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UNIT-I

Mechanical system- Generalized co-ordinates- Constraints-Virtual Work-Energy and
momentum

Chapter 1: Sec1.1-1.5

1.1.Mechanical System:

Let us consider a mechanical system consisting of N particles, where a particle is an idealized
material body having its mass concentrated at a point. The motion of a particle is therefore the
motion of a point in space. Since a point has no geometrical dimensions we cannot specify the
orientation of a particle, nor can we associate any particular rotational motion with it.
Equations of motion:

The differential equations of motion for a system of N particles can be obtained by applying
Newton’s laws of motion to the particles individually. For a single particle of mass m which is

subject to a force F we obtain from Newton’s second law the vector equation.

Let F be the force acting on the particle and P=mv (linear momentum)

=~ The equation of motion of the particle.

F=md
dv
i
_d -
dt(mv)
F=le

is called equation of motion.

Let us consider a system of n particle Let #; be the position vector of i particle of mass
m;.Then equation of motion are m;# = F; + R,, i = 1...N

where ﬁi is the applied force of i particle ﬁi is the constrain force.

Let each of the particle of the system we can assign a rectangular co-ordinate. (x;, y;, z;)
There are three Cartesian co-ordinates

=~ The equation of motion is

m;xX, = Fiy + Riy

m;y; = Fiy + Ryy

m;Z; = F;; + Ry, (i=1, 2, .......... N)
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1.2.Generalized coordinates:
1.Degree of Freedom:
The number of degrees of freedom of a system is equal to number of co-ordinates minus the
number of independent equation of the constraint.
For example, if the configuration of a system of N particles is described using 3N Cartesian
co-ordinates, and if there are [ independent equation of constrain relating these co-ordinates,
then there are (3N — 1) degrees of freedom.
Example 1:
Suppose that three particles are connected by a rigid rod to form triangular body with the
particles at its corners. The configuration of the system is specified by giving the locations of
the three particles, that is by 9 Cartesian coordinates. But each rigid rod is represented
mathematically by an independent equation of constraint.
The no of degree freedom = 3N — [

=3(3)-3

=9-3=6
And the system has six degrees of freedom.
2.Generalized Coordinates:
There are minimum no. of co-ordinate required to fix a configuration (position) of a system at
any time t.They may be point, angle is time. They may also have been function of this three
variables. This co-ordinate will be independent. When a if is possible to varied independently
without violating geometrical constraints of the system. Once a set of independent co-ordinate
for a system is known can be located uniquely at the time.
3.Transformation of Equation:
Let us consider the transformation of Equation relative to the Cartesian Co-ordinate
X1 * X, ... X3y to the Generalized co-ordinate q,, g ... q,

We assume this equation of the form

x1 =x1(q1, 92 - qn, t)
Xy = %2(q1,q2 . — qn, t)

X3y = X3n(q1, G2 - Gns t)

If the x axis have [ equation of constraints and q's hove N equation of constrain. Then No. of

degree of freedom = 3N — [
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This equation is may be solved for the q's in terms of x and t. provided Jocibian of

transformation of equation is non zero.

. a(x1 ...... x3N)
0(q1 - 92 - q3n)

Example 1:

0

Consider the particle which the constrain moved on a fixed circular form part of radius a.

X2

q3

X

Fig. 1-1. A particle on a fixed circular
path.

Let P(x4,x,) be the cartision on-ordinat of the any point on the circle.

The constrain equation is x? + x2 = a?

Let a Single Generalized co-ordinate g, represence the one degree of freedom.
Let us define a Second Generalized co-ordinate g, which is constant.

=~ The transformation equation is
X1 = QZC9S Ch}
X2 = (51N gy
10x; 0xq]
0(x1,%7) _ 6_611 aq,
(91, 92) B % 0x;
dq, 0q;
_|—qzsing; cosq,
g,cosq, Sing,
= —q,[sin’ q; + cos? q,]

=—q,(1) #0
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=~ An equation is solvable.

q; = /xf+x22

-~ The Generalized co-ordinate are

q, = ’x12 +x§

q; = tan™" (x/x,)
4. Configuration Space:
The configuration of system of N partical is specified by giving the values of its three Cartesian
co-ordinate. If the system us [ independent equation constrain of the form,
fi(x1; %3 — x35,t) = ;G = 1,2...3N)
Then it is possible to find n independent Generalized co-ordinates q,, g ... — g, Where n =
3N —1.
Hence a set of us numbers namely the values of n g's completely a Specify the configuration
of the system
This n numbers us the co-ordinate of a single point in an n-dimension Space is known as
configuration Space.
1.3.Constraints:
A system of N particles may have less than 3N degrees of freedom because of the presence of
constraints. These constraints put geometrical restrictions upon the possible motions of system

and result in corresponding forces of constraint.

1.Constrains of restriction are condition imposed on the System:

There are classified as

(1) Holonomic constraints.

(ii) Non-Holonomic Constraints

(iii)Scleronomic constraints

(iv) Rheonomic constraints

(i) Holonomic Constraints

Suppose the configuration of a system is specified by the n generalized coordinates g4, q, ***, g,
and assume that there are k independent equations of constraint of the form

®;(q1,**, qn,t) = 0,j = 1,2,--- k Such is constraints called are Holonomic constraints.
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A constraint which can be expressed in this system having only holonomic constraints is called

holonomic System.
Example:1

Consider the motion in xy-plane of 2 partical A and B as shown in figure.

y

(xZ; }’2)

(xl!yl)

o x

Fig. 1-2. Two particles connected by a rod of length /.

This particle are connected by rigid rod of length L. iss a
The equation constraints line is (x, — x;)? + (y, — y1)? = 2.
=~ The number of degree freedom 3N —[.

=3(2)-2
=6-2=4

(ii) Non - Holonomic constraints:

Consider the m equation of constraint express in terms of non-integrable equation of the form
o1 adj +adt =0,j=12..m

Where a;;: s are function of g's and ¢.

Such constraints are called, non-holonomic constraints.

The system having only non-Holonomic constraints are called non-holonomic System.

Example:1

Consider the system of the two particle A and B connected by rigid rod AB.

Let B be mid point and 6 be the angle, made by the rod with x-axis.
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(xy1, ¥1)

(4] x

Fig 1-3 Two particles connected by a rod of length |
Let A and B are Supported by knife edge. Let the system move perpendicular to the direction
of end in such a manner that allow the no velocity component along the rod at either particle.
The equation constraints is x = Vcos(90 + 6)

= x =vcos(90 + )
= X = vsin 6.

y = v cos?f.

X —wvsinf

y  vcosé
xcosf = —ysin 6
» xcosf + ysinf = 0.

This expression is not exact differential equation.

~ Hence, if is not Integrable.

=~ The equation (1) is Non-Holonomic constraints.

(iii) Scleronomic Constraints:

This constraints do not involve time tin the equation constraints as well as in the
transformation equation

Example:1

A Simple pendulum in which the center Suspension is fixed

A motion of particle on a fixed wire.

The system hawing only scleronomic constraints are called scleronomic constraints System.
(iv) Rheonomic Constraints:

These constraints are express interns of equation involving time it.

Example:
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(1) A simple pendulum in which center of sﬁuspension is assigned motion.

(2) A particle moving the rotating wire.

Rigid Body:

A Rigid Body is a System of particle such that a difference between any pair of particle remain
constraints any time This a motion of Rigid Body is constant by the equation

|7, — 7| = constant

This system is the Rheonomic System

Example:2 [Non-Holonomic constraints]

A non - Holonomic constraints when there is a rolling connect contact without steeping

slipping.

x, »)

Fig 1-4 A vertical disk rolling on a horizontal plane
Let c be the centre of circlalar disc of radius r, which rolles on plane.
Let v be the velocity at any time t along the tangent at P to the curve described at the disc.
~ The Generalized coordinate for the system where « is the angle between tangent to the part
and y is the plane. ¢ is the angle of the rotation of the disc about perpendicular axis through is
its center V = r¢’

X =rsina

Yy = vcos a.
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=>x=r¢'sina
=>y=r¢'cosa

= dx =rd¢sina
dy = rd¢cosa

dx —rd¢sina =0
dy —rd¢cosa = 0.

This two integration are not integrable

=~ The system is not non-Holonomic

2. Define unilateral and bilateral constraints:

In the case of bilateral constraints, one imagines a small allowable displacement for any
configuration of the system, the native of the displacement system is also allowable assuming
any fixed value of line for such constraints they will be expressed as on equality in the case of
unilateral constraint they are expressed in the form of an in equality.

Suchas f(q1,q2 — qn, )< 0

This implies that configuration point is restricted to a Cartesian region. m dimensional
configuration space which may vary with time.

1.4. Virtual Work:

1.Virtual displacement:

It is an infinite decimal displacement of a system and a change in the configuration of the
system as the result of any arbitrary infinite decimal change of the co-ordinate §x;.
Consistent with the form and constrain imposed on the System at the instant of time ¢.

During this the displacement the 3n cartisian co-ordinate of the system of n-partical take the
variation x4, 6x, ... §x3y Without changing time They are imaginary displacement. This Small
change in &x in the configuration System is known as virtual displacement.

2.Viratual Work:

Suppose the configuration of the System n partial is given in 3N Cartisian co-ordinate
X1, X5 ... X35. SUppPOSE that the force components F,, F, ... F5y. are applied at the corresponding
co-ordinate in a positive Sign.

=~ The virtual work Sw. of this forces. In a virtual displacement, §x. is given by
bw = 2132]1?1) Ox;

(or) Sw = 33N F; - 67

ﬁi = applied force on (a;) i™ particle.

87, = position vector of i particle
10
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3.Define Virtual velocity:

If 6x is the virtual displacement during on infinite interval of time &,
then % is called a virtual velocity.

Virtual work of constraints force

swe = Y3V R, - 67

ﬁi = constraint force on i" particle (x;)

87; = position vector of i particle (x;)

4.Workless constraint:

A workless constraint is any bilateral constraints such that the virtual work corresponding
constraint Force is zero.

For any virtual displacement which is consistent with the constraint it can be seemed

For constant with the constraint at for system having workless constraints

That is virtual work of constraint Force is zero. ( §w. = 0)

(ie.) X, R6T, = 0.

R ‘ ;f_ R,
(b) ©
Fig 1-5 Examples of workless constraints
Example of workless constraint:
1. Rigid interconnections between particle
2. Sliding motion in a frictionless surface.

3. Rolling contact without slipping.

11
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Theorem 1:
State and prove principle virtual work:
The necessary and sufficient condition for the static equilibrium of an initially motionless
Scleronomic system which is Subject to workless constraint. (i.e.,) zero, the virtual work be
done by applied force in moving through an arbitrary virtual displacement stratifies the
constraint.
Proof:
Necessary part:
Let us consider the scleronomic system of N in the configuration.
If this system is in static equilibrium.
Then for each particle ﬁi + ﬁi =0
=~ Virtual work done by all the forces in moving through an arbitrary displacement, constraint
with is zero.
(ie,)Sw=Y3N (F,+R) 6% =0 ccconr. 2)
If we assume that all the constraint are workless and if 67; is reversable, Virtual displacement

consistent with Constraint

S, =T R ST =0 3)
Sub (3), in, (2).
3N

i=1

>F=0fri=1-3N
=~ Total virtual work done by applied force is zero.
This is a Necessary condition.
Sufficient condition:
Let us assume that system of N particle is initially motionless.
But if the System not in equilibrium.
Then one is more of the particle must have net force applied to it and accordance with Newton
Law of force.
Then it will start move in the direction of force.

since any motion must be compactable with the constraint.

12
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=~ we can always the choose a virtual displacement in the direction of actual displacement actual

motion at each point.
In this case the virtual work is positive

(ie.) 6w = YN Fi67 + 3N R, - 67 > 0. ..o (4)

again the constraints are motionless then Swe = Y3V, R; - 67 = 0. ........... (5)
Sub in (5) in (4)

we get Y3V F, 67 >0 ............ (6)

Now the reversible of will give a negative work for the system.

But in any event if the system is not in equilibrium.

Then it will always possible to find a set of virtual displace constant with the constraint which
will result in the virtual work of the applied force being non-zero.

=~ The System must be in equilibrium. This condition is sufficient.

Example 1:

Application of principle of virtual work.

Two frictionless blocks of equal mass M are connected by a massless rigid rod as in figure.

Fig 1-6 A frictionless system which is constrained to move in the vertical plane
Using x; and x, as co-ordinate solve force F,, if the system is in static equilibrium.

Solution:

Since given system Scleronomic system with workless constraint.

The external constraint forces are the wall and flow reactions R, and R,
The external constraint force is equal and opposite comprise in the rod.
=~ Total virtual work of constraint for is zero.

13
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The applied forces are the gravitational Force acting on the blocks and the external force F,.
=~ By principle of virtual work for static equilibrium.

mg-6x, + F,0x, =0 ... (1)

But 6x; and &x, are related by N equation of constraint.

Since that displacement components along the rod must be equal at to end.

sin@ 6x; — cos86x, =0
sin86x; = cos86x,
le = COtHSXZ

Sub in (1)

= mg cot86x, + F,6x, =0
(mg - cot + F,)éx, =0
= F, + mgcotd =0,8x, # 0
= F, = —mgcot0

This is the required force to keep the initially motionless system under static equilibrium.
Theorem 2:

State D' Alembert's principle:

Deduce the Lagrangian form of Alembert’s principle:

Let us consider a system of N-particle. Let. 7; be the position vector of ith particle of mass m;.
Then the equation of Motion is,

m7, =R +F )R +F—-m7 =0

ﬁi = cost rained force

ﬁi = Applied force on i™ particle.

here —m;7# is the Dimensions of the force a its known as initial force acting on the i™ particle.

also E{ and ﬁi are real or actual forces in contrast to the initial Frame.

Hence the equation is satisfied. Hence the same all forces and inertial forces acting on each
particle of the system is zero.

Statement:

Force together with the other forces keep the system is in equilibrium

This is known as D’ Alembert's principle

part: 2

By the principle of virtual work

the total work done by the all the forces in an arbitrary virtual displacement is zero.
w = Z?Ll (ﬁl + ﬁi - miﬁ-) . 57;)1 =0 ...l (2)

14
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Let us assume that I_i;i are workers Constrained forces.

If 67; are reversable displacement constro consistent with constrained.

Then w, = SN R, - 67 =0. ............ (3)
Sub (3) in (2).

N
i=1

This is known as Lagrange form of D ' Alembert's principle.

Example 2:

Application of D" Alembert's principle:

A particle of mass m is suspended by a massless wire of length r = a + bcos wt,
a, b > 0. To form a spherical pendulum, find the equation of motion.

Proof:

Let us use spherical polar coordinate

x=acosfsing , 0<y<ow

y=asinfsing , 0<60<2m

z=acos¢p, 0<¢p<m

Fig. 1-7. A spherical pendulum of variable length.

Let P(r, 8, ¢) be the position of mass m at time then the acceleration of P is given by,

= (#—1r02—rd’sin?0)e,
+(76 + 270 — rd?sin Gcos 6)é, e e e (1)
+(r¢sin 6 + 27¢sin 6 + 2rf¢cos 6)ey

Where e, eg, e, are the unit vector forming the an orthogonal .

15
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Eg“ “w
A Virtual displacement with the Constrained

= 67 =1 50eg + 1SN 058y oo 2)
The applied gravitational force is F = —mg cos 08, + mg sin 08y .............. (3)

By D' Alembert's principle.

N
> (F-mi)-67=0
i=1
N
= Z (ﬁl - 87 —myr, - 87;) = 0
i=1
v FbF —miT 67 =0 e (4)

Sub (1)(2)(3) in (4)

(mgr sin® — mr?2’ — m?r1-6 + mr?¢?sin fcos )50
+ (—mr2<]5’sir12 0 — m?rgsin? 8 — m?r26gsin Hcos 9) 5¢p =c
= mr(gsin 6 — rf’ — 276 + r¢?sin fcos 6) 56
—mrsin 8(r¢sin 0 + 27¢sin 8 + 2rf¢cos0)6¢p = 0.
But 66 and §¢ are independent.
Equate the co-eff §8 and &¢ is equal zero
we get, gsin@ —rf — 210 + r¢p?sinfBcos O = 0
and (rsin 0 + 27¢psin 0 + 2rfcos8) = 0. ... Q)
But given

y = a+ bcos wt
y = —bw sin wt
¥ = —bw?cos wt.

we get, sub in (5),

(a + bcos wt)d — 2bwsin wth — (a + bcos wt)p?sin Hcos = gsin 6

(a + bcos wt)Psin 8 — 2bwsin wtgsin @ + 2(a + b cos wt)H¢pcos § = 0.

This are the required equation of motion.

5.Define Generalized Force:

Let us consider system of N-particle with 3N Cartesian co-ordinate (x;,x, - — x3y). Let
(Fy,F,,F; ...F5y) are the applied force Corresponding to the co-ordinate (xq,x, ... ... X3y) IN

the positive sense.

16
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The virtual work §w of the this force in a V|rtual dlsplacement éx is given by,
ow=Y3, Fi 6%, e (1)
Now the Cartesian co-ordinate (x,, x, ... x5y) are related n-generalised co-ordinate

(ql' qz .- qn, t)

(i.e.,), The transformation is given by,

X, = x(q1,92 . @, t) k =1,---3N

=~ The total differential coefficient of x;, is

d, =P g0 Pk oy Py Py
Xk aql ql aqz q2 aqn qn at
axk 6 X
dx;, = —0q; +—=—dt, k=1,2..3N.

0q; ot

]_

axk

It is converted into virtual displacement, §x, = Y74 24, 8q;........ 2)fork=1,2..3N

A 6q are displaced by dg; and omitted the dt term.
-+ the time is held fixed. During the virtual displacement.
Sub (2) in (1)

3N n
5 z z 7 %,
w = i . j
i=1 j=1 9q;
s h Sl axl-
(Or)_z Q] q]Werte_Z laq] fOI'l—].Z 3N
=1

is called generalized forces.

Example 3:

Application of Generalized force:

The three particle are connected by two rigid rod having a fixed point between them to form a

system of in Figure. A vertical force F and a moment m are applied as shown. If

qs
X1=q1tq +—

2
X2=(q1—(3

1
X3=(q1—( +ECI3

Find the Generalized co-ordinate and Generalized Force.

17
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A
Fig. 1-8. A system with an applied force and moment.

