012 13 To0l2 1000
Fs 14 woel0 | zo0ll 1200

Demand 1200 1000 900
Total Transportation cost is
z=8 x 900+300 x 12+12 x 700+10 x1000+11 x 200

=7200+3600+8400+10000+2200=31400

Vogel Approximation Method (VAM):

VAM is an improved version of the least-cost method that generally, but not always, produces

better starting solutions.

Step 1. For each row (column), determine a penalty measure by subtracting the smallest unit cost

element in the row (column) from the next smallest unit cost element in the same row (column).

: 2 3 4 Supply
T 10| (start) 2 20 11

12( 7 /9 {end) 20

/ i~ 14 16 18
3 35»/ Es;g 10

=

Demand ) 15 15 18

Table 1.10. Least-Cost Starting Solution

19
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Step 2.

Identify the row or column with the largest penalty. Break ties arbitrarily. Allocate as much as
possible to the variable with the least unit cost in the selected row or column. Adjust the supply
and demand, and cross out the satisfied row or column. Ifa row and a column are satisfied
simultaneously, only one of the two is crossed out, and the remaining row (column) is assigned
zero supply (demand).

Step 3.

(a) If exactly one row or column with zero supply or demand remains un-crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed out, determine the basic
variables in the row (column) by the least-cost method. Stop.

(c) If all the uncrossed out rows and columns have (remaining) zero supply and demand, determine
the zero basic variables by the least-cost method. Stop.

(d) Otherwise, go to step 1.

Example 10:

VAM is applied to Example 5. Table 1.11 computes the first set of penalties.

Because row 3 has the largest penalty (= 10) and cell (3, 1) has the smallest unit cost in that row,
the amount 5 is assigned to xs1. Column 1 is now satisfied and must be crossed out. Next, new
penalties are recomputed as in Table 1.12.

Table 1.12 shows that row 1 has the highest penalty (= 9). Hence, we assign the maximum amount
possible to cell (1,2), which yields x12 = 15 and simultaneously satisfies both row 1 and 5. column
2. We arbitrarily cross out column 2 and adjust the supply in row 1 to zero.

Continuing in the same manner, row 2 will produce the highest penalty (= 11), and we as-sign x23 =

15, which crosses out column 3 and leaves 10 units in row 2. Only column 4 is left, and it has a
positive supply of 15 units. Applying the least-cost method to that column, we successively
assign xu4 = 0, x3s = 5, and x24 = 10 (verify!). The associated objective value for this solution is
z=15x2+0x11+15x9+10x20+5x4+5x 18
=30+0+135+200+20+90
= $475
This solution happens to have the same objective value as in the least-cost method.

20
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1 2 3 B Row penalty

10 2 20 11 10-2=38
| 15
12 7 9 20 9-7=2
4 14 16 18 14 — 4 =30
3 5 _ 10
5 15 15 15
Column penaity 10 - 4 7=2 16 -9 18 - 11
= § =95 =7 =7

Table 1.11. Row and Column Penalties in VAM

1 2 3 a Row penalty
7 2 20 11 9.
15
T 7 9 20 2
Gy 25
LaheA 14 16 18 2
5 15 15 18
Column penalty e 5 7 7

Table 1.12. First Assignment in VAM (X31 = 5)

Example 11:
Using Vogel approximation method find the basic solution to the following transportation
method.
Wi W2 Wi Supply

Fi 8 10 12 900

F2 12 13 12 1000

Fz 14 10 11 1200

Demand 1200 1000 900

21
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Solution:

Wi W2 W3 Supply Row penalty
Fi M )o/ 900/0 )
F 12 13 12 1000 (0)
I3 14 10 11 1200 (1

Demand 1200/300 1000 900

Column (4) (0) (1)

Penalty
Wi W3 W3 Supply Row penalty
F2 12 )}/ 12 1000 (0)
F3 14 |10 11 1200/200 (1)

Demand 300 1000/0 900

Column  (2) (3) (1)
Penalty
Wi W3 Supply Row penalty
F2 12 12 1000 ©)
Fz 200 200 (3)

Demand 300 900/700
Column (2) (1)
Penalty
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W1 W3 Supply Row penalty

F2 12 12 1000 (0)

Demand 300 700

Column (12) (12)
Penalty

Initial Basic Feasible Solution

W1 W2 W3 Supplyaz
F. o0 8 10 12 900
F> 300l2 13 70012 1000
F; 14 100010 | 20011 1200

Demand 1200 1000 900

Total Transportation cost is

z=8 x 900+300 x 12+12 x 700+10 x1000+11 x 200

=7200+3600+8400+10000+2200=31400

Exercises 1:
Compare the starting solutions obtained by the northwest-corner, least-cost, and VVogel methods

for each of the following models:

“@) ®) O

0 2 1|6 1 2 6| 7 5 [ 8 |12

2 i 517 0 4 2 |12 2 4 0|14

2 4 3|7 '3 1 s |11 3 6 7| &
5 5 10 10 10 10 9 10 1
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2. Iterative Computations of the Transportati(;;: Algorithm

After determining the starting solution (using any of the three methods in Section 5.3.1), we use
the following algorithm to determine the optimum solution:

Step 1. Use the simplex optimality condition to determine the entering variable as the current non-
basic variable that can improve the solution. If the optimality condition is satisfied, stop.
Otherwise, go to step 2.

Step 2. Determine the leaving variable using the simplex feasibility condition. Change the basis,
and return to step 1.

The optimality and feasibility conditions do not involve the familiar row operations used in the
simplex method. Instead, the special structure of the transportation model allows simpler
computations.

Example 9:

Solve the transportation model of Example 5, starting with the northwest-corner solution.

Table 1.13 gives the northwest-corner starting solution as determined in Table 1.9, Example 6
The determination of the entering variable from among the current nonbasic variables (those that
are not part of the starting basic solution) is done by computing the nonbasic coefficients in the z-
row, using the method of multipliers.

In the method of multipliers, we associate the multipliers Ui and v; with row i and column j of the
transportation tableau. For each current basic variable Xi;, these multipliers are to satisfy the
following equations:

ui + vj = cij, for each basic xi

As Table 1.13 shows, the starting solution has 6 basic variables, which leads to 6 equations in 7
unknowns. To solve these equations, the method of multipliers calls for arbitrarily setting

any ui = 0, and then solving for the remaining variables as shown below.
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Basic Variable (u, v) Equation WRSqution
Xq1 u; +v; =10 Set u; =0->v, =10
X12 U +v, =2 u=0-v, =2
X292 Uy +v, =7 v, =2-u,=5
Xy3 U, +v3 =9 U, =5-v3=4
Xo4 u, +v, =20 U, =5-v,=15
X34 uz +v, =18 v, =15 s uz =3

To summarize, we have

u; =0, u, =5u; =3

v, =10, v, =2,v3 =4,v, =15

Next, we use u; and v; to evaluate the non-basic variables by computing w; + v; — ¢;j, for each

Non-basic x;;

1 2 3 4 Supply
1 10 2 20 11 15
5 10
2 12 7 9 20 |25
5 15 5
3 4 14 16 18 |10
10
Demand 5 15 15 15

Table 1.13. Starting Iteration
The results of these evaluations are shown in the following table:
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Nonbasic Variable
X13 U +v3—c3=0+4-20=-16
X14 U+, —c,=0+15-11=4
X1 U, +v;—C =5+10—-12=3
X31 Uz +v;—c33=3+10—-4=9
X33 Uz +V, —C3,=3+2—-14=-9
X33 Uz +v3—C33=3+4—-16=-9

The preceding information, together with the fact that u; + vj - cij = 0 for each basic xij, is actually

equivalent to computing the z-row of the simplex tableau, as the following summary shows.

Basic X11 X12 X13 X14 X23 X22 | X24 X31 | X32 | X33 | X34

z 0 0 -16 4 3 0 0 9 -9 -9 0

Because the transportation model seeks to minimize cost, the entering variable is the one having
the most positive coefficient in the z-row. Thus, xa1 is the entering variable.

The preceding computations are usually done directly on the transportation tableau as shown in
Table 1.14, meaning that it is not necessary really to write the (u, v)-equations explicitly. Instead,
we start by setting ui=0. Then we can compute the v-values of all the columns that
have basic variables in row I-namely, v; and v2. Next, we compute u, based on the (u, v)-equation
of basic x22. Now, given uz, we can compute vs and va. Finally, we determine us using the basic
equation of xs3. Once all the u's and v's have been determined, we can evaluate the non-basic
variables by computing ui+ vj- cjj for each non-basic Xjj. These evaluations are shown in Table
1.14 in the boxed southeast corner of each cell.

Having identified x31 as the entering variable, we need to determine the leaving variable.
Remember that if x31 enters the solution to become basic, one of the current basic variables must

leave as non-basic (at zero level).
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vg=15 Supply

10 1

u, =0 5 15

[

12 20

Uy = 5 5 25
B

4 14 16 18

uy =3 ] 10 10

EL) -9 l -9
Demand 5 15 15 15

Table 1.14. Iteration 1 Calculations
The selection of xa1 as the entering variable means that we want to ship through this route because
it reduces the total shipping cost. What is the most that we can ship through the new route? Observe
in Table 1.14 that if route (3, 1) ships () units (i.e., xs1 = @), then the maximum value of @ is
determined based on two conditions.

a) Supply limits and demand requirements remain satisfied.

b) Shipments through all routes remain nonnegative.

These two conditions determine the maximum value of @ and the leaving variable in the
following manner. First, construct a closed loop that starts and ends at the entering variable cell,
(3, 1). The loop consists of connected horizontal and vertical segments only (no diagonals are al-
lowed).7 Except for the entering variable cell, each corner of the closed loop must coincide with a
basic variable. Table 1.15 shows the loop for x31. Exactly one loop exists for a given entering
variable.

Next, we assign the amount @ to the entering variable cell (3, 1). For the supply and demand
limits to remain satisfied, we must alternate between subtracting and adding the amount @ at the
successive corners of the loop as shown in Table 1.15 (it is immaterial whether the loop is traced
in a clockwise or counter clockwise direction). For @ >0, the new values of the variables then
remain nonnegative if
X11=5—-620

x22=5—920,x34=10—920
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The corresponding maximum value of @ is 5, Whica occurs when both x11 and X22 reach zero level.
Because only one current basic variable must leave the basic solution, we can choose
either x11 or X2z as the leaving variable. We arbitrarily choose X1: to leave the solution.

The selection of x31 (= 5) as the entering variable and x11 as the leaving variable requires adjusting
the values of the basic variables at the corners of the closed loop as Table 1.16 shows. Because
each unit shipped through route (3, 1) reduces the shipping cost by $9 (= us + v1 - ¢31), the total
cost associated with the new schedule is $9 X 5 = $45 less than in the previous schedule. Thus, the
new cost is $520 - $45 = $475.

v =10 v, =12 vy =4 vy =15 Supply
10 2 20 11
w=0 | 5-O| 1040 15
G R [-16 [ 4
: 12 7 9 20
Uy =5 { T e i 15 =539 25
[ s je A
¥ 14 16 T
U= 3 < '§é~h§... ........................................... - 19-6 10
mt o -9 ot
Demand 5 15 15 15

Table 1.15. Determination of Closed Loop for xs1

vy =1 vy =2 vy=4 ve =15 Supply
10 2 ] %
uy =0 = o T < e e 4 2 L: 18
[0 fx A [o16] :'
12 7 R
=3 = 0+ O -t 1S5 seeeed 25
-6 |38
4 14
. e 3 s _— S 10
-9 I -9
Demand 5 15 15 15

Table 1.16. Iteration 2 Calculations
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v, = =3 ve=11 Supply

10 11

u =0 10 15

| =13

12 20

Uy =5 25
-10 I -4
4 14 16 18

uy =7 5 ‘ - 10

-5 [ =5
Demand 5 15 15 15

Table 1.17. Iteration 3 Calculations (Optimal)
Given the new basic solution, we repeat the computation of the multipliers u and v, as Table 1.17
shows. The entering variable is x14. The closed loop shows that x14 = 10 and that the leaving
variable is X24.
The new solution, shown in Table 1.17, costs $4 X 10 = $40 less than the preceding one, thus
yielding the new cost $475 - $40 = $435. The new ui + Vj - cjj are now negative for all non-
basic xjj. Thus, the solution in Table 1.17 is optimal.

The following table summarizes the optimum solution.

From silo To mill Number of truckloads

5
10
10
15

5

.

LW NN
B LN BN

Optimal cost = 3435

3. Simplex Method Explanation of the Method of Multipliers

The relationship between the method of multipliers and the simplex method can be explained
based on the primal-dual relationships. From the special structure of the LP representing the
transportation model (see Example 1 for an illustration), the associated dual problem can be written

as
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"t n
Maximize z = Za,ui + Ebﬂ’f

i=1 j=1
subject to
u; + v; = ¢y, alliand j
u; and v; unrestricted
where

a; = Supply amount at source {

b; = Demand amount at destination j

¢;; = Unit transportation cost from source i to destination j

u; = Dual variable of the constraint associated with source

©; = Dual variable of the constraint associated with destination j

the objective-function coefficients (reduced costs) of the variable xi; equal the difference between
the left- and right-hand sides of the corresponding dual constraint-that is, ui + v; - ¢ij. However, we
know that this quantity must equal zero for each basic variable, which then produces the following
result: u; + v; = ¢;;, for each basic variable x;;

There ism + n - 1 such equations whose solution (after assuming an arbitrary value u; = 0) yields
the multipliers ui and vj. Once these multipliers are computed, the entering variable is determined
from all the non-basic variables as the one having the largest positive ui + vj - Cj.

1.4.The Assignment Model:

"The best person for the job™ is an apt description of the assignment model. The situation can be
illustrated by the assignment of workers with varying degrees of skill to jobs. A job that happens
to match a worker's skill costs less than one in which the operator is not as skilful. The objective
of the model is to determine the minimum-cost assignment of workers to jobs.

The general assignment model with n workers and n jobs is represented in Table 1.18.

The element cij represents the cost of assigning worker i to job j (i, j = 1, 2, ..., n). There is no loss

of generality in assuming that the number of workers always
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1 St Ciz Cia 1
2 Cn Cu w3 Cz“ l
Worker
n Cat Cr|2 Teve Crin 1
1 1 1

Table 1.18. Assignment model
equals the number of jobs, because we can always add fictitious workers or fictitious jobs to satisfy
this assumption.
The assignment model is actually a special case of the transportation model in which the workers
represent the sources, and the jobs represent the destinations. The supply (demand) amount at each
source (destination) exactly equals 1. The cost of “transporting" worker i to job j is cjj. In effect,
the assignment model can be solved directly as a regular transportation model. Nevertheless, the
fact that all the supply and demand amounts equal 1 has led to the development of a simple solution
algorithm called the Hungarian method. Although the new solution method appears totally un-
related to the transportation model, the algorithm is actually rooted in the simplex method, just as
the transportation model is.
1. The Hungarian Method
We will use two examples to present the mechanics of the new algorithm. The next section
provides a simplex-based explanation of the procedure.
Example 10:
Joe Klyne's three children, John, Karen, and Terri, want to earn some money to take care of
personal expenses during a school trip to the local zoo. Mr. Klyne has chosen three chores for his
children: mowing the lawn, painting the garage door, and washing the family cars. To avoid
anticipated sibling competition, he asks them to submit (secret) bids for what they feel is fair pay

for each of the three chores. The understanding is that a U three children will abide by their father's
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information, how should Mr. Klyne assign the chores?

The assignment problem will be solved by the Hungarian method.
Step 1. For the original cost matrix, identify each row's minimum, and subtract it from all the

entries of the row.

Mow Paint Wash

John $15 $10 $9
Karen $9 $15 €10
Terci $10 $12 38

Table 1.19. Klyne’s Assignment Problems
Step 2. For the matrix resulting from step 1, identify each column's minimum, and subtract it from
all the entries of the column.
Step 3. Identify the optimal solution as the feasible assignment associated with the zero elements
of the matrix obtained in step 2.
Let pi and g; be the minimum costs associated with row i and column j as defined in steps 1 and
2, respectively. The row minimums of step 1 are computed from the original cost matrix as shown
in Table 1.20
Next, subtract the row minimum from each respective row to obtain the reduced matrix in Table
1.21
The application of step 2 yields the column minimums in Table 1.21. Subtracting these values

from the respective columns, we get the reduced matrix in Table 1.22

Mow Paint Wash Row minimum
John 15 10 9 =9
Karen 9 15 10 pr =9
Terri 10 (2 8 py=8

Table 1.20. Step 1 of the Hungarian Method
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Mow Pant Wash

John 6 1 0
Kacen 0 6 i
Terri 2 4 0
Column minimum q, =0 g: =1 =0

Table 1.21. Step 2 of the Hungarian Method

Mow Paint Wash

John 6 0 0
Karen Q 5 1
Terri 2 7 3 1]

Table 1.22. Step 3 of the Hungarian Method
The cells with underscored zero entries provide the optimum solution. This means that John gets
to paint the garage door, Karen gets to mow the lawn, and Terri gets to wash the family cars. The
total cost to Mr. Klyne is 9+10+8 = $27. This amount also will always
equal (p1+p2+p3)+(Qr+02+0q3)=(9+9+8)+(0+1+0)=327. (A justification of this result
is given in the next section.)

The given steps of the Hungarian method work well in the preceding example because the zero
entries in the final matrix happen to produce a feasible assignment (in the sense that each child is
assigned a distinct chore). In some cases, the zeros created by steps 1 and 2 may not yield a feasible
solution directly, and further steps are needed to find the optimal (feasible) assignment. The
following example demonstrates this situation.

Example 11:

Suppose that the situation discussed in Example 10 is extended to four children and four chores.

Table 1.23 summarizes the cost elements of the problem.
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7,p3=4,p24=5,01=0,02=0,03=3, andqgs=0) vyields the reduced matrix in Table
1.24 (verify!).

The locations of the zero entries do not allow assigning unique chores to all the children. For
example, if we assign child 1 to chore 1, then column 1 will be eliminated, and child 3 will not
have a zero entry in the remaining three columns. This obstacle can be accounted for by adding
the following step to the procedure outlined in Example 10

Step 2a. If no feasible assignment (with all zero entries) can be secured from steps 1 and 2,

(1) Draw the minimum number of horizontal and vertical lines in the last reduced matrix that

will cover all the zero entries.

Chore
1 2 3 a
)
1 $1 34 36 $3
20 % 87 s10 s
Childs | ¢4 §5  $11 87
4| 8 $7 8 35

Table 1.23. Assignment Model

Chore
1 2 3 4
1 1] 3 2 2
i d 2 0 0 2
Chiid 3 o 1 4 3
4 3 2 0 0

Table 1.24. Reduced Assignment Matrix
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1 2 3 4

1 0 3 2 2

Child 5 5 0 0 5
3 0 1 4 3

4 3 2 0 0

Table 1.25. Application of step 2a

Chore

1 2 3 4

1 0 2 1 1

Child 5 3 0 0 )
3 0 0 3 2

4 4 2 0 0

Table 1.26. Optimal Assignment

(ii) Select the smallest uncovered entry, subtract it from every uncovered entry, then add it to every
entry at the intersection of two lines.

(iii) If no feasible assignment can be found among the resulting zero entries, repeat step 2a.
Otherwise, go to step 3 to determine the optimal assignment.

The application of step 2a to the last matrix produces the shaded cells in Table 1.25. The smallest
unshaded entry (shown in italics) equals 1. 111is entry is added to the bold intersection cells and
subtracted from the remaining shaded cells to produce the matrix in Table 1.26

The optimum solution (shown by the underscored zeros) calls for assigning child 1 to
chore 1, child 2 to chore 3, child 3 to chore 2, and child 4 to chore 4. The associated optimal cost

is1+10+5+5=%21. The same cost is also determined by summing the pis, the gis, and the entry
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that was subtracted after the Wsmhaded cells were determined-that
is, 1+7+4+5)+(0+0+3+0)+(1)=9%$21.

2. Simplex Explanation of the Hungarian Method

The assignment problem in which n workers are assigned to n jobs can be represented as an LP
model in the following manner: Let cij be the cost of assigning worker i to job j, and define

v = {1, if worker iis assigned to job j
U 10, otherwise

Then the LP model is given as
Minimize ZZZ?:l Z?:l CUXU

Subject to

n
]:

1Xij = 1, i=12,....n
Z}lzlxl-j =1 j=12,....n
xij=0or1
The optimal solution of the preceding LP model remains unchanged if a constant is added to or
subtracted from any row or column of the cost matrix (cij). To prove this point, let pi and q; be

constants subtracted from row i and column j. Thus, the cost element cj; is changed to

Ci=Ci— P~ Y

Now

ZEC;;XU 5 E Z(Cij =P G = E ZC.','X.',' - ZP;(ZXU) - 2‘1[(2&7)
i i t ! / ! %

= EZC.-,-x,-; = Zpi(l) = 12'%(1)

= > Dcyx; — constant
¢
Because the new objective function differs from the original one by a constant, the optimum values

of xij must be the same in both cases. The development thus shows that steps 1 and 2 of the

Hungarian method, which call for subtracting pi from row i and then subtracting gj from column j,
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produce an equivalent assignment model. In thi;?emgard, if a feasible solution can be found among
the zero entries of the cost matrix created by steps 1 and 2, then it must be optimum because the
cost in the modified matrix cannot be less than zero.

If the created zero entries cannot yield a feasible solution, then step 2a (dealing with the covering
of the zero entries) must be applied.

The reason (pr+p2+ ...+ pn) + (g1 + g2+ ... +Qn) gives the optimal objective value is that it

represents the dual objective function of the assignment model.
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UNIT 11

Network Analysis: Network Definitions-Minimal Spanning Tree Algorithm- Shortest Route
Problem-Maximum Flow Model-CM-PERT.

Chapter 2: Sections 2.1-2.5

2.1. Network Definition:
A network consists of a set of nodes linked by arcs (or branches). The notation for describing a
network is (N, A), where N is the set of nodes and A is the set of arcs. As an illustration, the

network in Figure 6.1 is described as

N ={1,2,3,4,5}

A={(12), (13),(2.3), (2,5), (3:4), (3,5), (4.2), (4,5)}

Associated with each network is a flow (e.g., oil products flow in a pipeline and automobile traffic

flows in highways). In general, the flow in a network is limited by the capacity of its arcs, which

may be finite or infinite.

FIGURE 6.1
Example of (N, A) Network

Tree Spanning tree

Figure 2.1
An arc is said to be directed or oriented if it allows positive flow in one direction and zero flow in

the opposite direction. A directed network has all directed arcs.
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A path is a sequence of distinct arcs that join two nodes through other nodes regardless of the

direction of flow in each arc. A path forms a cycle or a loop if it connects a node to itself through
other nodes. For example, in Figure 2.1, the arcs (2,3), (3, 4), and (4,2) form a cycle.

A connected network is such that every two distinct nodes are linked by at least one path. The
network in Figure 2.1 demonstrates this type of network. A tree is a cycle-free connected network
comprised of a subset of all the nodes, and a spanning tree is a tree that links all the nodes of the
network. Figure 2.2 provides examples of a tree and a spanning tree from the network in Figure
2.1.

Example 1: (Bridges of Konigsberg)

The Prussian city of Konigsberg (now Kalingrad in Russia) was founded in 1254 on the banks of
river Pergel with seven bridges connecting its four sections (labeled A, B, C, and D) as shown in
Figure 2.3. A problem circulating among the inhabitants of the city was to find out if a round trip

Figure 2.2
Bridges of Konigsberg

Figure 2.3

Network representation of Konigsberg problem
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S
of the four sections could be made with each bridge being crossed exactly once. No limits were

set on the number of times any of the four sections could be visited.
In the mid-eighteenth century, the famed mathematician Leonhard Euler developed a special "path
construction” argument to prove that it was impossible to make such a trip. Later, in the early
nineteenth century the same problem was solved by representing the situation as a net-work in
which each of the four sections (A, B, C, and D) is a node and each bridge is an arc joining
applicable nodes, as shown in Figure 2.3.
The network-based solution is that the desired round trip (starting and ending in one section of the
city) is impossible, because there are four nodes and each is associated with an odd number of
arcs, which does not allow distinct entrance and exit (and hence distinct use of the bridges) to each
section of the city. The example demonstrates how the solution of the problem is facilitated by
using network representation.
2.2. Minimal Spanning Tree Algorithm:
The minimal spanning tree algorithm deals with linking the nodes of a network, directly or
indirectly, using the shortest total length of connecting branches. A typical application occurs in
the construction of paved roads that link several rural towns. The road between two towns may
pass through one or more other towns. The most economical design of the road system calls for
minimizing the total miles of paved roads, a result that is achieved by implementing the minimal
spanning tree algorithm.
The steps of the procedure are given as follows. Let N = {1, 2, ...., n} be the set of nodes of the
network and define
C,, =Set of nodes that have been permanently connected at iteration k
C,, = Set of nodes as yet to be connected permanently after iteration k
Ste 0. Set C, = @ and C, = N.
Step 1. Start with any node I in the unconnected set C, and set C; = {i} , which renders

C, = N —{i}. Set k=2.
General Step k: Select a node, j*, in the unconnected set C,,_ that yields the shortest arc to a node

in the connected set Cj_,. Link j* permanently to C,_; and remove it from C,_; ; that is,
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Figure 2.4

Cable connections for Midwest TV Company
Example 2:
Midwest TV Cable Company is in the process of providing cable service to five new housing
development areas. Figure 6.6 depicts possible TV linkages among the five areas. The cable miles
are shown on each arc. Determine the most economical cable network.

The algorithm starts at node 1 (any other node will do as well), which gives

C; = {1}, E] - {2,3,4, 5, 6}

The iterations of the algorithm are summarized in Figure 2.5. The thin arcs provide all the
candidate links between C and Bar(C). The thick branches represent the permanent links between
the nodes of the connected set ¢: and the dashed branch represents the new (permanent) link added
at each iteration. For example, in iteration 1, branch (1,2) is the shortest link (= 1 mile) among all
the candidate branches from node 1 to nodes 2,3,4,5, and 6 of the unconnected set Bar(C1). Hence,
link (1,2) is made permanent and j* = 2, which yields C, = {1,2},C, = {3,4,5,6}

The solution is given by the minimal spanning tree shown in iteration 6 of Figure 6.7. The
resulting minimum cable miles needed to provide the desired cable serviceare1 +3+4+3+5=

16 miles.
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ath [teration 6
Hpailon (Minimal spanning tree)

Figure 2.5

Solution iterations for Midwest TV Company
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2.3. Shortest Route Problem:

The shortest-route problem determines the shortest route between a source and destination in a
transportation network. Other situations can be represented by the same model, as illustrated by
the following examples.

Examples of the Shortest-Route Applications

Example 4 :(Equipment Replacement)

Rent Car is developing a replacement policy for its car fleet for a 4-year planning horizon. At the
start of each year, a decision is made as to whether a car should be kept in operation or replaced.

Figure 2.6

Equipment replacement problem as a shortest route model

A car must be in service a minimum of 1 year and a maximum of 3 years. The following table
provides the replacement cost as a function of the year a car is acquired and the number of years

in operation.

Replacement cost (§) for given years in operation

Equipment
acquired at start of year ! 2 J
1 4000 3400 9800
2 4300 6200 8700
3 4800 7100 -
4 4900 - -
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The problem can be formulated as a network ivn Whlch nodes 1 to 5 represent the start of years 1 to
5. Arcs from node | (year 1) can reach only nodes 2,3, and 4 because a car must be in operation
between 1 and 3 years. The arcs from the other nodes can be interpreted similarly. The length of
each arc equals the replacement cost. The solution of the problem is equivalent to finding the
shortest route between nodes 1 and 5.

Figure 2.6. shows the resulting network. Using TORA, the shortest route (shown by the thick
path) is 1 -> 3 -> 5. The solution means that a car acquired at the start of year 1 (node 1) must be
replaced after 2 years at the start of year 3 (node 3). The replacement car will then be kept in
service until the end of year 4. The total cost of this replacement policy is
$12,500 (= $5400 + $7100).

Example 5: (Most Reliable Route)

Smart drives daily to work. Having just completed a course in network analysis, Smart is able to
determine the shortest route to work. Unfortunately, the selected route is heavily patrolled by
police, and with all the fines paid for speeding, the shortest route may not be the best choice. Smart
has thus decided to choose a route that maximizes the probability of not being stopped by police.
The network in Figure 2.7 shows the possible routes between home and work, and the associated

probabilities of not being stopped on each segment. The probability of not being

Figure 2.7

Most reliable route network model
stopped on a route is the product of the probabilities associated with its segments. For example,
the probability of not receiving a fine on the route 1 -> 3 ->5->7is.9 X .3 X .25 =.0675. Smart's

objective is to select the route that maximizes the probability of not being fined.
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The problem can be formulated as a shortest-rout; model by using a logarithmic transformation
that converts the product probability into the sum of the logarithms of probabilities that is,
if pi = p1 X p2 X ... X pk is the probability of not being stopped, then log pik = log p1 + log p2 + ...
+ log p«.

Mathematically, the maximization of log pi is equivalent to the maximization of log pix. Because
log pw < 0, the maximization of log pik is equivalent to the minimization of -log pi. Using this
transformation, the individual probabilities pj in Figure 2.7 are replaced with -log p; for all j in the
network, thus yielding the shortest-route network in Figure 2.8.

Using TORA, the shortest route in Figure 2.8 is defined by the nodes 1,3,5, and 7 with a
corresponding "length” of 1.1707 (= -log P17). Thus, the maximum probability of not being
stopped is p17 = .0675 only, not very encouraging news for Smart!

Example 6: (Three-Jug Puzzle)

An 8-gallon jug is filled with fluid. Given two empty 5- and 3-gallon jugs, we want to divide the
8 gallons of fluid into two equal parts using the three jugs. No other measuring devices are allowed.
What is the smallest number of transfers (decantation’s) needed to achieve this result?

You probably can guess the solution to this puzzle. Nevertheless, the solution process can be
systematized by representing the problem as a shortest-route problem.

A node is defined to represent the amount of fluid in the 8-,5-, and 3-gallon jugs, respectively. This

means that the network starts with node (8, 0, 0) and terminates with the desired

Most-reliable-route representation as a shortest-route model

09691 435593

Figure 2.8
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Figure 2.9

Three-Jug Puzzle representation as a shortest route model
solution node (4,4,0). A new node is generated from the current node by decanting fluid from one
jug into another.

Figure 2.9 shows different routes that lead from the start node (8,0,0) to the end node (4, 4, 0).
The arc between two successive nodes represents a single transfer, and hence can be assumed to
have a length of 1 unit. The problem thus reduces to determining the shortest route between node
(8,0,0) and node (4,4,0).

The optimal solution, given by the bottom path in Figure 2.9 requires 7 transfers.
2.3.1. Shortest -Route Algorithms

This section presents two algorithms for solving both cyclic (i.e., containing loops) and acyclic
networks:

1. Dijkstra's algorithm
2. Floyd's algorithm

Dijkstra's algorithm is designed to determine the shortest routes between the source node and
every other node in the network. Floyd's algorithm is more general because it allows the
determination of the shortest route between any two nodes in the network.

Dijkstra’'s Algorithm. Let ui be the shortest distance from source node 1 to node i, and
define dij (>0) as the length of arc (i, j). Then the algorithm defines the label for an immediately

succeeding node j as
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The label for the starting node is [0, --], indicating that the node has no predecessor. Node labels
in Dijkstra's algorithm are of two types: temporary and permanent. A temporary label is modified
if a shorter route to a node can be found. If no better route can be found, the status of the temporary

label is changed to permanent.

Step 0. Label the source node (node 1) with the permanent label [0,—).Seti = 1.

Stepi. (a) Compute the temporary labels [u; + dj, i} for each node j that can be
reached from node i, provided j is not permanently labeled. If node j is
already labeled with [u;, k] through another node k and if »; + dj; < u;,
I'Cp!ace [u,-, k] with [u,- + di]" l]
{b) If all the nodes have permanent labels, stop. Otherwise, select the label
fu,, s] having the shortest distance {=u,) among all the temporary labels
(break ties arbitrarily). Set i = r and repeat step i.

Example 7:

The network in Figure 2.10 gives the permissible routes and their lengths in miles between city 1
(node 1) and four other cities (nodes 2 to 5). Determine the shortest routes between city 1 and each
of the remaining four cities.

Iteration 0. Assign the permanent label [0, -- ] to node 1.

Iteration 1. Nodes 2 and 3 can be reached from (the last permanently labeled) node 1. Thus, the

list of labeled nodes (temporary and permanent) becomes

Node Label Status

1 [0,1] Permanent
2 [0+100,1]=[100,1] Temporary
3 [0+30,1]=[30,1] Temporary
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Figure 2.10

Network example for Dijkstra’s shortest route algorithm

For the two temporary labels [100, 1] and [30, 1], node 3 yields the smaller distance (uz = 30).

Thus, the status of node 3 is changed to permanent.

Iteration 2. Nodes 4 and 5 can be reached from node 3, and the list of labeled nodes becomes
Node Label Status

1 [0, -] Permanent
2 [100,1] Temporary
3 [30,1] Permanent
4 [30+10,3]=[40,3] Temporary
5 [30+60,3]=[90,3] Temporary

The status of the temporary label [40,3] at node 4 is changed to permanent (us = 40).

Iteration 3. Nodes 2 and 5 can be reached from node 4. Thus, the list of labeled nodes is updated
as Node 2's temporary label [100, 1] obtained in iteration 1 is changed to [55,4) in iteration 3 to
indicate that a shorter route has been found through node 4. Also, in iteration 3, node 5 has two

alternative labels with the same distance us = 90.
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( ) = iteration

Figure 2.11. Dijkstra’s labelling procedure
The list for iteration 3 shows that the label for node 2 is now permanent.

Iteration 4. Only node 3 can be reached from node 2. However, node 3 has a permanent label and
cannot be relabeled. The new list of labels remains the same as in iteration 3 except that the label
at node 2 is now permanent. This leaves node 5 as the only temporary label Because node 5 does
not lead to other nodes, its status is converted to permanent, and the process ends.

The computations of the algorithm can be carried out more easily on the network, as Figure 2.11
demonstrates.

The shortest route between nodes 1 and any other node in the network is determined by starting
at the desired destination node and backtracking through the nodes using the information given by
the permanent labels. For example, the following sequence determines the shortest route from node
1 to node 2:

(2) -> [55, 4] -> (4) -> [40, 3] -> (3) ->[30,1] -> (1)

Thus, the desired route is 1 -> 3 -> 4 -> 2 with a total length of 55 miles.

Exercises 1:

1. The network in Figure gives the distances in miles between pairs of cities 1,2, ., . , and 8. Use
Dijkstra's algorithm to find the shortest route between the following cities:

a. Cities1and 8
b. Cities 1 and 6
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2. Use Dijkstra's algorithm to find the shortest route between node 1 and every other node in the

network this figure.

c. Cities4 and 8

d. Cities 2 and 6

Floyd's Algorithm. Floyd's algorithm is more general than Dijkstra's because it determines the
shortest route between any two nodes in the network. The algorithm represents an n-node network
as a square matrix with n rows and n columns. Entry (~j) of the matrix gives the distance djj from
node i to node j, which is finite if i is linked directly to j, and infinite otherwise.

The idea of Floyd's algorithm is straightforward. Given three nodes i j, and k in Figure 6.19 with
the connecting distances shown on the three arcs, it is shorter to reach j from i passing through k if

di + dyj < d;j

50

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Figure 2.12

Floyd’s triple operation

In this case, it is optimal to replace the direct route from i — j with the indirect route i — k— j. This
triple operation exchange is applied systematically to the network using the following steps:

Step 0. Define the starting distance matrix Do and node sequence matrix So as given below.

2 2 j n
] m— du d“ et dlu
2 dll — s dk dh
Dy = : : : : : : :
i ) dn da d'l d'u
n D,.l d,,) soe d.’ “os —

The diagonal elements are marked with (--) to indicate that they are blocked. Set k = 1.

1 2 j n
| - 2 j
2 1 - b
Sox : <
{ 1 2 ] n
n 1 2 J -

General step k. Define row kand column k as pivot row and pivot column. Apply the triple
operation to each element d jj in Dk - 1, for all i and j. If the condition

dik +dk] < dijl (l * k,] * kandl;t])
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is satisfied, make the following changes:
a) Create Dk by replacing djj in Dk - 1 with djx + dy;
b) Create S; by replacing Sij in Sk with k. Setk=k+ 1. Ifk=n+ 1,
stop; else repeat step k.
Step k of the algorithm can be explained by representing Dk - 1 as shown in Figure 6.20. Here,

row k and column k define the current pivot row and column. Row i

Pivot
Column column Column
j & q
=
Row i h---{2
Pivot row k

Row p ---
1
1
1

Figure 2.13

Implementation of triple operation in matrix form

represents any of the rows 1, 2, ..., and k - 1, and row p represents any of the rows k + 1, k + 2, ...
, and n. Similarly, column jrepresents any of the columns 1,2,... , andk-1, and
column q represents any of the columns k + 1, k + 2, ..., and n. The triple operation can be applied
as follows. If the sum of the elements on the pivot row and the pivot column (shown by squares)
is smaller than the associated intersection element (shown by a circle), then it is optimal to replace
the intersection distance by the sum of the pivot distances.

After nsteps, we can determine the shortest route between nodesiandjfrom the
matrices Dn and Sn using the following rules:

a) From Dn djj gives the shortest distance between nodes i and j.
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route i = k = j. If sik = k and sxj = J, stop; all the intermediate nodes of the route have been found.
Otherwise, repeat the procedure between nodes i and k, and between nodes k and j.

Example 8:

For the network in Figure 2.14, find the shortest routes between every two nodes. The distances
(in miles) are given on the arcs. Arc (3,5) is directional, so that no traffic is allowed from node 5

to node 3. All the other arcs allow two-way traffic.

Figure 2.14
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Iteration 0: The matrices Do and So give the initial representation of the network. Do
is symmetrical, except that d53 = 00 because no traffic is allowed from node 5 to node

3.
Dy So
| 2 3 q J 1 2 3 4 J

| 3 10 o 1 2 3 4 ]
2 3 s 5 00 2 | 3 4 D
3 10 | 6 15 3 | - 4 4]
4 00 5 6 4 1 | 3 4]
a o |ao |w |4 : 3 1 3 4

Iteration 1. Set k= 1. The pivot row and column are shown by the lightly shaded first
row and first column in the Do-matrix. The darker cells, d23 and d32, are the only
ones that can be improved by the triple operation. Thus, DI and SI are obtained from
Do and So in the following manner:

1. Replace d23with d2k + dk3 =3 + 10 =13 and set 523 = 1(S23=k)
2. Replace d32 with d3k + dk2=10 + 3 = 13 and set §32=1(532=k)

Dy Si

1 2 3 4 5 1 2 3 4 5
| - 3 10 |« o0 | 2 3 4 5
z2 13 |- 13 15 |= 2 |11 |- 1 |4 |5
Sl [13 15 S i 5
‘; o |5 |6 4 g 1 3 5

a0 a0 o0 4 1 2 3 4
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Iteration 2: Set k= 2, as shown by the lightly shaded row and column in D1

=

K

1. Replace di4 with dik + dk4 =3 + 5 = B and set 514 = 2 (523=k=2)
2. Replace d41 with d¢k + dkl=5 + 3 = 8 and set 532 = 2(S32=k=2)

. The
triple operation is applied to the darker cells in D1, and S1 ' The resulting changes are
shown in bold in D2 and 52.

D2 Sz
1 2 3 5 1 4
1 ] - 1_3 | 10 8 o0 1 - 3 2 5
2 [ 13 |5 o0 2 1 1 4 5
i 0 |13 |- 6 15 i 1 - 4 5
N 6 - 4 : 2 3 - 5
o o0 4 - 1 3 4 -

Iteration3: Set & =3, as shown by the shaded row and column in D2, The new
matrices are given by D3 and 53
Dg, Sﬂ
1 2 3 4 5 2 3 4 a9

1 3 10 |8 25 1 2 3 2 3
= 3 - |13 |s 28 b 1 : 1 4 3
j 10 |13 | 6 15 j 1 1 : 4 5
5 8 2 - 4 5 2 2 3 - I}

50 0 o0 4 - 1 2 3 4 -

Iteration 4: Set k = 4, as shown by the shaded row and column in D3. The new

matrices are given by D4 and 54

4

5

o L3 DD

B

B

o L2 DD =

[§S]

W=

=

=S

;

o

Iteration 5: Set & = 5, as shown by the shaded row and column in D4« No further

improvements are possible in this iteration.
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Iteration 5. Set k = 5, as shown by the shadédm;;)';;/ and column in D4. No further improvements
are possible in this iteration.

The final matrices D4 and S4 contain all the information needed to determine the shortest route
between any two nodes in the network. For example, from D, the shortest distance from node 1
to node 5is d ;s =12 miles. To determine the associated route, recall that a segment (i, j) represents
a direct link only if si = j. Otherwise, i and j are linked through at least one other intermediate
node. Because sij = 4! =5, the route is initially given as 1 -4 — 5. Now, because s14 = 2 =4, the
segment'(1,4) is not a direct link, and 1 —4 is replaced with 1 - 2 - 4, and the route 1 - 4 -5
now becomes 1 — 2 - 4 — 5. Next, because s12 = 2, S24 = 4, and s4s = 5, no further "dissecting" is
needed, and 1 - 2 — 4 — 5 defines the shortest route.

2.3.2. Linear Programming Formulation of the Shortest-Route Problem

This section provides an LP model for the shortest-route problem. The model is general in the
sense that it can be used to find the shortest route between any two nodes in the network. In this
regard, it is equivalent to Floyd's algorithm.

Suppose that the shortest-route network includes n nodes and that we desire to determine the
shortest route between any two nodes sand t in the network. The LP assumes that one unit of flow
enters the network at node s and leaves at node t.

Define

x;; = amount of flow in arc (4, j)
1, if arc (i, j) ts on the shortest route

0, otherwise

¢;; = length of arc (4, )

Thus, the objective function of the linear program becomes

Minimize 2 = >, X
all defined
arcs {i.f)
The constraints represent the conservarion-of-flow equarion at each node:
Total input flow = Total output flow

Mathematically, this translates for node j to

External input External output)
) -+ xX;; = % . Xige
( into node j ) 2 4 ( from node j ; i&

z
all defined all defined
arcs (i, f) arcs (). &%)
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Example 9:

Consider the shortest-route network of Example 6 Suppose that we want to determine the shortest
route from node 1 to node 2-that is, s =1 and t = 2. Figure 2.15 shows how the unit of flow enters
at node 1 and leaves at node 2.

We can see from the network that the flow-conservation equation yields

Node 1: 1=12xpp+ x13
Node2:x1; + X490 = x93 + 1
Node 3: Xy3 T X33 = X3g + X35
Node 4: X = Xg t X435
Node 5: x35 + x4 = 0

Figure 2.15

Insertion of unit flow to determine shortest route between node s=1 and node t=2

The complete LP can be expressed as

Xy X5 In Xy X3s Xa Xgs

Minimize z = 100 30 20 10 60 15 50

Node 1 1 1 = 1
Node 2 -1 1 -1 = -]
Node 3 -1 -1 1 1 = 0
Node 4 -1 1 = 0
Node § -1 -1 = 0

Notice that column xij has exactly one "1" entry in row i and one "-I" entry in row j, a typical

property of a network LP.
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This solution gives the shortest route from node 1 to node 2 as 1 —» 3— 4 — 2, and the associated
distance is z = 55 (miles).

2.4, Maximal Flow Model:

Consider a network of pipelines that transports crude oil from oil wells to refineries. Intermediate
booster and pumping stations are installed at appropriate design distances to move the crude in the
network. Each pipe segment has a finite maximum discharge rate of crude flow (or capacity). A
pipe segment may be uni- or bidirectional, depending on its design. Figure 2.16 demonstrates a
typical pipeline network. How can we deter-mine the maximum capacity of the network between
the wells and the refineries?

The solution of the proposed problem requires equipping the network with a single source and a
single sink by using unidirectional infinite capacity arcs as shown by dashed arcs in Figure 2.16.
2.4.1. Enumeration of Cuts

A cut defines a set of arcs which when deleted from the network will cause a total disruption of
flow between the source and sink nodes. The cut capacity equals the sum of the capacities of its
arcs. Among all possible cuts in the network, the cut with the smallest capacity gives the
maximum flow in the network.

Example 10:

Consider the network in Figure 2.17. The bidirectional capacities are shown on the respective arcs
using the convention in Figure 2.17. For example, for arc (3,4), the flow limit is 10 units from 3 to
4 and 5 units from 4 to 3.

Figure 2.20 illustrates three cuts whose capacities are computed in the following table.

Cut Associated arcs Capacity
1 (1,2),(1,3),(3,9) 20 + 30 + 10 = 60
2 (1,3),(1,4),(2.3),(2,5) 30+ 10+ 40 + 30 = 110
3 (2,5),{3,5).(4,5) 30+20+20=70

Capacitated network connecting wells and refineries through booster stations
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Arc flows ¢, from i - j and ¢, fromj — i

Figure 2.28. Examples of cuts in flow networks
The only information we can glean from the three cuts is that the maximum flow in the net-work
cannot exceed 60 units. To determine the maximum flow, it is necessary to enumerate all the cuts,

a difficult task for the general network. Thus, the need for an efficient algorithm is imperative.
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2.4.2. Maximal Flow Algorithm
The maximal flow algorithm is based on finding breakthrough paths with net positive flow
between the source and sink nodes. Each path commits part or all of the capacities of its arcs to
the total flow in the network.

Consider arc (i, /) with (initial) capacities (C;;, C;;). As portions of these capaci-

ties are committed to the flow in the arc, the residuals (or remaining capacities) of the
arc are updated. We use the notation (c¢;;, ¢j;) to represent these residuals.

For a node j that receives flow from node i, we attach a label [a, i], where aj is the flow from
node i to node j. The steps of the algorithm are thus summarized as follows.

Step 1. For all arcs (4, /), set the residual capacity equal to the initial capacity— that is
(cijy i) = (Cyj, Cj). Let @y = 00 and label source node 1 with [co, —]. Set
i =1, and go to step 2.

Step 2. Determine S, the set of unlabeled nodes j that can be reached directly from
node i by arcs with positive residuals (that is,¢; > Oforallje §)). If §; # O,
go to step 3. Otherwise, go 10 step 4.

Step 3. Determine k € §; such that

Cik = I':]S'X{C‘I}

Setak=cikand label node k with [axi]. Ifk=n,the sink node has been labeled, and
a breakthrough path. is found, go to step 5. Otherwise, set i =k, and go to step 2.

Step 4. (Backtracking). If i = 1, no breakthrough is possible; go to step 6. Otherwise, let r be the
node that has been labeled immediately before current node i and remove i from the set of nodes
adjacenttor. Seti =r, and go to step 2.

Step 5. (Determination of residuals). LetNy= (1, kikz, ... ,n)define the nodes of
the path breakthrough path from source node 1 to sink node n. Then the maximum flow along the

path is computed as
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fp = min{ala akl' ak!r fey an}

The residual capacity of each arc along the breakthrough path is decreased by f , in the direction
of the flow and increased by f , in the reverse direction-that is, for nodes i and j on the path, the
residual flow is changed from the current (c;j, ¢;;)to

(@) {c¢; = fé, ci + f,) if the flow is fromito

(b) (¢ + fpcii — fp) if the flowisfromjtoi
Reinstate any nodes that were removed in step 4. Set i = 1, and return to step 2 to attempt a new
breakthrough path.
Step 6. (Solution).
(a) Given that m breakthrough paths have been determined, the maximal flow in the network is

F=fitfo+ -+

(b) Using the initial and final residuals of arc (i, j), (Cj;, C;) and (cip, ¢ji),
respectively, the optimal flow in arc (i, j) is computed as follows: Let
(Q’, B) = (6,} = Cij, Ej,‘ s Cj,‘). Ifa > 0,the 0ptimal flow fromitojisa.
Otherwise, if 8 > 0, the optimal flow from j to { is 8. (It is impossible to
have both « and g positive.)

The backtracking process of step 4 is invoked when the algorithm becomes "dead-ended" at an
intermediate node. The flow adjustment in step 5 can be explained via the simple flow network in
Figure 2.19 Network (a) gives the first breakthrough path N | = {l, 2, 3, 4} with its maximum
flow It = 5. Thus, the residuals of each of arcs (1, 2), (2,3), and (3,4) are changed from (5,0) to
(0,5), per step 5. Network (b) now gives the second breakthrough path N2 ={l, 3, 2, 4} with f2 =
5. After making the necessary flow adjustments, we get network (c), where no further
breakthroughs are possible. What happened in the transition from (b) to (c) is nothing but a
cancellation of a previously committed flow in the direction 2 —3. The algorithm is able to

"remember" that
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[5.2]
Path: 1229324, fi=35 Path: 13224, =35 No breakthrough
(a) (b)

Figure 2.19

the reverse direction from 0 to 5 (per step 5).
Example 11:

description of the iterations with the graphical summary.

Iteration 1. Set the initial residuals (c;;, ¢4) equal to the initial capacities (Cy;, Cp).

Step 1. Seta; = oo and label node I with {co, —]. Seti = 1.
Step2. S5, = {2,3,4} (# 9).

a flow from 2 to 3 has been committed previously only because we have increased the capacity in

Determine the maximal flow in the network of Example 10 (Figure 2.18). Figure 2.20provides a

graphical summary of the iterations of the algorithm. You will find it helpful to compare the

Step3. Kk = 3, because ¢;3 = max{¢yy, ¢33, 1) = max{20,30, 10} = 30. Set az = ¢;3 = 30,

and label node 3 with [30,1}. Set i = 3, and repeat step 2.
Step2. S5 = (4,5).

Step3. Kk =5 and as = ¢35 = max{10,20} = 20. Label node 5 with [20, 3]. Breakthrough is

achieved. Go to step 5.

Step 5. The breakthrough path is determined from the labels starting at node 5 and moving
backward to node 1—that is, (5) — [20, 3] — (3) — {30, 1] — (1). Thus, N, = {1, 3,5}
and f; = min{a;, a3, as} = {o0,30,20} = 20. The residual capacities along path N,

are
(cis, c3) = (30 — 20,0 + 20) = (10,20}
(c3s,¢53) = (20 — 20,0 + 20} = (0,20)
Iteration 2

Step 1. Seta; = co, and label node 1 with {oo, ——). Seti = 1.
Step2. S, = {2,3,4}.
Step 3. k = 2anda; = ¢;; = max{20, 10, 10} = 20. Seti = 2, and repeat step 2.

62

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



(e)fs=10 (f) No breakthrough

Figure 2.20

Iterations of the maximum flow algorithm of Example 11
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Stepz. S) = {3. S}

Step3. k = 3anda; = ¢x = 40. Label node 3 with {40,2]. Set i = 3, and repeat step 2.
Step2. S; = (4} (note that ¢35 = O—hence, node 5 cannot be included in §y).

Step3. k = danda, = c3 = 10. Label node 4 with [10, 3]. Set i = 4, and repeat step 2.
Step2. 54 = {5} (note that nodes 1 and 3 are already labeled—hence, they cannot be

included in S5).
Step3. k& = 5Sandas = ¢y = 20. Label node 5 with [20, 4]. Breakthrough has been achieved.
Go to step 5.
StepS5. N, = {1,2,3,4,5} and f, = min{00, 20,40, 10,20} = 10. The residuals along the
path of N, are
(Cn, C'n) = (20 - 10,0 + ]0) o (lO, 10)
(e, e33) = (40 — 10,0 + 10) = (30, 10)
(€4, €a3) = (10 = 10,5 + 10) = (0, 15)
(€ss,€54) = (20 — 10,0 + 10) = (10, 10)
fteration 3

Step1. Seta, = o0 and label node 1 with [oo, —]. Seti = L.

Step2. S, = (2,3,4}.