Proof:

Given transformation equation are,
q
X1=q+q: + 73

X2 =q1—(q3

1
X3=q1— 4> +§Q3
. _ [ X1X2,X3
To find, | = (—qllqz’%)
0x; 0xy 6x3\
d0q1 0q; 0qq
0(xq1,%x5,%3) _I 0x, O0x, O0x; I
I

0(q1q2,93) | 99, 9q, 0qs
\axl 0x, 6x3/
d0q; 0dq, 0q3

=1m—1)—1@+%)+1@4—0)=—1—1—1

=—3%0

-~ Transformation exists.
Solve (1), (2), (3)
1
=q1 = g(x1 + x5 + x3)
(1)-@B)=2q,=x1 —x3
1
q, = E (x1 — x3)
Sub in equation (2)
18
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1
X =§(x1+x2+x3)—q3

1
q3=§[x1+x2+x3]—x2

1
qs = §[x1 — 2%, + x3]

(Given figure)
To Find generalized force,

Let the force F can be replaced by a force 2 at x; and F/4 at x,

The moment M can be replaced equlant opposite force of magnitude % acting at the direction

of x, & x3.
F_3F
17 4
v _F M
274 ]
F_M
371

~ Let Qq, Q,, Q5 be the Generalised Force.

0 _F6x1+F6x2+F6x3
! 16‘11 Za‘h 36‘11
—3F1 +(F M)l +M1

4 4 | l
_4F
4
Q,=F
0x, 0x,

_3F 0 M
4 l
_3F M
2T 4
X, Xy 0x5
=F F. F.
Q3 1a3+ 263+ 366[3

)+

19
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3F N /M M
(8 4)+(z+zz>

3F — 2F 2M+ M

)+
F 3M

G=gt>7

=~ The generalized force is,
3F M F 3M

TR

1.5. Energy and Moment:

Find Energy and Moment Conservation Force:
Let P(x,y,z) be the position of single particle in space.

Let F be total force acting on the particle has on components.

ov

Fx = —a
ov

Fy = —@
B ov
Z7 9z

where V(x, y, z) is the potential energy (i.e.,) It’s not a function of velocity and of time
A force F meeting this condition is known as conservative force.

The condition for conservative Force:
Consider work done by the force F as it moves through an infinite decimal displacement dr.
F-d
(Fl+ F,J+ F3k) - (Idx + jdy + kdz)
= Fdx + F,dy + F,dz
—X on on

= adx +@dy+£d2

dw=dF —dv
dw is an exact differential equation.

dw

Now consider work done w by a force F as an particle moves over a certain path between the

points A and B.

20
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= [ -av =3
= —[Vs = Vil
W = [V, — Vgl

Since P.E V is a function of position only. We conclude that work done on the particle depends
upon initial and finial position.

If A & B are co-inside, then the work done in moving around any closed path zero.

(ie.)§ F-di =0,

Where F is conservative Force.

This is a condition for the. force to be conservative.

Theorem 1:

State and prove principle of work and Kinetic Energy

The increasing K. E of a particle as in moves from one arbitrary point two another is equal to
the work done by the force acting on the particle during the given inter

Proof:
Let us define kinetic energy T of a particle of mass m is given by, T = %mvz :

Where v is the velocity of particle relative to the inertial frame.

consider the integral,
B -

w= f F-d7
A

Which gives the of work done on the particle By the force F as the partide moves from A to B.

By Newton law of motion:

T
Il

m

[So i 5]

w = mrdr
A
fB r drdt
= mr-—
., dt
_med_u X
=7 r-v)

- %LE d(v?).
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[vg — vl

= Emvﬁ — Emvﬁ
w = TB - TA
This will be true whether force is Conservative (a ri not.

State the principle of conservation Energy

If the only force acting on the given particle are conservative.

Then VA_VB =TB_TA
:TA+VA=TB+VB

(i.e.,) The points A & B are arbitrary. The principle of conservation of energy state that "The

total mechanical Energy E remains constant during the motion of the particle.

Theorem 2: (Equilibrium configuration)

An equilibrium configuration of a conservative holonomic system with workless fixed

constraint must occur at a position where the P.E have a stationary value.

Proof:

Let F,, F, ... E, are the applied force. acting on n-particle. They are conservative.

LetV =V(x; ...x,) bethe P.E

«. The virtual work of the applied Force is w = }*Y, F;6x;

3N
ov

— _)xj
— ax]
j=1

ow = —6v

=~ By using principle of virtual work,

ow =20
= 6v =0.

= is the condition of static equilibrium.

For every virtual displacement Consistent with constraint.

The P.E is expressed in terms generalized coordinate q4,q; .....

The condition that v = 0

n-
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For an arbitrary virtual displacement requwes that the co-efficient must be zero. At the

equilibrium configuration

v —0
— aq;
v ]
>—=0fori=12..n
aq;

T = P.E is stationery value.

Theorem 3:

State and prove Konig's Theorem (or) Resolving Theorem of Kinetic Energy

The total Kinetic Energy of the system is equal to. Sum of

(1) The Kinetic Energy due to a particle having a mass equal to the total mass of the system.
and Moving with the velocity of the center mass.

(ii) The Kinetic Energy due to the motion of System relative to its center of mass

Proof:

X

Fig 1-9 Position vectors for a system of particles
Let us consider a system of N-partide Let #; be the position vector of i particle of mass m;
relative to initial frame. Let 7. be the position vector of center of mass cm, with respect to O .

Let p; be the position vector. m; relative to cm. Total Kinetic Energy of the System is equal to

N
reY gmit
2™
Sum of individual Kinetic Energy of particle.

From Figure 7, =1, + p,
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3
I
-
+

r +pl)

H

Il

N| -~
Mz

‘..
1l
-y

M=
E

=

N| =

1=
Since p; is measure from center of mass cm also rj does not entre with the summation and can

be factor out.

(ie) Z miﬁi =0 for?-c’;t 0

~T= _mrc 2 Z mlpiz

Theorem 4: (Kinetic Energy of a Rigid Body)
The with usual notation that the rotational kinetic energy can be written in the form of,

17T, —
Trot—zwla)

x

Fig 1-10 A typical volume element in a rotating rigid body
Let o be the center of mass (c. m)
Let dv be the small volume element
Let p be the of small volume element dv relative to 0 .
Let w be the angular velocity of the rigid body about an axis trough 0 .

The Let g be the density/unit mass.
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= =

=~ The mass of the small volume element is pdV.
The dimensions of typical volume element can be chosen to be so small that its rotational
kinetic energy is negligible compared with translational kinetic energy.

In the limit, each element of a rigid body can be considered as a particle of infinitesimal mass.
The first term on the right side is called the translational kinetic energy of rigid body the second

term is rotational kinetic energy.

aT = %m?c 2+ Ty

To Find Trot:

Weknowthat g = @ X3 .......... ()

p2r=W-p)x (& %p)

pp* =@ [pP x (W x p)]
=& [p(p*d — (B - &)l
o Tror = E.f pp-dv
v
1 — — - —\ >
=50 f plp?w — (B, wW)pldv ...........(3)

v
Let 3 = xT+ yj + zk
W= w,l+wyj+ w,k
To find: p?w — (B - @)p.
=(x2+y2+2)(w i+ wy ]+ WZE) — (xwy + ywy, + 2w, (xT+ yj + zk)
= x2wyl + y*wyl + 22w, (1) + x°wyj + y2w,j + z*wyj + x2w,k + y2w,k + 22w,k

—

2w,k

—x2Wy T — XYWyl — XZW,1 — XYyWwy] — y*wy] — yzZw,] — Zxw k — yZw,C — 2

={(?*+ 2w, - xXyw, — xzw, JT + {(z% + x?)wy, — yzw, — YxsWyX }J
+{(x? +y?)w, — zxw, — Zywy}E.

Sub in equation (3)
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1 . '“’“’“12 B ~
Trot = E (wxz-l_ Wyf"‘ Wzk) ’ f p[(y tz )WX XyWy xZWz)ﬂ
14

+{{(z2 +x)wy — yzw, — yxwx)f}
+[{x? + yHw, — zxw, — Zywy}E]dv
rot — 2
+{(22 + xDwy? — yzwyw, — yxw,wy)j}

+[{x? + yHw,2 — zxw,w, — zywyw, Jk|dv

T = Bj [(¥% + 2wy ? — Xy, Wywy —XZWyW, )T]
%

1 1 1
Tt = Elxxwx 2 4 Elywa, + Elzszz + Lywywy, + L,w,w, + L,yw,w,
1
T b
i Jj
1

Tiot = E Al o]

Where,

Ly =1 = —f pxydv
v

Ly, = lpy, = —f pyzdv
14

Iy =1, = —f pxzdv

v

L = f p(x? + z%)dv
v

Note:

Suppose that axis of the rotation through the center of mass is chosen along any the coordinate
axis. « Ty = %152. where [ is the moment of inerisia about an axis which is in direction of

@. Through centre of mass.
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Example 1:
Find the kinetic energy system of particle in terms of motion with respect to an arbitrary fixed
point.

Proof:

X

Fig 1-11 Position vector for a system of particles, using an arbitrary reference point
7 be the position vector of P w. r.t0 O
7 be the position vector of c.m w - 7.t 0
7, be the position vector of m; w.r.t. O
p. be the position vector of center of mass w. r. to p.
p; be the position vector of m; w.r.t. p
From Figure:
Ty =1, + P
¥ =7, + D,

Kinetic Energy T = %Zﬁ"zlmiﬁz
N
1 .-
= EZ mi(rp + P)
i=1

N
1 5 = 5 5
= EZ m; [rpz + P? + ZTppi]
i=1

1 5 1 .2 =5
= 52?’:1 m;Ty +52§V=1 m;p,” + X, MipPi e (1)
Since center mass rotate about any point P.
B = L, mP
c 1 ms
i=1 L
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m_P_c) = ?I=1mipi
N
m-pe = Z m;p;
i=1
Sub in (1)
N
1 59 1 5o —= 5
=5 T= Emrp +§Z m;p; +mrp(mpc)
i=1
T = T1 + T2 + T3
1 S
T, = Emrp2

where, T, = %Z?’zl miﬁi z
T; = T_;Zévn ml-P;’;
T,: kinetic energy due a particle having mass M w.r.t P.
T, : kinetic energy of the system due to its motion w.r.t P.
T; = The secalar product of the velocity of the reference point and the linear momentum of the
system relative reference point.
Definition: Angular momentum

Consider a particle of mass m. moving with velocity V. Then the angular momentum of m. is

defined as H = # x m#

Theorem: 1

State Resolution for angular momentum of system of particle.

The angular momentum of system of particles of total mass m about a fixed point O is equal
to the angular momentum of single particle of mass m moving with center of mass plus the
angular momentum of system about center of mass.

Proof:

Fig 1-12
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Let us consider system of N-particle. (as in figure.)

Let #; be the position vector of m; w.r.t 0

Let 7 be the position vector of center of mass w.r.t O
Let p, be the position vector of m; w.r.t center of mass

from figure, 7, = 7, + p,

N

KT
rn=1+p

By the definition total angular momentum H of the system w.r.t O is = sum of momentum of

individual linear momentum of the particle w.r.t O.

N
A=) Fxmf
i=1
N
=D Gt ) xmi(F+ 1)
i=1
N N N
i=1 i=1 i=1
N N N N N
= (r_c’xfc-m)+?c><z miﬁ"‘z pi Xfcz mi"'z ﬁixz m;p,
i=1 i=1 i=1 i=1 i=1
N N N
I?I):(F(:)X?}:m)+?};xz mlﬁl+z mﬁlec+2(ﬁlxim)
i=1 i=1 i=1

Since p; is measure from com.

n —_
= Li=1 MLup,
c m

i=1 M
n
mp. = Z m;p;
i=1
N
mFp, = Z m;p,
i=1

N
0= z m;p, [+ p.=0] [herep, = constant = 0]
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Hence angular momentum of system about O.

= angular momentum of center of mass about O
+ angular momentum of the system w.r.t center of mass
Example 1:
Find the angular momentum of a rigid body about O.
Proof:
We know that
The Angular momentum of the System about O.
is H= (7 xmi,) + XL, pi xm;p;
Where the second term is angular momentum of the system w.r.t center of mass.
He =3, P xmyp;
(ie.) =[ pxpdvp
He = [, p[p X (& x p)]dv.

=~ Kinetic energy of the rigid, Body.

1—> - — -
Trot =§wf plp x (w X p)]dv
v

1 .
Trot =E H,
Example 2:

Find the angular momentum of a rigid body with respect to arbitrary point P

Proof:

We know that, the angular momentum of the rigid body about is H= YN, F X mi;i

We know that the angular momentum of the rigid body w.r.t arbitrary point P.
N

H,= ) p;xmp,
i=1

Fig 1-13
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from figure:

— — -

n="+p0

— — —

e =1, +Dc

— - _ — —

V=" =0 —Dc
— — — —

=>p=1n—T+pc
R

= p=nh—T.tpPc

N N N
rad — > = — >
H, =Z T'leiT'L—TCXZ mirc'l'pcxz m;pc

H, =H—?‘C><m?'c+ﬁc><m,3C
Generalized Momentum (p)
Definition:
Consider a system of n particle with generalized coordinates g4, q5 .... qn-
Let T = kinetic energy = T'(q, g, t)
V' = potential energy = V (g, t).
We find Lagrangian function L = L(q, g, t)

L=T-V
Now we define generalized momentum (p;) associated with generalized Co-ordinate with g;.
oL
As pi = a_Ch
P; = g T-V
0T  ov
dq; 0¢;
P; = or 0
T
P; = or wV=V(qt
i=5q  GV=V@o]
Example :1

Three particles are connected by two rigid rod having a join b/w them to form the system as

shown. a vertical force F and applied momentum M as in Figure.
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A Xy

- 1 ot | ——
Y e o A A A A o o A A

Fig 1-14 A system with an applied force and moment

The Configuration of the System is given by the co-ordinate (x, x5, x3) as

1
X1=¢q1+q2+5q3

2
X2 =41 —(q3

1
x3=Q1_Q2+EQ3

Find the expression the kinetic energy and find the generalized momentum?
Solution:
Given co-ordinate are:

1
X1=0q1+tq2+5q3

2
X2 =41 —q3
1
X3 =q1— 4> +EQ3
Its velocity components are
. .
X1=q1+q +EQ3
X2 =q1— (3
R
X3 =41 — 42 +§Q3

2 — 42 o2 o2
Ve =xi+ x5+ x3

-2
. . . )\2 . . . ., 43
= (Ch +qp + C13/2) + (g1 —q3)* + (Ch +4q; + ?)
(] g3
=qf + a2+ + 20102 + 4uds + Q205 + 43 + 45— 24045 47+ 42+~ 2004,
+ 4145 ~ 424

3
V2 = 367 +243 + 54

1
KET= Emv2
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1 3
T =3m |36 + 203 + >

2 2
Hence the required generalized momentum is,
_oT 3
ﬂl - aql = omq,
oT _
P2 = % = 2mq;
_ aT 3
p3 = 94; 2 mqs
Example: 2

A uniform rod of mass m and length [. is constraint move in the xy-plane with end +A

remaining on the axis. using co-ordinate (x,0) as the generalized co-ordinate. Find the

expression of kinetic energy and Generalized momentum. P,.

Solution:

Fig 1-15
Let G(x,y) be the centre of mass of the rod AB. If length [.

l l
x=x+§cost9 yzzsine

l . .
xX= 5c——sin00| y == cos 80

2 2
U2:.7'C2+_')'/2
— Lainod) +2 cos? 002
—(x 5 sin >+4cos
2 2
=x2—1xsinf o +Zsin2992+zc052992

N
v? = x% — lxsin 66 + z (0)? [ cos? 8 +sin? 6 = 1]

Kinetic Energy T = %mvz
2

T =3m %% — lx0sin 0 +Zé2
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Hence the required generalized momentum is,
aT

Px—a=mx—m§05m0

P _or_ 1 Lxsi 0+le9
6 =235~ 5 mlxsin 2

Example: 3

A particle of mass m can slide without friction on a fixed circular wire of radius r. which lie
in vertical plane. Using D' Alembert's principle and equation of constraints. Show that yx —
xy—gx =20

Proof:

Fig 1-16

Consider a particle of mass m slide without friction on a fixed wire on a radius r.

Let r be reaction of mass m at P in time ¢.

The equation of motion along of x and y axis of

mi = Rcos@  ........... (D)
my = Rsinf —mg  .........(2)
Eliminate 6 between (1) & (2)
From figure,
x

X =1rcosf = cosf ==

y =71sinf = sin 0 =%
Subin(1) & (2) > m& =R> ... 3)

Ry

My =-—""Mmg e 4)

34

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



mrx

From(3) > R =

Sub R in (4) = my = 2™ —mg

x
X

multiply by m Xy =yi-gx=0

SyX—xy—gx =0

Example: 4

A particle A of mass 2m and particle B of mass m are connected by a massless rod of length [,
particle A is constrained to move along the horizontal x axis while particle B can move only
along the vertical y axis.What is the equation of constraint relating x and y?

use D" Alembert's principle to obtain the equation of motion 2¥y — xy — gx = 0.

Proof:
y
4
__B m
!
2m
. I "
|
Fig 1-17
Equation of motion along, x axis. 2m% =s ..........(1)

Equation of motion along y-axis.
my=R-mg ........(2)

Taking the momentum of force about O
Re=Sy  u... 3)

Sub (1) in (3)

Rx = 2mXxy
B = 2mx

: . _ 2mxy X o ) )
Sub in (2) :>my=T—mg (x)E::»xy: 2Xy —gx = 2xy —xy—gx =0
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Exercises:
1. Adisk of radius r and mass m can roll without slipping on a thin rod which rotates about

a fixed point O at a constant rate w. Obtain an expression of the form T (q,q) for the

total kinetic energy of the disk.

2. Two thin rods, each of mass m and length |, are pinned together at their upper ends. A
particle of mass m is suspended by massless strings connected to the midpoints of the

rods, as shown. Assume planar motion and use the method of virtual work to find the

position of static equilibrium in the interval 0 < 6 < % Is it stable?

3. Two particles having masses m and 2m are connected by a massless rod to form a
dumbbell. It can slide without friction in a circular bowl of radius r. Consider a virtual

displacement 66 and use the principle of virtual work to obtain the value of 6 at the

position of static equilibrium.

36

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



UNIT N

Lagrange's Equations: Derivation of Lagrange's Equations -Examples- Integrals of the
motion.

Chapter 2: Sections 2.1 to 2.3
Lagrange's Equations

There are two approaches of the subject classical dynamics. They are vectorial dynamics and

Analytic dynamics.
Vectorial Dynamics:

Vectorial dynamics is based on a direct application of Newton’s Law of motion. It Concentrates
on the forces and motions associated with the individual parts of the system and on the

interactions among these parts.
Analytical Dynamics:

Analytical Dynamics is concerned with the system as a whole and uses descriptive the scalar

function. Such as kinetic and potential energies.
2.1. Derivation of Lagrange’s Equation:
Express Kinetic energy interms of g's,¢’'s and t
proof:

Consider a system of N particle with Cartesian coordinate x, x, ...+ X3n-

The total kinetic energy of a system is found from the equation
1 5
Tzzzlﬂvl m;x? e (1)

Let q;,9, ...q, be the generalized co-ordinates using the transformation equation x's ass

functions q's and time t.