Step3. k =2 and a; = ¢ = max{10, 10, 10} = 10. (Though ties are broken arbitrarily,
TORA always selects the tied node with the smallest index. We will use this conven-
tion throughout the example.) Label node 2 with {10,1]. Seti = 2, and repeat step 2.

Step2. S; = (3,5}.
Step3. & = 3anda,; = ¢py = 30. Label node 3 with [30,2]. Seti = 3, and repeat step 2.
Step2. §; = O (because cy = ¢35 = 0). Go to step 4 10 backtrack.

Step 3. Backtracking. The label [30, 2] at node 3 gives the immediately preceding node r = 2.
Remove node 3 from further consideration in this iteration by crossing it out. Set
i = r = 2, and repeat step 2.
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Step2. S, = {5} (note that node 3 has been removed in the backtracking step).
Step3. k = 5andas = ¢35 = 30. Label node 5 with {30, 2]. Breakthrough has been achieved:

gotostepS.
Step5. Ny = {1,2,5}and ¢s = min{c0, 10,30} = 10. The residuals along the path of N; are
(e &) = (10 — 10,10 + 10) = (0,20)
(2. €52) = (30 = 10,0 + 10) = (20,10)

Ieration 4. This iteration yields Ny = {1, 3,2, 5} with f; = 10 (verify!).
Heration 5. This iteration yields N5 = {1, 4,5} with f; = 10 (verify!).

Tteration 6.  All the arcs out of node 1 have zero residuals. Hence, no further breakthroughs are
possible. We turn to step 6 to determine the solution.

Step6. Maximal flow in the network is F=fi+ fo+ - +f5=20+10+ 10+
10 + 10 = 60 units. The flow in the different arcs is computed by subtracting the last
residuals (¢, c;) in iterations 6 from the initial capacities (C;;, C;;), as the following

table shows.

Arc (Ciy. Cp) — (<o cide Flow amount Direction
(1,2)  (20,0) - (0.20) = (20, —20) 20 1—2
(1.3) (30, 0) - {0, 30) = (30, —30) 30 1—3
(1,4)  (10,0) — (0, 10) = (10, ~10) 10 1—4
(2.3) (40, 0) — (40,0) = (0, 0) 0 —
(2.5) (30, 0) — (10, 20) = (20, —20) 20 2—5
(3.4)  (10.5) — (0, 15) = (10, —10) 10 3—4
(3.5)  (20,0) - (0,20) = (20, —20) 20 35
(4,5) (20, 0) — (0, 20) = (20, —20) 20 45

2.4.3. Linear Programming Formulation of Maximal Flow Mode
Define xij as the amount of flow in arc (i, j) with capacity cij . The objective is to determine xij for
all i and j that will maximize the flow between start node s and terminal node t subject to flow

restrictions (input flow = output flow) at all but nodes s and t.
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Example 12:
In the maximal flow model of Figure 2.18 (Example 11), s = 1 and t = 5. The following table
summarizes the associated LP with two different, but equivalent, objective functions depending

on whether we maximize the output from start node 1 (= z.) or the input to terminal node

X2 X3 X34 Iz X325 Xag Xas Xy Xas
Maximize z, = [ i 1
Maximize z, = 1 1 1
Node 2 1 -1 ~1 ={
Node 3 1 1 -1 -1 )| =10
Node 4 1 1 -1 -1 =(
Capacity 20 30 10 40 30 10 20 5 20

The optimal solution using cither objective function is
X33 = 20, xy3 = 30, X34 = 10, X35 = 20, x3¢ = 10, x45 = 20, x45 = 20
The associated maximum flow is z; = 7, = 60.
2.5.CPM and PERT
CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique) are network-
based methods designed to assist in the planning, scheduling, and control of projects. A project is

defined as a collection of interrelated activities with each activity

Figure 2.21
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Figure 2.22

consuming time and resources. The objective of CPM and PERT is to provide analytic means for
scheduling the activities. Figure 2.23 summarizes the steps of the techniques. First, we define the
activities of the project, their precedence relationships, and their time requirements. Next, the
precedence relationships among the activities are represented by a network. The third step involves
specific computations to develop the time schedule for the project. During the actual execution of
the project things may not proceed as planned, as some of the activities may be expedited or
delayed. When this hap-pens, the schedule must be revised to reflect the realities on the ground.
This is the reason for including a feedback loop between the time schedule phase and the net-work

phase, as shown in Figure 2.23.

Network Time schedule
_____ | I [ S— K
|r Project || | Network ! ! = !
| activities || ™ caleutation [ ==y |
l_____f____l '____]-;”L“i_l
Figure 2.23

The two techniques, CPM and PERT, which were developed independently, differ in that CPM
assumes deterministic activity durations and PERT assumes probabilistic durations. This

presentation will start with CPM and then proceed with the details of PERT.
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2.5.1. Network Representation:

Each activity of the project is represented by an arc pointing in the direction of progress in the
project. The nodes of the network establish the precedence relation-ships among the different
activities.

Three rules are available for constructing the network.

Rule 1. Each activity is represented by one, and only one, arc.

Rule 2. Each activity must be identified by two distinct end nodes.

Figure 2.24 shows how a dummy activity can be used to represent two concurrent

activities, A and B. By definition, a dummy activity, which normally is depicted by a

Figure 2.24

Use of dummy activity to produce unique representation of concurrent activities

Figure 2.25
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dashed are, consumes no time or resources. Ins;amng a dummy activity in one of the four ways
shown in Figure 2.24, we maintain the concurrence of A and B, and provide unique end nodes for
the two activities (to satisfy rule 2).

Rule 3. To maintain the correct precedence relationships, the following questions must be
answered as each activity is added to the network:

i. What activities must immediately precede the current activity?

Ii. What activities must follow the current activity?

iii. What activities must occur concurrently with the current activity?

The answers to these questions may require the use of dummy activities to ensure correct
precedences among the activities. For example, consider the following segment of a project:

a) Activity C starts immediately after A and B have been completed.

b) Activity E starts only after B has been completed.

Part (a) of Figure 2.25 shows the incorrect representation of the precedence relation-ship because
it requires both A and B to be completed before E can start. In part (b), the use of a dummy activity
rectifies the situation.

Example 13:

A publisher has a contract with an author to publish a textbook. The (simplified) activities
associated with the production of the textbook are given below. The author is required to submit
to the publisher a hard copy and a computer file of the manuscript. Develop the associated net-

work for the project.
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Activily Predecessor(s) Duration (weeks)

A: Manuscript proofreading by editor — 3
B: Sample pages preparation — 2
€. Book cover design - 4
D: Astwork preparation - 3
E: Author's approval of edited

manuscript and sample pages A B 2
F. Book formatting E 4
G: Author’s review of formatted pages F 2
H: Author's review of artwork D 1
£: Production of printing plates GH 2
J: Book production and binding Gl 4

Figure 2.26

Figure 2.26 provides the network describing the precedence relationships among the different
activities. Dummy activity (2,3) produces unique end nodes for concurrent activities A and B. It is
convenient to number the nodes in ascending order in the direction of progress in the project.
2.5.2. Critical Path (CPM) Computations:

The end result in CPM is the construction of the time schedule for the project (see Figure 2.27).
To achieve this objective conveniently, we carry out special computations that produce the
following information:

a. Total duration needed to complete the project.

b. Classification of the activities of the project as critical and noncritical.
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An activity is said to be critical if there is no "I;Eéxay" in determining its start and finish times. A
noncritical activity allows some scheduling slack, so that the start time of the activity can be
advanced or delayed within limits without affecting the completion date of the entire project.

To carry out the necessary computations, we define an event as a point in time at which activities
are terminated and others are started. In terms of the network, an event corresponds to a node.

Define

OJ; = Earliest occurrence time of event j
A; = Latest occurrence time of event j
D;; = Duration of activity (i, /)

The definitions of the earliest and latest occurrences of event j are specified relative to the start

and completion dates of the entire project.

The critical path calculations involve two passes: The forward pass determines

the earliest occurrence times of the events, and the backward pass calculates

their latest occurrence times.

Forward Pass (Earliest Occurrence limes, [1). The computations start at node 1 and advance

recursively to end node n.

Initial Step. Set [J 1 = 0 to indicate that the project starts at time O.

General Step j. Given that nodesp, g¢,.... ,andvare linked directly to node j by incoming

activities (p, j), (g, j), , and (v, j) and that the earliest occurrence times of events (nodes) p, q, ...

, and v have already been computed, then the earliest occurrence time of event j is computed as
A; = min{A, — Dj,, A, — D;

The backward pass is complete when A, at node 1 is computed. At this point,

A =0 (=0).

Based on the preceding calculations, an activity (4 j) will be critical if it satisfies
three conditions.

A =00
A"A,=Dl--D,'=D/j

~

b B
J

-~
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The three conditions state that the earliest and ima;tgswtwoccurrence times of end nodes i and j are equal
and the duration Dj;j fits "tightly" in the specified time span. An activity that does not satisfy all
three conditions is thus noncritical.

By definition, the critical activities of a network must constitute an uninterrupted path that spans
the entire network from start to finish.

Example 14:

Determine the critical path for the project network in Figure 2.27 All the durations are in days.
Forward Pass

Node 1. Set(d, = 0

Node2. G, =0, +Dp=0+5=35

Node 3. 0, = max {0, + D3, + Dy3} = max{0 + 6,5+ 3} =8
Noded. Oy =0, + Dyy =5 +8 = 13

Node 5. (s = max{Ch + Dy, Ty + Dys} = max{8 + 2,13 + 0} = 13

Legend.
Forward pass: D.. e |
8 | li‘a_c!tward pass: S\-——/\
Eod ! Critical path:  (D—— (D)
backward
pass Start
R - backward
e ¥ pass
| .0.:*;’ (1) A\
Smr|/ End
forward forward
pass pass

Figure 2.27

Forward and backward pass calculations for the project of Example 14
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Node 6. [k = max{D3 + Dsq, Oy + Dy, O + Dss}
= max{8 + 11,13 + 1,13 + 12} = 25

The computations show that the project can be completed in 25 days

Backward Pass

Node 6. Set Ag = [}, = 25

NodeS.As = A6 e DS6 =25-12=13

Node 4. A, = min{Ag — Dys, As = Dys} = min{25 — 1,13 - 0} = 13
Node 3. A3 min{A6 - D36, AS - D35} an mm{25 - 11,13 - 2} =11
Node 2, &; = min{A, = Dy, A3 — Dy} = min{13 — 8,11 =3} =5
Node 1. A; = min{A; — Dy3, A; = Dy} = min{ll — 6,5 = 5} =0

Correct computations will always end with A, = 0.
The forward and backward pass computations can be made directly on the network as shown in
Figure 2.27 Applying the rules for determining the critical activities, the critical path is 1 ->2 -
>4 ->5 ->6, which, as should be expected, spans the network from start (node 1) to finish (node
6). The sum of the durations of the critical activities [(1,2), (2, 4), (4, 5), and (5, 6)J equals the
duration of the project (= 25 days). Observe that activity (4,6) satisfies the first two conditions for
a critical activity
(A; =0 = 13 and A5 =5 = 25) but not the third (O — Ty # Dy).

Hence, the activity is noncritical.

2.5.3. Construction of the Time Schedule:

This section shows how the information obtained from the calculations in Previous Section can be
used to develop the time schedule. We recognize that for an activity (i, j), [Ji represents the earliest
start time, and Aj represents the latest completion (fine. This means that the interval ([J;
, Aj) delineates the (maximum) span during which activity (i, j) may be scheduled without

delaying the entire project.

73

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Construction of Preliminary Schedule. The E;;g;hod for constructing a preliminary schedule is
illustrated by an example.

Example 15:

Determine the time schedule for the project of Example 14 (Figure 2.27).

| A-S
—
D-8 ,
e R Critical
H-12 )
~ —
B-6 g
- C-3
pm———— 4
E=2
R l Noncritical
=11
e |
-1
SRR, il SRS -+
e I L | s L
5 10 15 20 25
Days
Figure 2.28

We can get a preliminary time schedule for the different activities of the project by delineating
their respective time spans as shown in Figure 2.28. Two observations are in order.

a. The critical activities (shown by solid lines) must be stacked one right after the other to ensure
that the project is completed within its specified 25-day duration.

b. The noncritical activities (shown by dashed lines) have time spans that are larger than their
respective durations, thus allowing slack (or "leeway™) in scheduling them within their allotted
time intervals.

How should we schedule the noncritical activities within their respective spans? Normally, it is
preferable to start each noncritical activity as early as possible. In this manner, slack periods will
remain opportunely available at the end of the allotted span where they can be used to absorb
unexpected delays in the execution of the activity. It may be necessary, however, to delay the start
of a noncritical activity past its earliest start time. For example, in Figure 2.30, suppose that each
of the noncritical activities E and F requires the use of a bulldozer, and that only one is available.

Scheduling both E and F as early as possible requires two bulldozers between times 8 and 10. We
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can remove the overlap by starting E at time 58“and pushing the start time of F to somewhere
between times 10 and 14.

Ifall the noncritical activities can be scheduled as early as possible, the resulting
schedule automatically is feasible. Otherwise, some precedence relationships may be violated if
noncritical activities are delayed past their earliest time. Take for example activities C and E in
Figure 2.28. In the project network (Figure 2.27), though C must be completed before E, the spans
of C and E in Figure 2.28 allow us to schedule C between times 6 and 9, and E between times 8
and 10, which violates the requirement that C precede E. The need for a "red flag" that
automatically reveals schedule conflict is thus evident. Such information is provided by computing
the floats for the noncritical activities.

Determination of the Floats. Floats are the slack times available within the allotted span of the
noncritical activity. The most common are the total float and the free float.

Figure 2.29 gives a convenient summary for computing the total float (TFij)and the free
float (FFj;) for an activity (i, j). The total float is the excess of the time span defined from
the earliest occurrence of event i to the latest occurrence of event j over the duration of (i, j)-that
is,TF;; = Aj —i-Dy;

The free float is the excess of the time span defined from the earliest occurrence of eventi to

the earliest occurrence of event j over the duration of (i, j)-that is, FF;; =0Jj -0i-Dy;

By definition, FF;; < TF;;

Red-Flagging Rule. For a noncritical activity (i, J)

(@) If F Fij =T Fjj, then the activity can be scheduled anywhere within its ([1j, Aj) span without
causing schedule conflict.

(b) If F Fij < T Fjj, then the start of the activity can be delayed by at most F Fjj relative to its earliest
start time ([J; ) without causing schedule conflict. Any delay larger than F Fjj (but not more than
T Fij) must be coupled with an equal delay relative to [Jj in the start time of all the activities leaving
node j.

The implication of the rule is that a noncritical activity (i, j) will be red-flagged if its F
Fij < T Fj. This red flag is important only if we decide to delay the start of the activity past its
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earliest start time, [1;, in which case we must pay attentlon to the start times of the activities leaving

node j to avoid schedule conflicts.

B 5 e
'[‘F';sIs T”‘
e
B -8
® 0
Figure 2.29

Example 16:

Compute the floats for the noncritical activities of the network in Example 14, and discuss their
use in finalizing a schedule for the project.

The following table summarizes the computations of the total and free floats. It is more convenient
to do the calculations directly on the network using the procedure in Figure 2.29.

Noncritical activity ~ Duration ~ Total float (TF) Free float (FF)

f‘ﬁbi“”’ 6  1-0-6=5 8=0-6=2
“*(w 3 l~5~3=3 §-5-3s0
EB,5) ) B-8-233 B-§-2=3
F3,6) o B-8-lU=6 25-8-11=6
G(4,6) 1 5-13-1=1l -8B~ 1=l

The computations red-flag activities Band C because their FF <TF. The remaining
activities (E, F, and G) have FF =T F, and hence may be scheduled anywhere between their
earliest start and latest completion times.

To investigate the significance of the red-flagged activities, consider activity B. Because its T
F =5 days, this activity can start as early as time 0 or as late as time 5 (see Figure 6.45). However,

because its F F = 2 days, starting B anywhere between time 0 and time 2 will have no effect on the
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times of the immediately succeeding activities E and F must be pushed forward past their earliest

start time (= 8) by at leastd. In this manner, the precedence relationship between B and its
successors E and F is preserved.

Turning to red-flagged activity C, we note that its F F = O. This means that any delay in starting
C past its earliest start time (= 5) must be coupled with at least an equal delay in the start of its
successor activities E and F.

2.5.4. Linear Programming Formulation of CPM:

A CPM problem can thought of as the opposite of the shortest-route problem, in the sense that we
are interested in finding the Longest route of a unit flow entering at the start node and terminating
at the finish node. We can thus apply the shortest route LP formulation in Section 2.3.3 to CPM in
the following manner. Define

xij = Amount of flow in activity (i, j), for all defined i and j

Dj; = Duration of activity (i, j), for all defined i and j

Thus, the objective function of the linear program becomes

Maximize z = E, D;.x;
. Y
all defined
activities {¢, f)

(Compare with the shortest route LP formulation in Section 6.3.3 where the objective function is
minimized.) For each node, there is one constraint that represents the conservation of flow:

Total input flow = Total output flow

All the variables, Xij, are nonnegative.

Example 17:

The- LP formulation of the project of Example 14 (Figure 2.29) is given below. Note that nodes

1 and 6 are the start and finish nodes, respectively.
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A B C D E F Dummy G H

X2 X3 23 X4 X35 Xy Xas Xa Xs6
Maximize z = 6 6 3 8 2 11 0 1 12
Node 1 -1 -1 =-1
Node 2 1 -1 -1 = 0
Node 3 1 i -1 -1 = 0
Node 4 i -1 -1 = 0
Node 5 1 1 -1 =
Node 6 1 i 1 =1

The optimum solution is

z2=25,x12(A) = 1, x04( D} = 1, xg5{Duminy) = 1, xs¢( H} = 1, all others = 0

The solution defines the critical path as A --> D --> Dummy ---> H, and the duration of the project
is 25 days. The LP solution is not complete, because it determines the critical path, but does not
provide the data needed to construct the CPM chart. We have seen in Figure 6.48, however, that
AMPL can be used to provide all the needed information without the LP optimization.

PERT Networks

PERT differs from CPM in that it bases the duration of an activity on three estimates:

a. Optimistic time, a, which occurs when execution goes extremely well

b. Most likely time, m, which occurs when execution is done under normal conditions.

c.  Pessimistic time, b, which occurs when execution goes extremely poorly.

The range (a, b) encloses all possible estimates of the duration of an activity. The estimate m lies
somewhere in the range (a, b). Based on the estimates, the average duration time, Bar(D), and
variance, v, are approximated as:

a+dm+ b
6

v=(b;a)2

CPM calculations given in Sections 2.5.2 and 2.5.3 may be applied directly, with Bar(D) replacing

D=

the single estimate D.
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prespecified scheduled time, s;. Let ej be the earliest occurrence time of node j. Because the

durations of the activities leading from the start node to node j are random variables, ej also must
be a random variable. Assuming that all the activities in the network are statistically independent,
we can determine the mean, E{e;}, and variance, var{ ej}, in the following manner. If there is only
one path from the start node to node j, then the mean is the sum of expected durations, Bar( D), for
all the activities along this path and the variance is the sum of the variances, v, of the same
activities. On the other hand, if more than one path leads to node j, then it is necessary first to
determine the statistical distribution of the duration of the longest path. This problem is rather
difficult because it is equivalent to determining the distribution of the maximum of two or more
random variables. A simplifying assumption thus calls for computing the mean and
variance, E{ej} and var{ej}, as those of the path to nodejthat has the largest sum
of expected activity durations. If two or more paths have the same mean, the one with the largest
variance is selected because it reflects the most uncertainty and, hence, leads to a more
conservative estimate of probabilities.

Once the mean and variance of the path to node j, E{ej} and var{ej}, have been computed, the

probability that node j will be realized by a present time sjis calculated using the following

formula:
e,- - E{e,} Sj yoe E{e,-}
Ple; = §;} = P{ —————= < —? = P{z=<K;
4= ) War(e,} Vvar{e;} { i
where

z = Standard normal random ;/ariable
" Vhar {ej}
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Example 18:
Consider the project of Example 14 To avoid repeating critical path calculations, the values of a,

m, and b in the table below are selected such that Bar (Djj ) = Djj for all i and j in Example 14

Activity i-f  (a,mb)  Activity i-f (a,m, b)

A 2 (3.57 E 35 (1,2,3)
B 13 (4,6,8) F 36 (9,11,13)
¢ 23 (1,3,5) G 6 (,,1)
D 24 (5,811) H 56 (10,12,14)

The mean Bar(Dj;) and variance vij for the different activities are given in the following table. Note

that for a dummy activity (a, m, b) = (0,0,0), hence its mean and variance also equal zero.

Activity i~ Dy V, Adivity = Dy VW
A =2 5 444 E 3-5 2 .
B -3 6 444 F CE O §
C 23 3 444 G “ 1 000
D 24 & 1000 H 6 12 44

The next table gives the longest path from node 1 to the different nodes, together with their

associated mean and standard deviation.

Node  Longest path based on mean durations  Pathmean  Path standard deviation

2 1-2 500 0.67
3 1-2~3 8.00 0.94
i 1-24 13.00 120
3 12045 1300 120
b 1-2-4-5-6 25.00 13
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by the analyst.

Nodej  Longestpath  Pathmean  Pathstandacd deviation  § K PlzsK}

2 1~2 500 (.67 500 0 5000
3 =23 800 0.94 ne 39 9993
4 1-24 13.00 120 JVAL N 2033
5 1-24-5 13.00 1.2 140 .8 7967
6 1-24-5-6 25.00 137 0 .1 7673
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Unit-111

Integer Linear Programming: Introduction- Applications-Integer Programming Solutions-
Algorithms.

Chapter 3: Sec 3.1-3.3

INTEGER LINEAR PROGRAMMING
Integer linear programming (ILP) are linear programs in which same or all the variables are
restricted to integer value.

3.1. Hlustrative Applications:

This section presents a number of ILP applications. The applications generally fall into two
categories: direct and transformed. In the direct category, the variables are naturally integer and
may assume binary (0 or 1) or general discrete values. For example, the problem may involve
determining whether or not a project is selected for execution (binary) or finding the optimal
number of machines needed to perform a task (general discrete value). In
the transformed category, the original problem, which may not involve any integer variables, is
analytically intractable. Auxiliary integer variables (usually binary) are used to make it tractable.
For example, in sequencing two jobs, A and B, on a single machine, job A may precede job B
or job B may precede job A. The "or" nature of the constraints is what makes the problem
analytically intractable, because all mathematical programming algorithms deal with "and"
constraints only. The situation is remedied by using auxiliary binary variables to transform the

"or" constraints into equivalent "and" constraints.

Pure Linear Program

A pure integer program is one in which all the variables are integer
Mixed Integer program

A mixed Integer Program is one in which some of the variable are integer.
Capital budgeting Problem

There are m projects to be evaluated over a ‘n’ year planning horizon. The
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following table gives the expected returns to each project available funds for each year and
the associated yearly.

Expenditures

Project| Expenditures per year Returns
1 2 I R n
1 11 €12  ...Cij... Cin a1
2 c21 c22 G2t con a
1 Cil Ci2 Cij.v..n.. Cin ai
m Cm]_ Cm ....ij ....... Cmn Am
2
Available | b; 07) oD, bn
funds

The problem is to determine the project to be executed over the n-year horizon so that the
total return is maximum. This is called the capital budgeting problem.
Hence the problem reduced to a ““ yes -no” for its project.

Defined xi as follows x;=1 if project I is selected
O if project I is not selected

Since the ILP model is max z=aixi+azxxz+. ...+am Xm
Subject to
CuXit+Coxot. ... FemXm< b1

Ci2X1+CooXo+. ... FemaXm < b2

CinX1t+ConXot. ...+ Cmn Xm < bn
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This is a pure ILP Model.
Example 1:
Five projects are being evaluated over a three year planning horizon. The following table

gives the expected returns for each project and the associated yearly expenditure.

Project Expenditure(million$) Returns
1 2 3 (million$)
1 5 1 8 20
2 4 7 10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30
Available funds 25 25 25
(million $)
Solution:

Determine the project to be executed over the 3-year horizon. The
problem reduces to a “Yes-No” decision for each project. Defined

the binary variable xj as

Defined x;as follows x;=1 if project I is selected

O if project | is not selected

Since the DIP model is gives as

max z = 20x1+40x2+.... +20x3+ 15x4+ 30%s

Subject to
SX1+4X2+3X3+7X4+8X5<25
X1+7X2+9X3+4X4+6X5<25
8X1+10X2+2X3+Xa+10X5<25
X1,X2,...xm=(0,1) This is a

pure ILP model
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For convenience, a pure integer problem is defined to have all integer variables. Otherwise, a

problem is a mixed integer program if it deals with both continuous and integer variables.
Remarks.

It is interesting to compare the continuous LP solution with the ILP solution. The LP optimum,
obtained by replacing x; = (0,1) with 0 <x; <1 for all j, yields
X1=.5789, X2 =x3 = X4 = 1, X5 =.7368, and z = 108.68 (million $).

The solution is meaningless because two of the variables assume fractional values. We
may round the solution to the closest integer values, which yields x; = xs = 1. However, the
resulting solution is infeasible because the constraints are violated. More important, the concept

of rounding is meaningless here because Xi rep-resents a "yes-no" decision.
Set-Covering Problem

In this class of problems, overlapping services are offered by a number of installations to a number
of facilities. The objective is to determine the minimum number of installations that
will cover (i.e., satisfy the service needs) of each facility. For example, water treatment plants can
be constructed at various locations, with each plant serving different sets of cities. The overlapping

arises when a given city can receive service from more than one plant.
Example 2: (Installing Security Telephones)

To promote on-campus safety, the U of A Security Department is in the process of installing
emergency telephones at selected locations. The department wants to install the minimum number
of telephones, provided that each of the campus main streets is served by at least one telephone.
Figure 3.1 maps the principal streets (A to K) on campus.

It is logical to place the telephones at street intersections so that each telephone will serve at least
two streets. Figure 3.1 shows that the layout of the streets requires a maximum of eight telephone

locations.

Define
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% {l,alelephonc is installed in location j
i

~ 10, otherwise

The constraints of the problem require installing at least one telephone on each of the 11 streets

(A to K). Thus, the model becomes

Minimizez = x; + X3+ X3+ x4+ x5 + X6+ x7 + X3

subject to
3 +x =1  (Street A)
X + x4 =1 (Slreet B)
Xq + X5 =1 (Street C)

The constraints of the problem require installing at least one telephone on each of the 11 streets

(A to K).

1 Street A @ Street B @

Street G

—~

o

v

=

(%]
@ ——————
xr

o

o

=

“

Street £ Street D
© ©) ®

Figure 3.1

Street Map of the U of A Campus
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x7 + xg= 1 (Street D)
xg + X7 =1 (Street £)
x5 + xg =1 (Street F)
xy + xg =1 (Sueet G)
Xa + x5 =1 {Street H)
X, + xg =1 {Streetr 1)
x5 + xg =1 (Street J)
x3 Xy =1 (Street K)
x; == (1), 7= 1,2,.:;8

The optimum solution of the problem requires installing four telephones at intersections 1,2,5, and
1.

Remarks. In the strict sense, set-covering problems are characterized by (1) the variables X;,
j=1,2, .., n,are binary, (2) the left-hand-side coefficients of the constraints are 0 or 1, (3)
the right-hand side of each constraint is of the form (> 1), and (4) the objective function minimizes
CiX1 + CoX2 + ... + CnXm Where ¢j>0 for all j= 1,2, ... ,n.In the present example, cj= 1 for
all j. If cj represents the installation cost in location j, then these coefficients may assume values
other than 1. Variations of the set-covering problem include additional side conditions, as some of

the situations in Problem Set 9.1b show.
Fixed-Charge Problem

The fixed-charge problem deals with situations in which the economic activity incurs two types
of costs: an initial "flat” fee that must be incurred to start the activity and a variable cost that is
directly proportional to the level of the activity. For example, the initial tooling of a machine prior
to starting production incurs a fixed setup cost regardless of how many units are manufactured.
Once the setup is done, the cost of labour and material is proportional to the amount produced.
Given that F is the fixed charge, e is the variable unit cost, and x is the level of production, the cost

F+cx,if x>0

function is expressed as C(x) = { 0. otherwise
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example shows how binary variables are used to remove this intractability.

Example 3:(Choosing a Telephone Company)

There are three telephone companies in which a person can subscribes to their long distance service. The

following table gives the flat monthly charge and charge per minutes for a long distance service fixed by

the three companies.

Company Flat monthly Charge per
charge (Rs) minute(Rs)
A 16 0.25
B 25 0.21
C 18 0.22

Mr. X usually makes an average of 200 minutes of long distance calls a month. He need
not pay the flat monthly fees unless he makes calls and he can call among all three
companies.

The problem is how should Mr. X use the three companies to minimize his monthly
telephone bill. This problem is called fixed charge problem.

Formulation of ILP

Define x1= company A, long distance minutes per month. x,= company

B, long distance minutes per month. x3= company C, long distance

minutes per month.

1if x1>0
y1=

0if x1=0

1if x2>0
yo=

0 if x2=0

1if x3>0
y3=

0 if x3=0
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Since Mr. X makes about 200 minut

ILP model is minimize z
(i.e.) min z=0.25x1+0.21x2+0.22x3+16Yy1+25y,+18y3
subject to
X1+X2+X3<200
x1<200y1
X2<200y2
X3<200 y3
X1, X2, Xs= 0
y1.y2ys=(0,1)
This is a mixed ILP model.
The formulation shows that the jth monthly flat fee will be part of the objective function z only
if yj = 1, which can happen only if x; > 0 (per the last three constraints of the model). If x; = 0 at
the optimum, then the minimization of z, together with the fact that the objective coefficient of y; is

strictly positive. will force y; to equal zero, as desired.

The optimum solution yields xs = 200, y3 = 1. and all the remaining variables equal to zero, which
shows that BabyBell should be selected as my long-distance carrier. Remember that the in-
formation conveyed by y3 = 1 is redundant because the same result is implied by x3 > 0 (= 200).
Actually. the main reason for using y:. y2, and ys is to account for the monthly fiat fee. In effect,
the three binary variables convert an ill-behaved (nonlinear) model into an analytically tractable
formulation. This conversion has resulted in introducing the integer (binary) variables in an

otherwise continuous problem.
Either-Or and If-Then Constraints

In the fixed-charge problem, we used binary variables to handle the discontinuity in the objective
cost function. In this section, we deal with models in which constraints are not satisfied

simultaneously (either-or) or are dependent (if-then), again using binary variables. The
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transformation does not change the "or" or "dependence” nature of the constraints. It simply uses

a mathematical trick to present them in the desired format of “and"” constraints.
Example 4: (Job-Sequencing Model)

Jobco uses a single machine to process three jobs. Both the processing time and the due date (in
days) for each job are given in the following table. The due dates are measured from zero, the
assumed start time of the first job.

Processing  Due date Late penalty

Job  time (days) {days) $/day
1 S 25 19
20 2 12
3 15 35 M

The objective of the problem is to determine the minimum late-penalty sequence for processing
the three jobs.

Define x; = Start date in days for job j (measured from zero)

The problem has two types of constraints: the non-interference constraints (guaranteeing that no
two jobs are processed concurrently) and the due dates constraints. Consider the non-interference

constraints first.

Two jobsiand jwith processing time piand pjwill not be processed concurrently if
either xi > x;j + pj or X; > x; + pi, depending on whether job j precedes job i, or vice versa. Because
all mathematical programs deal with simultaneous constraints only, we transform the either-or

1,if i precedes j

constraints by introducing the following auxiliary binary variable:y;; = {0 if j precedes i

For M sufficiently large, the either-or constraint is converted to the following

two simultaneous constraints
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My; + (x; = x;) = pjand M(1 = y;) + (x; = x;) = p,

The conversion guarantees that only one of the two constraints can be active at anyone
time. If yi;= 0O, the first constraint is active, and the second is redundant (because its left-hand side
will include M, which is much larger than pi). If yi; = 1, the first constraint is redundant, and the

second is active.

Next, the due-date constraint is considered. Given that dj is the due date for job j, let sj be an

unrestricted variable. Then, the associated constraint is

X; + Py + SI' = d’
If s; = 0, the due date is met, and if 5; < 0, a late penalty applies. Using the substitution
= 5T ~ s¥ oT o
3j =5 5;.55,8 =20
the constraint becomes

- *—_ —
xi+sl_3i_dl pl

The late-penalty cost is proportional 10 s7.
The model for the given problem is

Minimize z = 1957 + 1253 + 3457

subject to
Xy — x; + My ' =20
—-x; + X3 - My =5—-M
X3 — X3 + My = 15
~x + X3 = My, =5~-M
X3 ~ X3 + My, =15
=%y 4 Xy - My =20-M
x) + s7T — st =25-5
X + 53~ st =22-20
X3 + 53 —5 =35-15

- e e
Xy, X3, X3, 51, 51,52, 52, 53,53 =0

»2, Xz Yoz = (0, 1)
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The integer variables, yi2, y13, and y23, are introduced to convert the either-or constraints into

simultaneous constraints. The resulting model is a mixed ILP.

To solve the model, we choose M = 100, a value that is larger than the sum of the processing times

for all three activities.

The optimal solution is xi = 20, x2, =0, and x3 = 25, This means that job 2 starts at time 0, job 1
starts at time 20, and job 3 starts at time 25, thus yielding the optimal processing sequence 2 -> 1 -
> 3. The solution calls for completing job 2 at time 0 + 20 = 20, job 1 at time = 20 + 5 = 25, and
job 3at 25 + 15 = 40 days. Job 3 is delayed by 40 - 35 = 5 days past its due date at a cost of 5 X $34
= $170.

Example 5: (Job Sequencing Model Revisited)

In Example 4, suppose that we have the following additional condition: If job i precedes job j then
job k must precede job m. Mathematically, this if-then condition is translated as

iEx; + p; = x;then x; + py = x,,

Given ¢ > 0 and infinitesimally small and M sufficiently large, this condition is equivalent to the

following two simultaneous constraints:

X"-(X,"'p,)SM(l“W)*’S
{xe + p) — X = Mw

w = (0,1)
If xi + pi <X;, then x; - (xi + pi) >0, which requiresw=0,and the second constraint be-

comes xx + pk < X m, as desired. Else, w may assume the value 0 or 1, in which case the second

constraint mayor may not be satisfied, depending on other conditions in the model
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3.2. Integer Programming Algorithms:

The ILP algorithms are based on exploiting the tremendous computational success of LP. The

strategy of these algorithms involves three steps.

Step 1. Relax the solution space of the ILP by deleting the integer restriction on all integer
variables and replacing any binary variable y with the continuous range 0 < Y< 1. The result of the

relaxation is a regular LP
Step 2. Solve the LP, and identify its continuous optimum.

Step 3. Starting from the continuous optimum point, add special constraints that iteratively
modify the LP solution space in a manner that will eventually render an optimum extreme point

satisfying the integer requirements.

Two general methods have been developed for generating the special constraints in step 3.
1. Branch-and-bound (B&B) method

2. Cutting-plane method

Although neither method is consistently effective computationally, experience shows that the
B&B method is far more successful than the cutting-plane method. This point is discussed further

in this chapter.
3.2.1. Branch-and-Bound (B&B) Algorithm:

The first B&B algorithm was developed in 1960 by A. Land and G. Doig for the general mixed
and pure ILP problem. Later, in 1965, E. Balas developed the additive algorithm for solving ILP
problems with pure binary (zero or one) variable. The additive algorithm's computations were so
simple (mainly addition and subtraction) that it was hailed as a possible breakthrough in the
solution of general ILP. Unfortunately, it failed to produce the desired computational advantages.
Moreover, the algorithm, which initially appeared unrelated to the B&B technique, was shown to

be but a special case of the general Land and Doig algorithm.
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This section will present the general Land-Doig B&B algorithm only. A numeric example is used

to explain the details.
Example 1:
Consider the following ILP (B&B) method max z = 5x1+ 4x2

Subject to
X1+X2<5
10x1+6X2<45
X1, X2>0 and integer.

Solution:
We consider to given LP as Po, max z =
SX1+4X2
Subject to
X1+X2<5
10x1+6X2<45
X1,X2>0 and integer.

Consider the first constraint as

X1+X2=5
putx1=0
X2=5
point (0,5)
put Xo=0Xx1=5
point (5,0)
Consider the second constraint
10x1+6X2=45

Put x1=0, X2:45/6

Point (0,4%/g) (0,7.5)
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Put x2=0, 10x1=45 , x1=4.5

point (4.5,0)
Y
8
(0,7.5)
7
6
B (3.75,1.25)
2
,0)
X
1 2 3 4 5 6 7
X1+X2=5 y
10x1+6X2=45 ¥

10x1+10x2=50

4xo=5
Xo== = 1.25

x1=5-1.25
=3.75
X1=3.75, x2=1.25
The point is (3.75,1.25)

At (0,0)
Max z=5x1+4x,2 = 0
At (4.5,0)

Max z=5x1+4x>
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z=5.45+0=225
At (3.75,1.25)
Max z=5 x 3.75+4 x 1.25
=18.75+5.00
=23.75
At (0,5)
Max z=0+4 x 5
Z=20
max z=23.75at B.
optimal Solutions are x1=3.75, x»=1.25 and x=23.75.
Here xiand xzvalues are not integer
We choose x1as the branching variable. LP, is
subdivided into two branchesLP1= LPo+ x1< 3
LP2=LPo+x1>4
Solve: LP;
Consider the LP1  max
Z=5x1+4X2
Subject to
X1+X2<5
10x1+6X2<45
X1<3
Consider the equation X1+ Xo=5
The point is (0,5) and (5, 0)
Consider the equation10x1+6x2=45
The point is the (0,7.5) and (4.5,0)
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,7)

B(3,2)
2 [ ]
/ (4.5,0)

X1+X2=5 X1= 3
X2=5-3=2

The point is (3,2)
At O (0,0)

X1=0, X2=0

Z=5X1+4%2=0
At A (3,0)
X1=3, X2=0 z=5x3=15
AtB (3,2)
X1=3, X2=0
Z=5X1+4%o=5 X 3+4 x 2=23
At C (0,5)
z=5 x 0+4 x 5=20
Max z=23
The optimal Solutions are x1=3, x.=3 and z=23 Here
xiand xzare integer
Solve LP;

Consider the max z = 5x1+ 4x»
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Subject to

X1+ X2< 5

10x1+6X2< 45
X1>4

Consider the equation x1+x2=5
the point is (0, 5) and (5,0)
consider the equation 10x1+ 6xo= 45
The point is (0, 7.5) (4.5, 0)
10x1+ 6%2= 45
X1= 4 10x4+6x2=45

x2=0.833

At 0(0,0)
z=0
At A (4,0)
z=20
At B (4.50)
z2=22.5
At C (4,0.833)
Z=5x1+4x>
max z = 23.332

Here X1 is integer and Xz is not integer.

[1The Solution is not optimal

0,7)

DS

(4, 0.883)

We choose x as a branching variable. We subdivided LP2 in sub problem in 2 sub problem.

LP3=LP2+x><0
LP4=LP2+x2>1
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Solve LP3
Maxz=5x1+4x2S.to
X1+X2< 5
10x1+6x2<45

X124 , X2<0 x1, X2> 0

*=4

At O (0,0)

z=0
At A (4,0)
z=5x4=20
AtB (4.5, 0)
z=5x4.5=225
max z=22.5
The optimal Solution x1=4.5, x=0 and z=22.5
X is not integer Xz is integer. The Solution is not optimal The
LP3 can be subdivided into two program.
LPs=LP3+x1<4
LPe=LP3+x:1>5
SolveLPs
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Max z=5x1+4x
X1+X2<5
100x1+6x2<45
X1>4 , X2<0, x1<4 , x>0

X1, X2>0

X=4

At O (0,0)

z=5(0) + 4(0) =0

At A (4,6)

z=20

The optimal Solution x1=4, x=0, z=20

The Solution is optimal

Solve LPs

Max z=5x1+4x;

X1+ X< 5
10Xx1+6X2<5
X1> 4 x2<0x1>5

X2>0 X1,X2>0
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X

1 2 3 4 5 6 7

LPs is fathomed because is it has no solution.
Solve LP4
Max z=5x1+4x>
Subject to
X1+X2< 5
0x1+6X2<45, X1>4, X2<1 LP has no Solution LP4is fathomed
In LPsthe decision variable x1, xzare integer. z = 20
is a lower bound . The optimum value of z in LPias
23 The lower bound is z = 23

LPg
X1=3.75 Xz=1.25
X1S3 X1S4
LPs LP;
X1=3X,=22=23 X1=4x,=0.832=23.82
XzZl
LP,
X1=4.5x,=02=22.5 No Solution
X125
Lp LPs LP
X1=4x,=0.832=20 No Solution

Lower Bound
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3.2.2. Cutting-Plane Algorithm:
Algebra Development of cuts

The cutting plane algorithm start by solving the continuous Lp problem. In the optimum LP
table be select one of the rows called the source row, for which the basic variable is non-integer.
The desire cut is constructed from the fractional for componence of the coefficient of the source
row. For this reason, it is reputed to as to fractional cut

Example 2:

Consider the following ILP.
Maximize z = 7x; + 10x,
Subject to,

—x1+3x, <6

7x1 +x, <35

X1, %, = 0 and integer.

The cutting-plane algorithm modifies the solution space by adding cuts that produce an optimum

integer extreme point. Figure 3.6 gives an example of two such cuts.

Initially, we start with the continuous LP optimum z = 66(1/2), X1 = 4(1/2), X2 = 3(4/7). Next, we
add cut I, which produces the (continuous) LP optimum solution z = 62, x1= 4(4/7), x2= 3. Then,
we add cut I, which, together with cut | and the original constraints, produces the LP

optimum z = 58, x1 = 4, x2 = 3. The last solution is all integer, as desired.

The added cuts do not eliminate any of the original feasible integer points, but must pass through

at least one feasible or infeasible integer point. These are basic requirements of any cut.
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Optimum: (4,3
x; Optimum: (4% ’ 35) x; Optimum: (4?.3) Xy 4 / “.3)

<
</

Figure 3.6

Ilustration of the use of cuts in ILP

It is purely accidental that a 2-variable problem used exactly 2 cuts to reach the optimum integer
solution. In general, the number of cuts, though finite, is independent of the size of the problem,
in the sense that a problem with a small number of variables and constraints may re-quire more
cuts than a larger problem.

Next, we use the same example to show how the cuts are constructed and implemented
algebraically.

Given the slacks x3 and x4 for constraints 1 and 2, the optimum LP tableau is given as

Basic X; Xy X3 Xq Solution
z 0 0 g 664
X2 0 1 % ';5 %

Il 1 0 —é % 4%

The optimum continuous solution is z = 66(1/2), x1= 4(1/2), x2= 3(1/2), x3= 0, x4 = 0. The cut is

developed under the assumption that all the variables (including the slacks xz and xs) are integer.
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Note also that because all the original objective coefficients are integer in this example, the value

of z is integer as well.

The information in the optimum tableau can be written explicitly as

z+ 8x;,+ Rxg =663  (z-equation)
i t __ al .

X3+ 5x + F5xg=33 {xy-equation)
1 : P | i

X — Xt 5xe =43 (xy-equation)

A constraint equation can be used as a source row for generating a cut, provided its right-hand side
is fractional. We also note that the z-equation can be used as a source row because z happens to be
integer in this example. We will demonstrate how a cut is generated from each of these source

rows, starting with the z-equation.

First, we factor out all the non-integer coefficients of the equation into an integer value and a
fractional component, provided that the resulting fractional component is strictly positive. For

example,

The factoring of the z-equation yields

e+ (2 B+ (14 B = 06+

Moving all the integer components to the left-hand side and all the fractional components to the
right-hand side, we get

Z+2.¥3+1X4*66=*;—§X3“%X4+% (1)
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Because x3 and x4 are nonnegative and all fractions are originally strictly positive, the right-hand

side must satisfy the following inequality:

"‘1"9'X3 = -9-x4 +

=
2

2)

NS I—
Lt i

Next, because the left-hand side in Equation (12’2 + 2x3 + lxg — 66, is an integer value by con-

struction, the right-hand side, -%’x3 - %.Q + 3, must also be integer. It

then follows that (2) can be replaced with the inequality:

19 9 |
—ﬁxg*ﬁx4+5$0

This result is justified because an integer value < 1/2 must necessarily be < 0.

The last inequality is the desired cut and it represents a necessary (but not sufficient) condition
for obtaining an integer solution. It is also referred to as the fractional cut because all its
coefficients are fractions.

Because x3= x4= 0 in the optimum continuous LP tableau given above, the current continuous
solution violates the cut (because it yields 1/2 <0). Thus, if we add this cut to the optimum tableau,
the resulting optimum extreme point moves the solution toward satisfying the integer

requirements.

Before showing how a cut is implemented in the optimal tableau, we will demonstrate how cuts

can also be constructed from the constraint equations. Consider the xi-row:

105

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Factoring the equation yields
2 3 ]
2+ (=14 By + (04 F)xa = (4 +3)
The associated cut is

21 3 1
'—2—21‘2"5,!'44’5.'50
Similarly, the x,-¢quation
7 1 1
is factored as
Xz+(0+212)13+(0+2'1-2).t4=3+%
Hence, the associated cut is given as
7 1 1
—35X ~pXet3;=0

Anyone of three cuts given above can be used in the first iteration of the cutting-plane

algorithm. It is not necessary to generate all three cuts before selecting one.

Arbitrarily selecting the cut generated from the xo-row, we can write it in equation form as

=Ly gRias g, B =0 (Cac I}

This constraint is added to the LP optimum tableau as follows:
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Basic X1 S; | Solution
z 0 0 1
66—

2

Xy 0 0 1
3—

2

X1 1 0 1
4 —

2

Sy 0 71 1
22 22 2

The tableau is optimal but infeasible. We apply the dual simplex method (Section 4.4.1) to recover

feasibility, which yields

Basic X1 | Xp | X3 X4 | S Solution
y 0 0 |0 1 9 62
X5 0 1 |0 0 1 3
X1 1 0 0 1 1 4 1

7 7 7
X3 0 0 1 1] 22 1f

7 7 7

The last solution is still non-integer in xI and x3. Let us arbitrarily select x| as the next source row-

thatis,x1+(0+%)x4+(—1+§)51=4+§

The associated cut is — %x4 — gsz = —% , S5 =0 (cut Il)

Basic X1 | X | X3 X4 | S S, Solution

z 0 0 0 1 9 0 62

Xy 0 1 0 0 1 0 3

X1 1 0 0 1 110 4 1
7 7 7
X3 0 0 1 1] 2270 1§
7 7 7
S, 0 0 0 1 6 |1 4
7 7
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Basic X1 | Xy | X3 X4 | S S, Solution
z 0 0 |0 0 3 7 58
X, 0 1 |0 0 1 0 3
X1 1 0 0 0 -1 1 4
X3 0 0 |0 0 -4 1 1
X4 0 0 1 1 6 -7 4

The optimum solution

(x,=4, x,=3,z=58) is all integer. It is not accidental that all the coefficients of the last tableau

are integers, a property of the implementation of the fractional cut.

Remarks. Itis important to point out that the fractional cut assumes thatall the
variables, including slack and surplus, are integer. This means that the cut deals with pure integer

problems only. The importance of this assumption is illustrated by an example.

13

. . 1
Consider the constraint x; + 3% =5

X1, %, = 0 and integer

From the standpoint of solving the associated ILP, the constraint is treated as an equation by using

the nonnegative slack s;-that is,

1 13
x1+§x2 +Sl=7

The application of the fractional cut assumes that the constraint has a feasible integer solution in
all xlI,x2,and sl. However, the equation above will have a feasible integer solution
in xI and x2 only if x1 is non-integer. This means that the cutting-plane algorithm will show that
the problem has no feasible integer solution, even though the variables of concern, xI and x2, can

assume feasible integer values.

There are two ways to remedy this situation.
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1. Multiply the entire constraint by a proper constant to remove all the fractions. For example,

multiplying the constraint above by 6, we get 6x; + 2x, < 39

Any integer solution of x1 and x2 automatically yields integer slack. However, this type of
conversion is appropriate for only simple constraints, because the magnitudes of the integer

coefficients may become excessively large in some cases.

2.Use a special cut, called the mixed cut, which allows only a subset of variables to assume integer

values, with all the other variables (including slack and surplus) remaining continuous.
3.2.3. Computational Considerations in ILP:

To date, and despite over 40 years of research, there does not exist a computer code that can solve
ILP consistently. Nevertheless, of the two solution algorithms presented in this chapter, B&B is
more reliable. Indeed, practically a U commercial ILP codes are B&B based. Cutting-plane
methods are generally difficult and uncertain, and the round off error presents a serious problem.
This is true because the "accuracy™ of the cut depends on the accuracy of a true representation of
its fractions on the computer. For instance, in Example 2, the fraction 1/7 cannot be represented
exactly as a floating point regardless of the level of precision that may be used. Though attempts
have been made to improve the cutting-plane computational efficacy, the end results are not
encouraging. In most cases, the cutting-plane method is used in a secondary capacity to improve
B&B performance at each sub problem by eliminating a portion of the solution space associated

with a sub problem.

The most important factor affecting computations in integer programming is the number of integer
variables and the feasible range in which they apply. Because avail-able algorithms are not
consistent in producing a numeric ILP solution, it may be advantageous computationally to reduce
the number of integer variables in the ILP model as much as possible. The following suggestions

may prove helpful:
1.  Approximate integer variables by continuous ones wherever possible.
2. For the integer variables, restrict their feasible ranges as much as possible.
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3. Avoid the use of nonlinearity in the model.

The importance of the integer problem in practice is not yet matched by the development of
reliable solution algorithms. The nature of discrete mathematics and the fact that the integer
solution space is a nonconvex set make it unlikely that new theoretical breakthroughs will be
achieved in the area of integer programming. Instead, new technological advances in computers

(software and hardware) remain the best hope for improving the efficiency of ILP codes.
3.3. Traveling Salesperson (TSP) Problem:

Historically, the TSP problem deals with finding the shortest (closed) tour in an n-city situation
where each city is visited exactly once. The problem, in essence, is an assignment model that
excludes sub tours. Specifically, in an n-city situation, define
o o {1, if city j is reached from city i
“ 0, otherwise

Given that dij is the distance from city i to city j, the TSP model is given as

n n
Minimize z = >, > dix;, d;; = o foralli = j

i=17=1

subject to
n
>xy = Li=12..,0 (1)
=
Sy il foml Bt @
=1
Xy = (0,1) (3)
Solution forms an n-city tour 4)
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S-city problem Tour solution Subtour solution
(x,2=x15=x54==x‘3=x3| = l) (1735‘4?32"1"55;(5431,“ s 1)

Figure 3.7
A 5-city TSP example with a tour and subtour solutions of the
associated assignment model

Constraints (1), (2), and (3) define a regular assignment model. Figure 3.7. demonstrates a 5-
city problem. The arcs represent two-way routes. The figure also illustrates a tour and a sub
tour solution of the associated assignment model. If the optimum solution of the assignment
model (i.e., excluding constraint 4) happens to produce a tour, then it is also optimum for the
TSP. Otherwise, restriction (4) must be accounted for to ensure a tour solution.

Example 1:

The daily production schedule at the Rainbow Company includes batches of
white (W), yellow (Y), red (R), and black (B) paints. Because Rainbow uses the same facilities for
all four types of paint, proper cleaning between batches is necessary. The table below summarizes
the clean-up time in minutes. Because each color is produced in a single batch, diagonal entries in
the table are assigned infinite setup time. The objective is to determine the optimal sequencing for

the daily production of the four colors that will minimize the associated total clean-up time.
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Cleanup min given next paiot is

Current paint Whire Yellow Black Red

White o0 10 17 15
Yellow 20 0 19 18
Biack 50 44 00 25
Red 45 40 20 00

Each paint is thought of as a "city" and the "distances" are represented by the clean-up time needed
to switch from one paint batch to the next. The situation reduces to determining
the shortest loop that starts with one paint batch and passes through each of the remaining three

paint batches exactly once before returning back to the starting paint.