Therefore x=xy (q,t) , here k=1,2,....3N  ........... (2)
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“ X = x,(q1, 92 — Q. , 1)
dxk axk axk . axk . axk
at ~9g, 1T ag, 2t g It G At

oKy =

G + —dt N )

M:

e axp .
Here x,, is linear in ¢'s and aiq" , % are functions of g's and t.

Sub (3) in (1) we get T(q, 4, £) = 3 B3 my [T, 54, + 2 dt]

Let us group the terms according to their degree in using ¢'s the notation
T=To+Ti+Ty eeeeerernnnn. (5)

Note:

(I)Wehave T =T, + T, + T,

where T, is a homogenous quadratic function of ¢;s.T; is a homogenous linear function of

g;s and T, includes the remaining terms which are function of ¢'s ant t's.

Here T, is of the form
Tz = 27{;1 Z?=1 muqlq] ................. (6)

Where mij = mji =

To =¥ m (B2 (10)

Assuming m, > 0 for all k, then the total kinetic energy T is a positive definite quadratic

function of x;.
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F m"é

i.e., Tis zero if all x;s are zero. If any of the x's is non-zero the kinetic energy is positive.

(2) For any real system the kinetic energy is zero only if the system is motionless otherwise it

IS positive.

(3) T, must be a positive definite quadratic functions of g;s. The positive definite nature of T,

restricts the possible values of the inertia coefficients m;;.

Consider the symmetric nx n generalized inertia matrix m, the necessary and sufficient and

My 0 Man
my;

>0
ms;

|>0

. - m
that be a positive definite are that m,; > 0, | mi
Muy = Mpp

This is equivalent to the determinant of the matrix and all principal minors be positive. Also
all the inertia coefficients along the main diagonal must be positive.

(4) From equation (9) & (10) T; & T, are non-zero only for the case of Rheonomic system. It
follows that the kinetic energy T of a scleronomic system is a homogenous quadratic functions

of from equation (7) the inertia coefficients m;; are functions of q’s but not of time
Obtain Lagrange’s equation for holonomic system:

Proof:

Part (i): Lagrange’s from of D’ Alemberts

Consider a system of N particle with Cartesian co-ordinate with (x;, x, ... x3y) by

D ' Alembert's principle. Y3V, (F — mxg)6% =0 oo (1)

Where Fj, is the applied force along the component associate with x.

The virtual displacement d&8x;, can be expressed in terms of &q's

as follows:

X =%(q1,92 Qo t) e (2)

s, = P sa + Phsg o 4 D%
xk - aql ql aqz CIZ e aqn qTI.
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= axk
- 8x, = Z K §q; Fork =1,2...3n
= 9

. a =5 0
Subin (1) 33N, ¥ [Fkai;; — My ai‘;‘] 8G =0 oo, 3)

Now, differentiation equation (2) with respect to t,
J-Ck= " _jqj+_' ......... (4)

(i.e.,) Diff x;, partially w.r.t g;

0q;  9q;

6xk _ n 6xk . axk

Again Diff (4) w.r.t q;. 20~ 29=1 aq.0q) Qjtog o e (5)

By changing the order of differentiation, we get

d 6xk)_ n oxp . oxy
dt(aqi = Lj=1 661i661iq]+6t6qi TR ()]

from (5) & (6)

2t o, FPARTERE

We can write the generalized momentum P; is the form P; = g—_T

qi

Now diff * T’ partially w.r.to g;
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aT z o axk
aql 2 my xk

oT Z 6
a4, M q;

Now, agam dlffW r.to't'

dt (6q1> Z m"x" a
(53 Z o
dc\ag,) ~ L My

Now diff T partially w.r.t g;

Mt o (?3?;) N ¢

axk

..(8)

oT 1 3N > 6xk
—_— = - m 2 ...............
aq; k=1 k 6 (9)

Sub (9) in (8).
3N

8 :d<6T>_z ;ﬁxk_l_aT
®)=7:\55,) = L ™ 5q. tag,

k=1

Now the generalized force Q; = Zi’llﬁk%’f fori=1..3n ............ (11)
Sub (10), (11) in (3)
@ =3, |05 Go) +infdai=0 s (12)

~ This is known as Lagrange’s form of D' Alembert's principle in terms of generalized co-

ordinates.
Part (ii):
To obtain the Lagrange’s equation of Motion:

In order to neglect virtual work of the constraint force, we made the restriction forces on

&q that they must conform to the instantaneous constraints.
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Sl g
Let us make the additional assumption that the

system is holonomic and its configuration

described by a set of independent generalized co-ordinates.

If they dq;s are independent, then the coefficient of each in equation (12) must be zero.

~ aor\  oT
- Qi—g(a—%)‘i‘a—%—o (or)

d (0T oT
i

E<a—ql>—a—ql= l=1,2...N

This n-equations known as Lagrange’s equation of motion
Part (iii)
To obtain the standard form of Lagrange’s equation for holonomic system.

Let us make additional assumption that all the generalized forces are derivable from a

potential function V = V(q, t).

v

S Q==

0q;
Sub in (13), we get

d(aT) aT_ ov

dt\ag;) aq;  9q;
d (0T o(T-v) _
E(a_qi)_a—qi_o ........... (14)

=~ The Lagrange's function L =L(q, q,t) isL=T —V.

oL T dv
aq; 0q; 0q;
dL oT 0 ( @)
. = A vV =7,
daq; 0q; 1
d [T\ oL .
(14) :E(a—%)—a—%z 0. i=1to03
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R d (8L> oL
dt aql aql B
Which is the Standard form of the Lagrange's Equation.

Another form of Lagrange’s Equation:

Another form of Lagrange equation can be written for systems in which the generalized forces
are not wholly derivable from a potential function.

] ,
Let Q; =—a—:i+Qi ............. (1)
. . .. d[for oT .
We have Lagrange equation of motion is = (G_ql) i Q; =12..n.......... 2)

Sub (1) in (2), we get

d (or aT v —
dt(aqi) o0 aqi+Q‘ =1,2...n

GG s =v =@/

Wehave L=T -V

d <6L) _oar

dt aql _aql

d (0L oL ;.
E(a_m)_a_m_ Qi 1—1,2...11

Where Q;" are those generalized forces not derivable from a potential function
Application of Lagrange’s Equation:
The application Lagrange equations in the standard form is the form of equations of motion.

Since the generalized momentum is linear in ¢;'s

_aT_ n

P, = =)
Loag; I=

1My d.] +a; o (1)
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Where m;; and a; are functions of ¢;’s and t.
Hence the equation of motion are linear in ¢,'s

Since all the terms containing ¢,’s arise from differentiating equation (1) with respect to t

Now diff equation (1) w.r.to ‘t’, we get

oT .
_(aql) ] 1My q] + Z’}:lmij qj +a; (2)
om; aom;;
Where mij = l 1 6qU q] TU ............ (3)
. da; . da;
a; = 111:16quqf + (;lt ............. (4)
Now X7y my; q; = Xj-q Xi- 1 94, qlq] + 27 1 at q]
om;;  Om;
n ¥ ( 4 aq/) Gy + T Sy (5)
n 6mll 6
= 21 Xie 20 Qg e (6)
oT. da; .
6_611i: 7'=16_qjlq] ........... (7)

Here several dummy indices have been changed.

Sub the equation (2), (3),(4),(5),(6),(7) in Lagrange equation, we obtain

n .. 1 (aml, am;; 6m]l) ) n Omi; | da; Oaj . da;
S M - , _— . —
Z1—1 it zZ =1 LI aq; a1+ | Zj=1 T dq;  0q; a4+ 5

6T0 av

o0 Toq 0 =1,2,....n .. t))

This notation can be shortened by using Christoffel symbol of the first kind which is applied

for the quadratic function from Ts.

g0 1 aml] Bml] Bmﬂ)
Let [jL, i] = Z(aql ol
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Then equation (8) can be written as

. o . omi . da; 0T, . 0
Xroamiiqy + X Xl UL i1 qiq + Xie1vij 45 + 2= 6t] q; + %— 0_q(z 0_;1 =0
=12, ...n (10)

Where y;; is an element of a skew symmetric matrix and is given by

_ _ da; 6(1]'
Vij - _yl] Py

=% 74, the n-equations of (8) or (10) are the equations of motion.
j i

Obtain Lagrange's equation for non-holonomic system.
Proof:

Let us consider a system of N - particle. Where configuration is described by n generalized co-
ordinates. For a non-holonomic system. There must be move generalized co-ordinates than the

number of degree of freedom.

Therefore, the §q’s are no longer independent if we assume a virtual displacement consistent

with the constraints. Consider m non-holonomic constraint equation of the form.
Z?zl ajl-dql- + ajl-dt = 0,] = 1, P £ (1)

&q satisfied the condition

n
Z ajié'qi = O,] = 1, R £ (. (2)
i=1

Let us assume that the generalized applied force Q; is obtained from potential function V.

_ 617__1
Q;, = aqil— )

Also the constraints are assumed to be workless. So, that generalized constraint force C; must
be meet the condition 2, ¢;6¢; =0 ....... 3)

For any virtual displacement is consistent with the constraints.
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T o
By Lagrange's multiplier method. We obtain m

= (2) X Aj = Aj Z?:l ajiSqi = 0, ] = 1, .m

Z;nzl A] Z?:l aji6qi =0 ... (4)
Now equation (3) —(4) = Y&, [¢; — XTh1a;4;]6q; =0 ........... (5)
Let us choose A's Such that ¢; = 271, a;4; ......... (6) where i=1,2,.....n.

Then the co-efficient of §q's are zero in equation (5)
In other words §q can be chosen independently.

We know that Lagrange's equation can be written for system S in which the generalized force

are not fully derivable from potential function is Q; = — o +Q;........ (7)

Where Q; are those generalized force not derived from a potential function

. : . d (oL oL
In this case the Lagrange's equation ofz (a_qL) e Qi iiiennn (8)

Also &q's can be chosen independently with these assumption we can equate the generalized

force C; with Q; using equations (6) and (8) we get

d(@L) aL_z:/1 4
dt aql aql— jajl’l— .

This is known as standard form of Lagrange equation is non-holonomic System.
2.2. Examples:

Example:1

Find the differential equations of motion for a spherical pendulum of length L.

Solution:
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Fig. 2-1. A spherical pendulum.

Let op = [ be the length of spherical pendulum.

Let P(L, 6, ¢) be a position of P of mass m at time ' + .

The velocity components of P are (y,76,rsin0¢) herer = L.
The velocity components are (0,16, Isin 8¢) here r = L.

~v? = 0% + 1202 + [%sin? 62
v? = [2[6? + sin? 0¢?]
1

K-E=T=§mvv2

T = %mlz[éz + sin? 6¢?]

potential energy v = —mghcos(180 — 9) [ cos (180 — 8) = —cos 0]
v =mgh cos 6
~ The Lagrangian function is,

-V
mi?[6? + sin? %] — mgh cos8

B~ o~
n
N~

=~ The required equation of motion is
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d (8L> oL — 0
dt Bql aql_
Forqi=9,i(a—L) Lo

at\ab) a6 —

d 1

=+ ml? %(9) — ¢? sin @ cos 9-“‘5—2hsin9 =0

9—sin6(:os€q'52—€—2hsin0= .............. (1)

Now, the Lagrangian equation of motion for g, = ¢ is

d (0L aL_O
dt\op) d¢
d(l 12 '20x2'> 0=0
Te\m [sin [0} =
d .

]2 — (cin2 —

=ml dt(sm 8¢) =0
sin?@ ¢ + ¢p2sinfcos8O =0 ............. (2)

Equation (1) & (2) are required equation of motion.

Note:

The ¢ equation of motion is immediately integrable in the above example because 3_; =0

d (oL _
#(a5)-
d oL\ _oL_
£(2)-3-

d (0L\ . _,
il53) 0

d
E(P"’) =0

. 1 .
~ 1= 20 — (Zn12( 42 9 i _ ; —
It [2 (mi29) (2 ml?($? 2sin 6 cos 8) — mghsin 9) 0
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An angular momentum of P, = constatn c.

The angular momentum of spherical pendulum in the vertical direction is constant.
Example 2:

Find the equation of motion for the double pendulum. (or) A double pendulum consists of two
particles suspended by the massless rod as shown in figure. Assuming that all motion takes
place in a vertical plane. Find the i) Differential equation of motion ii) Linearized the equation

assuming the small motion

Proof:
To find Kinetic Energy, the absolute velocity of lower particle is equal to vector sum of.
(1) The absolute velocity of the upper particle.

(i) The velocity of the h, lower particle relative to the upper particle.

Fig. 2-2. A double pendulum.

Since the two velocities differ in the angle (¢ — 6). We have,
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“ V2 =12[26% + $% + 20 pcos(¢p — 0)]

1
.°.I(-ET=Emv2

1 . . .
= Ele[zez + @2 + 20¢cos(¢p — 6)]
= —mg(2lcos 8 + lcos ¢)
V = —mgl(2cos 8 + cos ¢)

=~ The Lagrangian function,

L

I
yﬂ

-V
1 . . .
L= Ele[w2 + 2 + 26¢cos(¢p — )]
+ mgl[2cos 6 + cos @]

. . . d (dL oL
» The Lagrangian equation of motion are — (£) —25 =0

= [5mi2[2.20 +2¢ cos(¢p — 6)]-2mI? 2 ¢ sin(¢ — 6)(-1)+ mgl(—sin 6) = 0

L [mi2[2 + ¢ cos(p — O)]]-miZ 6 sin(¢p — 6)+2 mglsin 6 = 0

mi?[26 + $(—sin(¢ — 0) (¢ — 6) + cos(¢p — O)¢p] — mi2f¢psin(¢ — 0)
+2mglsing =0

~mi2, 26 — ¢ ?sin(p — 6) + 06 sin(¢ — ) + ¢ cos(¢p — 6) — 6 sin(¢p — )
+2sing =0

20 — ¢ ?sin(¢p — 0) +d§cos(¢—9)+27gsin9 =0 .l (1)

The Lagrangian equation of motion for g, = ¢
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d (aLy_ oL _
155
%(mlqu + mi?8 cos(¢p — 6)) — [-mi%8¢sin(¢p — 8)d — mglsing] = 0
+ml? = ¢ +6cos(p—0)—Osin(p —0) (¢ —8) + 8dsin(ep — 8) +% sing = 0
(2
For linearity of small motion
Putp— 6 ~ 0.
Sub in (1) & (2)

we get,

s 29 .. g . _
29+¢+Tsm6—0. &¢+0+Tsm¢—0

are the equation of motion.

For @ is small,sin 8 = @
20+¢+20=08& ¢+b+2p=0.

Example 3:

A block of mass m, can slide on another block of mass m, which in turn slide on horizontal

surface in x; direction. Using x; &x, as the co-ordinate obtain the diff eq of motion.

Solution:
Let x, be the absolute re at displacement of particle of mass m,.
Let x, be the displacement of the block of mass m, relative to mass m,.

Let v, be the velocity of mass m; -~ v, = x;
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N

N
(a) (b)

Fig. 2-3. A system of sliding blocks.

To find velocity of mass m, (v,) :
By using cosine formula,

[a? = b? + c? — 2bccos A]
v5 = &% 4+ %% — 2%, %,C0545°

= E[mlvf + m,v3]
1 25,4,
T=—[m5c2+m (J'cz+5c2— )]
2 141 2 1 2 \/E

P -EV =mgh.

= m,gx,cos 135°

= m,gx,sin45°
gx;

=-—-m,—

V2
~ The Lagrangian function L =T — V.

m

_ 2
L= ﬁgxz

[(my + my)x? + myx? — V2myxy x,] +

N =

=~ The Lagrangian eq of motion for g, = x; is
d (6L) oL
dt\ox,/ ox;
d 1
E [(ml + mz)xl - ﬁmzxz] - O = O
(my + my)%, —
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d oLy oL
(5) 3=

dt\ox,) ox,
d( 1 ) m29 _
— | MyXy, ——=MyHX —— = V.
dt 242 \/521 \/E
myi, — 2, — 29 = g
242 \/’il \/’2 '

V2
multiply by — =>V2i,—% —g=0
2

Example 4:

A particle of mass ' m ' can slide without. Friction on the inside of ' g ' which is a bend. in the

form of p circle of radius ' r '. The tube rotated above a vertical diameter with a constant angular

velocity w as shown in the figure. Write the differentiation equation of motion.

Solution:

N

Fig. 2-4. A particle in a

whirling tube.

Let p be the position of particle of mass m slide, inside a tube (circle)

Let V = r67 + rwsin 67

be the velocity at P, at time ' t '

wlg
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2 V2 =7r202 + r2w2sin? 6.

1
K,ET =Emv2

1 .
= Em[rzez + r26?sin? 6]

P-EV =mgh
= mgrcos 6.

By Lagrangian function L =T —V
1 .
L= Em[rzez + r2w?sin? ] — mgrcos 6.
[here r fixed].
The equation of motion for g, = 0
d (6L> oL 0
dt\ag) 096

d . .
T (mr26) — [mr2w?sin @cos 6 + mgrsin 66

mr?6 — mr?w?sin Ocos @ — mgrsin 80 = 0.
This is the required equation of motion.

Example 5:

Obtain the diff equation of motion for a simple pendulum.
Solution:

Let M be the mass of the ball P & [ be the length of simple pendulum.

Let op be the position of M when displaced through an angle 6 at time t.

~ Arc length
AP =s =160

here S =10 (r=1)
(distance)

= The velocity at p = v = 6.
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1
I(-ETzimv2

1 .
= Eml292
P-EV =mgh
=mgl(1l — cos )

~ By Lagrangian function L =T —V
1 .
L= Emlze2 —mgl(1 — cos 0)

(> here [ fixed ).

The equation of motion for g, = 0.
d (6L> oL
dt\ag) 06
d : .
&(mlzﬁ) —mglsinf -6 =0
ml?6 — mglsin6 -6 = 0
+~ml? 0 —%sin@ -6 =0.

2.3. Integrals of the Motion:

Definition: Integral of motion

Take a holonomic system with n independent general coordinate q,, g5 .. ... q, for which the

Lagrangian equation of motion are,
i((’)_L) _(')_L =0,for(i=12..—n)
dt\dq;/ 0dq;
There constant may be evaluated on the basis of initial condition of the system.
These 2n relation may be solved for n q's X ng’s as a function of a and t.
- We get,

q;i = qi(ay, az ...ay, t)

4i = qi(ay, ay ...ap, t)
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= =

These 2n equation are called integral of motion.
Definition: Ignorable Co-ordinate.

If a co-ordinate g; is absent in the Lagrangian function L is called ignorable co-ordinate (cyclic
co-ordinate of the system).

. JaL
(I.e.,) 6_ql =0

- By equation of motion.

d (0L oL
E(a_qi>_a_qi=
d
Z(P)=0=0

Integrate, P; = f3; is constant.
(i.e.,) An ignorable coordinate the general momentum is constant.

Example: Kepler's problem

The problem of motion of a particle of mass I unit which is attracted by a force is inversely

proportional to square of its radius.
(ie.) F « yi

Let p(r, ) be a position of particle of mass 1 unit at time ¢t. Let F be a altractive force towards
0.

Fig. 2. 5.The Kepler problem in terms of polar coordinates
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- The velocityat p =V = y7 + r67J.

V2 — )'/2 +r20'2
1
K.E T=§mv2

1 )
= Ew[fz + )/202)] [ givenm = 1]
1 .
T=E(T2 +T202)
& > 1 5 pu
P.E V=j (F)dr, «Fu F=5
—u

V=—:.
T

~ By Lagrangian function L =T —V

1 . U
—_ (2 202 L
—2()/ +y°0 )+y

(i) The equation of motion for g, = r.
d (6L> oL
dt \or or

C - (- L) =0

U

P — 162 =0 (1)

(i) The equation of motion for g, = 0
4 (f’_L) _o9L_,
dt\gg/ 00

%(rzé) -0=0

Integrate, y260 =B ........... (2)

[here g—g = 0 = 6 is ignorable co-ordinate]

Eliminate 6 between (1) & (2).
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(1):y—y<ﬁ—4)+ﬁ=o

p? :
z)'/'——+——0 where B = 20,

Definition: Routhian Function R

Obtain the Lagrangian equation of motion for Routhian function R.
Consider a holonomic system with ' n ' general co-ordinate g4, g5 ... gx.
Suppose that g4, q, ... — gy are ignorable co-ordinate [k < n].

L= L(qk+1' Ak +2 - — qn, QR+1J qk+2 - qn , t)

Now, we define Routhian function R as,

5 oL
- Z Biq; where f; = ==
— i

R = R(Qk+1; QR+2' = qn QR+11 q-k+21 C-Inl t)

To obtain: Lagrangian equation of motion for Routhian Function

L(Qk+1; Qk+2,9 — qn, (-hl QZ - _C-In - t)

R(Qk+1» Qre+2 -~ Gns Qre+1 Qie+2 - — Gno B B - -».Bk,t) e ann s s (1)
R=L-YK, Bigqi .ooceonn.... (2)
By(1) >8R =3Y" ;.1 ” 5q1+21 K1 50 5qL+ZL ) a;; IR 5B; + —5t .......... (3)

Also By (2), 6R = 6L — 6§ &K, B:6q;)

n K oL K
R= ) —6ql+z S8+ ot _Z (a—%)m—zl 456,
i=

i=k+1

6R Zl =k+1 6 65]1 +Zl k+1 a~,5ql +Z =1 ( q1)5,31 + 5t .......... (4)
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Compute the like co-efficient of (3) & (4) we get,

oL B OR
dq; 0q;
oL B OR
daq; 0q;
. OR
qi - aﬁl
oL B OR
ot ot

-~ By Lagrangian equation of motion,

d (0L\ 0L _
a(a—q)—a—qi:(),forl=k+1,k+2,...‘l’l
d (0R\ OR _

%(a—ql)—a—qi:0,f0rl=k+1,k+2,...‘l’l

This is known as Lagrangian Routhian equation of motion for Function.
Application: 1
(1) There are n — k, second order diff equation in the non-integral variable.

Thus the Routhian procedure succeeded in eliminating the ignorable ordinate from the

equation.

(2) If it’s the effect the no of degree freedom has been reduced the n — k. It held to obtain

expression for k ignorable co-ordinate.

g; = ;—;, Integrate g; = — ;—;dt, fori =1,2,....,k

Example 1:

Obtain the equation of the motion using Routhian function for the Kepler's problem.

Solution:

Write up to this as in the Kepler’s problem
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Here, L = = [#2 + r262] + 2.
2 r

g—z = 0 = 0 is ignorable coordinate. By Lagrangian eq of motion.
d (aL) oL 0
dt\og/ 06

oL
Integrate, i p

=r20=0
. P
$9=r—2

1 B*l u
L==|p2+y2-=|+%.

ZIY t r* +r

1., B*] wu
L_Elrz-l_ Zl-l-;.

1 B?l u .
R=—|r2+—=|+——LB(0
> _r + 2 +)/ B(6)
[, Bl m B
R==|y?+—=|+——8 -—
2 _)/ + y? + r A r?
1| £?]
= — -2 T —
R 2 _r 2] + r
. : . .. d (8R) OR .
~ By Lagrangian eqn of motion for Routhian function is E(E) - = 0. (non-ignorable
iom £ () — [F2p2. 2 _ k| _
function) " 62 [2 B 3 yz] =0
B> u
- ﬁ + ﬁ =0
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Which is Same as Lagrangian equation n of motion.

Example 2:

Obtain Jacobi Integral (or) Obtain energy integral for a conservative system.

Proof:

Consider a standard non-holonomic form of Lagrangian equation

d (dL\ dL ,
E(a_m)_a_m=2§n=1 Ajaj; (fori=1,-n) ........... (1

where L = L(q;, q;) is not explicit function of time t.

Let us write m equation of constraints in the form

m
z ajl-ql- = 0,] = 1,2, -
j=1

(ie.) @i = a;(q;, ©)

Any holonomic constraint from ¢;(q) can't be explicit function of time t.

. _09j _
au—?—O .............. (*)

Now, L = L(q;, §;)

Take total diff w.r.t t.

dL _ wn OL . n 0L ..

E = Lij=1 a_qlql + i=1 a_qlCIl ............ (2)
oL d (0L
By (1) 6_ql ~ 4 (5_Ch) - Z;n:l Ajaji ............ 3)

) d d [ i aL ..

i=1 4t
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Integrable,

n
oL
L= Z ——¢; + h (constant of int)
=il

n
(or)h=1L— =—q;
This constant h is called Jacobi Integral (0R) Energy Integrable.
This can be writtenas h =T, — Ty + V
State the condition of natural system.

A natural system is a conservative system. Which has additional property,

(1) describe the standard holonomic form of Lagrangian differentiation egn.

(2) The K.E is expressed as a holonomic quartic function of g;’ s.

m
z m;;q;q;

n
i=1 j=1

T=T2=

N| =

Where m;; = m;;(q) not a function of time.

=~ Jacobi Integral of this system is equal to total energy.
(ie.,) T+v=nh.
= Total energy is conserved.

Definition: Liouville's System.

1 .
LetT = fY12,m;(q)4f

v = %Z v;(q;)

where m;(g;) > 0and f = ¥, fi(g;) > 0.
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This system having T and V above form is called Liouville's system.
Application of Integral of motion:
Reduce the spherical pendulum to quadrature and obtain Integral of motion.

Write up to this as in Spherical pendulum problem.

L= %mlz[éz + ¢?sin? ] — mgh cosf

We know that , the given system is conservative holonomic with n-degree of freedom and
(n — 1) coordinate is ignorable.

Then the system is completely integrable.

Here the given system all the condition of conservative system.

Here we have a conservative holonomic system having two degrees of freedom and one

ignorable co-ordinate. Hence it can be follow solved completely by quadrature’s.

where a4 is a constant of given tum to ¢ general momentum correspond to ¢

By Routhian function,

1 . ad) . (X¢Of¢
R=§m12[92+m5‘“29 —mgleost — o g
1 1 2
R=-mi20?—=.— 2 _molcosd
Zm 2 ml?sin? 0 mgt cos
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R=T -V'.
where T’ = %mlzé2

2
_ %
ml?sin2 0

1
v = 5 + mglcos 0

The form of T' and V' is that of natural System having one degree of freedom

h=1"+ =l 126?2+1 % + mglcos 6
—rTvEgm 2mi?sinzg 908
= 1262 = h aé, lcos @
mom B 2mizsinzg IO
. 2 agp?
2 _ -
0% = ml? h —mglcos® 2ml?sin2 0

pr=—_°
ml?2 ml?sin? 0

. 1
0 lzsine\/(zml sin“ 8[h — mglcos 8) a¢]

[2ml? sin? 8(h — mgl cos 8) — a¢?]

Cross multiply and integrate.

ml?sin 0d6 t
=| dt=t—t,

.fe
% \/Zmlzsinz 0[h —mglcos0) —aj '

The motion in @ is liberation for 0 < & < m Hence the sign of the system root should same as
that of d6

By (1) mi?sin€ ¢ =ay
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(Z¢dt

% = mizsin? 6
. 12 ing = (X¢dt
(ie.,) ml°sinf = sin 0d¢
2ml2sin2 §(h — mglcos 0) — a?
0 sin 0
(ie.,) = | do=¢—¢

sin \[Zmlzsinz 0(h —mglcos@) —aj ~%o

where ¢, = ¢(t,)
Example: 3

Let us assume that system which as

n
1 P .
K.E:T:Efz q? =§[q12+q§+---...-+q%

i=1

1% 1
PE=V= 72 v = 7 [03(42) + v2(a2) + 4 v ()]

When f=z fi(g:) >0  fi(gy) + -+ fn(qn).

Prove that the above System is Separable.

Proof:
By Lagrangian differentiation equation is % (;—;) — :—: + 3_: =0 ......... (1)
(~L=T-V)
biai d ((’)L) oL

we obtain, at \ag, 2, =
4.y _1(0fi\yn -2, 10vi_ vOfi__
SUa) -3, g+ -5 =0 %)
Sub T, vin(2).

= This is a natural system so if has an energy interal equationisgivenT +v = h
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d of. 10v;, v of
S (fa) =5tz (h—v) b o =
dt aq; f foq; f?dq;

d hoofi vOfi 10w v Ofi __

w7 50 Fag Y Foa Froq

d ; 10
(x2fq;) izf‘lla(f%) qulfaf +2fq; f%z 0

d i
%(f(h)z—Zha—f ql+26 ql_o
d ) _

i (fq;)? _Z_dt (hf) + 2—(771') =0

@%UZVJ—W;M=0
Integrate,
247 = 2[hfi(q) — vi(q) + cili=1 = 0
we have (Take Z )
—Z - "Z fila) - Z vl(q1)+z ‘
1 e v 1
+f? =>§Z W=m mt f_ZiZ Ci

1
+ ) @ (by (4)

1
v
/ i=1

Hence C 's and h together comprise n independent constant of motion, the remaining n intergral

equation of motion are obtained by using egn (5) in the form,
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dq;  J2(hfi—vi+c)

dt f
dq; _ dq; o dqn _dt
\/Z(hﬁ — v+ 1) \/Z(hfz — vy +¢3) V2(hfy = vu1’ f
dq; dqn _dt

= —_=d,
:\/Z(hﬁ — vy +c1) \/Z(hfz — v, +¢) f '

=~ The given system is separable.
Example: 4 [Mass Spring System]

Suppose a mass spring system is attached to a frame which is translating with uniform velocity
vo. (as in figure). Let [, be the unstressed spring length and use the elongation x as the

generalized coordinate. Find the Jacobi integral for this system.

Vg

Figure.2.6. A translating mass spring System

Solution:

T= %m(vo + x)*?
The Kinetic energy is, T = Zmx2 + miv, + = mv?
2 2

:T2+T1+TO

Where, T, = %ma’cz sincev=1I,+x,v=(vy+x)

T1 = mvox
1 2
T, = Emvo
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The potential energy,
1
V= > kx? (By Hooke's Law)

The mass-spring system meets all the conditions of a holonomic conservative system.
Since T and v are not explicit functions of time

~ Q, is only generalized co-ordinate derived from v.

Although the moving frame does work on system resulting in a changing total energy

T + v. . Jacobi integral exists and is equal to,

1 o2 1 2 2
TZ—T0+v=me —5 Mg +§kx =h

where h is constant, T, is constant.
~ T, + v is also constant.
Example 5:

A small tube, bent in the form of a circle of radius r, rotates about a vertical diameter with a
constant angular velocity w. A particle of masses m can slide without Friction inside the tube.
At any given time, the configuration of the system is specified by the angle 6 which is measured
from the upward vertical to the line connecting the center 0 and the particle. Find the Jacobi

Integral.

Figure.2.7.
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Solution:

Let us assume a fixed Cartesian frame with its origin at O and z axis verticle.

The plane of the tube coincides with the xz-plane at t = 0.

The transformation equation relating generalized co-ordinate 8 and the position of the particle

p(x,y,z) are given by,

x = rsin fcos wt
y = rsin fsin wt
Z =rcosf

This system is Rheonomic. It is also holonomic and has the same. number of degree of freedom

are generalized co-ordinate. (i.e.) One (only one degree of freedom)

T = %mv2
Kinetic energy, = 111(r242 4 r2w?sin? 9)
2
T=T,+T,

1 .
where, T, = Emrzez

1
Ty = Emrza)zsin2 ]

Potential Energy, V = mgrcos 6.

= The Lagrange's function is,

L=T-V
1 .
L= Em(rzez + r2w?sin? ) — mgrcos 6.

Here L is not an explicit function of t even though the system Rheonomic.

Hence the system is conservative. . It's Jacobi integral is given by,

TZ_T0+U:h

1 . 1
(ie.) Emrzez - Emrzwzsin2 0 + mgrcos = h
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Example 6:

Two particles each of mass ' m ' are connected by a rigid massless rod of length ' [ " as in figure.
The particles are supported by a knife-edge placed perpendicular to the rod. Assuming that all

motion is confined to the horizontal xy-plane, Find the Jacobi integral.

Solution:

Figure.2.8. A non-holonomic Rheonomic system

Let (x,y) be the generalized co-ordin of the system.

= Potential Energy is given by v = 0.

= But kinetic energy is given by, T = m(x? + y?) + %mlzw2
But the non-holonomic constraint is, cos wtdx + sin wtdy = 0
=~ Jacobi integral,

h=T,-Ty+v

h =m(x?+ y?) — %mlzw2

Example 7:

An inverted pendulum consists of a particle of mass m supported by a rigid mass less rod of
length [. The piv of 0 has a vertical motion given by z = Asin wt. of tain the Lagrangian

function and find the differential equation of motion.
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Solution:
Kinetic energy of the rod.

T—1 16)?
_Em( )

1 .
= Emlzez

Since the pivot 0 has a

zT(* z= Asimov

z = Asin wt
z = —Awcos wt
7 = —Aw?sin wt

Net acceleration is (g — Aw?sin wt)
The potential energy of the system is

V = mlcos (g — Aw?sin wt)
L=T-V

L= Emlzéz —mglcos 8 + mfcos Aw?

The equation of motion is
d (6L> oL 0
dt\ag/) 096

d :

T (ml26) — mglsin 6 + mlsin Aw?sin wt =

~ ml?6 + mlAw?sin Bsin wt — mglsin@ = 0
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UNTT-I111

Hamilton's Equations: Hamilton's Principle - Hamilton's Equations - Other variation
principles.

Chapter 3: Sections 3.1 to 3.3

3.1. Hamilton's Principle:

The mathematics of extremum problems is partially covered in ordinary calculus and partially
in the calculus of variations. Before we enter into a discussion of Hamilton’s principle, let us
review briefly some of the mathematical concepts associated with these problems.

Stationary value of function:

Let f = f(q; ... — ) be a continues function having second order partial derivatives.

- - M 1 af 6q
= First variation of f at q, is 6f = Y1, (_) =0
9q; 0

[Where zero subscript indicate at reference pt ]

=~ The necessary and sufficient condition that f have stationary value at g, is that §f = 0 for
all points 6q’s.

where g = qo + dq

If 5q's are independent and reversible then(g—;) =0, i =1,2..n.iscalled a stationary point.
]

Find the method of Finding Stationary Value:
Method (1): Lagrange Multiplier methods

Consider free variation of an augmented function F = f(q1, 92 - Qn, A1 - Am)

F= f+§: Lib;
j=1

where n g’s and m A's are regarded as independent variable.
=~ The necessary & sufficient condition for f to be stationary is(g—;) =0,i=12..nand
0

F .
(6—/1]_)0 =0, j=12--m.

Example: 1
Find the stationary value of function f = z subject to the constraint

P =x*4+y*+2z2—4=0,p,=xy—1=0
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Solution:

Given, f =z

Letgp, =x*+y?+22-4=0
¢$,=xy—1=0

Let F = f + 4101 + 1,0,
F=z+2&x*+y2+22—4)+ 2,(xy—1)

For stationary values (:—F) =0 (6—F> =0.
0 0

qi 6/1]'
oF
E=O:2x11+y12=0 ............. (1)
JF
5=032y11+X/12=0 ............. (2)
T=0>1+22,=0 ... 3)
2 0 x24y2 422 —4=0 .o, (4)
oA
oF
E—O:xy—l—o ............. %)

1) x = 2y = 24(x*-y?) =0.

>x2—y2=0
Sx=y

Sub ¢p; > 2x2+2z%2 =4

z% =4 — 2x?

Where x = 1,22 =2,z = +V2

x=-1,z22=2,z=+V2

wherex =1,y =1,z = +V2

x=-1Ly=-1,z= tv2

The required Stationary points are
(1,1, +V2),(-1,-1,+V2)
(1,1,—V2),(-1,-1,—V2).

From (2) 2% = _/1—’12
1
e

From (1) Zy—x =
1
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Where x =1,y = 1,% ==

PR
A, = =224
By equation (3) 1 + 2z4, =0
=2z, = -1
Sh=2 (6)
A= -2 (_—1>

27
A= (7)

(- from equation (6) and (7))

+1 +1 . .-
Hence 1, = PNeL Ay = 5 are the required Lagrange Multipliers.
At all points (1,1, +v2), (=1, —1, +v/2) fattains maximum value.

Theorem 1:

Derive-Euler-Lagrange Equation (or)

Derive the necessary and sufficient condition for a stationary value of a definite integral.
Proof:

Suppose that, we wish to find the necessary condition for a stationary value of a definite integral
I = f;;l Fly(x),y'(x), x]dx

Where, y'(x) = Z—z,xo and x, are fixed

y(x;)

y(xg)

o

Fig-3.1 The variation of a curve between fixed end-points
here xo = x(xo), Yo = y(¥o)

x; = x(x1), y1 = y(y1)
74

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



To find a function y*(x) which gives a stat;gnar;/é@;/alue for I.
We have

y(x) =y (x) + 6y (x)

where §y(x) is a small variation in y(x)

Put 6y(x) = an(x)

For any given n(x)

We can consider varied curve y to be a function of « and x
y(xa) =y (x) + an(x)

Suppose that §y = 0 at the and points

(ie.) n(xe) =n(x) =0

= y(x,) and y(x,) ane fixed.

For any given n(x). | is a function of a only.

A necessary condition that y*(x) result is a stationary value of I, is that its first variation is

Zero.