We can solve this problem by exhaustively enumerating the six [(4 - 1)! = 3! = 6] possible loops
of the network. The following table shows that W ->Y ->R -> B -> W is the optimum loop.

Production loop Total ¢lean-up time

Woas¥Y—-BoR->W 10+19+25445= 99
WoYaRoBW I0+18+20+50= 98
WoBosY>R-W 17 + 44 + 18 + 45 = 124
WoBoR-Y-W 17 + 25 + 40 + 20 = 102
WaRaB—=YsW 15+420+44+20= 99
WoRSYH>B-W [5+40 + 19+ 50 =124

Exhaustive enumeration of the loops is not practical in general. Even a modest size 11-city problem
will require enumerating 10! = 3,628,800 tours, a daunting task indeed. For this reason, the

problem must be formulated and solved in a different manner, as we will show later in this section.
To develop the assignment-based formulation for the paint problem, define
Xij = 1if paint j follows paint i and zero otherwise

Letting M be a sufficiently large positive value, we can formulate the Rainbow problem as
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Minimize z = Mxwy + 1(}wa + 17XW5 + ISXWR + ZOXVW = Mny + 191)'3 + ISXyR
+ S0xpgw + dxgy + Mxpg + 25xgp + 45xpw + 40xgy + 20xzp + Mxgg

subject to

Xyw + Xy + Xwp + xwg =1
Xyw + Xyy + xyg + Xypg =1
xgw + Xxgy + xgg + x5 =1
Xgw + Xgy + Xgg + Xgr =

Xww * Xyw + Xgw + Xpw =

Xy T Xyy + Xgy t Xgy =

L B = T

xwg + Xyg + Xpp *+ Xgg =
xwg + Xyp ¥ xgp ¥ xgp =1

x;=(0,1) foralliandj

Solution is a tour (loop)

The use of M in the objective function guarantees that a paint job cannot follow itself. The same
result can be realized by deleting Xww, XYY, XBB, and XRR from the entire model.

3.3.1. Heuristic Algorithms:

This section presents two heuristics: the nearest-neighbor and the sub tour-reversal algorithms.
The first is easy to implement and the second requires more computations. The trade-off is that the
second algorithm generally yields better results. Ultimately, the two heuristics are combined into
one heuristic, in which the output of the nearest-neighbor algorithm is used as input to the reversal
algorithm.

The Nearest-Neighbor Heuristic. As the name of the heuristic suggests, a "good" solution of the
TSP problem can be found by starting with any city (node) and then connecting it with the closest
one. The just-added city is then linked to its nearest unlinked city (with ties broken arbitrarily).

The process continues until a tour is formed.
Example 1:

The matrix below summarizes the distances in miles in as-city TSP problem.
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co 120 220
120 oo 100
ldill = | 220 80 oo
150 oo 160
210 130 185 o0

The heuristic can start from any of the five cities. Each starting city may lead to a different tour.

The following table provides the steps of the heuristic starting at city 3.

Step  Action (Partial) tour
I Startwithcity3 3
2 Linktocity 2 because it is closest to city 3 (dy = min{220, 80, 00, 160, 185}) 32
3 Link tonode 4 because it is closest to node 2 (dy = min{120, 0, —, 110,130}} 324
4 Link tonode 1 because it is closest to node 4 (dyy = min{150, 00, —, =, 190})  3-24.]
5 Link tonode 5 by default and connect back to node 3 to complete the tour 3-24-1-5-3

Notice the progression of the steps: Comparisons exclude distances to nodes that are part of a

constructed partial tour. These are indicated by (-) in the Action column of the table.

The resulting tour 3-2-4-1-5-3 has a total length of 80 + 110 + 150 + 210 + 185 = 735 miles.
Observe that the quality of the heuristic solution is starting-node dependent. For example, starting
from node 1, the constructed tour is 1-2-3-4-5-1 with a total length of 780 miles (try it!).

Sub tour Reversal Heuristic. In an n-city situation, the sub tour reversal heuristic starts with a
feasible tour and then tries to improve on it by reversing 2-city sub tours, followed by 3-city sub

tours, and continuing until reaching sub tours of size n - 1.
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Example 2:

Consider the problem of Example 1. The reversal steps are carried out in the following table using
the feasible tour 1-4-3-5-2-1 of length 745 miles:

Type Reversal Tour Length
Start -— (1-4-3-5-2-1) 745
Two-at-a-time reversal 4-3 1-34-5-2-1 820
3.5 (1-4-5-3-2-1) 725
52 1-4-3-2-5-1 730
Three-at-a-lime reversal 4-5.3 1-3-5-4-2-1 00
5-3-2 1-4-2-3-5-1 o
Four-at-a-time reversal 4-5-3-2 1-2-3-5-4-1 [o%)

The two-at-a-time reversals of the initial tour 1-4-3-5-2-1 are 4-3, 3-5, and 5-2, which leads to the
given tours with their associated lengths of 820, 725, and 730. Since 1-4-5-3-2-1 yields a smaller
length (= 725), it is used as the starting tour for making the three-at-a-time reversals. As shown in
the table, these reversals produce no better results. The same result applies to the four-at-a-time
reversal. Thus, 1-4-5-3-2-1 (with length 725 miles) provides the best solution of heuristic.

Notice that the three-at-a-time reversals did not produce a better tour, and, for this rea-son, we
continued to use the best two-at-a-time tour with the four-at-a-time reversal. Notice also that the
reversals do not include the starting city of the tour (= 1 in this example) because the process does

not yield a tour. For example, the reversal 1-4 leads to 4-1-3-5-2-1, which is not a tour.

The solution determined by the reversal heuristic is a function of the initial feasible tour used to
start the algorithm. For example, if we start with 2-3-4-1-5-2 with length 750 miles, the heuristic
produces the tour 2-1-4-3-5-2 with length 745 miles (verify!), which is inferior to the solution we

have in the table above. For this reason, it may be advantageous to first utilize the nearest-neighbor
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heuristic to determine all the tours that result from using each city as a starting node and then select
the best as the starting tour for the reversal heuristic. This combined heuristic should, in general,
lead to superior solutions than if either heuristic is applied separately. The following table shows

the application of the composite heuristic to the present example.

Heuristic Starting city Tour Length
1 1-2-3-4-5-1 780
2 2-3-4-1-5-2 750
- Nearest neighbor 3 (3-2-4-1-5-3) 735
4 4-1-2-3-54 o0
5 5-2-34-1-5 750
24 3-4-2-1-5-3 o
4.1 (3-2-1-4-5-3) 725
1-5 3-2-4-5-1-3 810
Reversals 2-14 3-4-1.2-5-3 745
14-5 3-2.54-1-3 oo
2-1-4-5 3-5-4-1-2-3 co

3.3.2. B&B Solution Algorithm:

The idea of the B&B algorithm is to start with the optimum solution of the associated assignment
problem. If the solution is a tour, the process ends. Otherwise, restrictions are imposed to remove
the sub tours. This can be achieved by creating as many branches as the number of xij variables
associated with one of the sub tours. Each branch will correspond to setting one of the variables
of the sub tour equal to zero (recall that all the variables associated with a sub tour equal 1). The
solution of the resulting assignment problem may or may not produce a tour. If it does, we use its
objective value as an upper bound on the true minimum tour length. If it does not, further
branching is necessary, again creating as many branches as the number of variables in one of the
sub tours. The process continues until all unexplored sub problems have been fathomed, either by
producing a better (smaller) upper bound or because there is evidence that the sub problem cannot

produce a better solution. The optimum tour is the one associated with the best upper bound.

The following example provides the details of the TSP B&B algorithm.
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Example 1:

Consider the following 5-city TSP problem:

/ © 10 3 6 9

5 o § 4 2
ldg=]14 9 o 7 8
7 1 3 oo 4

3 2 6 5 ™

We start by solving the associated assignment, which yields the following solution:
2=15, (x13 = x31 =1), (x35 =x54 =x4, = 1), all others=0

This solution yields two sub tours: (1-3-1) and (2-5-4-2), as shown at node 1 in Figure 3.8. The
associated total distance is z = 15, which provides a lower bound on the optimal length of the 5-

city tour.

A straightforward way to determine an upper bound is to select any tour and use its length as an
upper bound estimate. For example, the tour 1-2-3-4-5-1 (selected totally arbitrarily) has a total
length of 10 + 5+ 7 + 4 + 3 = 29. Alternatively, a better upper bound can be found by applying
the heuristic of Section 3.3.1. For the moment, we will use the upper bound of length 29 to apply
the B&B algorithm. Later, we use the "improved" upper bound obtained by the heuristic to

demonstrate its impact on the search tree.
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z=15
(1-3-1)(2-54-2)

2 =17 L Fd == 16
(2-5-2)(1-4-3-1) (1-34-2:5-1)

4 =i1 /
(1-4.5-2-3-1)

Figure 3.8

The computed lower and upper bounds indicate that the optimum tour length lies in range (15, 29).
A solution that yields a tour length larger than (or equal to) 29 is discarded as non-promising.

To eliminate the sub tours at node 1, we need to "disrupt” its loop by forcing its member
variables, xij, to be zero. Sub tour 1-3-1 is disrupted if we impose the restriction xI3=00r x31 =0
(i.e., one at a time) on the assignment problem at node 1. Similarly, sub tour 2-5-4-2 is eliminated
by imposing one of the restrictions x25 = 0, x54 = 0, or x42 = 0. In terms of the B&B tree, each of
these restrictions gives rise to a branch and hence a new sub problem. It is important to notice that
branching both sub tours at node 1 is not necessary. Instead, only one sub tour needs to be
disrupted at anyone node. The idea is that a breakup of one sub tour automatically alters the
member variables of the other sub tour and hence produces conditions that are favourable to
creating a tour. Under this argument, it is more efficient to select the sub tour with the smallest

number of cities because it creates the smallest number of branches.
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assignment problems are constructed by removing the row and column associated with the zero
variable, which makes the assignment problem smaller. Another way to achieve the same result is
to leave the size of the assignment problem unchanged and simply assign an infinite distance to
the branching variable. For example, the assignment problem associated with xI3 =0 requires
substituting d13=c in the assignment model at node 1.Similarly, forx31=0, we
substitute d31 = oo .

In Figure 3.8., we arbitrarily start by solving the sub problem associated with x13 = 0 by setting
dI3 = oo, Node 2 gives the solution z = 17 but continues to produce the sub tours (2-5-2) and (1-4-
3-1). Repeating the procedure, we applied at node 1 gives rise to two branches: x25 =0 and
x52 = 0.

We now have three unexplored sub problems, one from node 1 and two from node 2, and we are
free to investigate any of them at this point. Arbitrarily exploring the sub problem associated
with x25 = 0 from node 2, we set d13 = oo and d25 = oo in the original assignment problem, which
yields the solution z = 21 and the tour solution 1-4-5-2-3-1 at node 3. The tour solution at node 3
lowers the upper bound from z == 29 to z == 21. This means that any unexplored sub problem that

can be shown to yield a tour length larger than 21 is discarded as non-promising.

We now have two unexplored sub problems. Selecting the sub problem 4 for exploration, we set
dI3 =00 and d52 = o in the original assignment, which yields the tour solution 1-4-2-5-3-1
with z = 19. The new solution provides a better tour than the one associated with the current upper
bound of 21. Thus, the new upper bound is updated to z = 19 and its associated tour, 1-4-2-5-3-1,

is the best available so far.

Only sub problem 5 remains unexplored. Substituting d31 =oco in the original assignment
problem at node 1, we get the tour solution 1-3-4-2-5-1 with z = 16, at node 5. Once again, this is
a better solution than the one associated with node 4 and thus requires updating the upper bound
toz = 16.
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the one associated with the current upper bound: 1-3-4-2-5-1 with length 16 miles.
Remarks. The solution of the example reveals two points:

1. Although the search sequence 1 ->2 -> 3 -> 4 -> 5 was selected deliberately to demonstrate the
mechanics of the B&B algorithm and the updating of its upper bound, we generally have no way
of predicting which sequence should be adopted to improve the efficiency of the search. Some
rules of thumb can be of help. For example, at a given node we can start with the branch associated
with the largest dij among all the created branches. By cancelling the tour leg with the
largest dij, the hope is that a "good™ tour with a smaller total length will be found. In the present
example, this rule calls for exploring branch x31 == 0 to node 5 be-fore branch x13 to node 2
because (d31 == 4) > (d13 == 3), and this would have produced the upper bound z == 16, which
automatically fathoms node 2 and, hence, eliminates the need to create nodes 3 and 4. Another rule
calls for sequencing the exploration of the nodes in a horizontal tier (rather than vertically). The
idea is that nodes closer to the starting node are more likely to produce a tighter upper bound
because the number of additional constraints (of the type xij = 0) is smaller. This rule would have

also discovered the solution at node 5 sooner.

2. The B&B should be applied in conjunction with the heuristic in Section 3.3.1. The heuristic
provides a "good" upper bound which can be used to fathom nodes in the search tree. In the present

example, the heuristic yields the tour 1-3-4-2-5-1 with a length of 16 distance units.
3.3.3. Cutting-Plane Algorithm:

The idea of the cutting plane algorithm is to add a set of constraints to the assignment problem
that prevent the formation of a sub tour. The additional constraints are defined as follows. In an n-
city situation, associate a continuous variable uj (> 0) with cities 2, 3, ..., and n. Next, define the

required set of additional constraints as

gt pxp S = b oy | =i dsanyiR g
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These constraints, when added to the assignment model, will automatically remove all sub tour

solutions.
Example 1:

Consider the following distance matrix of a 4-city TSP problem.

- 13 21 26
10 - 29 20
12 30 7 =~

The associated LP consists of the assignment model constraints plus the additional constraints in
the table below. All xij = (0, 1) and all uj > 0.

No. | Xy [ Xig [ Xy3 | *ia | %00 | X2z | Z23 | Xoa | X30 | X2 [ X33 | X3 | Xy | Xz | Xa3 | Faa | U2 | 43 | 44

1 4 1] -1 =3
2 4 1 -1| =3
3 4 =] 1 =3
4 4 1] -1 | =3
5 4 =] 1| =3
6 4 -1 1] =3

The optimum solution is

Uy = 0,43 = 2,14 = 3, X132 = X33 = X33 = X4y = 1, tour length = 59,

This corresponds to the tour solution 1-2-3-4-1. The solution satisfies all the additional constraints
in uj (verify!).

To demonstrate that sub tour solutions do not satisfy the additional constraints, consider (1-2-1,3-
4-3), which corresponds to x;, = x,; = 1, x5, =x43 =1. Now, consider constraint 6 in the

tableau above:
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4x43+u‘—u3<_’~’3

Substituting x5 = 1, u3 =2, u, = 3 yields 5 <3, which is impossible, thus disallowing x,; =

1land sub tour 3-4-3.

The disadvantage of the cutting-plane model is that the number of variables grows exponentially
with the number of cities, making it difficult to obtain a numeric solution for practical situations.
For this reason, the B&B algorithm (coupled with the heuristic) may be a more feasible alternative

for solving the problem.
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Unit IV

Inventory Theory: Basic Elements of an Inventory Model-Deterministic Models: Single item
Stock Model with and without Price Breaks-Multiple Items Stock Model with Storage

Limitations- Probabilistic Models: Continuous Review Model-Single Period Models.
Chapter 4 - Sections 4.1- 4.9
4.1. Basic Elements of an Inventory Model:

An inventory means a physical stock of idle resources of any kind having some economic
value kept for the purpose of meeting future demand. It indicates the raw material required
before production, the finished goods afterproduction ready for delivery to consumers,
human resources, financial resources, etc., which are stocked in order to meet an expected
demand in the future. Almost every business must maintain an inventory for running its
operations efficiently and smoothly. If an enterprise does not maintain an inventory, it
may suddenly find at some point in its operations that it has no materials or goods to
supply to its customers. Then on receiving a sales order,it will first have to place order
for purchase of raw materials, wait for their receipt and then start production. The customer
will, thus, have to wait for a long time for the delivery of the goods and may turn to other

suppliers, resulting in loss of business/goodwill for the enterprise.
Maintaining an inventory is necessary because of the following reasons:
) It helps in smooth and efficient running of an enterprise.

i) It provides service to the customer at short notice. Timely delivery canfetch more

goodwill and orders.

iii) In the absence of the inventory, an enterprise may have to pay high prices because
of piecemeal purchasing. Maintaining an inventory may earn pricediscounts
because of bulk purchasing. Such purchases entail less orders and, therefore, less

clerical costs.
iv) It also takes advantage of favourable market.

V) It acts as a buffer stock when raw materials are received late and shop

rejections are too many.

Vi) Process and movement inventories (also called pipeline stocks) are quite

necessary in big enterprises wherein a significant amount of time is required to
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Though inventories are essential, their maintenance also costs money by wayof expenses
on stores, equipment, personnel, insurance, etc. Thus, excess inventories are undesirable.
So, only that quantity should be kept in stock, which balances the costs of holding too
much stock vis-a-vis the costs of ordering in small quantities. This calls for controlling
the inventories in the most profitable way and that is why we need inventory analysis.

We now discuss various factors involved in inventory analysis.

Factors Influencing Inventories:

The major problem of inventory control is to answer two questions:
1. How much to order?

2. When to order?

These are answered by developing a model. An inventory model is based on the consideration

of the mainaspects of inventory. The varieties of factors related to these are placed below:

1. Inventory related costs

Various costs associated with inventory control are often classified asfollows:

) Set-up cost: This is the cost associated with the setting up of machinery before
starting production. The set-up cost is generallyassumed to be independent of

the quantity ordered for.

i) Ordering cost: This is the cost incurred each time an order is placed.This cost
includes the administrative costs (paper work, telephone calls, postage),

transportation, receiving and inspection of goods, etc.

iii) Purchase (or production) cost: It is the actual price at which an itemis purchased (or
produced). It may be constant or variable. It becomesvariable when quantity discounts are

allowed for purchases above a certain quantity

iv) Carrying (or holding) cost: The cost includes the following costs for maintaining the
inventory: i) Rent for the space; ii) cost of equipment or any other special arrangement for
storage; iii) interest of the moneyblocked; iv) the expenses on stationery; v) wages of the staff
required for the purpose; vi) insurance and depreciation; and vii) deterioration and

obsolescence, etc.
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item cannot be supplied on the customer’s demand. These costs include the loss of potential

profit through sales of items demanded and loss of goodwill in terms of permanent loss of the

customer

2. Demand
Demand is the number of units required per period and may either be known exactly or

known in terms of probabilities. Problems in which demand is known and fixed are

called deterministic problems whereasproblems in which demand is known in terms of

probabilities are called probabilistic problems.
3. Selling Price

The amount which one gets on selling an item is called its selling price.The unit
selling price may be constant or variable, depending upon whether quantity discount is

allowed or not.
4. Order Cycle

The period between placement of two successive orders is referred to asan order
cycle. The order may be placed on the basis of either of the following two types

of inventory review systems:

a) The record of the inventory level is checked continuously until a specified
point is reached where a new order is placed. This is calledcontinuous

review.

b) The inventory levels are reviewed at equal intervals of time and ordersare placed

accordingly at such levels. This is called periodic review

5. Time Horizon
The period over which the time cost will be minimized and inventory level will be
controlled is termed as time horizon. This can be finite orinfinite depending on the nature

of demand.

6. Stock Replenishment

The rate at which items are added to the inventory is called the rate of replenishment. The
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=

ek
actual replenishment of items may occur at

a uniform rate or be instantaneous over time.
Usually uniform replacement occurs incases when the item is manufactured within the
factory while instantaneous replacement occurs in cases when the items are purchased

from outside sources.
7. Lead Time
The time gap between placing an order for an item and actually receivingthe item
into the inventory is referred to as lead time.
8. Reorder Level
The lower limit for the stock is fixed at which the purchasing activitiesmust be started
for replenishment. With this replenishment, the stock reached at a level is known as
maximum stock. The level between maximum and minimum stock is known as the
reorder level.
9. Economic Order Quantity (EOQ)
The order in quantity that balances the costs of holding too much stock vis-a-vis the

costs of ordering in small quantities too frequently is calledEconomic Order

Quantity (or Economic lot size).
10. Reorder Quantity

The quantity ordered at the level of minimum stock is known as the reorder quantity.

In certain cases it is the ‘Economic Order Quantity’.
we shall discuss the following inventory models forobtaining economic order quantity:
1) EOQ Model with Uniform Demand
i) EOQ Model with Different Rates of Demand in Different Cycles
i) EOQ Model when Shortages are Allowed
iv) EOQ Model with Uniform Replenishment
V) EOQ Model with Price (or Quantity) Discounts

However, before discussing these models, we give the notations that we shalluse in the

development of the models.
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The notation used in the Models
Q= Number of units ordered (supplied) per order

D= Demand in units of inventory per year
N= Number of orders placed per year

TC = Total Inventory cost

Co = Ordering cost per order

C = Purchase or manufacturing price per unit inventory

Ch = Carrying or holding cost per unit per period of time the inventory is kept
Cs = Shortage cost per unit of inventory

t = The elapsed time between placement of two successive orders

rp = Replenishment rate at which lot size Q is added to inventory.

4.2. Economic Order Quantity (EOQ) Model With Uniform

Demand:

The objective of the EOQ model with uniform demand is to determine anoptimum
economic order quantity such that the total inventory cost is minimized. We make the

following assumptions for this model:
1. Demand rate (D) is constant and known;
2. Replenishment rate (rp) is instantaneous;

3. Lead time is constant and zero;

4. Purchase price is constant, i.e., discounts are not allowed;
5. Carrying cost and ordering cost are known and constant; and
6. Shortages are not allowed.

The situation can be graphically represented as shown in Figure 4.1.
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InventoryLevel
A
Q \

o B D F Time Period

Figure 4.1.

The graph in Fig. 4.1 shows that initially there were Q units in the stock. The number of units
goes on decreasing with respect to time to meet the demand and this is represented by the line
AB in the graph. When the stock vanishes, i.e., the point B is reached, the stock level rises to
Q instantaneously as the replenishment is instantaneous. Since the demand is uniform, the rate
of decrease of the quantity remains the same as earlier. Therefore, this is represented by the
line CD in the graph, which is parallel to AB. Similarly, EFis parallel to AB and CD due to

uniform demand, and so on.

Since the demand is uniform, the average inventory is simply the arithmeticmean of the
maximum and the minimum levels of inventory. Let Q be the quantity ordered (or replenished)

when the minimum level, i.e., zero is reached.

. L+0)=2
< (maximum level + minimum level) 2 2
o
Since average inventory during any cycle period is 2 , the average inventory during the entire period is
0o
also 2,

-
“h

S
~

So, carrying cost = average units in inventory x carrying cost per unit
Ordering cost = number of orders x ordering cost per order
=N=xC,

-2,
Q

Total variable inventory costis then given by

rc=2c¢c . L¢,
grg "

“~

Differentiating w.r.t. . we get

(_" (TC} =_ 'r%(}’ + &
dQ Q- 2
L (7€) - 2DC,

dQ- o’
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dQ o- 52,
-+ 2D
2 _(rcy=22%
dQ o
For maxima or minima,
d
—(7C)=0
_DC. Gy
i.e. Q 2
c.D _CQ
i.e o 2
2DC,
. 2= P
i.e.
o- zgq, : ;72 (TC)>0
At 2 o
’QDC
Q= C o
Hence TC is minimum when ko
. 2DC
) = /0
Q C

~» EOQ is given as

(V)=

Optimum number of orders placed per time period
Minimum total variable inventory cost

- 5 c,+%c,= e,

2
r

= /2xdemand rate x ordering cost x holding cost

2

Optimum length of time between orders D

_1 pc,  [2¢,
D\ C, DC,

Note: If the carrying cost is given as a percentage of average value of inventory held, then total annual

carrying cost G, may be expressed as
Ch = wos o : & _
" ™ cost of one unit x inventory carrying cost in percentage = C/
Hence optimum order quantity is given by

. [2Dc,
0= cI
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Example 1:

An enterprise requires 1000 units per month. The ordering cost is estimated to be * 50 per
order. In addition to * 1, the carrying costs are 5% per unit of average inventory per year.
The purchase price is * 20 per unit. Find theeconomic lot size to be ordered and the total

minimum cost.

Solution:

We are given that

D = Monthly demand x 12

= 1000 x 12 = 12000 units per year, C, =50 per order;

C =20 perunitC,=1+5% of 20

=1+ 1 = 2 per unit of average inventoryThe economic lot size,

therefore, is given by Q* = \/ZLZ, 0 = JZXlZOZOOXSO = 775 units
h

Total minimum cost = TC* + Cost of material
= /2D C,Cp, + (12000 x 20)

=2 x 12000 X 50 X 2 + 240000

= /2400000 +240000

= v240 x 100 + 240000

= 15.5x 100 + 240000
=241550
You may now like to solve the following problems to assess yourunderstanding.

Example 2:

The demand rate of a particular item is 12000 units per year. The set-up cost per runis
Rs. 350 and the holding cost is Rs.20 per unit per month. If no shortages are allowed and
the replacement is instantaneous, determine

(i)the optimum run size,
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(ii)the optimum scheduling period, and
(iii) minimum total expected annual cost.
Solution:

Here, D= 12000 per year, CO = Rs. 350,

Ch=Rs. 0.2 per unit per month= Rs. 2.4 per unit per year

=0 = f \/2x12000x350
(1) Optimum lot size G,

=+/3500000 =1870.8 = 1871 units

(i) Optimum scheduling period

Q1871
D 12000

=.2DC,C,
(iii)  minimum total expected annual cost

= J2x12000x350% 2.4

=+/20160000 = Rs. 4490

:[" =

years = 1.87 months

Example 3:

The annual requirement for a product is 3000 units. The ordering cost is Rs. 100 perorder.
The cost per unit is Rs. 10. The carrying cost per unit per year is 50% of the unit cost. Find
the EOQ. If a new EOQ is found by using ordering cost as Rs. 80, what would be thefurther
savings in cost?