(ie.). 6= ()

for arbitrary n(x),a # 0.
dl d

= e fOy', x)dx
dl of 9y of dy
@—fxo (@ 3a " 3y’ 6a>
Z; _ J-x1 <6f (x) _|__ n (x > .............. (1)

x1 9f _[or x d (of
But, £ 2Ly Go)dx = [a—y,n(x)]xo [ 2000 (L) dx

- _j- nex )dx<aa)]/c>dx

= () =n(x) =0
Sub in (1)

! [2—fn<x>—n<x>i<af,>1dx-

fxl Jdy dx ay >]n(x)dx

But the stationary value of I,
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B

-f-al

)| = 0.1 G # 0

()
dy dx\dy’

For any curve y = y*(x).

This is the necessary condition for | to be Stationary.

This is also known as, Euler-Lagrange's Equation.

Theorem 2:

Derive Euler Lagrange differential equation for stationary value of a definite integral in. many
variables.

Proof:

Suppose that we wish to find the necessary Condition for the stationary value of

X1
I=.[ f(}"p}’z»"'—}’n'}’{')’é—"'—yr'ux)dx
X0

dy; .
where y; = a—z‘, X, X, are fixed.
i

proceed as in the above, by replacing by,

yi(x), y; (), mi (x)

Explain the term Brachistochrone:

A Brachistochrone is a curve joining two points along which a particle moves under the action
of a given conservative force field in the least positive time.

Note:

Brachisto - Shortest

Chrone - time.

Theorem 3:

State and prove Brachistochrone problem:

The Brachistochrone problem is one of the Classical problem of the calculus of variation. (or)

The problem is to find a curve y(x) between the origin ' O ' and the point (x;, y;) such that a
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evprn ‘
KKKKK ower

particle starting from rest at O d and sliding down the curve without friction under the influence
of a uniform gravitational field, will reach the end of the curve in a minimum time

Proof:

mg‘ x »)

X

Fig.3.2. The Brachistochrone problem
Let us assume that the gravitational force is directed along the positive x-axis.
To find the velocity v as a function of position By using "principle of conservation of
Energy".

"Change in kinetic energy = work done".
(i.e.,) %mv2 = mgx

) v = 2gx
(ie.,)
v=,29x

Arc length = ds = /1 + y'2dx

. _ds
pu v_dt
ds
dt = —

where dt = ———dx

v
t:fwryrz 1+y7
0 /29X

Let f(y,y',x) = —Vl;“;: Since f is not an expliat fund ion of y,% = 0.

NI
of 1 1

;= : " 2y1
ay"  J2gx 2\1+y"
¥y

oy J2gx(1 + y?)

By "Euler's Lagrange’s differentiation equation",
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d(@f) af_o
dt\ay’) ady '

(ie.) %(;’Tf) —0 [ Z-i - o]

(i.e.,) Integrate,

of

- = constant = c
dy
(ie,) —2— =¢

[2gx(1+?)

Square and cross multiply,
y'? =2gxc?(1 +yE) > y'? = 2gxc? + 2g'y'?*c?
y'2(1 — 2gxc?) = 2gxc? = 2gxc? = y'?(1 — 2gxc?

2gxc?

(ie.) y"? =

T 1-2gxc?

. ; _ +2gxc?
(le.,)y' = Tioonc?

(I e )d_y _ yJ2gxc?
= ax T J1-2gxc?

putx = a(l —cosh),a = e dx = asin 6d6.
2gc? - 1 (1 —cos0)
dy 9 4gc?
asin0do 1
_ 2. _
\/1 2gc igc? (1 —cos )
/%(1 —cos8)
- 1
\/1 —7(1 —cos )
L1 - coso
dy 7 (1 —cos )_\/(1—c059)(1—c059)

asin6d6 \/ ~ J + cosB)(1 — cosh)

%(1 + cos 0)

dy 1—-cos@
asin0d0 VI —cosZ @

dy 1—-cos@
asinfdd _ sin@
(ie.,) dy = a(1 — cos 8)dé.
Integrate, y = a(6 — sin0)
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This is the required path.

hence x = a(1 — cos 0)

y = a(6 — sin 8) which is cycloid.

A cycloid path lead to a stationary value of ¢.

This path is minimum time

Theorem 4: Tautachrone problem (Geodesic problem)

Prove that Geodenic sphere are great circle (or) Find the shortest path between two points in a
given space.

Let us consider the problem of finding the path of minimum length c shortest distance between
two given points on the two dimension surface of a sphere of radius 7.

Proof:

Let us use the spherical coordinate (8, ¢) as variables.

= The spherical transformation is,

x = rsin Ocos ¢
y = rsin Osin ¢
zZ=rcos6

ds? = r2d0? + r?sin? 0d ¢p*

d 2
ds? = r?dg? ll +sin? @ (_(].’)) l

do
: d¢o
ds? = r2d0?[1 + sin? O¢'?] where ¢’ = 20
Integrate,
62
S=r| 1+ ¢"sin26d6
01
Let f =/1+ ¢'?sin? 6
0
o _y
d¢
of 2¢)'sin? 0

0’ 2./1+ ¢'2sin2 @

= Euler -Lagrangian equation of motion,
d ((’)f) of 0

dt\o¢p') 0¢

- & (ag) =0
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of
g’
¢'sin% 9

/1+¢%sin2 0

Squaring on both sides,

c2(1 + ¢'?sin? §) = ¢p?sin* 0
¢'?sin? O(sin? 8 — ¢?) = ¢?

C2

¢ =
sin? 8(sin2% @ — c?)
c

Integrate, — = c.

But, C =

" sin HVsinZ 6 — ¢2
cdf
sin 8+/sin? § — c?
i = c cos? 6do
V1 — c2cosec? 6
put x = c cotf
dx = —ccosec? 8d6O

Sub in above,
—dx
dp = ———
V1 —c¢2 —x2

Integrate, ¢ = cos™? (\/%) + ¢,

s — ¢y =cos™? (—%)

_ ccotf
oslP =90 =i
. . ccot
CoS ¢ - cos g + sin¢ - singp, = —
= rsin 6 cos ¢ cos ¢ + rsin Osin ¢sin ¢ = creos d
i

x = rsin 6cos ¢
y = rsin @sin ¢

z =rcosf
) cz
= xC0S ¢y + ysin ¢y — =0

N

This is of the form,
Ax + By + Cz = 0. (Plane equation)
Which is the equation of a plane through origin.
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=~ The curve is great circle.
= The shortest path is a straight line.
Theorem 5:

State and prove Hamilton's principle

The actual path in configuration space followed by a holonomic dynamical system during the

fixed interval t, to t;. Such that the integral I = [ ttolL dt is stationary with respect to path

variation which vanishes at the end points.

q
Varied path

a:' 1

I

I

IT |

| I

| | Actual |

| | path |

1 | |

| ! !

I I l

1 I !

1 | |

| | |

I | |

1 | |

o ty t fn t

Fig-3.3 The actual and varied paths in extended configuration spaces

Consider a system of n particles with position 7,75, ... 7;, with respect to an inertial frame's.

By Lagrange from of ‘D 'Alembert's principle.
n(F-m7) - 6t=0 ... (1)
Where ﬁi is the applied force on ith particle

1 5
ButkK.E =T = %L myr{

N
1
6T = Ez m; 21 OT,
i=1

6T = YN, mFd7  oeeeen, 2)
Consider.

d 0 > 0 o> S

E(Ziﬂ mror;) = N2, miFoT + N, mipsty . (*)

(1) = Z?:l F; : SF{ = Z?zl ml?l6?l ........... (3)

Adding (2) and 3
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N N N
i=1 i=1 i=1

= %(Z m; - 6Fi> (from eqn (x))

i=1

N
d .
i=1
Integrate on both sides with respect to time from ¢, to ¢, .

t1

N
(6T + Sw)dt = [Z miﬁaﬁ-]
t

i=1

t1

to
0

here 67; = 0 at t, and t;
ty
(6T + 6w)dt =0
to
T and w are expressed interms of the generalized co-ordinates (qy,q; ...qy) and their
derivatives.
Suppose that applied forces are derivatives from the potential energy V (g, t)

then, Sw = —6v.

t1
(6T — 6v)dt = 0

to

(ie.) [ t%a(f — v)dt = 0.

(ie.,) ftz SLdt =0 [+ Lagrangian L =T — v].
Further, if the System is holonomic (g's are independent)

=~ Integration and variation can be interchanged.

t1
R Ldt = 0.

to
(ie.,)8I =0
(i.e.,) I is stationary.
Hence proved Hamilton's principle.
Note:

We have proved that 6ft';1 Ldt = 0. (ie) 61 = 0. where | = f;ol fy(x),y'(x),x)dx.
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where L = L(q, q,t)
y—4
y—=d
x—t
&f-1L
= By Euler's Lagrange's equation.
4 (1) _9f
dt\dy;/ 0dy
(ie.) = (%) - % =0
This is Lagrangian differentiation equation.
3.2. Hamilton’s Equations:
A new function H(qg, p, t) known as the Hamiltonian function , and use it to generate a set of
first-order equations which are particularly symmetrical in form. These are the canonical
equations of Hamilton.
Derive Hamilton's (Canonical) equation.

Let us consider a holonomic system with independent generalized co-ordinate g4, q, ... — qy,.

and obeying,
Lagrangian equation in the form,
d (oL oL .
E(a—m)—a—m_o,l_m...n ............. (1)
Generalized momentum conjugate to g;s is given by P; = j—;
. . oL
(ie.,) P, = 2= lton ............ (2)
By definition of Hamilton function.
H=H(q,pt)as
H = Z?:l piC'Ii - L(q, q, t) ......... (3)
oH oH oH
6H = Xiq a_qi&h' + 2 a_pi5pi + E&
n : no n 0L n 0L o. 0L
By (3) = 6H = XiL; pi6(q:) + Xi=y 4idp; — Xieq a_qi&li — Zi=1 a_m6qi - E& ---------

_ ) _ . aL
§H = Xi.y pi8G; + ity 4i6pi — Eiey pi6q; — Xiey pi8G; — 5,6t
: ) oL
Compare (4) & (5), co-efficient,
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aq; aq;
O0H .
api ql
d oH B —dL
M5 T ot
. O0H
pi - aql
. OH;
qi - apl

The Hamilton canonical equation of motion.

Example 1:

Show that for the conservative system holonomic (or) non-holonomic. Then Hamilton function
IS constants.

Proof:

By. Hamilton function, H = }'I*.; P;q; — L.

and P; = Y my;q; + a

where m's and g; s are function of (g, t)

n n
Z Z m;;iq;q; +Z qa; — L
=1

j=1 i=1
= (2T2 +T,)—(T—-1L)
= (2T2+T1)_(T2+T1+TO_V)
:2T2+T1_T2_T1_T0+V
H = TZ - TO + V
Case (i):
For a conservative Holonomic System,
TO = O, TZ = T
~H=T+V
H = Total energy.

~ H

For such a system.
H=H(q,p,t)

(ie.)H = 2116 q ?161,351"‘_

_i(aﬂ oH 6H6H>+6H
b d0q; Op; Op;0q; ot
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, Spta enppEin ‘

oW E PowE

( By Hamilton canonical equation p = —:—(I; and g = —:—;
_ Zn: L
i=1
. dH 0H
(I.e.,); = o

=~ Total time derivative of the Hamilton is equal to the partial derivative of Hamilton.
For the conservative system H = H(q, t) and if L doesnot contain time.
o
at
(ie.)52 =0
(i.e.,) H = constant
=~ The consonative holonomic System
H =T +V = a constant.
(i.e.,) H = h (constant)

Where ' h ' is a Jacobian integral.

Case (ii):
For the conservative system of non-holonomic with ' m ' constraints represented by,
Z?:l al'qu' =0, ] =12,.m ... (1)

For this system,

P, = :—; + Y7=14ja;; where 4; is an Lagrangian multiplier

P; —a—qi+. Ajaj;
j=1
(ie) H=H(g,p,t)
C (OH . OH OH
1=y (eritn) (%)
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(ie)2r=0

(i.e.) H = constant.

(ile)H =h(=T, — Ty + v).
where h is Jacobian integral.

[For the natural system.

Tz =T
To=T,=0
~ H=T+V = h( constant)]

Example 2:

Find the motion of a simple pendulum by using Hamiltonian equation.

Solution:

let ' [ ' be the length of the string in which one end is fixed at ' A ' and another end is attached a
Body of mass ' m .

Let ' 6 ' be the angle made by AP at time x with vertical.

Then its describe a simple pendulum.

S=16
S=16
T_1 2
- —Emv

1 .
Tzimlz-HZ
V =mgAc

= mg(l — lcos 0)
V =mgl(1 — cosB)
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-~ By Lagrangian function,
L=T-V.
1 .
L= Emlzez —mgl(1 — cos )

By Hamiltonian function,

H=Z qul_L
i

H = Py0 — L [~ 0 is only variation [ is constant |
_OL _ 124
where Py = 50 = ml=6.

Pg = m129 ............ (1)

. 1 .
o~ H = ml?0? —Emlzez + mgl(1 — cos 8)

1 .
H= Emlzé?2 + mgl(1 — cos9)

1 (Pg\°
= Eml (ﬁ) + mgl(1 —cos@) by Pg ..........(2)

H=T+V

= The given system is conservative.
OH _ Po

From (2), 2Py = mi2

oH .
and 25 = mglsin6.

Hence by Hamilton equation of motion,

. A OH __ Py

e, 0 = g —miE e 3)
- 0H .

Py o —mglsinf ......... 4)

By (3), Py = ml?6
~ By (4) = ml?0 = —mglsin 8
= ml?6 + mglsind = 0
=10+ gsinf =0
Which is the required equation of motion
Example 3:
Given a mass-spring system consisting of a mass m and a linear spring of stiffness k, as shown
in Fig-4. Find the equations of motion using the Hamiltonian procedure. Assume that the

displacement x is measured from the unstressed position of the spring.
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Fig-3.4 A mass-spring system
Let us find the Kinetic and potential energies in the usual form

1 . 1
T =me2,V = Ekx2

L=T-V
1 1
— w2 2
—me ka

The linear momentum is P = % =mx
2
The Kinetic energy in the form T = f—m, and the Hamiltonian function is found to be

H (X, p)=p% — L = 2=+ L jex?
» P)=px T om T2

Since this is a natural system, the Hamiltonian H is equal to the total energy T+V and is

constant.
oL _ p __0H _
X = ap m’'" " ax k

These two first-order equations are equivalent to the single second order equation.
>mX+kx=0

Which is the familiar equation of motion that can be obtained by using Newton’s law of
motion or Lagrange’s equation.

Example: 4

A particle of mass m is attached to a fixed point O. by an inverse square force.

Find the equation of motion.

Proof:

Fig-3.5 The Kepler problem using polar coordinates
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Let a particle of mass m is attracted to ' O ' by inverse square force F,.
E = _:'2”‘ , W is gravitational coefficients.

Let P(r, 8) be the polar co-ordinate of Pof mass "m" at time "t .
1 .
T = Em(fﬂz +716?)
andP.E V = [F,-dr.
= —j ( 2 )dr

1
= mu T—zd)f

V=

r
- By Lagrangian function is
L=T-V

= 5m(i? +y6%) + ==
here generalized momentum are,

oL ) R =

Pr = a =mr=r= E
oL . . Py
Pg—%—mr Hie—m

By Hamiltonian function,
H = Z Piq-i - L
J
mu

.1 .
H = PrT' + P96 —im(f”z + T'ZQZ) —T

P. Py m(B? /Py \*\ mu
—Pr(a)”e(mrz)T(m” 2) )

P? P? 1/P? P? m

H=-"1+ 92——<i+ 92>——“

m mr 2\m mr T
1(P* P; mu
= — —+ -
2\m  mr? T

~ By Hamiltonian equation of motion are,
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T"=a—PT=—$PT=m1":
J0H mu
=2
. mu
:mr=—2
r

= r2y — u = 0. which is equation of motion for ' r
By Hamiltonian equation of motion for 6,

oH P, p 24
= — = = =
0Py mr? o =mr

. J0H
P9=—¥=O

=>mrif =0

= 0 = 0 which is the required en of motion

Example: 5

Obtain Hamiltonian equation of motion for a charges particle in an electromagnetic field.
Proof:

Let us consider a particle of mass m with charge moving with velocity .
Let q? be the Scalar potential.

Let A be the vector potential.
1

o T ==mv?
va

v=28(p—7-A4)
-~ By Lagrangian function is,
L=T-YV,
1 S5, — -
L=omv?—&(—V-A)

For generalized momentum,

- dL

PBZW

P, =mi+86A=P, —84A=mv
. P,-éA

>V =

m
- By Hamiltonian function,
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1 -
H=Emv2 + e

1 (B, —eA\" .
=>m|l— 2 +e¢p bybh

2
1 ey o
H=%(Pv—eA) +ée¢
=~ By Hamiltonian equation of motion for Cartesian co-ordinate.

First (canonical equation).
. 0H 1

X—a—P=E(Px—eAx)
X
 OH 1
yzﬁza(Py_eAy)
OH 1
Z=5=—(PZ—6AZ)
1

. —oH 3¢ 94, 04, 94,

Po=—— =8+ —[(B—eA)] + X+ (B — eAy) 2 + (B, — ed,) =
OH 8¢ e 94, 04, 94,
Py——W——BE+E[(Px—€Ax)W+(Py_eAy)a—yf(PZ_eAz)W
) N 04, 04y 4y
PZ——E——654—%[([‘;{—eAx)E-F(Py—eAy)Ef(Pz_eAz)g

These are the required equation of motion?

P =—eV¢p +eV(i- A)
Example 6:
Discuss the Kepler’s problem writing a Hamiltonian canonical equation of motion.

A particle of mass m is attracted to a fixed point ‘0’ by an inverse square force.

E = — % , Where u is coefficient of gravity. Discuss the motion.
Solution:
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Let p(r, 8) be the position of the particle at time t of mass m.
Let F be the attractive force in the negative radical direction

= The velocity compentent of P is (7, ré).
1 .
K= Em(fﬂz +1262)

P><E=—j Fdr

m
V= ——;udr
r
By Lagrangian function
L=T-V
L= 2m(#? 4 r262) 4 2K
2 r
oL _
~ P = Fria
P oL 20
= _—=—=mr
°" 06

-~ By Hamiltonian function,

.1 . m
= Prf' + P96 —Em(f‘z + T'ZQZ) _TM

P, Poy 1 P2
= £ () + Po (5y2) = 3l + P8

HZ(P_£+P3> 1 P 1P mu

m  mr? 2 m 2mr? r
1(B? P;\ m
H=-(Z+—2) -2
2\m  mr? r
~ By Hamilton canonical Equation,
p_ _0H
"7 ag;
. _OH  0H p,
W T T, m
. OH
g=2_Po . )
dpg mr?
: oH 1 -2 mu
2. -
b= or 2 Pe (mr3>+ r2’
: J0H
P9 = _ﬁ =
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For"r™",

By (1) @ mif=P. = P‘i, m—f
mr T
For" 6"
By (1) = mr26 = p,
mr26 =0
(ie,)0=0

These are the equation of motion.