Solution:

Here D =300 units per year
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G,

o =Rs. 100

C =Rs. 10, 7 = 30%
3(

c 10x a

f =Cl= 100 = Rs. 3 per unit per year.

2 2
Q= J_DC" = \/-x 300ng 300 _ 4% il
Optimal lot size, G N
=J2DC,C
Total inventory cost 2DGCs
=V2x3000x100x3 _ gg 1342 per year
In the second part, we have D = 3000, Cos Rs. 100/80, Cr = Rs. 3 per unit per year
o = leéq, _ szsm:()xso
J - = 400 units.

= =+/2
Total inventory cost ‘/ZDC"C" V23000803 = Rs. 1200 per year

Net savings=1342-1200=Rs.142 per year.
Example 4:

A company requires 1000 units per month. Order cost is estimated to be Rs. 50 per order. In
addition to Re 1.00, the carrying costs are 10% per unit of average inventory per year. The

purchase price is Rs. 10 per unit. Find the economic lot size to be ordered and the total
minimum cost.

Solution. Here D = 1000 units per month
= 12000 units per year

Co o Rs. 50 per order

C = Rs. 10 per unit

Ch — 1.00 + 10% of Rs. 10

= Rs. 2 per unit of average inventory

The economic lot size is given by

>
o = JZ?,C" - sz ]‘TOXSO =775 units
r

Total minimum cost = Total minimum inventory cost + Cost of material

=[2DC.C, +12000x10

=/2x12000x50x 2 +1, 20,000

= 1549 + 1,20,000 = Rs. 1,21,549.
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Example 5:

The XYZ manufacturing company has determined from an analysis of its accountingand
production data for ‘part number alpha’, that its cost to purchase is Rs. 36 per order and Rs.

2 per part. Its inventory carrying charge is 9 per cent of the average inventory. The demand

of this part is 10,000 units per annum. Determine
i)What should be the economic order quantity?
i)What is the optimum number of orders?

ii)What is the optimum number of days supply per optimum order

Solution:

Here, demand per annum, D = 10,000

Ordering cost per order, Co= Rs. 36

Cost of one part, C=Rs. 2, 1=9%
Inventory carrying cost Ch=Rs 0.09 x 2=Rs. 0.18

Total inventory cost, TC=Ordering cost + Carrying cost

{10000
Lo

Differentiate w.r.t. Q,

]36+0.09Q

d(TC) 360000
dQ o

+0.09

360000

Equating it to zero, we have — e + 0.09 =0

. 360000
0.09
= Q = 2000

S0 = 4000000

d* (7TC) 720000

‘IQ?_ QS
d2(TC) 720000
ey ) o
At Q = 2000, dQz (2000)3 0

= 7C is minimum when QO = 2000 units
Thus, EOQ is € = 2000 units

% % 2 Demand 10000
(1) Optimal number of orders = — = =5
EOQ 2000

(iii) Optimal number of days supply per optimum order = 3—25 = 73 days
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Exercises:
1. A company uses annually 12000 units of raw material costing Rs. 1.25 per unit. Placing each order
costs Rs. 15 and the carrying costs are 15% per year per unit of average inventory. Find the
economic order quantity?

0 = [2PC. _ [2x12000x15
Answer. G, 0.15x1.25 - 1385 units.

2. A manufacturer uses Rs. 10,000 worth of an item during the year. He has estimated the ordering
costs is Rs. 25 per order and carrying costs as 12.5% of average inventory value. Find the optimal
order size, number of orders per year, time period per order and total cost.

2DC, “\/moomxzs

o . [
Kiiiwer, Ci 0125 _Rs. 2000

D
— =5
Number of orders per year Q

Time period per order = ﬁ = 73 days

g —
Total cost, ¢~ V2" PCLh =42x10000x25%0.125 _ R, 250 (variable cost)
Total annual cost = Rs. 10000 + Rs. 250= Rs. 10,250
Model II:
4.3. EOQ with Finite Rate of Replenishment or EOQ with Uniform Replenishment

For this model, it is assumed that the production run may take a significant time to complete. Let r¢ bethe
demand rate in units per unitof time and q be the replenishment rate per unit time. Assume that each cycle

time » of two parts t, and 2 such that
(@ production is continuous and constant until Q units are produced to stock, then it stops;
(b) the production rate p is greater than demand rater,

(c) thereis no replenishment (or production) during time t2 and the inventory is decreasing at the rater¢

per unit of time.
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Let Q be the number of units produced per order cycle. Then, t; = g
p

Inventory is building up at the rate of (r, — r4)
Maximum inventory level = (1, — ry)t

Minimum inventory level =0

(rp=ra)Q _ %(1 _ 1‘_,1)

Average inventory = % [(rpra)t, + 0] = — %
v P

. D
Ordering cost (or set up cost) = EC"

Carrying cost = 2( = r—") Ch
2 ™

Total inventory cost is

rc=2¢ +Q[ -iJcﬁ

o " 2 r
This cost will be minimum if
D _of un)
Q 2 ¥

2 _ 2DC,
ie. ¢ Co [ }
—

. .  [zpc,
Le. Q= J Tp_rd)
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Characteristics of the model:

1. Optimum length of each lot size production run

~_9 _ [_2Dc,
Con G ()

2. Optimum number of production runs per year

v oD _ [PG(r,—n)
o 2C,r,
&

3. Optimum production cycle time, t* = s

4. Total minimum inventory cost

rc=2¢.2 |1 %
) 2 r,

:DC{}\fC.fr(rp'—f:f)_'_l ZDC“‘ S l—i c
2 Ch 'r;r_":! rp :

J2DCr,

= Jzacﬂc{ —&]
?‘P

Example 1:

A tyre producer makes 1200 tyres per day and sells them at approximately half that rate.
Accounting figures show that the production set up cost is Rs. 1000 and carrying cost per unit
is Rs.5. If annual demand is 120000 tyres, what is the optimal lot size and how many

production runs shouldbe scheduled per year?
Solution:

Annual demand, D=12000 tyres

Ch=Rs.5

Co=Rs.1000

Production rate, r,=1200 tyres per day
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Demand rate, r4= 600 tyres per day

2DC, 1P
Ch T'p-?"d

Optimal lot size, Q" =

_JZXIZU@OOX](}UUX 1200
5 1200600

=2000~/24 =9797.96 - 9798 tyres.

Optimal number of production runs per year

. D 120000
=—= =13 runs/year
Q 9798

Example 2:

A contractor has to supply 10000 paper cones per day to a textile unit. He finds thatwhen he
starts production run, he can produce 25000 paper cones per day. The cost of holding a paper
cone in stock for one year is 2 paisa and the set up cost of production run is Rs. 18. How

frequently should production run be made?

Solution. Here r; = 10000 paper cones per day
1= 25000 paper cones per day
D = 10000 x 365 = 3,65,0000 cones
Cy= Rs. 0.02 per paper cone per year
Co=Rs. 18

Now, ¢ = [2PC[ 5| 2x36500()0x( 25000 )x]S
’ c, \r,-r 0.02 25000 —10000

P

= \/3650000>< 100 x ?—2 x18 =104642 paper cones

Frequency of production runs is given by

*

.0 104642

r, 10000

=10.46 days

Thus, production run can be made after every 10.46 days
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Exercises:

L

A product is produced at the rate of 50 items per day. The demand occurs at the rate of 30 items per
day. Given that set up cost per order is Rs. 1000 and holding cost per unit time is Rs. 0.05. Find the
economic let size and the associated total cost per cycle assuming that no shortage is allowed.

Answer. Q" = 1732 units and total inventory cost = Rs. 34.64

2.

Answer. Q" = 10000 units, t; =

3.

The annual demand for a product is 100000 units. The rate of production is 200000 units per year.
The set up cost per production run is Rs. 500 and the variable production cost of each item is Rs. 10.
The annual holding cost per unit is 20% of its value. Find the optimum production lot size and the
length of the production run.

10000

e 0.05years

An item is produced at the rate of 50 items per day. The demand occurs at the rate of 25 items per
day. If the set-up cost is Rs. 100 per set up and holding cost is Re 0.01 per unit of item per day, find
the economic lot size for one run, assuming that shortages are not allowed. Also find the time of
cycle, length of each production run, minimum total cost per day and maximum inventory level.

Answer. (" = 1000 items, Cycle time, ;"= 40 days

4.

Length of each production run, t; "= 20 days, Maximum inventory level = 500 items
Minimum daily cost = Rs. 5

A company uses 100000 units of a particular item per year. Each item costs Rs. 2. The production
engineering department estimates set up cost at Rs, 25 and the accounting department estimates the
holding cost as 12.5% of the value of the inventory per day.

Replenishment rate is uniform 500 units per day.
Assuming 250 working days (per replenishment purpose), calculate

(a) Optimal setup quantity

(b) Total cost on the basis of optimal policy

(c) Optimal number of set up

Answer. (a) Q"= 10000 units

(b) Total minimum cost = 1C " 4200000 = 200500

(¢) Optimum number of set ups = % =10
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Model I1I:
4.4, Economic Order Quantity with Different Rates of Demands in Different Cycles

Here the stock will vanish at different time periods with a policy of ordering same quantity

forreplenishment of inventory.

Here replenishment rate is infinite, replenishment is instantaneous and shortage is not allowed.

The total demand D is specified as demand during total time period T and stock level Q is fixed.

Number of production cycles, n = g

Let the demand in different time periods be D = D;, D, D, respectively so that total demand intime T is

...........

D = D1 +D2] + "'..Dn
Where, T =t; +t; + - +t,

Cost of ordering in time T is given by=C,
Q

Let Cy, be the holding cost per item per unit time

Then carrying cost for time T'is

1 5 1
&C/l +—Q—hlch +"'+gl h
r 2 2
Q 2.
:ECJ(,I +I2+"'+t/r):ECIxT
) D
Total inventory cost, TC = % + %C,,T

DC,

Total cost is minimum, when 3 =§C,,T

2 20
Q - "[)Cu - "Cn .2
. cr \c T
1.€.

This result is similar to the result of Model I with the only different that uniform demand is replaced by
average demand.

Here, TC’ =J@C“C,r
Y
- 2D . .
and total minimum cost = ?C(,C,, + cost of material

Remark: If 7= | year, then results of this model are exactly same as that of model I.
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Model 1V:
4.5. Economic Order Quantity when Shortages are Allowed

The assumptions of this model are same as that of model | except that shortages are allowed

and shortages may occur regularly. Let Cg be the shortage cost per unit of time per unit

quantity.

. D
Ordering cost =—C,

: y 2 1
Total inventory over the time period, 7 = > Mz,

F > 1
Average inventory at any time = 5 Mt /1

: Mi
Inventory holding cost =—C,
2t

F

. . . l .
Total amount of shortage over time period ¢ = 5 St,
; 1 St,
Average shortage at any time = 3——-
z t
1 St
Shortage cost = 5 2C,
¥ B

From (1),
-2DC,-M?*C, +C, (20 -20M - Q* +20M - M?)

0
ie, CQ*-M?*(C,+C,)-2DC,=0

ie., C.Q° —ﬁ;(q +C,)=2DC, [using (3)]
(Ch +C\ )-
ie. co'-25 _opc
' C.+C,
ie. QZ(CSC“ . 25 J: 2DC,
C,+C,
e ip =225 e vey)
“3™h
s0h= 2DC, C,+C,
08 C.
i b PG, C,
C/: Ch + C.\'
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Total minimum cost
D _. M +(Q"—M"]

= C‘ll- + - C.'l - C_:
Q 2Q 20
= |12DC.C, G
C. +C
Total cost, TC=2¢C, +~mic,+Lskc
0o " 2 2t
Using the relationship for similar triangles, we have
i M and e 5
L ¢ t Q
t,=—t and t, -—ir
Q

So TC':BCH+%£CJ,+—(Q—M}

C sinceS=a-M
0 2 Q 20

Since TC is function of two variables Q and M, so in order to determine the optimal order size and

- -

optimal shortage level, we put _:—Q(!C ) and (—‘;4 (TC ) both equal to zero so that
0 0

o, i ¢foao-m-o-m')

¢ 20 2 0
and

M_ 2C

—C +—(0-M)(-1)=0 2

20 2Q(Q )(-1) 2)
From (2),

MC, +C,(-0)+MC, =0

C
>M=0|——| (3
1 Q{CFI-I-C\] ()
Example 1:

A contractor undertakes to supply Diesel engines to a truck manufacturer at a rate of 20 engines
per day. The penalty in the contract is Rs. 100 per engine per day late for missing the scheduled
delivery date. The cost of holding an engine in stock for one month is Rs. 150. His production

process is such that each month (30 days) he starts producing a batch of engines through the
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inventory level at the beginning of each month.

Solution. Here, C, =Rs. % per engine per day= Rs. 5 per engine per day

C. =Rs. 100 per engine per day
D = 20 engines per day

t" =30 days
~ Optimum inventory level at the beginning of each month
M = & ,O' = b .Dt" = L x20x30= 571 engines
C, +C, C,+C, 5+100
Example 2:

A dealer supplies you the following information with regard to a product dealt in by him.

Annual demand =10,000 units Ordering cost = Rs.10 per order, Price=Rs.20per unit Inventory
carrying cost = 20% of the value of inventory per year
The dealer is considering the possibility of allowing some back order (stock ordered) to occur.

He hasestimated that the annual cost of back ordering will be 25% of the value of inventory.

()  What is the optimal number of units of product he should buy in one lot?

(i)  What quantity of product should be allowed to be back ordered, if any?
(ili) What would be maximum quantity of inventory at any time of the year?

(iv) Would you recommended to allow back-ordering? If so, what would be the annual
cost savingby adopting the policy of back ordering?

Sol. Here, D = 10,000 units
C, = Rs. 10 per order

C, = 20% of Rs. 20 = Rs. 4 per unit per year

C, = 25% of Rs. 20 = Rs. Per unit per year

(i) (a) When stock outs are not permitted:
. DC ; g .
o = [2PC. =\/2x10000x10 P
C, 4

(b) When back ordering is permitted

2DC, C,+C,

Q B C.h C‘\
= sz 1 quo %10 [ . : 5) = /90000 = 300 units
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(if)  Optimal quantity of the product to be back-ordered is given by

i 4 C
S' — It
Q[Q+Q}

300[i] =135 units
4+5

(iii)  Maximum inventory level, M" =Q -5 =300-133 =167 units
(iv)  Minimum total variable inventory cost in case shortages is not allowed

=TC(223.6)=2DC,C,

=2x10000x10x4 = Rs. 894.43
Minimum total variable inventory cost in case shortage is allowed

= TC (300)

_Japcc, S - 2x10,000x10x4-[i]
C.+C. 445

— Rs. 666.67

Since TC (300) <TC (223.6), the dealer should accept the proposal for back ordering as this
will result in asaving-of Rs. (894.43 -666.67) = Rs. 22776 per year.

Exercise.

A contractor undertakes to supply diesel engines to a trick manufacturer at a rate of 25 engines
per day. He finds that the cost of holding a completed engine in stock is Rs. 16 per month and
there is a clause in the contract penalizing him Rs. 10 per engine per day late for missing the
scheduled delivery date production of engines is in batches and each time a new batch is started,

there are setup costsof Rs. 10,000. How frequently should batches be started and what should

be the initial inventory level at the time, each batch is completed?

6
. [2p | 5 * .
Solution. 0 = G [t s =x2e 1000 30 =994 units (app.)
G € \l 11 10
30
=L P 2616 46 days
D 25
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4.6. Problems of EOQ with Price Breaks )

In the real world, it is not always true that the unit cost of an item is independent of the
quantity procured.Often discounts are offered for the purchase of large quantities. These

discounts take the form of price breaks.

Let us consider a manufacturer, who is encountered with a problem of determining an
optimum productionquantity for each production run and an optimal interval between

successive runs. The following conditions are assumed to hold

0) Demand is known and uniform
(i)  Shortages are not allowed
(ili)  Production for supply commodities is instantaneous

Let Q be the lot size in each production run, D, total number of units produced or
supplied overthe time period, Co the cost per production run, R cost of manufacturing (or
purchasing) per unit and |

inventory carrying charge expressed as a % of the value of the average inventory. Then total
cost is givenby

=TC Purchase cost + Holding cost + Ordering cost

-

—Dk+iou+2c
2 0

aQ 2 0

2 by 2PG

dQ?. Q,\

For maxima or minima, i(TC) =0
dQ

ie., lk! —D—(ﬂ’ =0
2 Q-

2
ic., 0= [22C:

1*(1C
2DC, d*(1C) _

At O= 5 -
= kI dQ”

2DC,

Hence total cost is minimum when Q = %

So total minimum cost, TC(Q' ) = Dk + % Q' ki + g(}"

o 2DC, iy + PDCNK
2N W J2DC,
= Dk+\[2DC kI
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xS
4.6.1. Purchase Inventory Model with One Price Break:

The purchase inventory model with only one price break may be represented as follows:

Range of quantity Purchase cost (per unit)
0<Q<b P
b=Q Vi

Where b is the quantity at and beyond which the quantity discount applies and P, <A
The procedure for obtaining EOQ may be summarized in the following steps:

Step 1. Calculate optimum order quantity Q for the lowest price (highest discount) i.e.

._ [2DC,
0 g

and compare it with the quantity »

If QF <b, calculate optimum order quantity Q" for price P, and compare total inventory cost for Q= 0/
with Q = b which given by

. D er
TC(Q; )=D;),+Q—;icﬂ+?'lﬁ
TC(b)=DP, +2C,,+21P,
2+ G+ ik
If 7C(Q))>TC(b). then Q° = b otherwise O’ =0/ .

Example 1:

Find the optimum order quantity for a product for which the price breaks are as follows:

Quantity Unit cost (Rs.)
0< Q<500 10.00
500=<Q 9.25

The monthly demand for the product is 200 units, the cost of storage is 2% of the unit cost and ordering
cost is Rs. 350.

Solution. We are given

C, =Rs. 350

D =200 units per month

I=2% =0.02

B =Rs. 10

P, =Rs.9.25

Highest discount available is Rs. 9.25. So we compute Q] as

2D 2 5
o = |22 =\/2" 90330 _ 870 units
P, 0.02x9.25

Since O >b =500, the optimum purchase quantity is given by Q" =Q; = 870 units.
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Example 2:

Find the optimal order quantity for a product having the following characteristics:

Annual demand = 2400 units
Ordering cost = Rs. 100

Cost of storage = 24% of the unit cost

Price break

Quantity Unit cost (Rs.)
0< Q<500 10
500<Q 9

Solution. We have D = 2400 units per year

=024

C, =Rs. 100
P, =Rs. 10
P, =Rs.9

Highest discount available is Rs. 9, so we compute Q; as

. 2DC 2x 24 10(
R2i= 2 =\j peAE =471 units
Ry 9x0.24

Since Q] <500, Q, is not feasible

We calculate Q: as

0 = 20C, _ \/2x24{)[)x100 e
Pl 10%0.24

Now total cost corresponding to order size 447 is

7C(Q;)=DR +£c,,+%:u3,

*
1

2400 % 100+ 447

=2400x10+ 5 x0.24x10

= 2400 + 536.91 + 536.4 = Rs. 25073.31
Total cost at price break is
TC (b) =TC (500)
=DP, +£><C(_+E!P,
15y 212

= 2400x9+ 290 100+ 22 0249
500 >

Fa

=Rs. 22620

Since TC(b) < TC(Q,' ) the optimal order quantity is the price discount quantity is 500 units.
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4.6.2. EOQ Problems with Two Price Breaks

When there are two price breaks i.e. two quantity discounts, the situation can be represented as

Range of quantity Purchase cost per unit
0< Q<by P
b1 £ Q<b: P>
b= Q P;

where b, and b, are the quantities which determine this price discount. The procedure for obtaining EOQ

may be summarized in the following steps:

1.

Compute the optimal order quantity for the lowest price. Let it be Q, .

2. If Q; = b, the optimum order quantity is Q, .
3. If Q; <b,. calculate Q,, the optimal order quantity for the next lowest price.
4. If b <Q, <b,, then compare TC(Q;) and TC(b,) to determine the optimum purchase quantity.
5. If Q,<b, calculate Q] and compare TC(b,), TC(b,) and TC(Q') to determine the optimum,
purchase quantity.
Example 1:

Find the optimal order quantity for a product for which the price discounts are as:

Range of quantity Unit price (Rs.)
0=0 <500 10.00

500<Q <750 9.25

750=Q 8.75

The monthly demand for the product is 200 units, storage cost is 2% of unit cost and ordering cost is Rs.

100.

Solution. Here D = 200 units

I = 2% of unit cost
C, = Rs. 100 per order

P, =Rs. 10
P, =Rs.9.25
P, =Rs.8.75

We calculate O, as

o: \/20(: 2x700x100

=475 units

8.75x0.02
Since Q; <b, =750, Q: is not feasible.

Now @) = 2DC _ 2><200><10(J
0.02x9.25

Since Q, =b, =500, we compute Q]

¥ 2D
Q= % =\/2x200x100 = 447 units.
i 0.02x10

=465 units
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Now,

7C(Q))=DPR, .o QIR

*

Q 2

=200><10+@><100+£><0.02>< 10
447 2

=2000 + 44.74 + 44,70 = Rs. 2089.44
TC (b)) =TC(500)
-pp+2c +%IP3

=200x9_25+@x100+@x 0.02x9.25
500 2

=1850+40+46.25 = Rs. 1936.25
TC(b,)=TC(750)

=Dﬂ+2C‘,+%IP3

25

=200x8.75+ 220 %100+ 729 % 0.02x8.15
750 >

= 1750 + 26.67 + 65.62 = Rs. 1842.29
The lowest total inventory cost is Rs. 1842.24

So optimal order quantity is Q" = b, =750

149

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



L
4.6.3. Purchase Inventory Model with n Price Breaks

When there are n price breaks, the situation may be illustrated as

Range of quantity Purchase cost per unit

0<Q<h P,
b <0<b, E
bn~l < Q Pn

where b, b,,...b, , are the quantities which determine the price breaks. Let Q,Q;,...,Q. be EOQ
corresponding to prices B, P,,..., P, respectively. The procedure for obtaining optimum order quantity
is:

.  Compute Q .If O >b, , then the optimum purchase quantity is Q, .

2. IfQ <b

n-1?

IfQ  >b

n-l = *“n

then compute Q.

x

>+ then optimum order quantity is determined by comparing 7C(Q,_,) with TC(b, ).

n~1
3. IfQ  <b,,,compute Q ,.If Q ,>b, ., then optimum order quantity is determined by
comparing TC(Q, ,) with TC(b,_,) and TC(b, ).

4. If Q ,<b, ,,compute O ,
If O ,>b, ,, then optimum order quantity is determined by comparing TC(Q:_‘_;) with TC(b, ;).

TC(b,.,) and TC(b,,).
5. Continue in this way until Q,‘:_,- 2b, (;.,:0< j<n-1; and then compare TC(Q,:,,.) with TC(b",_j)
i FCAB s WTC (Besyin Voo s FC By )

This procedure involves a finite number of steps.

Example 1:

The annual demand for a product is 500 units. The cost of storage per unit per year is 10% of
the unit cost. The ordering cost is Rs.180 for each order. The unit cost depends upon the amount
ordered. The range of amount ordered and the unit cost price are as follows:
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Range of amount ordered Price per unit

0<Q <500 Rs. 25
500<Q <1500 Rs. 24.80
1500 < QO <3000 Rs. 24.60
3000<Q Rs. 24.40
Find the optimal order quantity.
Solution. Here D = 500 units
C, = Rs. 180 per order
1=0.10

b, =500, b, = 1500, b; = 3000
F =Rs. 25, P, =Rs. 24.80
P, =Rs. 24.60, P, =Rs. 24.40

Step1 0 = |22 _\/ZxSOUXISO_\/IOUUXIOXISOOU
il IP, 0.10x24.40 2440

=1000, ﬁﬂ =271.6= 272 units
2440

Since Q, <b,, we compute Q, .

Step2 0 = | 225 _J2x500x180
b X IP, 0.16%24.60

=100 -ﬁ =270 units
\ 246

Since Q, <b,, we compute Q,

2DC, szsoox 180

= 269 units
IP, 0.10%24.80

Step3 0, = \/
Since Q; <b,, we compute Q:

Stepd Q = \j% = J%X]OOO@ =472000 =268 units.

Now we compute TC((, ), 7C(b,), TC (b,), TC (b;) and compare them to get optimal order quantity.

" D | .
TC(0)= DR+ 72, + QIR
I

=500><25+5—mx180+2—$><0.10x25
268 2

= 12500 + 335.82 + 335 =Rs. 13170.82
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TC (b)) = DP, +§C,+%b,ff;

1
=500x24.80+@><180+@><0.10><24.80
500 2

= 12400 + 1800 + 620 = Rs. 14820

TC(b,)= DP, +2c+lum
3ty 5

— 500 24.60+-20
1500

x]80+%x]500><0.]0x24.60
= 12300 + 60 + 1845 = Rs. 14205
TC(b,)=DP, +§C{,+—é~b_§!ﬂ

3

=500%24.40+ )
3000

><180+%x3000><0.10><2440

= 12200 + 30 + 3660 = Rs. 15890
Since TC(Q; ) <TC(b,) <TC (b)) <TC(b,),

Optimum order quantity is @, i.e. 268 units.

4.7. Probabilistic Inventory Models:

In previous sections, we have discussed simple deterministic inventory models where each
and every influencing factor is completely known. Generally, in actual business environment
complete certainty never occurs. Therefore, here we will discuss some practical situations of

inventory problems by relaxing the condition of certainty for some of the factors.