3.3. Other Variational Principles:

The varied paths are taken in an n-dimensional configuration spaces and are restricted by the
conditions that the §g's conform to the instantaneous constraints, if any and vanish at the end-

points. Furthermore, the §4's are related to the §9's by the equations
, d

0G; = (6q;)

They §g's are not zero, in general, at the end-points

Theorem 1:

State and prove modified Hamilton principle
The actual path is such that integral of equation. 6[2'; O pig; — H)dt = 0 is stationary for

arbitrary variation of the path is phase space, with the restriction that the §qg's vanish at first
times t, & t,. The §p’s need not be zero at these points.
Proof:

By Hamiltonian principle.

t1
) Ldt=0

to
where the end points corresponding to to and, are fixed, and §q’s varishos at end pts. and 6g; =
d
- (8a:)
6q; # 0at ty,t;
(i.e.,) there is a no variation of time with respect to virtual displacement.
But H = Zqul - L

n
L :Z qul_H
i=1
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28 ( Jo iy Pdi— H)dt) = 0

0H

tl . . a
Jo! (St piddi + i0pi = 508 = 5-8p; )t =0 oo (2) [H=H(g, p)]

But ftzl pi6q; dt = ft? p d(8q;)

t dp
— t1 l
=pldql, - § (8q.)—~dt.

t1 t1
j pSqudt = 0 — f Bg)pidt
t t

0 0
@) tzn:( 50; + 4:6p; — 5, — 2 s )dt—O
W L POGi +4i8pi — 5-04i — 5 -6P:
. tq . 0 . a
ie) [ iy (6p: (di - ﬁ) + 8, (—pi - f)] dt=0 ... 3)

By equation (1)

d
0G; = (6q:)
we find that §¢; (or) 8p; is not independent of §¢;.

(ie.,) & p'sand &q's are dependent.

But from value of H.

_ oH
1 op; } canonical form
. _ _OH[  of Hamiltonian.

~ Hence eqn (3) will be true.
Hence the modified Hamilton principle is of the form,
) (f;;r Ok, Pig; — H)dt) = 0 holds good for the phase Space.

Theorem 2:
State and prove principle of Least action.
The actual path of a conservative holonomic system is such that the action is stationary with

respect to varied path having the same energy integral A and the same and points in the g-space.
. t :

(ie.) 64 =4[, YiLipigidt = 0.

Proof:
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9 (@ +5q) (dt +d5t) ¢ +6¢+dr+dbt

i 4

. Varied
8q +ddq path
Actual
path

q

L)
Fig 3.6. A general variation in configuration space

A general variation in configuration space.

Let us consider the small quadrilateral as in the figure

we have,

qdt+ 84+ déq = 6q + (¢ + 6q)(dt + dbt)
= §q + qdt + qd(6t) + 6qdt + 6qd(6t)
= d(8G) = gd(5t) + 5Gdt + &?d(&)

d d
> (5q) =i (6t) 485 +68 (&))
5 55 = (5q) i (&) ............ 1)

Let us define an integral I as,

ty
1= L@ana
t

0
ty

=581=6| L(q 4 t)dt.

to

tl d
= 51 =f [6L+L—(6t)] dt
o dt

E (aL 54+ 2L s ) aL& +1L (5t)] dt (1]
—0q; + — — - eqn

(aL d d&) OL 5o 4oL St+1 5t]dt

(2
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d oL
~dr ag, O
i=1

oL d d
$Zl 1 a_Ldt(6Qi)=_

sub (3) in (2)

51‘] [dt( aq; ) i%<_>6q‘

0
i [d (6L> aL](S it
L ldt\dq;) Ogq; i
16L6t zn:al" LdStdtO
at - g, 1t at (00
i=

[+ §q; = 0 at ¢ and points and by L Eqn

= 61 fl Zn: aL(S' +L d
bl = 0q; d

; (&)] dt

[~ for conservative system % = 0]

tqy d
—.’; —naé‘tdt

ty
=—h d(6t)

to
to
81 = —h[st],}
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But action is given by,

A_jtl n aL'dt

0 G=

b oL
A =] Z —q;dt.
b =1 0q; =

t1
SA=6 (L + h)dt [by result *]
t
b
= S(L + h)dt
to
t1 t1

= | 6Ldt+ | &(hde)

to to

t1
= 61+ f [Shdt + hd(5t)]
t

0

= 81 + 8(ho)to + h[5t],

t1
dLdt = dI

to
= —h[5t],} + Shlt; — to] + R[5t],}
§A = 5h(t; — ty)
0A=0 ~S6h=0
= A is stationary value
Example 1:
Express Jacobi form of principle of Least action
Proof:
By principle of least action,

=>064A=0
= 6f, 2T dt =0

= 6f, 2\/T2dt = 0
t1
=6 | 2VTTdt

to
ty

68| 2JTh—v)dt=0 .ouceoc(D)

to
(1) [ for natural system T + v = h]
But, dsz = ?=12?=1mijqiq]'dt2.
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dg; d
Syt S g gy,

U'dtr dt
ds? = 2Tdt?
ds=\/2_Tdt(or)dt=%
Subin (1)

SA=6 2,/T(h—vr 0

to
ty

SA=6| 2T(h—v)ds=0
to
This is the Jacobi form of principle of least action.
Example 2:
Establish the Jacobian Integral equation [or] Equation of Energy by-using Hamiltonian.
Canonical equation.
Proof:
Since T is a homogeneous quadratic fuctions are q,, g ...

By Euler's theorem,

oT

= 2T
aql ql

ButL=T-V
oL  oT
04, 0q;

L .
Figrdi=2T (1)

But H = H(Pi, CIL)

OH Z (E)H O0H >
ot < aplpl Oqlq‘
i=1

OH 0H | 0H O0H
=yn ( oH OH

. -+ by Hamilton canonical egn
op; 6 aq; 6m) [ y q]

o0H
ot
Integrate partially w.r.t.

=0.
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H = constant = h

ﬁz pig;i —L =h.
i=1
O

ﬁ; aqiqi =

=22T—(T—-v)=h

=>T+V=nh
=.. Total energy is constant.
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Unit IV:

Hamilton-Jacobi Theory: Hamilton’s Principle function — Hamilton-Jacobi Equation —
Separability.

Chapter 4: Sections 4.1-4.3

Introduction:

In this chapter we shall approach the problem by studying the generating function which is
associated with the required canonical transformation. The generating function is the solution
of a partial differential equation known as the Hamilton-Jacobi Equation. The transformation
equations, and hence the solution to the problem, are obtained from the generating function by
a process of differentiations and algebraic manipulation.

4.1. Hamilton’s principle Function:
Theorem 1:
Derive Hamilton principle Function.

Proof:
The canonical Integral: Consider I = ftilLdt

We have the 2n initial conditions of P,, P, ... P, and q,, q, *** q,, that is equal to,
Qio(i=14+0n), pjp=(=1ton)

Here t, and t, are the end points of the trajectory in the g-space are fixed

Let dio = 1:(4o, 41, to, f1)
Where we consider t, as running time

Let] = ftt;l Ldt be evaluated as a function of (g;o, dio, to, t1)-

By using the relation of ¢;, = 1;(qo, 44, to, t;) hence we get, I = ftzlLdt = S(qo, g1, to, t)

This S is called Hamilton principle function. Now consider,

1= [ L (2 sqae [ L
t & dt\og/ ., Ot
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L
51 = f Zdt aql 5q,dt +f —&—( a—qiqi—L>

6t]dt jtlz[ aL) oL | sque 1

Since we consider then standard holonomic system, Lagrangian equations are satisfied.
= The third integral vanishes,
AISO, H = H(qi'pi' t)

o H H(qi;pu t)
_dH " 0H 0H ,  oH
=@t Liag it SR TNNT

) . OH
= - Z P;q; + Z q;P; + Fr [ by Hamilton canonical equation

=1
i 0H —0L
>H=—=——.
ot ot

D=or= [ Y [ ok saacr [ -] - ko) a
() - o L dtaql ql dt( )
—ftiid(a) dHat dt [ -
= dt pioq; dt( ) -Pi—aqi
tld
Zplﬁql Hét
t

- 85 = [Epi . 5q;—H 51:]

dt

t

to

- [Z Piodqio — Hodty
i

6§ = Z Pi16qi1 — Z Pio0qio — H16t1 + Hy bty
i i

n
6S = [Z pi6qi1 — Hi6t,

Now, s = s(qq, 1, to, t1)

: 65—2 95 s +Z 95 5o+ 9550 +95 6
b : aqll qll : aqlo qu atl 1 ato 0

Since we assume that both the variation in S are equal and that 2n 4+ 1 arguments varied

independently, . we get
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ds

0qi1
Py =2 | =1,2
i0 = aqio, l=1,2...—n
0o —0s
T
o = —0s
07 at,
92%s
If we assume that # 0.
0qio 9941

We can solve for q;; = qi1(qo, Po, to, t1), i = 1ton,
(i.e.,) each of the generalized co-ordinate are as a function of current time ¢,
Hence Hamilton principle function is Known to reach the complete solution Stage.

Pfaffian differential form:

Definition:

Consider the m variables x;, x, -+ x,,.

then Q = x;(x1, x5 .. X )dxy + x5 (% — = X )dxy + -+ o + 2 (X1, X3 — - X ) dX .

is called Pfaffian differential equation.

Theorem 1:
Derive the Pfaffian differential form:
If we consider a n dimensional space, the pfaffian differential form lead to a line integral over

a path in this n-dimensional space.

6xl- axj

Let Cl] = o

j 6xl-
The condition for the Pfaffian Q to be a perfect differential is that each of c;; 's should be zero.

[Pfaffian form is exact differential j = ¢ = 0] Consider, §s

6§ = Z pi1dqiy — Z PiodCIw) — (H,dt; — Hydt,)
i i
[ as above bookwork]
- [z Pio8qi0 — Hodt
i

= Z pi18qi; — Hydt
L |
is, the difference of two Pfaffian form,

= Ql _Qz.
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s 0=

l

pidqi — Hdt

n

1

=(p1dq; + p,dq; + -+ + ppdqy,) + (odp; + odp, + -+ odp,) — Hdt

If'm "is odd. There is an associated System of differential equation is given by,

m
Z c;jdx; =0 (G =1fon)
i=1

This is called first Pfaffian form.

In the current discussion we have 2n + 1 variables namely nqg's, np's and t have such a relation

exist.
dqj = 5-dt = 0
we get, B[ e (1)
—dp; — aTI_dt =0
oH oH
. OH
pi - aql
. O0H
qi op;
Here equation (1) are Hamiltonian Canonical equation,
. dH OH 0H  O0H
=>H= =

Tdr T Lioog VT Loap P o
J J

" [0H 9H oH oH| oH

—Z[a—q,-'a—m‘a—m'a—%lw
:>H:6—H.
ot

4.2. The Hamilton-Jacobi Equation:

Theorem 1:

Derive Hamilton Jacobi equation:

t1
I = f Ldt
t

0

we have 2n initial conditions g9, g5¢’ --- Gno
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P10'P20, an PnO.

Here t, as running time.
t . . .
ol = ftolLdt can be evaluated as a function of (g1, 10, to, t1), (i=1ton)
Letd = ftzl Ldt =1 = §(qo, Go, to, t1)
[By Hamilton principle function]

Using expression for 61,
we get,

n n
ds = Z P dqi; — Z Pyydqio — Hydt; — Hydt,.
i=1 i=1

Let 2n initial conditions are given by,

a = @;(q10, 920 = Tno» P10 P20 — *** Pno) and B = B;(q10, 920 — Gno> P10 P20 *** Pno)

n n
z Piodqio = z Bida; (i = 1to 2n).
i=1 i=1

consider, S = S(q;o, 40, 10, 1) Which can be written as,
S = S(Qi» a;, to, tl)

as n  0S

—yn 08 o pym 95 400, 05 2
now, ds = =154, dqi; + Zl:l da, da; + at, dty + dtg dto

But ds = Y- Pindqi; — Xi=1 Piodqio — Hidt; — Hodt,

ds = Z?=1 Plldqll - Z?:l Bldal - Hldtl - Hodto ............. (l)
Assuming that the variation to be independent we get,
_ 0s
" Ay
_ Os
0 - ds
T
U = ds
°7 ot

So Long, we using to initial value of time and ¢, as its value at any instance:
Then for simplification,

Let us make t, = 0 and replace t, by t.
we get,
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Eg“ “w
ds = z pidq; — z pida; — Hdt by (1).
=~ Sis of the form S(a, a, 1)

as=Y 24 £y %5 dag+ S at
COE L0 T Lok MM T Bt
l

hence, we get

ds
i = 3

B n=L v H@pn =0
"at _at (q'p' )_

(ie.)S+H (q,g—j,t) = 0.

This is called Hamilton Jacobi equation.
Theorem 2:

State and prove Jacobi's theorem:
Statement:

If 6(q, a,t) is any complete Solution of Hamilton Jacobi equation,

aS )
a+H(q,a ,t>=0and1f
p_ 08
l_aqi

ds
Bl__(')_ai’l_lton

where f3/'s are arbitrary constant, are used to solve for q;(a, §,t) and p;(a, B, t)
Then these expressions also provide the general Solution of canonical equation of Hamilton.

Proof:
. : .95 as
By Hamilton Jacobi equation, P H (q'ﬂ' t) =0 ... (1)

Diff partially (1) w.r.t a;
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aai at - ap] a(li B
J

Again,

928 o0H 0°S dp;  09%S
+ )y — =0 e (2) |22 =
da; 0t '~ L dpjda; dq; da;  Oa;0q;

L

ds .
Also, —B; = L= 1,..n.
Diff partially w.r.t " ¢t”

925~ 928

70" 5000 T L £, 94500,

59 =0 .........(3)

3)-(2)

Z OH\ 0%S
=z 9~ ap] 9q; aal

_ 0H 0%s _
=g = a ,G=1.....n) 3q, 0, # 0 by assumption

Again consider (1),

Diff partially (1) w.rt" q;".

0% L gn oMo ol

aq; ot =1 9p;9q; ' 04q;

92s n OH _0°S | 0H _

dq;ot =1 gp; dq;dq;  9q;
as

Pj=£]_

=0

Diff partially w.rt "t ".

P = 9%s n 0*s  OH _
J "~ ataq; =1 3¢, aq; Top;

5+4:>P+6H—0
5+ @& it aq,

0H
zp = —— '=1,2,...,n)
] aq]

which is the second canonical equation. Thus we see that any complete solution of the
Hamilton-Jacobi equation leads to a solution of the Hamilton problem. This solution has the

proper number of arbitrary constants and, of course, obeys the canonical equations.
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Conservative Systems and Ignorable Coordinates:

Now consider a conservative holonomic system whose configuration is described in terms of
n independent q 's. The Hamiltonian function for this system is not an explicit function of time

and, in fact, is a constant of the motion.

H(gp)=a,=h ............. (1)

where h is the value of the familiar Jacobi integral or energy integral which we arbitrarily
identify with a,,.

A suitable form for the principal function of this system is found by using Equation (1) and

. . . as 0s
Hamilton Jacobi equation > T H (q,a—q, t) =0
to obtain % =—H=—-a, ............. (2)

This suggests that S can be taken as a linear function of time, that is,
S(q,a,t) =—a,t+W(g, @) ...cc....... 3)

where we have omitted an arbitrary additive constant. The function W(q, ..., ¢, @4, .., @)

does not contain time explicitly and is known as the characteristic function.

s ow ,
as ow

S = - (5)

s ow -

a—qi =9 (i=12,..,) reeveee e (6)

From Equations (2) and (6) we see that the Hamilton-Jacobi equation reduces to

H (q, a@—‘g) =0y i (7

Equation (7) is the modified Hamilton-Jacobi equation. A complete solution of this equation
involves (n — 1) nonadditive a 's, (a4, a, ..., @, 1), plus the energy constant a,,. The a 's are
arbitrary in the sense that their values are determined by the arbitrary initial values of the

dW / dq;, that is, the generalized momenta, at the given initial configuration.
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ds

- _aai

shows that the solution of the Hamilton problem can be obtained from

a .
—B; = % (i=12,.,n—1) ..o, (8)
ow
b= =gp e 9)
ow .
i =5, ((=12,,m) o, (10)

where £3,, is the initial time t,. Since W is not an explicit function of time, we see that Equation
(8) gives the path of the system in configuration space without reference to time. Equation (9)
then gives the relation of time to position along the path.

Now suppose we consider a system having ignorable coordinates q;, q,, ..., qx. Initially we
shall assume that the system is not conservative. We know that the p 's associated with the

ignorable g 's are constant; hence we can take
pt = at (l = 1,2, ,k)

Then we see from Eq. (5-55) that we can assume a principal function of the form

k
S(q,a,t) = Z @iq: + S (Qrs1r o Qr> A1y oovy Ay, )

t=1
The Hamilton-Jacobi equation leads in this case to

05'+H as’ as’ o
ot Ak+1) ) qns Xqy «ev) A, aqk+1 y ey aqn ) —

The complete solution of this partial differential equation involves (n — k) nonadditive
constants, exclusive of the constant momenta a4, @, ..., a;. Once S’ is known, the solution for

the motion of the system is obtained from

= +aS’ | =1,2 k
ﬁi _qt aat (l_ by ney )
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!

=5 =kt
Pe =g (=l+1,m)

pe =, (i=12,..,k)

_65’ i =k+1
Dt —aqt (i= s e, )

where we note that 5; = —q;o (i = 1,2, ..., k)

that is, each £ corresponding to an ignorable coordinate is just the negative of the initial value
of this coordinate.

Finally, let us consider a system which has ignorable coordinates q;, q,, ...,q; and is also

conservative. Combining the previous results, we see that the principal function has the form

k
S(q,a,t) = z arqr — At + W (Qrstr o) Q@ oonr Q)

i=1

and the modified Hamilton-Jacobi equation becomes

ow'’ 0W’>
= an

H(qk+1, s Qo 01, ...,ak,aqk Sy
+1 n

The complete solution for W' in this case involves the (n — k — 1) nonadditive constants

Qr41, -+, Ay PlUs, of course, the energy constant a,, and the constant momenta a,, a5, ..., ay.