The major influencing factors for the inventory problems are Demand, Price and Lead Time.
There are also other factors like Ordering Cost, Carrying Cost or Holding Cost and Stock
out Costs, but their nature is not so much disturbing. Because of this their estimation provides
almost, on the average, as known as values. Even Price can also be averaged out to reflect the
condition of certainty. But there are situations where Price fluctuations are too much in
the market and hence they influence the inventory decisions. Similarly, the demand variations
or consumption variation of an item as well as the lead time variation influence the overall

inventory policy. In this section we will discuss single period probabilistic models.
4.8. Continuous Review Models:

This section presents two models: (1) a “probabilitized” version of the deterministic EOQ that
uses a buffer stock to account for probabilistic demand, and (2) a more exact probabilistic EOQ

model that includes the probabilistic demand directly in the formulation.
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4.8.1. “Probabilitized” EOQ Model:
Some practitioners have sought to adapt the deterministic EOQ model

to reflect the probabilistic nature of demand by using an approximation that superim-
poses a constant buffer stock on the inventory level throughout the entire planning
horizon. The size of the buffer is determined such that the probability of running out of
stock during lead time (the period between placing and receiving an order) does not
exceed a prespecified value.

Let

L = Lead time between placing and receiving an order
x;, = Random variable representing demand during lead time
f;, = Average demand during lead time
o, = Standard deviation of demand during lead time

B = Buffer stock size

a = Maximum allowable probability of running out of stock during lead time

The main assumption of the model is that the demand, x;, during lead time L is nor-
mally distributed with mean y; and standard deviation o, —that is, N, o).

Buffer stock imposed on the classical EOQ model

Inventory
Jevel

B+ y*

Time

Figure.1
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Example 1:

In Example 11.2-1 dealing with determining the inventory policy of neon lights, EOQ =
1000 units. If the daily demand is normal with mean D = 100 lights and standard deviatiop
o = 10 lights—that is, N(100, 10)—determine the buffer size so that the probability of running
out of stock is below a = .05.

From Example 11.2-1, the effective lead time is L = 2 days. Thus,

g, = DL = 100 X 2 = 200 units
oL = VoL = V10? X 2 = 14.14 units
Given K g5 = 1.645, the buffer size is computed as
B = 14,14 X 1.645 = 23 neon lights
Thus, the optimal inventory policy with buffer B calls for ordering 1000 units whenever the in-

ventory level drops to 223 (= B + p; = 23 + 2 X 100) units.

4.8.2. Probabilistic EOQ Model:

There is no reason to believe that the “probabilitized” EOQ model is section 4.8.1 will

produce an optimal inventory policy. The fact that pertinent information regarding the
probabilistic nature of demand is initially ignored, only to be “revived™ in a totally in-
dependent manner at a later stage of the calculations, is sufficient to refute optimality.

N

i g
fe——Lead time—=] |«Lead time—|
——— Cycle 1———— Cycle 2—]

=

"

Figure.3

Probabilistic inventory model with shortage
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The model has three assﬁmptions.

1. Unfilled demand during lead time is backlogged.
2. No more than one outstanding order is allowed.

3. The distribution of demand during lead time remains stationary (unchanged)
with time.

To develop the total cost function per unit time, let

f(x) = pdf of demand, x, during lead time
D = Expected demand per unit time
h = Holding cost per inventory unit per unit time
p = Shortage cost per inventory unit

K = Setup cost per order
Based on these definitions, the elements of the cost function are now determined.

1. Setup cost. The approximate number of orders per unit time is Iy—:’, so that the
setup cost per unit time is approximately %.

2. Expected holding cost. The average inventory is
(y + E{R — x}) + E{R — x} Yy

' i inni d ending expected in-

The formula is based on the average of the beginning an cted
ventories of a cycle,y + E{R — x} and E{R — x}, respectlvelg.r.As an approximation,
the expression ignores the case where R — E {x} may be negative. The expected hold-

ing cost per unit time thus equals Al
* 3. I;'E'Jc;x:n«:cted shortage cost. Shortage occurs when x > R. Thus, the expected

shortage quantity per cycle is .
S = f (x — R)f(x)dx
R

i jonal to the shortage quantity only, the ex-
ot e to'be Sp TOP‘? rttylosed on 2 cycles per unit time, the shortage
pected shortage cost per cycle is pS5, and, ba v
cost per unit time is 225
i t i it time is
The resulting total cost function per unit time

D {wa]
TCU(y, R) = I—)YE + h(% + R - E{x}) + PT/:Q (x = R)f(x)dx

The solutions for optimal y* and R* are determined from

aTCU DK\ h pDS _
ay y* 2 y
le ]
aTCU _ ._(EQ)[ f(x)dx =0
aR ¥y R
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We thus get

(1

)

Because y* and R* cannot be determined in closed forms from (1)_ and (2),a nu-
meric algorithm, developed by Hadley and Whitin (1963, pp. 169—_174), is us:ed to find
the solutions. The algorithm converges in a finite number of iterations, provided a fea-

sible solution exists.
For R = 0, (1) and (2) above yield

. \/2D(K+pE[x]}
y= "—h_”_
= PD
YT h

If ¥ = J, unique optimal values of y and R exist. The solution procedure recognizes
that the smallest value of y* is Lh"‘?, which is achieved when § = 0.

The steps of the algorithm are
i e - _ KD - P e
Step 0. Use the initial solution y, = y* = \a‘—ih, and let Ry = 0.Seti = 1,and go to
step i

Stepi. Use y, to determine R; from Equation (2). If R; ~ R;_,, stop; the optimal so-
lution is y* = y;, and R* = R;. Otherwise, use R; in Equation (1) to compute
¥ Seti = [ + 1, and repeat step i.
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Example 2:

Electro uses resin in its manufacturing process at the rate of 1000 gallons per month. It costs

Electro $100 to place an order for a new shipment. The holding cost per gallon per month is $2,

and the shortage cost per gallon is $10. Historical data show that the demand during lead time is

uniform over the range (0, 100} gallons. Determine the optimal ordering policy for Electro.
Using the symbols of the model, we have

D = 1000 gallons per month
K = $100 per order
s = §2 per gallon per month
p = $10 per gallon

f(x) = 7.0 = x = 100

E{x} = 50 gallons

First, we need to check whether the problem has a feasible solution. Using the equations for y
and ¥ we get

2 x 1000(100 + 10 x 50
y= \/ ( = ) = 774.6 gallons
X
y= e JOK 210()(] = 5000 gallons
Because ¥ = y, a unique solution exists for y* and R*.
The expression for § is computed as
100 2
1 R
S = x (x R}lmdx—zm R + 50
Using § in Equations (1) and (2), we obtain
2 X 1000(100 + 105
Y= \/ [2 )i /100,000 + 10,0005 gallons 3)

B PP |
2 100 10 X 1000
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The last equation yields

We now use Equations (3) and (4) to determine the solution.

Iteration 1
_ [2KD _ [2 X 1000 X 100 _ 4,493 sallons
»n = h a5

316.23
= 93.68 gallons
50 g

R, = 100 —
Iteration 2
R‘A
s = 27.% — R, + 50 = .19971 gallons
y» = V100,000 + 10,000 % .19971 = 319.37 gallons
Hence,
R, = 100 — I o GaEia
Iteration 3
R'Z
5 = Eﬂ% ~ R, + 50 = 20399 gallon
ys = V100,000 + 10,000 X 20399 = 319.44 gallons
Thus,
31944 _ g3611 gallons

R3=10‘J— s0

4.9. Single-Period Models:

Single-item inventory models occur when an item is ordered only once to satisfy the

demand for the period. For example, fashion items become obsolete at the end of the

season. This section presents two models representing the no-setup and the setup cases.
The symbols used in the development of the models include

K = Setup cost per order

h = Holding cost per held unit during the period

p = Penalty cost per shortage unit during the period

D = Random variable representing demand during the period
f(D) = pdf of demand during the period

y = Order quantity
x = Inventory on hand before an order is placed.

The model determines the optimal value of y that minimizes the sum of the ex-
pected holding and shortage costs. Given optimal y (= y*), the inventory policy calls
for ordering y* — x if x < y; otherwise, no order is placed.
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4.9.1. No-Setup Model (Newsvendor Model):

This model has come to be known in the literature as the newsvendor model (the original

classical name is the newsboy model) because it deals with items with short life such as
newspapers.

The assumptions of this model are

1. Demand occurs instantaneously at the start of the period immediately after the
order is received.

2. No setup cost is incurred.

IED < }, the quantity y — D is held during_ the period. Otherwise, a shortage amount
D — ywill result if D > y.

The expected cost for the period, E{C(y)}, is expressed as

¥y 00
E{C(y)} = h£ (y — D)f(D)dD + P/y (D = y)(D)dD

D=y
11
D
0
1
(@) i

Figure.3

The function E{C(y)} can be shown to have a unique minimum because it _is convex
in y. Taking the first derivative of E{C(y)} with respect to y and equating 1t 10 zero,

we get
» L= =]
D — DydD =0
hﬁf{ﬂ)dl) pf)_ fD)
or
hP{D =y} — p(l1 —P{D=y})=0
or
P -
P{DE"’}_‘U—I-JI

The preceding development assumes that the demand D 1s continuous. If D is dis-
crete, then fiD) is defined only at discrete points and the associated cost function is

E{C(»)} = kS (y — DIF(D) + p > (D — »f(D)
H=0 p=y+1
The necessary conditions for optimality are

E{C(y — 1)} = E{C(y)}and E{C(y + 1)} = E{C(»)}

These conditions are sufficient because E{C(y)} is a convex function. After some al-

gebraic manipulations, the application of these conditions vields the following inequal-
ities for determining y*:

P{Dﬁy*—-l}ﬂpp

- _
+h—P{D{y}
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4.9.2. Setup Model (s-S policy):

The present model differs from the one in section 4.8.1 in that a setup cost K is in curred.

Using the same notation, the total expected cost per period is

E{C(y)} = K + E{C(y)}

=J’<+h/Ci (y~D)f(D>dD+p/ (D — y)f(D)dD
¥

P

Ply = y*1 =
=y p+h

E{C(s)} = E{C (S)} = K+ E{C(S)},s < S
The equation yields another value s; (> S), which is discarded.

Given that the amount on hand before an order is placed is x units, how much should be

ordered? This equation is investigated under three conditions:

1. x<s
2. s<x<S§

3. x>S

This condition indicates that it is not advantageous to order in this case—t.hat lS y¥ o= x,
The optimal inventory policy, frequently referred to as the -8 policy, is summa-

rized as
Ifx <s,order§S — x

If x = s, do not order

The optimality of the s-S policy is guaranteed because the associated cost func-
tion is convex.
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Example 3:

The daily demand for an item during a single period occurs instantaneously at the start of lln? pe-
riod. The pdf of the demand is uniform between 0 and 10 units. The unit holding cost of the item
during the period is $.50, and the unit penalty cost for running out of stqck is $4.50. A_ﬁxed cost
of $25 is incurred each time an order is placed. Determine the optimal inventory policy for the
item.
To determine y*, consider
P 4.5

Pl R

Also,

P =y} = [ 4P 15

Thus, S = y* = 9.
The expected cost function is given as

10
E{C(y)} 5[%(,: — D)dD + 4.5[ T%{D D

25y% — 45y + 225

The value of s is determined by solving
E{C(s)} = K + E{C(5)}
This yields
2552 — 455 + 22.5 = 25 + 2587 — 455 + 225

E{CON

\r{ -------- = ’

3 KA1 \

: ! :

Infeasible | [ i
T range ! 5 Do nol,order—-:l-——
s==110 $=9 5 =19

Figure.4

s-S policy applied to Example
Given S=9, the proceeding equation reduces to S2-18s-19=0

The solution of this equation is s=-1 or s=19. The value of s>S is discarded. Because the
remaining value is negative (=-1), s has no feasible value (Figure.4). This conclusion usually

happens when the cost function is flat or when the setup cost is high relative to the other costs
of the model.
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Unit VvV

Queuing Theory: Basic elements of Queuing Model-Role of Poisson and Exponential
Distributions- Pure Birth and Death Models-Specialised Poisson Queues-(M/G/1):GD/co /o0)-

Pollaczek-Khintechine Formula.
Chapter 5: Sections 5.1-5.5
5.1. Introduction:

Queueing or waiting in a line is a common situation occurring in everyday life. We wait in queues in ticket
booths, bus stops, post offices, banks, traffic lights and so on. We can think of many more situations. In
general, a queue is formed when there are customers who require some sort of services and the queuing

problem is identified by the presence of a group of customers who arrive randomly to receive some service.

The customer may be a person, machine, vehicle or anything else which requires service.
The objectiveof a queuing model is to find out the optimum service rate and the number of
servers so that the average cost of being in queuing system and the cost of service are

minimized.

The objective of a queueing system is to find ways of reducing the time spent in waiting by
the customer and at the same time optimizing the cost to the service provider. Sometimes
Queueing Theory, also reference as the waiting line theory. It was developed in 1909 when
A.K. Erlang made an effort to analyses telephone traffic congestion. It can be applied to
wide variety of operational situations whenever customer’s expectations do not match
with objectives of semers due to one’s inability to predict accurately the arrival and service
time of customers. The purpose of queueing analysis is to provide information to evaluate
an acceptable level of service and service capacity since providing too much service
capacity is costly (because of employees or equipment). In fact, providing too little

service capacity is also costly.

In this Chapter, we discuss the concepts of stochastic processes, Poisson process and birth
-death process. We explain the basic component, fundamental structure and operating

characteristics of a queueing system. Also, we describe the M/M/1, queueing models.
5.2. Basic Concepts of Queueing Theory:

For studying queueing systems, one should be familiar with the probability theory, specially the conceptof
random variable and its probability distribution such as Poisson distribution, Exponential distribution Let us have
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a glance on some basic definitions.

Consider an experiment whose outcome is not uniquely determined. In such a situation
an observed

outcome of the experiment is one from a set of possible

outcomes. Sample point: An outcome of an experiment is

called a sample point.

Sample Space: The set of all possible outcomes of a random experiment is called sample
space.Events: Subsets of the sample space are called events.

Random Variable: A random variable is a function that associates a point of the sample

space with a real number.

Random Process/Stochastic Process: A random process or stochastic process is a family (or collection)

of random variables.

For example, if a die with six faces numbered 1, 2... 6 is thrown, the set S is a sample space
where the set of all possible outcomes is S= (1, 2, 3, 4, 5, 6). A function X that assigns to an
outcome or sample point, the number written on it, is the random variable. The event that

an odd number is observed corresponds to the set {1, 3, 5} which is a subset of S.

Let us take more examples of stochastic process.
i) If n>1, Suppose Xn is the outcome of the n™ throw. Then {Xn, n>1} is a collection
of random variables, such that for a distinct value of n, one gets a distinct random
variable Xn The sequence { Xn, n>I} Constitutes a random (stochastic) process

called the Bernoulli process.

ii) Let Xn represents the number of sixes in the first n throws. For each value of n=1, 2,
..., we get a distinct Binomial random variable. The sequence Xn. (Xn, n>l}, which
gives a collection of random variables, is a random or stochastic process.

iii) Suppose a telephone call is received at switchboard. Let X, be the random variable,
which represents the number of incoming calls in an interval (0, t). Then X, is a random
variable and the family {X: t € T} constitutes a stochastic process, where T is the

interval 0<t< oo
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5.3. Poisson Process:

Suppose X(t) represent the maximum temperature at a particular place. Here we deal with
discrete state, continuous time stochastic processes. The Poisson process is one of the
representatives of this type of stochastic processes. The Poisson process may be explain as

follows:

Let E be a random event such as (i) incoming telephone calls at a switchboard, (ii) arrival

of patients for treatment at a clinic, (iii) occurrence of accidents at a certain place.

We consider the total number N(t) of occurrences of an event E in an interval of time ‘t’.

Suppose P (t) is the probability that the random variable N(t) assumes the value n, i.e.,

Pu(t) = P[N(t)=n] s
Pot 6=, )i 3iceinis We have,

n=g P(t) = 1, for each fixed t. .

i

We can thus say from equation (2) that Pn(t) is a probability mass function of the random
variable N(t) and the family of random variables [Nt, t> 0] is a stochastic process. From our
earlier discussion, you mayunderstand that this family is continuous parameter (in this case,
time) stochastic process with a discrete state space. This is called a Poisson process. Under
certain conditions, N(t) follows a Poisson distribution with mean At (4 is being constant).

This holds for most practical situations.

Assumptions in Poisson Process
Events must be independent, in other words the number of the customers which is arrive in
disjoint time intervals are statistically independent e.g. the number of goals scored by a

team should not make the number of goals scored by another team more or less likely and

the mean number of goals scored is assumed to be the same for all teams.

The probability of two events occurring between time t and t + At is O(A (t)), i.e. negligible.
Thus., Po(At) +P1(At)+0(At)=1

The probability that event E occurs between time t and At is equal to AAt+ 0(A)t). Thus,
Pi(At)=AAt+0(At),
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Under the assumptions stated above, N(t) follows a Poisson distribution with mean At,

1.e., Pn(t) is given by

e—At(At)

Pn(t) = ,nzo,l’ 2,3 9 seeene

n!

To formulate a queueing model, we have to specify the assumed form of the probability
distributions of both inter arrival times and service e times. You have learnt that inter- arrival
times follow the Poisson distribution. Similarly, most of the times, the service times in a
queueing system follow the exponential distribution. Hence, the exponential distribution is

the most important distribution in queueing theory

Markov Process

Around the beginning of the 20" century, the methodology discussed here was developed
by the Russian mathematician. A.A. Markov. The Markov Process forms a sub-class of the
set of all random processes.It is a sub class with enough simplifying assumptions to make

them easy to handle.

A stochastic (or random) process is called a Markov process if the occurrence of a future
state depends on

the immediately preceding state and only onit. If, foralltn,tn-1 ... ..... to, satisfying tn

>tn-1>......t10 and non- negative integer j, the family of random variables {X(t), t=0} is said

to be a Markov process if it satisfy the Markovian property:
PIX(tn)= j,/X (In-1)= j,_1 c cor e o X (10)= jio]=P[X(tN)= ji, /X (tn-1)= j, 4]

The process has the Markov property and is called a continuous time Markov process.
5.4. Birth and Death Process:

The arrival process assumes that the customers arrive at the queueing system and never leave
it. Such a system is down as pure birth process. On the other hand, the departure process
assumes that no customer joins the system while service is continued for those who are
already in the system. If at time t=0, N is greater than or equal to one i.e. at stating time
number of customers is N. Since service is being provided at the rate of y , therefore
customers leave the system at the rate of y after being serviced. This type of process is

known as pure death process.
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probability that there are n customers in the system at any time t, both waiting and being

served. Arrivals can be considered as births. If the system is in state En and arrival occurs, the
state is changed to En+1. Similarly, a departure can be looked upon as death. A departure
occurring while the system is in state En changes the system to the state E.1 +This type of

process is generally referred to as a birth death process.

Assumptions in the Birth-Death Process

The assumptions of the birth-death process are as follows:

. If the system is in state En, the current probability distribution of the time t until

the next arrival(birth) is exponential with parameter An, where n =0, 1, 2,

. If the system is in state En, the current probability distribution of the time t
until the next departure or service completion (death) is exponential with

parameter pp, where n =0, 1, 2 ,....

. Only one birth or death can occur in a small interval of time, i.e., At.

5.4.1. Fundamental Structure of a Queuing System

Queuing theory is related with the mathematical study of queues or waiting lines, a queue
is formed when there are customers who require some sort of services and the current

demand for a service exceeds the current capacity to provide the service.

Generally, the customer’s arrival and their service time are not known in advance or can’t
be predicted accurately. Since arrival-departure process are random. So, queuing models
developed to reduce waiting time/excessive costs and work for maintaining balance

between service capacity and waiting time.

A simple queuing system can be described as follows:
1. Input or arrival process of customers
2. Service mechanism (or process)
3. Queue discipline

The fundamental structure of a queueing system shown in the figure given below
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Now we explain all the components of queueing system.
1. Input or Arrival Process of Customers

The rate at which the customers arrive at the service facility is determined by the arrival
process. An input/arrival process can be defined completely by its size, the arrival time
distribution, and the attitude of the customers. We describe these, in brief.

i) Size: It may be finite or infinite according as the arrival rate is affected or not affected
by the number of customers in the service system.

i) The arrival time distribution: Mostly, the arrival time distribution is approximated
by Poisson

distribution.
iii) Customer or arrivals behavior:

« A customer who stay in the system until served no matter how much he has to

wait for service. Such a customer is called Patient Customer.

« The customer who wait for a certain time in the queue and leave the
system without getting service. This kind of customer is known as

impatient or reneging behavior.

« If a customer before joining the system get discouraged by seeing the
number of customers already in the queue is too large and does not join the

queue. This behavior of the customer is called Balking behavior.

« Customers who move from one queue to another because they think that
their queue ismoving slower, the behavior of the customer is known as

queue jockeying.

Remark: Generally, it is assumed that the customers arrive into the system one at a time.

But, sometimes, customers may arrive in groups and such arrival is called Bulk arrival.
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2. Service Mechanism (or Process):

Service time distributions are generally exponential distributions. It may be any one of the

following types:
1. Single channel facility
2. One queue-several station facilities
3. Several queues-one service station
4. Multi-channel facility and
5. Multistage channel facility

3. Queue Discipline:

Queue discipline is the order or the manner in which the service station selects the next
customer from thewaiting line to be served. There are many ways in which a customer to

be selected for service. Some of these are described as follows:

i) FIRST IN, FIRST OUT (FIFO) or in other words First Come First Served (FCFS);
i) Last in First Out (LTO); and
iii) Service in Random Order (S&O)
Throughout the chapter, we consider the FCFS queue discipline.
5.4.2. Operating Characteristics of a Queueing System

For studying queuing system, we have to set up a set of equations. We have to solve these
equations to determine the operating characteristics (or performance measures). There are

two types of solutions of these equations: (i) Transient (ii)Steady state.

Transient solutions: The time dependent solutions are known as transient solutions.

Steady state solutions: These solutions are independent of time and represent the

probability of the

system being in a particular state in the long run.

Note: Here we shall be analysing the system under the steady state condition.
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Performance Measures of a queuing system are determined by two statistical properties,
namely, theprobability distribution of inter-arrival times and the probability distribution of

service times.

Some of the operating characteristics/performance measures of any queueing system that

are of generalinterest for analysing the system are listed below:

1. Ls: The average number of customers in the queuing system (those waiting to be served and

those being served).

2. Ws: The average time each customer spends in the queuing system from entry into the
queue to

completion of the service (the time spent waiting in the queue and during the service).

3. Lq: The average number of customers in the queue waiting to get service (this excludes

customersundergoing service).

4.Wq: The average time each customer spends in the queue waiting to get service (this

excludes customers time spent during the service).

5. Service idle time: The relative frequency with which the service system is idle.

Now we describe the equations for each of the operating characteristics listed above

under steady statesolutions. By definition of expectation, we have

169

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



L=E(n)= Z;:P“ (Expected number of customers in the system) (1)

n=l

L= Z (n—=c) P, (Expected number of customers in queue) (2)
anl ]

where there are ¢ parallel servers so that ¢ customers can be served simultaneously with 4 arrival
rates for those who join the system, we have

L =W (3)
and
L =AW 4)

] ]

j s ; ——
If 4 1s the service rate, the expected service time is — and we have
u
1 g
W = er +— (5)
u

Where, W, denotes expected waiting time in system and W, represents expected waiting time in queue

Multiplying both sides of equation (5) with 4 , we get

W, = W, +=
i
p

=L =L +— (By(3)and (4)) (6)
i

5.5. Classification of Queueing Models:

Generally, queueing models are described by five symbols such as a/b//c: d/e or a/b/c/d/e.
The first symbol‘a’ describes the arrival process. The second symbol ‘b’ describes the

service time distribution. The third

symbols ‘c’ stands for the number of servers. The symbols ‘d’ and ‘e’ stand for the system

capacity and queue discipline respectively.

First three symbols i.e. a/b/c in the above notation were described by D. Kendall in 1953.
Later, A. Lee in1966 added the fourth (d) and fifth (e) to the Kendall notation.

Remark: The fifth symbol (e) from the notation can be omitted if the system has FCFS
queue discipline and for this case it can be described as a/b/c/d. Moreover, if the system has
infinite capacity with FCFS queue discipline then we can use simply a/b//c or a/b/c: oo /FCFS

for describing the queueing system.

Note: If arrivals follow Poisson distribution and departures follow exponential distribution,
symbol M is used in place of ‘a’ and ‘b’ e.g. suppose there is a single server then we can

use the notation M/M/1(here we consider infinite capacity and FCFS queue discipline).
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5.5.1. M/M/1 OR M/M/1: « [FCFS QUEUEING MODEL

This model deals with a queueing system having a single server channel and no limit on
system capacity with Poisson input and exponential distribution for services while the
customers are served on a “First Come First Served” basis. For the given model, arrivals
follow Poisson distribution and hence inter-arrival times have an exponential distribution.
The service time for this model follows an exponential distribution.If A and u denote the

average arrival rate and average service rate respectively then 1/ 4 and 1/ u show mean

arrival time and mean service time correspondingly. Then the ratio. p =% is called the

traffic intensity or the utilization factor. Itis the measure of the degree to which the capacity

of the service stationis utilized. For example, if customer arrives at a rate of 10 per minute
and the service rate 20 per minute, the utilization of the service capacity is % =50%,i.e.,

the service facility is kept busy 50% of the time and remains idle 50% of the time.
Arrival-Departure Equations for the M/M/1 Queuing Model (or)

System of Differential-Difference Equations

If n >1, the probability that the system has n customers at time (t+At) can be expressed as:
P, (t+ At) =  [{Probability of n-1 customers in the system at time > and (1 arrival, no
departure in time At or 2 arrivals, one departure in time At or 3 arrivals, two departure in
time At or...)} + {Probability of n 1 customers in the system at time > and (2 arrivals, no
departure in time At or 3 arrivals, one departure in time Al or 4 arrivals, two departures
in time At or ...)} + {Probability of n 3 customers in
the system at time t and (3 arrivals, no departure in time At or 4 arrivals, one departure in
time At or 5

arrivals, two departures in time At or ...)} + ...] + [{Probability of n + 1 customers in the
system at timer and (1 departure, no arrival intime At or 2 departures, one arrival in time At
or 3 departures, two arrivals in time At or ...)} + {Probability of n + 2 customers in the
system at time » and (2 departures, no arrivals in time At or 3 departures, one arrival in time

At or ...)} + {Probability of n + 3 customers in the system
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at time 7 and (3 departures, no arrival in time A7 or...)} +...] + [{Probability of n customers in the system
at time f and (no arrival, no departure in time At or | arrival, one departure in time At or 2 arrivals, two
departures in time Ar or ...)]