The motion of the system is given by

(i=12 ..k

ow'
da,

t—pn =

pPi = «; (l = 1,2, ,k)

ow’
pi = 3

(i=k+1,..,n)

l
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Example 1:

As a first illustration of the Hamilton-Jacobi method, consider its application to a simple mass-

spring system (Fig. 5-1). This is a natural system having kinetic and potential energies given

by T =—mx2 V =—kx? ... (1)

The momentum is the familiar p = % =MX e (2)

k
m
7

TI/I/ I/ /7777777777 777777777

Fig. 4.1. A mass-spring system.

and we find that the Hamiltonian function is equal to the total energy, namely,

2
H=T+v=241
2m

“kx? 3)

Since we are considering a conservative system, we can use directly the modified Hamilton-

Jacobi equation which, in this case, is

1 (ow\% | 1, ,
%(E) +Ekx =ad i (4)
where a is the energy constant. Hence we obtain Z—Z = JZm (a — %kxz) ........... (5)
or W(x,a) = mw f;‘o Jaz —&2dE . (6)

where a = \/2a/mw?, w = k/m

In general, the lower limit x, of the integral is chosen to be either (1) a convenient absolute
constant (not a function of the a 's), or (2) a simple zero of £ (&), where /f (£¢) is the integrand.
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This choice is made in order to simplify differentiation under the integral sign and will, of

course, be reflected in the meaning attached to the various S 's.

Differentiating with respect to «, we obtain

t—pB = %f; i L [cos‘l% — cos‘lﬂ ............. (7

a?2-&2

2a

which yields x =

cos[w(t — ty) — ¢]

mw?

2
where cos ¢ = ;;_0 = ’";(Z Xo

and B = t,. If we write the total energy « in terms of the initial conditions x(t,) = x, and

2 2
x(ty) = vy, We have a = %mvg + %kxg = %(xg + %) ................... (8)
Also sin ¢ = %w/a2 —xi = :—Z)
X = xgcosw(t — ty) + 1;—Osin w(t—1ty) vereininn 9)

which is identical with the result obtained by the direct solution of the ordinary differential

equation describing the mass-spring system. The amplitude of the oscillation in x is

In evaluating an integral involving /f (&), a question arises concerning which sign is to be

chosen for the square root.

It frequently occurs that the variable of integration & oscillates between two zeros of f(§),

indicating a librational motion.

For example, that we must change the sign of /£ (&) at each turning point in the libration, that

is, at the point where the direction of motion in & reverses. In this example, /£ (£) is positive

for positive d& and is negative for negative d&. Notice that the turning points occur at zeros of
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Sl g
£ (&) and, since the integrand may become infi

te at these points, it can result in an improper

integral. For the usual case of simple zeros, however, this integral converges, indicating a finite
period for the librational motion.

In this example we have found a solution for the motion of the mass spring system without the
necessity of evaluating the integral of pervious example which leads to an explicit expression
for W(x, a). We find that

mw -1 X —1 X
S=—at+7(x a? —x% — a®cos 1Z—x0 a? — x% + a’cos 1;") ............ (10)

Here, for the sake of simplicity, we have expressed W as a function of a, which we recall is

equal to \/2a/mw?.
It is a straightforward process to check that this expression for the principal function obeys the

Hamilton-Jacobi equation. Furthermore, it leads to the correct solution for the motion of the

system upon the application 0°. Thus we obtain

—ﬁ=Z—Z=—t+2—fz—z=—t+i(cos‘1i—°—cos‘1§) ............. (11)
(or) x = acos[w(t —ty) — ] ....coooiiiil. (12)

where we have substituted t, for 8. This result is identical with that found previously in
Equation.
Finally, let us calculate the principal function S(x, x,, t, t,) by evaluating the canonical integral

equation. We have
S= ftz (T —=V)dt = %f; (%2 — 02x)dt v (13)

Performing the integration and simplifying, we obtain

mw v 2XoV
S = —Tsin w(t —ty) Kxg —w—02> cosw((t —ty) + CZ d sinw(t —to)| e vee oo (14)

In order to express S in terms of the desired quantities, we note from equation
that

vy __ x—xoCos w(t—tgp)
w sin w(t—tg)

Then, substituting equation (6) into equation (5), we obtain
S(x, xq, t,ty) = %ma)(x2 + x3)cotw(t — ty) — mwxxgcscw(t —to) .oveennnnn... (16)
By comparing this result with the principal function obtained previously in equation (1), we

see that there is a considerable difference in form. In particular, this S function has no linear

term in t even though we are analyzing a conservative system. Nevertheless, it represents
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another complete solution of the Hamilton-Jacobi equation and, in accordance with Jacobi's
theorem, it allows one to find the motion of the system by a process of differentiations and
algebraic manipulations.
To illustrate this point, let us consider that x, assumes the role of «, that is, x, is an arbitrary
constant which in this case describes the position of the system at a preassigned time
to. —B = ;TS = mwxycot w(t — ty) — mwxcscw(t —ty) ..oooevennnn. (17)

0
Solving for x, we find that
B

X = xgcos w(t — ty) + —

sinw(t —tg) ..ooevennnn. (18)

In accordance with the theory, g is equal to the initial momentum muv,. Hence equation (9) is
identical to the previous result given in equation.

Example 2:

Let us use the Hamilton-Jacobi method to analyze the Kepler problem.

Solution:

Suppose a particle of unit mass is attracted by an inverse-square gravitational

m=1

6

o
Fig. 4-2. The Kepler problem.
force to a fixed point O (Fig. 4.2). The position of the particle is given in terms of the polar
coordinates (r, 8) measured in the plane of the orbit.

The Kkinetic and potential energies are

_1lr.2 202 Y

T—Z(r +7262),V = eOPPPORROP (D)

where u is the gravitational coefficient. The Lagrangian function is
_1lr.2 202 H

L—Z(r +r9)+r .............. ()

and we find that the generalized momenta are given by
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TR TR
Pr=p; =T Po =5~

We are considering a natural system, so the Hamiltonian function is equal to the total energy,
. 1 p2

thatis, H =2 (p? +22) 4=, ... (4)

Here we use a, to represent the constant value of the total energy.

The coordinate 6 does not appear in H and therefore it is ignorable, implying that the conjugate

momentum p, has a constant value which we shall designate by ag. Then, in accordance with

Eqg. (5-81), we see that the principal function can be written in the form

S=—a;it+agf +W'(r,as,ag) ..ccconn.n. ®)
N 2
- . . s 10w ag K _
The modified Hamilton-Jacobi equation is 2( P ) Fo T ST A (6)

. ow' 2 2
and we obtain = [2a, + e _ “_g
oar Il Il
- . 2 2
which resultsin W' = [* [2a, + £ —Z2qr
To r r

where 1, is the wvalue of the radial distance r at the initial time ¢t,.

Now let us differentiate under the integral sign with respect to a;,.

ow' r dr
= fTo S

Note that the square root is equal to 7, as may be seen from the energy equation (4)

ow' _ r

0—0,= = odr (8)

T
dag O r [2apr2+2pur—aj

Comparing these last two integrals, we find that the first gives t as a function of r, whereas the

second gives @ as a function of r, that is, it gives the shape of the orbit. It is convenient to

measure 6 from the position of minimum r. Then 6, = 0 for the case where we choose r, =

Tmin>

ad—ur
£ I A 9)
B

Finally, solving for r, we obtain

0 = cos™

ag/u

T =

1+ Jl + 2a,af /u*cos 0

which we recognize as the equation of a conic section having an eccentricity
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e = \[1 + 2a,af /12
4.3. SEPARABILITY:

The idea of separability is associated with the solution of partial differential equations by a
reduction to quadratures, that is, by expressing the solution in terms of integrals, each involving
only one variable. In the context of the Hamilton-Jacobi partial differential equation, the
possibility of obtaining a separation of variables depends partly upon the nature of the physical
system and partly upon the coordinates used in its mathematical representation. Quite naturally,
we would like to know the conditions under which such a separation is possible. Unfortunately,
the answer to the basic question concerning what is the most general separable system is not
known. Some progress can be made, however, if we restrict the investigation to a certain class
of systems. In particular, we shall consider in the following discussion only orthogonal
systems, that is, conservative holonomic systems whose kinetic energy function contains only
squared terms in the g 's (or p 's), and no product terms in these variables. In other words, there
are no inertial coupling terms.

We shall assume that the term separability implies that a characteristic function for the system
can be found which has the form W =Y, W;(q;) ............ (1)

that is, it consists of the sum of n functions where each function W, contains only one of the g
's. Furthermore, we shall assume that W is a complete integral of the modified Hamilton-Jacobi
equation and thus contains n nonadditive constants (including the energy constant), usually
designated by a 's. A particularly simple example of a separable system occurs in the case

where all but one of the coordinates are ignorable.
Liouville's System:

Let us define a Liouville system to be an orthogonal system which has kinetic and potential

. _ l n . n ql% _ Rlp%+---+Rnp121
energies of the forms T = - (X7, ﬁ(qt))( n . Rt(qt)) = gy e 2)

_ v1(q1)++vn(qn)
ey G (3)
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where f;, R, and v, are each functions of q,, and we note that R, is identical with M;"*. Also,
we assume that ¥}; f;(q;) > 0 and R.(q;) > 0.

These Liouville conditions are sufficient to ensure the separability of the given system, and
therefore a reduction to quadratures is possible. As a proof, we can show that a complete
solution W (q) of the modified Hamilton Jacobi equation exists, and this solution has the
separable form given in Eq. (1).

The modified Hamilton-Jacobi equation for this system can be written in the form

n [%Ri (Z_Z)Z + vt] N A ()
Now let us substitute for W from equation (1). We shall find that each function W;(q,) can be
obtained in integral form and a complete solution results. First, let us group the terms in each
coordinate g;(i = 1,2, ...,n) and use a4, a,, ..., a, as separation constants. Upon setting each

group of terms equal to the corresponding «;, we have

1 VAN .
ERL— (a_q:) +Ut _h'ft = at (l = 1,2,...,7’1) ............. (5)
Whereay + oy + 4+ a, =0  ............... (6)

Eqg. (5) can be integrated and the resulting W; 's added in accordance with Eq. (1) to obtain

w=3r, [ Rli\/ d:i(q)dqe o.noon...... @)

Where ¢.(q.) = 2R.[hf:(q.) —v(q) + a;] (i=12,..,n)

This solution actually contains the ( n+ 1 ) constants a4, @,, ..., @,, h, but equation (6)
represents one relation among the a 's. Therefore, one a, can be eliminated, leaving the
required n independent constants. Hence we see that the expression for W given in equation
(7) is a complete solution of the modified Hamilton-Jacobi equation, thereby confirming that
the Liouville conditions are sufficient for the separability of an orthogonal system.

We turn next to the solution for the motion of the system, assuming that we have found the
characteristic function W (q). First, let us arbitrarily eliminate «,, by regarding it as a function

of the other a 's, that is, a,, = —(a; + a; + -+ ap_1)

oW W, | Wy day, _ OW, OWy

Then we havea—at: 6_(xt+ e, da; —a—at—a (l =12,..,n— 1)
6_W — dq; _ dqn — 0. (] — _
oa: f T f TS Bi(i=12,..,n—1)........... (8)
. ow fidq;
Also, we find that —= = ¥, i 0 t— LBy e, 9)
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The solution to the Lagrange problem is glven by equations. (8) and (9) and presents the path

of the system in extended conflguratlon space. The path in phase space is found by using the

additional equations p, = ,/cpt(ql (i=12,.

Since B; in equation(8) is a constant along any actual path of the system, we see that the

increments in the values of any two of the given integrals must be equal for any interval of

dq.  _ _dqz  _ . dq

= = =d
ORI =T -

time. Hence we obtain

Theorem 1: (Stakel's & Theorem)

State and prove Stakel's & Theorem:

An orthogonal System is separable if and only if the following two conditions are satisfied
(i.e.,) A non-singular n X n matrix. [d)l-j (g:)] and the column matrix [1p;(q;)] exists.

Such that,(1) CT® = [1,0,0, - 0]

(2) €Ty = v, where v(= q4,q, — *** q,,) is P, E where C is the column matrix of n c's.
Proof:

Necessary part:

Let the given orthogonal system be separable.

= The characteristic function w(q, @).
W(q' C() = Z Wi (qil Aq, . an)
i

This character function is a complete integral of modified Hamilton Jacobi equation.

ow;

(i.e.,), Zl 1€ L(—) +tv=a; ... (1) a; = Total Energy

For the orthogonal system,

1 n
= Ez m;(g;)?
n
1
= EZ lpl
i=1

Because of the definition of separable, w; is' 0 ' function of generalized co-ordinate g; only.

awi

function a possibly the constants a,, a, -+ a,, IS o
i
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Hence we can rewrite the above equatlon in the form The must integral form involving the

single coordinates g;'s (Z—;Vi") = —2Y;(q) + 2%}, ®i;(qla; oo ()

Where the constants are chosen for convenient
i 101( 2¢y;(q;) + 230 1L Pij(a)a; +V = a;
Now sub this in (1), we can get an equation in matrix form
—c"Y+cl,+v=a; ...o....... 3)
Comparing the term containing a. we find the
CTd =[1,00,..—0] ... 4)
which is called first Stakel's condition's similarly equation(1) which does not involve a’ 's must
Sometozero.CT -y =V  ........(5)
This is called second Stakel's condition.
Sufficient part:
Assume that a given orthogonal system Satisfies the Stakel's conditions [both].

For convenient,

. . ow 2 .
column Matrix a is denoted as a; = (5) R (6) i=1ton

Gova-| (22)

We can write the modified Hamilton Jacobi equation,

22, o) -
> C; 34, v=a; (or)

—Z (a&) + v = a, is a matrix Equation.

1
EcTa +v =ag .......(7) [ equation (5)]
1
= EcTa +c¢™¥ =1[1,0,-0]a ...........(8) [ by 2" stakel's condition]

= Also first Stakel's condition,
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(4)=C"® = [1,0,...0]
=>C"=[10,..0]o71 ... 9)
Sub in above equation,

[1,0,-— 0]d~ta + [1,0,...— 0d~ 1 = [1,0,— — 0]a.

N| =

1
1,0 .......0] (Edb‘la + q>-11p) = (1,0, ......0]a

—_

EQD‘la + (:D_llp = Q.

Which has a Solutiona = =2y + 2 da ............ (10)
Further Simplification,

ow;\*
( l) = —29(q;) + ZZ ®;;(q:)a;
dq; -

]
Hence the system is separable.
Example 1:
Let us consider the Kepler problem once again, this time inquiring into its separability. Suppose
we use spherical coordinates to specify the position of the particle of unit mass (Fig. 4-3) which
is attracted to the fixed point O by an inverse-square gravitational force.

The kinetic and potential energies are

T:%(fz+r292+r2q’izsin2 6) ande—% ............... (1)

Fig. 4-3. The Kepler problem, using spherical coordinates.

where p,, pg, Dy are the generalized momenta. Then, since this is an orthogonal system, we

know that the Hamiltonian H = T + V is constant, and the modified Hamilton-Jacobi

onis  (5) "+ 75 (550) + s (50) —2=
equation 'Sz(ar t73%0 ) T omnze 5% 7 (1)
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where W = W.(r) + Wy (0) + Wy (d)
In other words, we seek a characteristic function which is a complete solution of the modified
Hamilton-Jacobi equation and which has the separable form of equation. (2).

At this point we note that ¢ is missing from T and V, and is therefore an ignorable coordinate.

_ Wy _
Hence p¢ = W = (X¢

and it follows that W (¢) = ag¢
So far, we have obtained two of the required three « 's. The third is found by obtaining a

separation of variables through first multiplying equation (1) by 272, yielding

72 (‘%)2 — 2r2 (% + at) + (%)2 + S:l‘zfe =0 e, (3)

Here the first two terms are functions of r only, and the last two terms are functions of @

only. Hence, they are each equal to a separation constant,

- W\ | % _ 2
that is, we can take ( > ) T ey =X e (4)
2
And r? (aa%) — 2r? (g + at) =—QF il (%)

The separation constant is chosen to be aj (rather than ay ) as a matter of convenience. This
choice permits ay to have the dimensions of angular momentum, but does not influence the
validity of the Stackel conditions.

We are now assured that the system is separable because

2

Wehaveaﬂ:\/z(ﬁ+at)—@
ar r

r2

6W9 2 aé
And —=% = -
a8 0  sin29

which are immediately integrable. W was found previously.

Now let us check to see that the Stackel conditions are met. we see that ¢ = {1%@}

[04
1 - r—g 0
we obtain ® = __%
0 @o sinZ2 @
O O a¢,

We immediately see that if we choose ¥ = {— % 0,0}

It is interesting to note that this separable system does not meet the criteria of a Liouville system

for n = 3, thereby illustrating that the Liouville conditions are not necessary conditions. By
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comparing with the Kinetic energy expression of equation (1), we see that the Liouville
conditions require that

Re(p) 1

R.(r) r2sin2@

which is impossible.

Another approach to this problem is to take advantage immediately of the fact that ¢ is an
ignorable coordinate, thereby reducing the number of

degrees of freedom from three to two. We can write

1 1 a?
H=-p+pp+ i —t=a (6)

2r2sin?2 r

and then regard this as an orthogonal system with kinetic and potential energies given by

, 1 1
T =Ep,% +ﬁp§ .............. (7)

/ a<21) u
And V' = T (8)

2r2sin?2 @ r

The characteristic function is of the form W = W,.(r) + Wy (6)

and the modified Hamilton-Jacobi equation is

2 2 2
1 awr) 1 (awg) a?, u_
H(Z) 4 S (Be) b oy . )

Once again, the system proves to be separable and Equations (4) apply.

A check of the Stackel conditions shows that ¢ = {1, riz}

@g
o =|! TZ]
0 (047
w9
And ¥ = { 7’ 2sin? 9}

For this case in which n = 2, we know that the Liouville and Stackel criteria give identical
results. A comparison of the expressions for T' and V' with equations reveals that
=1 fo(8)=0
R.(r)=71%  Re(0) =1

g
vr(r) = —ur, ve(0) =55
thereby confirming that the Liouville’s conditions apply. Notice that equivalent expressions for
T' and V' would have been obtained if the Routhian procedure had been used with respect to

the ignorable coordinate ¢, rather than the Hamiltonian approach employed here.
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UNIT-V

Canonical Transformations: Differential forms and generating functions — Special
Transformations— Lagrange and Poisson brackets.

Chapter 5: Sections 5.1-5.3

5.1. Canonical Transformations:

Definition:

1. A transformation from (g, p) to (Q, p) which preserves the Canonical form of equation of
motion is known as a canonical transformation

2. Show that the canonical transformation from a group.

Proof:

We know that,

Zqul H = ZPQL k+—

N z P.dq; — Hdt — z P,dQ; + kdt = dF ..........(1) F = F,(q, 0, )

oF
where p; = 5}
i

p - oF
T
TS
k=H+—
ot

The symmetry of equation (1) & (2), shows that the inverse of given canonical function is a
Canonical function.

The canonical function is derived by negative of F(q, Q, t).

Note that, the sum of two exact differentials. expressed in terms of old variable (g, Q, t) is also
exact.

Two canonical transformation succession result in an canonical transformation, clearly we can
also have an identity transformation F = '™, q;p;, which is also canonical.