=P (r)[{iAHO(At)}{I—;/At +0(At)}+ The terms equal to O(At)]

n

+P (t)[{O(Ar)} {1- uAt + O(At)}+ The terms equal to O(AI)]

+P,_, (1)O(Ar)+ The terms equal to O(Ar)

n=:

[{ HAt+0(At)) }{I—M1+O(A1)}+The terms equal to O(At)]

[{O }{l—/lAr+O(At)}+The terms equal to O(At)]

+P

n+3

()O(At)+ The terms equalto O(At)

n

+P, (1) {1- pat+ O(Ar)}{1-2Ar + O (At )}
+{yAt +0(N)}{Mr +O(At)} + The terms which ultimately become equal to O(Ar)]

Notice thatAr-O(Ar),0(Ar)-O(At), O(At)+O(At),0(Ar)-O(At), At- At are very small and may be
taken as equal to O(Ar)

We deal with the case n = 0 separately because there cannot be any possibility of less than zero customers.
However, in the above equation, the case of less than n customers is included.

The probability of O(Zero)customers in the system at time f+A¢ = [{Probability of 1 customer in the
system at time 7 and (1 departure, no customer/arrival in time At or 2 departure, | arrivals in time At or
3 departures, two arrivals in time Ar)} + {Probability of 2 customers in the system at time ¢ and (2
departures, no arrival in time At or 3 departures, one arrival in time At or 4 departures, 2 arrivals in time
At)} + {Probability of 3 customers in the system at time ¢ and (3 departures, no arrival in time At or 4
departures, one arrival in time A¢ or 5 departures, two arrivals in time At)} + ...] + [{Probability of O
customers in the system at time ¢ and (no arrival, no departure in time At or | arrival, one departure in
time At or 2 arrivals, 2 departures in time At )}

= B )[{,uAr +0(At)}{1-AAt +0(At)} + The terms which ultimately become equal to
o(a0)]
+P, (t)[{O(At)} {1- 241+ O(At)} + The terms which ultimately become equal to O(At)]

+P,(1)O(At) + The terms which ultimately equal to O(At)]
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P, (1) [{Probability of no departure which 1 as there is no customer in the system and hence

no chance of departure }
{1-2At+O(At)}{{ uAt+ O(Ar)}{AAt+O(At)} + The terms which ultimately become
equal to O(At)]

Therefore, the arrival-departure equations for the M/M/1 Queuing model are:
P (t+At)=P_ (1) Aat+0(At) |+ B, (1) uat +0(Ar) ]
+P, (1) AAt+0(Ar) [ wAt+0(Ar) ]
+P,(t)[1-AAt][1- At ]+ O(At), n 21
B, (t+At)=P,(1)[ uat+ O(At) ]+ P, (1) AAr+O(Ar)]
+P, (t)[1-2At]- 14+ O0(At), n=0 (1)
>(1+A1) =P, (1) AAt+ P, (1) pkt
+P,(t)[1-AAt — uAt]+O(At), n 21
P, (t+At)=F (1) ut+ B, (1)[1-2At]+O(Ar) (2)
Dividing equation (2) by At and taking the limit as At tends to zero, we have

. P(t+A1)-P, (1)

li\}ﬂ!}l = At 21’1»](I)+,HR’”([)—(/1+/I)P/‘(t)

:l)nl(t)=Z'Pn—l(’)+lul)uol(t)_(/l+y)er(,) (3)
and

Fy(t)==AF,(t)+uF (1) “)

When steady state, i.e., the equilibrium state, is reached, P! (f) becomes independent of time, say p, , and

the rate of its change with respect to time becomes zero, i.e.,
P ()=0.
Therefore, the steady-state solution is given by

AP,

n~|

+uP, —(A+u)P,=0,n21
MF = AR, (5)

Now, from equation (5), we have
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P

n+l

3 ;‘LF:J = ﬂP:l i ;{(Rl—l (6)
This implies that
HP, —AP = uP _— AP _, (changingnton—1)

uP,  —AP, ,=uP, ,—AP, ; (again, changing nton—1)

MP,_, —AF, ;= uP,_,—AF, , (again, changingnton—1)

pP,—~ AR = uP,— AP,
But uF,—AF, =0 (from (5))

Therefore, uP, ,—AP, = uP, — AP,

=, JUR:—I -ARI—E
= uB~ AR, =0
= P:; = iPﬂ—l
U
:i iR:EJ (.'-# ”4—/1}3"72:0:> n—1 =£ n-2
AV H
=ii [i‘PH—?J[ # ;:—E_AR:—'? =O:> n—-2 =i n—3]
TRV H

_AA-A...A(ntimes) A"
B pr- g p(n times) T 4

F

Since ZP“ =1, it follows that

n=0

S P =SPP =1 (P =P... )

n=0 n=I{}
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A
= F,=1-P Where P=—
M

Therefore, the probability of n customers (units) in the system is given by
P =(1~P)P", n=0
Model — M/M/1 or M/M/1: «/FCFS

Probability of n customers in the system is given by
P, =(1-p)p",nz1

Probability of zero customers (units) in the queue/system is given by P, =1-p

5.5.2. Operating Characteristics or Measures of Performances of the Model M/M/1:

1. The average number of customers (units) in the system is given by

L=E(n)=Ynp, =Y n(1-p)p" =(1-p) X np"

n=() n=0 n=0 _"(*)

Now, consider an“ =0+p+2p" +3p° +...

n=0

Let S=an” =p+2p° +3p +...

n=0

= pS=p +2p" +3p" +...
= S§—pS :(,o+2,oz+3,03+...)—(pz+2p3+3p‘+...)

=>S(1-p)=p+p’ +p’ +...

P
Sh—py=—f_
B o e
= i ’02
(1-p)

P
1-p
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Now, p is the traffic intensity or utilisation factor, where p =

A

S R S (1)

= A wR

u

Where, 2 denotes the average arrival rate and 1 denote the average service rate.
2. The average queue length (Expected number of customers) is L,

And L, = L, —Traffic intensity

A A A
2)

=/1—A—;=,u(/1—,l)

3. The average time an arrival spends in the system (Expected waiting time in system) is

webo_ 2 . 1 gomay
Ao Mu-24) p-2
Thus W, = L (3)
Cop=-4
4, The average waiting time of an arrival in the queve isW, .
L 33 i
T e S @)

A dp(u=2) u(u-A)
from (4), we can also obtain the relation

m:m-l
M

5. The probability that the number of customers (units) waiting in the queue and the number of units
being serviced is greater than k is

P[n:—k]:p“ (5)
6. The probability of having a queue i.e. 1= F,
Thus 1-P, =1-(1-p)=p (6)

Now, we explain the M/M/1 queuing model with the help of following examples.
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Example 1:

A TV repairman finds that the time spent on his job has an exponential distribution with mean
30 minutes. If he repairs sets in the order in which these come in, and if the arrival of sets is
approximately Poisson with an average rate of 10 per 8-hour day, what is the repairman’s

expected idle time each day? How many jobs are ahead of the average set just brought in?
Solution: Here, we have

Arrival rate (A4) =$ arrivals/hr

Service rate ()= Tﬁg =2 services/hr

= The probability of the repairman being idle is

P=tbp=t-to A0t g 2_3
Py 8 2 8 8

Thus, £, =

=<l RS

. —— 3
Hence the idle time in the 8-hour day = E:-:S hours = 3 hours

Now, the average number of jobs that are ahead of the set (person) just brought in
= Average number of units in the system means who are in queue and at counter, i.e.

10
A ) _10
6

_1o-
8

Lt: -
pH—A

=E =1.666
3

Thus, L, =1.67.

Example 2.

Customers arrive at a window in a bank, according to a Poisson distribution with mean 10 per
hour. Service time per customer is exponential with mean 5 minutes. The space in front of the
window including that for the serviced customers can accommodate a maximum of three

customers. Other customers can wait outside this space.

(@ What is the probability that an arriving customer can go directly to the space in front of the

177

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



window?

(b) What is the probability that an arriving customer will have to wait outside the indicated
space?

(c) How long is an arriving customer expected to wait before being served?

Solution:

Here, arrival rate A = 10 per hour and service rate (u) = ? per hour=12 per hour

- . A 10
Thus, traffic intensity (p) = it
5
5
>p ==
P=%
(a) The probability that an arriving customer can go directly to the space in front of the window i.e.

the probability of n customers in the system here 2 > n > 0, therefore the required probability = F, + £ + B,

5 5\5 5)(5Y)
(D30
6 6)6 6/)\6

1 15 1725
==4t—i—4t—=r—=

6 66 636
(b) The probability that an arriving customer will have to wait outside the indicated space, i.e. the

required probability = P, + P, + P, +...

042

=1-(R+R+P)
=1-042=058
(c) Expected waiting time before being served

=W = 4 = 10 =0.417 hours
Top(u-4) 12(12-10)
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Exercises:

L. Customers arrive at a box office window being served by a single individual according to a Poisson
input process with a mean rate of 30 per hour. The time required to serve a customer has an exponential
distribution with a mean of 90 seconds. Find the average waiting time of a customer in the queue.

A 30

Solution. |}/ = = :im-
T u(u—A) 4040-30) 10

3 : :
= Ex 60 minutes = 4.5 minutes

2. A fertilizer company distributes its products by trucks loaded at its only loading station. Both
company trucks and contractor’s truck are used for this purpose. It was noticed that on an average on truck
arrived every 5 minutes and the average loading time was 3 minutes. Forty percent of the trucks belong to
the contractor. Determine the expected waiting time of contractor’s trucks per day.

Solution. The expected waiting time of contractor’s truck per day=8.64 hrs.

3. In a railway marshalling yard, goods train arrives at a rate of 36 trains per day. Assuming that
inter-arrival time follows exponential distribution and the service time distribution is also exponential with
an average of 30 minutes, calculate the following;

i.  The mean line length

ii.  The probability that the queue size exceeds 10.
iii.  If the input increases to an average of 42 per day, what will the change in (a) and (b) be?

5.6. Multiple Server Models:
1.M/M/C or M/M/C: «o/FCFS Queueing Model:

This model deals with a queueing system having a multiple server channel and no limit on
system capacitywith Poisson input and exponential distribution for services while the customers
are served on a “First Come First Served” basis. We consider a queue with Poisson input
(having arrival rate, say, | ) and withC (1 < C < o) parallel service channels having
independently and identically distributed exponential service time distribution, each with rate,
say, U.

If there are n units in the system, and n is less than C, then, in all, n channels, are busy. If there
are n (> C) in the system, then all the F channels are busy. Thus, we have a birth death model

having constant arrival (birth) rate A and state-dependent service (death) rate.
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_jrun=0,1,2,...,C
= Cu,n=C+1,C+2,...

Hence, the steady state probability exist if

p= CL <1 and are given by

7
ueﬂ 0$”<C

pe M2 ..nu

- Ashvsid

B.nzC
(£4:2p...Cu)(Cu...Cu) d

where, theterm(cu...c ) is repeated (n—c)times.

8
%P(,. 0<n<C
1
%1{,. n=C
Now, il{, =]

n=0

Z(f) $ ) iy

c-l 0
:>ZR?+Z(R' =13’)U - n! .,,C!'C"_(.

n=l)

(‘ l C"p" o C(. ./.)" l
=P, + =1, where p=——
[,Z(:, n! ; C! p Cu

S ST
DP{Z £ +E—Cf—}

n=l n ! n=L

=1 T} o o !
= Cp 4 £ - :
= ! C! l-p

Operating characteristics/Performance measures of M/M/C Model

The meaning of performances measures such as L, Ls, Wy, and W, here we

only evaluate mathematical expression for all these as given below:
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x

1. Lq=Z(n—C)PH

n=C

:Z‘jl’(}j . Now put n — C = j, we get
j=1

2 c+j
2 Z H

rerdll 5 {02
£
A
) s
= ip’
o
c
A
o2
s H P
ct(1-py
S ~d d( p (1-p)-p(-1)
wpRip =p) —(p =p—(—)=p e
oo xR e
2 L=L, +£ (Expected number of customers in the system)
!
3. Expected waiting time in the queue
1
‘Vrf = Z : L‘/
4. Expected waiting time in the system

1
W, =W, +—or W, =£‘~

‘ 7 S A
The following examples illustrate M/M/C queueing Model.

Example 1:

A petroleum company is considering expansion of its unloading facility at its refinery. Due to
random of variations in weather, loading delays and other factors, ships arriving at the refinery
to unload crude oil arrive at an average rate of 5 ships per week. Service rate on an average is
10 ships per week. Assuming Poisson arrivals and exponential service distributions, find

(@) The average time a ship must wait before beginning to deliver its cargo to the refinery;

(b) If asecond birth is rented, what will be the average number of ships waiting before being

unloaded?

(c) What would be the average time a ship would wait before being unloaded with two berths?
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(d) What is the average number of idle berths at any specified time?

Solution: (a) Here, we have the case of M/M/1 model
A =35 per week, #=10 per week

W = - - = L week
"ou(u=-2) 10
(b) For this case, we have M/M/2 model

A 5 1
Here p= = =—
Cu 2x10 4
= -1
)
uoo 20

L:,r"_ B
Ci(i-p) 30
L,
(c) W, =7[‘—=]50 week
@ X: ] 2
P: R R

Where X be the number of idle berths and probability of number of ships in the system
E(X)=) PX =B40P, =15

Hence 2 births are idle.

Example 2:

Arrival of machinists at a tool crib are considered to be Poisson distributed at an average rate 6 per
hour. The length of time the machinists must remain at the tool crib is exponentially with averagetime

of 0.05 hours.
a) What is the probability that a machinist arriving at the tool crib will have to wait?

b) What is the average number of machinists at the tool crib?
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¢) The company will install a second tool crib when convinced that a machinist would have to spend

6 minutes in waiting and being served at the tool crib. At what rate should the arrival of machinist

to the tool crib increase to justify the addition of a second crib?

Solution. a) Here the arrival rate 2 = 6/hr and the service rate u = 20/hr

Therefore, the probability of zero customers in queue is
A 6

pg=1-p where p=—=—
o 20

= 6 1L} 7
Moo= b i 1 w =07

The probability that a machinist arriving at the tool crib will have to wait
= Probability that there is at least one machinist at the tool crib
= |- Probability that there is no machinist at the tool crib

=1- p=1-0.7=0.3
b) The average number of machinists at the tool crib is given by

& 2. ———6— —6— =0.428

*“U-A  20-6 14

¢) The company is ready to install a second tool crib when convinced that a machinist would have to spend

6 min. in waiting and being served. Let the increased arrival rate be ] .

e . 1
Waiting time in the system = 6 min. = 10 hr.
] l
We have L= —
22" 10
1 l

or ——=—

410

or 10=20- 4

or 4 =20-10=10/hr
The increase is, therefore, (10 — 6)/hr = 4/hr.

Example 3:

A repairman is to be hired to repair machines which break down at an average rate of 3 per hour.
The breakdown follows a Poisson distribution. Non-productive time of a machine is considered to
cost 10 Rs per hour. Two repairmen have been interviewed of whom one is slow but charges less

and the other is fast but more expensive. The slow repairman charges 5 Rs per hour and services
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L
breakdown machines at the rate of 4 per hour. The fast repairman demands 7 Rs per hour, but

services breakdown machines at an average rate of 6 per hour. Which repairman should be hired?

Solution. The data given is summarized below:
Slow/less expensive Repairman:

A =3/hr, i = 4/hr , Labour cost = 5 Rs/ hr
Fast/more expensive Repairman:

A = 3/hr, ¢ = 6/hr, Labour cost = 7 Rs/ hr

Case of Slow/less expensive Repairman:
Cost of engaging slow repairman for 8 hours
= Breakdown cost + Labour cost for 8 hour working day
= (No. of breakdowns per hr) x 8 hours x Av, Time spent in the
system x (Breakdown cost/ cost for non-productive time) +
Labour cost per hrx 8 hours

= A x8xw, x10+5 x8

Since the average time spent in the system is |}/ = -1~ = ——=1,

1
d=a 4-3
The total cost for engaging the slow repairman is equal to

3x8x1x10+5x8 = 240 + 40 = 280 Rs.

Case of Fast/more expensive Repairman:
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Cost of engaging fast repairman for 8 hours
= Breakdown cost + Labour cost in 8 hour working day.
= (No. of breakdowns per hr)x 8 hoursx Av. Time spent in the
System x (Breakdown cost/ cost for non-productive time)
+ Labour cost per hrx 8 hours

= Ax8xW x10+7 x8

1

H=A

Since the average time spent in the system is |}/ =

1 1
6-3 3’
The total cost for engaging the Fast repairman is

Ix8x % x10+7x8 =80+ 56 =136 Rs

Since the total cost of engaging the fast repairman is less, we should engage the fast repairman.

2. M/M/1/K Queueing Model:

In this model, the capacity of the system is limited, say k, hence the maximum size of a queue is
k. Here, we have single service channel. The server, serving each customer according to the

exponential distribution with an average of u customers per unit of time.

Steady State Difference Equations:
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The simplest way of starting this is to treat 1he model as a special case of birth death process, where

A, =

A. O<n<k
0, elsewhere

and ft, = # g n=1.2.3, ...

Now, following the similar arguments as given in M/M/1 model, we obtain
P,(t+At)= P (t)[1-2At]+ B (1) uAt +0(At), n=0
E,{r+m)=P(}|:l (A+u)At]+ P, (r)AAt+ P, (1) pat+0(At),

forn=1,2,....,k—1and
B (t+86)= P (1)[1-(0+ p) At |+ B, (1) A0t + 0xuAe +0(Ar)

= P, (1)[1-pA1])+ P, (1) AT +0

Now, dividing above three equations by Ar and taking limit as Ar — 0, these equations transform into

P (1)=—AR(t)+uP(t) forn=0
P ()=—(A+u)P (t)+AP_ (1)+ P, (1) forn=1,2, ... . k-1
and P,/ (t)=—uP, (1)+AFR_ (1), forn=k

Thus, the s‘lcady-qtalc equations are:

AP +uP., —(A+u)P,=0,1<n<k )
_Aﬁ'mﬁ:c’ @)
HP, —AF ,n=k 3)
for 1 < n<k, by (1) we have
P.,—AP, =uP — AP,

= fJP,', —AP,_, (on replacmg nbyn-—1)

= uf _;LPU

Now, from (2), (3) and the above equation, we have

uP. AP,  =0;0=n<k
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i
Therefore, Z PR =1

m=0
= F:,(I+p+p3+...+p*):l

1
_1+p+p:+...pk

= B,

s if p=1

P (1-p)
l_ k41
s = P
1

—_— it p=1
k+1 £

if p=1

Operating Characteristics/Performances Measures of M/M/1/K

or M/M/1: K/FCFS Queuing Model

i.  Expected number of customers in the system i.e.

&
L =E(n)= ZnPﬂ

a=0

k " 1—
z”plfip‘f)‘ if p#1
— Jou=ll
= |
u-m, if p=1
n=i}

!'_p : n-1 =
I—p““'ﬂz_l“”'o' if p#l

ﬁ[]+2+3+.”+k].ifp:l

. n-1 {! - n
But an =;j— Zp

n=] n=]
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w A e i B o by O [ PP
= =~k =
_=p){p(=4p")+(1=p" )} - p(1-£*)(=1)
(1-p)
_—kp"+(1'pk)(1‘/’+p): 1-p*  kp*
1-p (1-p) (1=p) 1-e
1—p | P=P") kot L if p=1
L == (1-p)  1-p
%, if p=1
_ (1—p‘)_kpk]’ B
e i L 1—p 1
%’, if p=1
pk I l_pk<l+pk+l_pk _kp"J’ i ol
= i 1—p
k
2
( P _l_pL+l+pl;—vl_pL _kpk+kpk+l if pel
_J1i—-p* 1-p 1—p i
%, if p=1
p_|1=p" —p'(1=p)-kp'(1-p) it pel
_J1=-p"| 1-p 1=p '
k .
= if p=1
> P
' k+1)p*"
1" _(1 LI
_J1=p -p
%, if p=1

ii. Expected queue length i.e.

3 k

L, =2 (n-1)k =2 nP,-(1-R)
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=L —(1-R)
v L L o i :
Note: The relationships W, =j‘~ and W, = 7’ as already given for model M/M/1 are not valid here. This

is because no arrivals are allowed to join the system once the maximum allowable length is reached.

However, if A is replaced by A' = A(1-P,) which is the effective rate of arrival, then

L
W,== W =W, A
Remark: For M/M/1/K model, the assumption A < g is not necessary for deriving steady state results.

The steady-state probabilities can be obtained for A4 = g also and in this case,

R;ZLenzl,Z,...,N
k+1

and

Example 1:

At a railway station, only one train is handled at a time. The railway yard is sufficient only for
two trains to wait while others are given a signal to leave the station. Trains arrive at an average
rate of 6 per hour and the railway station can handle them on an average of 12 per hour. Assuming
Poissonarrivals and exponential service time distributions, find the steady-state probabilities for

various number of trains in the system. Also find the average waiting time of a new train coming

in the system.

A 1
Solution. Here A =6 per hour, g#=12 perhour, k=2, p=—= 5
Y7

Steady-state probabilities are:

l—p 1—p 4

ﬂ—i_pz,-l lv—pj 7
B =p0"pin=0,12,...
1 4
2> T
= 1 1 4
Now, Zﬂlzlﬁﬁ" l+—+—|=1= u:;
n=0
1 4
> = —1n=0,12
2" 7

The average waiting time of an incoming train
p__(k+1)p""
1—p 1 pk 1

W, =% where L =
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3.M/M/C/K Queueing Model:

In this system, the maximum size of a queue is k and the number of servers is C. For example,

a car servicing station may have only facilities for offering services to C cars at a time. However,

because of space limitation, the station can accept only k cars at any one point of time of

servicing C (<Kk) cars.

The queuing system can be treated as a special case of the birth death process where

(]

A O0<=<n<k n, 0<n<C
A, = and =
0. elsewhere Cu,C<sn<k

Hence, the steady state probabilities are given by

M,P; 0=n<C
1;.2!;-__.}‘.'}1‘
P o= Lo
" Cica=m, " 5
f- L - — !
p2p.. . Cp-- 2 ‘{- ){"F"'
n—C times
Alp)
{ J“') P, C<n<k
I
n! :
= [’LJ Where. F, is givenby 3 F, =1
A n=0
Cf‘l(;” < A

(S &
Al M
=S pe 3 ot n

e
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U
Py ]
]
I
|~
i
M»

4 C'[Cﬂ]

[y Cnpn k C(.‘pn = ;{
= + —— | , where p=—
{Z 27 P=C

wo ! M

Operating Characteristics/Performance Measures of the M/M/C/K Queueing Model:

k
| L =Y nb
=l
k
2 L=> (n-C)P,
n=C+1
L :
3 W = fwhelei =A(1-R)
L
4 W, =—W, where 1'=A(1-
Example 1:

A car servicing station has two bays where service can be offered simultaneously. Dueto a
limitation in space, only four cars are accepted for servicing. The arrival pattern is Poisson with
12 cars per day. The service time for both the bays is exponentially distributed with y 8 cars
per day per bay. Find the average number of cars in the service station, the average number

of cars waiting to be serviced and the average time a car spends in the system.

Solution. Here, A =12, u=8,C=2

A _12 _3 ,_
Cu 2x8 4°

c o I TN a
Therefore, P, ﬁ[ZC 25 > .2 C:O ]
Et] | -

n!

B
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_[128+192+144+108+817" _ 128
128 653
,;I
p o) s
o " 2 653 653
5,0
2
A2 g2 A28
T2 2! 653
5, .6
2 2 2
1)§= h*.vp()'__ = Q
212%27°°" 212 653
5
~ 2) 128
f =27 63

Now, we can easily evaluate L, L, and W,

5.7. (M/G/1):GD/oo /0)-Pollaczek-Khintechine Formula:

Queuing models in which the arrivals and departures do not follow the Poisson distribution are
complex. In general, it is advisable to use simulation as an alternative tool for analysing these

situations.

This section presents one of the few non-Poisson queues for which analytic results are available.
It deals with the case in which the service time t, is represented by any probability distribution
with mean E{t} and variance var{t}. The results of the model include the basic measures of

performance L, Ly, Wy and W, .The model does not provide a closed —form expression for P,

because of analytic intractability.

Let A be the arrival rate at the single-server facility. Given E{t} and var{t} of the service time
distribution and that A E{t}<1, it can be shown using sophisticated probability/ Markov chain
analysis that

A2(E?{t} + var{t})
2(1— 1B

L, = 1E{t} + AE{t} <1

The probability that the facility is empty (idle) is computed as
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Because A.fr = 4, the remaining measures of performance L,, W; and W, can be derived from

as explained in section
54

Example 1:

Automata car wash facility operates with only one bay. Cars arrive according to a Poisson
distribution with a mean of 4 cars per hour, and may wait in the facility’s parking lot if the bay is
busy. The time for washing and cleaning a car is exponential, with a mean of 10 minutes. Cars that
cannot park in the lot can wait in the street bordering the wash facility. This means that, for all
practical purpose, there is no limit on the size of the system. The manager of the facility wants to

determine the size of the parking lot.

For this situation, we have A = 4 cars per hour.How does the new system affect the operation of
the facility?
Solution:
Let Acsf = A = 4 cars per hour.
10
0

The service time is constant so that E{t}= prie % hour and var{t}=0. Thus,

2(2H2
L = 4(%) +M= 1.33 cars

4

Ly =1333— (%) = 0.667 cars.

w, = 133 = 0.333 hour
W, = 22 = 1.67 hour
4

It is intersecting that even though the arrival and departure rates are the same as in the Poisson

case, the expected waiting time is lower in the current model because the service time is constant,
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(M/M/1): (GD/oo/o0)

W (hr)

0.500

0.333

W, (hr)

0.333

0.167

The results make sense because a constant service time indicates more certainty in the operation

of the facility.
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