Hence by given value of n the cannonical transformation form a group.

Theorem 1:

Derive the condition for transformation to be Canonical.
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Proof:

consider (g, p) into (Q,p) with H & K has the Hamiltonian.

_dQ _9Q . 9Q
C=t =349 3p?
_0Q 9H 9Q oH

—_——— _q [ by Hamilton Canonical equation]

Alsod—: =a—;’~d—q+aH d”[ H(, 9)P(Q,p),q(Q,p)]

(,e)a_Q.a_H_a_Q.a_H_a_H.a_q 9H dp
“"9q op 9op 9q 9q op 9p Op

Equate co-eff of aI; ‘;Q 6P} Equate co- effof oH Zg
. —0H
AlSOp=—Q.
ap ) J0H 6p J0H aq
ag 4t ap P="13 30137 a0
dp 0H Jp OH dp 0H 0dq OH
9¢ dp dp dq 0Q ap 0Q oq’
6p _6_p
Equate like term co- eff, v _ 22 .............. (2)
ap aQ
By Jacobian,
9Q 00Q
]<Q,p> _|9q ap
q.p/ (0P Op
dq Op

(')Q dp 0Q OJp

" dq dp dp 0q

- gg—i)a(g—é)a (a ) (50)

~0Q ap 9p 0Q

(l )6(Q,p) — a(q,p)
o) 9D

9Qp) _ 1
(or) ==

9 ICICEIR
@2 9Q(q.pr)

1. (o) [a«z »| _

(or) [6(Q Pi

()]

‘Z_Z} ........... (1)
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This is the condition for (g, p) — (Q,p) to be Canonical Transformation.

Define orthogonal transformation:
Consider F, = Y= ¥7-1aijPiq;
where a' s are constant meeting the orthogonality condition.
n
2 a;ja;, = 8y — [kronical delta]
i=1
. 0 ifj=k
(ie.) 8 = {1 ifj#k
The transformation equation are P; = Z% = Y1 a;P;
J

n

_0F, Z
Qi = o, L. Wl

=1

Now, ¥ i1 Piajx = Xk=12i=1 @ijqjP;.

n
= Z 81 P;
=1

= P;, where j = k
n
=> P = —Z Pja;;
j=1
oF,
Also, Q; = = ¥iL1a;q;
Di

Where a;j = 611

= The identily transformation
Pi = Pi
Qi=gq;

Definition: Homogeneous Canonical Transformation:
Let (q,p) — (Q,p) be the canonical transformation of the old and new set of canonical co-

ordinates.
We know that Y™, P;g; —H =Y", P,Q; — k +—
(ie.,) Xieipidq; — H(q,p, t) — X1 Pi6Q; + K(Q,P,t) = &

Suppose " t " is invariant (constant)
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ot =0alsoF =0
n

z P;6q; —Z P;6Q; =0
=1 =1

This transformation is called Homogenous canonical transformation.
Result -1
This is also knowns Mathieu transformation (or) Contact transformation.

Result-2

In general, k = H + Y™, P; %_

for scleronomic system.

Define Bilinear covariant:

consider the Pfaffian differential form,

Q=25 Xi(x)dx;

Let 6 = Y7L, x;6x; then dw — 66 = Y1, ¥, ¢j;dx;dx;

ox; Oxj . e . on
where ¢;; = 2% — s called "Bilinear covariant
) 6x]- 6xi

Example 1:

Prove that Bilinear covariant is invariant with respect to canonical transformation
Proof:

Let (g, p) be the set of 2n cannonical co-ordinates which are transformed into (q, p) by
canonical transformation

-~ consider the differentiation form

n
Z pidq; —
=

where di is an exact differential and we consider time as a parameter. Then we have
§(Ximipidq; — Xi=1pidQ;) = 6dy(q, p)
(ie) Xit1 6pidq; — Xi, 6p;dQ; = 8(dy(q,p))
Similarly, (3%, p;6q; — ¥111:6Q;) = d(6¢¥(q,p)) v v - (1)

(ie.) (T dp; - 8q;) — I dpi8Q; = d(5Y(q,p)) -........ 2)

(1) - (2 = X, (6pidq; — dpidq) — Xl=y 6pidQ; — Xiy dpi6Q;)

= dsy — 6dy

=0 [by known result |

n

P;dQ; = dy(q,p)
1

i=
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> > (Opida; = 8q;-dp) = ) (6pidQ; — 6Qdp)
i=1 i=1

= hence Bilinear covariant is invariant.

Example 2:

Show that the transformation Q = %(q2 + p?) , P= —tan"1(q/p) is canonical and find its
generating function.

Proof:

Consider p6q — p6Q = pbdq + tan"1(q/p) E (2q6q + 2p5p)]

p 6q = P6Q = (p + dqtan™" (q/p)]18q + (ptan™*(q/p)ép)]
The verify -canonical.
To prove that (1) Exact

oM _ON
dp dq
oM _ a[ - |
rap—app qtan™"(q/p)
1
2
=1+ ATy 2/Z(q/p)
q* p?
TP pPg?
_OM p?
T op p?+q?
Similarly,
ON a[t B |
Er] aqpan (q/p)
1 /1
r L)
1+1°P
p
oN _ p?
dq  p?+q>
~ (1) is exact

Hence the given transformation is canonical.
To find W :-
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Y _
Take% =p + qtan"1(q/p)

W _
Fr ptan™" - (q/p)

Integrate partially with respect to P

p _ q _
= 7tan Yq/p) +7tan '(a/p) + pa/2

pq 1 _
=7+§(P2 + g*)tan"(q/p)

To find Generation ¢(q, Q, t)
Change P into Q and g

_4 1 _ q
_E ZQ - qZ +E[q2 + ZQ - qz]tan 1 <—'2Q—_qz>
q _ q
= E ZQ - qZ + Qtan 1 <—'2Q—_qz>
_1 — S P
¢ =512Q q2+Qtan1< 2Q—q2>

By known Result:

¢
k=H+—

1
:k=H+§(q2+p2)=Q
>k =0

The canonical equation of motion in new variable are,

Q =%=0:>Q= constant
Ok
p - aQ_ .
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>P=—-t+c [P is decrease in time ]
0K

= —
aQ

= New Hamilton k is constant.

=1.

To Find Generalization Function of first kind

P—E ............ (1)
0F;

P=—22 )

oF,

1 _p_ )

% 20-4q

Integrate partially with respect to g,

k= [ J2e—da

By formula,
2
.[ a? — x2%dx = }Z—C\/a2 — x?2 +%sin‘1(x/a) +c
2
Ry =320~ + Zsin- 1@%)%(0)
. oF,
By using P = ~ %
[ ]
= 2t 1 () 4 0 [0 1/220) 1 21+ ¢'(@)|
|[22 2Q — g2 2Q J1-¢2 Jl
20
q 1 . _1< q ) Qq 1
= — |;—=—=+sin +¢'(Q)
lz 2Q - q? V2Q/ 20 -¢? J_ g™

P=—[sm 1( >+q,’> (Q)]
= —sin™*[(—sinp) — ¢'(Q)]
P=pP—-¢'(Q)
This constant may be ignored because transformation equation.
we consider partial derivative.
~ Fy = q/22a — q? + 2sin"1(q/~20).
Example 3:

Show that the following Rheonomic transformation
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Q =2q-e‘cosP-P=,/2q-etsinP

Proof:

Given transformation,

Q =/2qe cosp} (D)

P =./2qe tsinp
To prove that (1) is canonical Transformation
o@p) _
a(a.p) L
9Q 9Q L et Faets:
-~ =< e‘cosp —./2qe‘sinp
dq Op 2\/2q
dp Op 1
— — 2e tsinp /2qge ‘cos
dq apl [2,/2q P 1 P
9(Q,p)
d(q,p)

= (1) is canonical transformation.

(i) To prove that

=cos?p +sin?p =1

Consider,

1
pdq — P8Q = pSq — \[2qe tsinp |——=—"2- 1 - e*cos p6q—,/2qe’sin pSp]

2,/2q
= pdq — sin pcos pdq + 2qsin? pép

= (p — sinpcosp)&q + (2gsin? p)ép

. oM dON
Canonical to P = 9a

To find ¢ :
oy

%: p —sinp cosp
N _
Frie qsinp

1 —cos2p
:zq( 2 )

= q(1 — cos2p)
Integrate partially with respect to

Y=g (p B sin22p>

q .
=pq — > 2sinpcosp

= pq — gsin pcosp
Replace p by (Q,q) by Q
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J2qetcosp

e t =cosp

To find ¢
- g1 (22) - =)o
¢(q, ¢, t) = qcos (Jz_q q N
_ geos 1 q(,/Zq Q%e —2t )

#$(q,Q,t) = qcos™? <Qe ) — Q; W

Example 4:

Consider the transformation Q = log>=Z,

= qcotp

Let us obtain the four major types of generating functions associated with this transformation.

Solution:

Fig.5.1. A geometrical representation of the transformation

sinp
péq — pdQ = pdq — qcotpd (log )

q [qcospdp — sinpdq
sinp q°

dq
= pdq — qcotp (cotpSp — 7)

= pbq + cotpdq — qcot? pbp
_ (p +cotp)dq qcot® pdp
B M N

= pdq — qeotp =

d
%=p+cotp.
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Integrate, ¥ = pq + qcotp
Fl(q' Q) = lp(q' Q)

_logsinp
g
00 _sinp
q
ezQ_Sinzp
=7

g?e*? =1 —cos?p = cos?p = 1 — g2e?®

= cosp =+1—q%2%0 =p=cos 11— q2e?0 ........

Sub (2) in (1)

= P =gqcos1(/1— quZQ)+qctpp

(
( Tp
(
(

Q/ -2Q _ A2
¢=qcoslm) ¢ d

eQ

-1

= gcos 1—q%e??)+g¢q

) sinp
) cos(cos 11— ezqz)
2Q

-1( /1= q2e2@) +

= qcos

() Fy=qcos™ 1 —q?e*® +[e722 — ¢
oF

a_ql =cos (1 —q%*®) =p

0Q 2. [e—20 = q2

e~2Q et?
Je 2 —qz e+
g0

e_Q

ele=Q,/1 — e2Qq?

oF; e ¢

Q" [i-qgiem

v pQ —
(e q eQ sinp)
__4
sinp
cosp qeotp

(2)
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(IDF, = qP + Qp + qcotp
qp = qtan~'(q/p)

QP = —plog (\/q2 + pz) [q cotp = p]
Fo(q.p) = qtan‘lg +p (1 - log/qZ +p?)

oF, q
— =tanl-=
dq p P

0P,

a_P= —log\/Pz + 2 = Q

(1) F3(p,Q) = F; —qp = e Qcosp

F; o
%——e sinp = —q
OP_ 0 B

ﬁ——e Cosp = —p

(IV) Fy(p,p) = F, — qp = Qp + quwtp
cosp
= p + plog (—)
pq

0Fy _ _ _
op = Ptanp =-q

JF, cosp
a5 =108 (cosp) = €

5.2. Special Transformations:

Some Simple Transformations:

Let us consider the identity transformation, which is an obvious example of a canonical

transformation. It is generated by a function of the form
Fy =Y1q:P;
As can be confirmed by nothing that

JF, :
pi:a_qzi:Pi’Qiza_qi:qi(Fl’z’ ...... n)

Homogeneous Canonical Transformations:

Let us consider the case where ¢ and y are identically zero.

Then i1 Pi6q; — X1 Pi6Q; = 0
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and the corresponding transformation is called a homogeneous canonical transformation. This

transformation is also known as a Mathieu transformation (or) contact transformation.

Point Transformation:
Consider a class of Homogeneous canonical transformation for which of fill set of n-

independent transformation Q(q, Q, t) exists and equal to zero. Then,

aﬂq]
Z sat ) on

are non-smgular matrix.

=1tom

. 0Q;
amhﬂio
09,
00;
we have Q; = f;(q,t),i = 1tom.

0

where f is twice differential function

This equation represents a point Transformation

Momentum Transformation:
If P, = H;(P,t),i =1 to n. This represent a point transformation in momentum space f it is

called a momentum transformation.

. af;
(i) P = Sjy Py oL

5.3. Lagrange and Poisson Brackets:

Definition: Lagrange Bracket:

Let [u, v] be any two variables q4, q; *** ¢, Py, P, ... By, then

dqx 0Py  0qy 5Pk) : .
n —_—T
[u,v] = Y iy ( ) L called a Lagrange's Bracket.

Note:

D) [w,v] =—[v,u]
2 [w,u] =0=[v,v].
Theorem 1:

Fundamental Lagrange bracket (or) Sufficient condition for canonical transformation
133

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



(1) [gi, q;] = 0 First Fundamental Lagrange Bracket
(2) [P, P;] = 0 Second Fundamental Lagrange Bracket
3) [qi,pj] = §;; Third Fundamental Lagrange Bracket. Where " g and p are independent".

Proof:

n

| =Z 04k 0P _ 99k Opx
Wl 94; 9q; 9q; 0q;

Op1c _ Opx
=0 = = 0,p, q are independent
[ aq]' 0q; ]
n 94k 9pk _ 9dic 0Pk
@ [P ] = 2i ap; dp; OP; OP;

= (dq, Op, Oq. 0
(3)[%29]'] Z(‘Ik Pr 94k Pk)

dq; Op; apj 0q;

i=1

dq; OJp;
0+0++=—-=—+-|=(0+0+--..40)
dq; 0p;
—1. api
l9:.p;] = 6y;

Definition: Poisson Bracket:

The Poisson bracket of (u, v), where u and v are functions of g, q, *** g, P1, P2, *** Py 1S given

n (au ov ou av)

by, (u, v)q/p =
Result:

1) (wv) =-(v,u)

) (wuw) = (v,v) = 0.

Proof:

Prove that (1) (¢q;,q;) =0

@ (P,P) =0

(3) (qi,pj) = §;; for p, q are independent.

Derive Jacobian Identity:

Let u, v, w are functions of q4, g, -** — g, P1, P, ... B,. Then prove that
(W, (v,w)) + (v,(w,u0)) + W, (w,v)) =0
Proof:
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Let, u = u(q;, p;)

V =v(q,pi)
w = w(q;, pi)

- By poisson Bracket,

d 6 du d(v,
(u,(v,w))—z - (” ) e (a”q:”

_z”: auz”: K 9u 6w+6v 62W> < Pv_ow v Ow )l
P 0p; 0qx Op; 0q; Op; Opy Opx Op; 0q; Op; Opy 0q;

k=1 k=1

Zn: auzn: K 0%v aw ov 62W> 0%v 6W+6v 62W>
Ok dq; 0q. Ip; aqi Op;0qx) OR;0q,0q; OJp; 0Jqy

i=1 i=

 ———

aq; aplaql op; aql d0q; 0q; dp; 0dq; 0q;0dp;
Theorem 2:

Obtain relation between Poisson Bracket and Lagrangian bracket.

Letu;,l = 1,2...2n be an 2n idependent functions of 2n variables q4, g, - qx,
P, Dz - P -+ then T3 [u;, u (ullu]) 8 and Y77 (g ug](uguy) = 1
Proof:

LHS

dqx Opx  0qx Opik du;  Ouj  Juy Ouj
n 9Pik ] ]
Y [, u (ul'u]) i1 Y1 D=1 ( o T : -
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First term:

a
i (apk.auif” i,aql
k=1 aui apm m=1127 an
n
Z <6pk. auj>6qk

aui apm aCIm

km=1
n

opr 0y

aui apm m

km=1
n
ou; 0Jpy .
=23 1 oo (1) [+ Skpy = 1, ifk = m]
k=1
Second term:

n

z <6pk au]->2n 0q, 0y
aui OQm 1 aul apm

kim=1 =
- (0 ou; \ 0
Pr 9y dr . _
kZ <6ui aqm)apm_o [ qx are independent p,,]
,m=1
Third term:
i (apk auj) Z dpe Oy
oty \OUi Opm ) £ 0wy Oqp,
n
= _ Z (an, auj>apk
kym=1 aui apm an

=0 [+ py are independent q,,]

Fourth term:

n 2n

: : aqk au] apk aul
aui an aul apm

m= 1

k 1 1=
n
Z (E)qk ' (')uj> Py
Kkim=1 aui an an
aqk au]
= ‘5 OKgm
Kkim=1 aui an

ad ou; .
= ;cllm=1 aiu}; : m (1) [+ Skygm =1,ifk =m]
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Add:
LH.S: 2% [uy, w] (g, u;)

B op, O0u;  Ou; gy
kim=1

6uj

iy [ u =u(qi,p)]
=65

Hence Y27, [u;,u (ul,u]) S;;=1 ifi=j.

Example 1:

Derive the differential equation of constant of motion of a system.
Proof:

consider the function f (g, p, t).
ae= S (G it g p) 45

n (af oH af 6H)+6_f

i=1 \aq; op; op;’0q;) ot

[by Hamilton canonical equation].

af of
- = (LH) +—
It f is a constant. then (f, H) +‘Z—{ =0

is called differentiation equation of constant of motion of a system.
Theorem 3:

State and prove Poisson's theorem:

If u(q,p) and v(q,p) are integrals of a system with Hamiltonian H(q, p,t). Then poisson's
Integrals of (u, v) is also an integral of motion.

Proof:

Given that u of & v are constants of motion, then we have,

ou Ju
(u H)+E—O (1) E——(U,H)
Jv ov
(U H)+a—0 (2) E——(U,H)
B(uv)

and —(u v) = ((u,v),H) +

137

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



0 0
= (@), )+ (50) + (w5).
= ((u, V), H) + (—(u, H),v) + (u,—(v, H))

= ((w,v), H) + ((H,w),v) + ((v,H),w)
= ((w,v),H) + ((v,H),u) + ((H,u),v))
=0

e, (u,v)=0

by (1) & (2)

ie., % (u, v)=a constant

i.e., The Poisson bracket of two constants of motion is also a constant of motion.

Theorem 4:

Derive Hamilton equation of motion in terms of Poisson Bracket.
(or) prove that ¢; = (q;, H), P; = (P, H)

Proof:

Consider the holonomic system with canonical co-ordinates (q, p) and Hamiltonian H
n
dq; O0H 0q; 0H
<qi'H>=Z (a_l'a e d )
= qi OpPk Pk 04k
n
_ Z (aqi
= \0qx

Z;cl=1 5ik Gk

n

dp; OH dqg; dH
P =) (o m -1
; 0q, Opy Opy 0qx

=1

k +0.Pk>

n
= Z (0. Gy + 8y Py)
=1

n
:O+z 6ik'Pk
k=1

(Pi; H) = Pi
hence Hamilton canonical equation of motion in terms of Poisson Brackets. If
1) Py = (P, H)
() ¢; = (g, H)
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Exercises:
1. For a certain canonical transform it is known that Q = \/q% + p? ,
¥ =3(¢* +p?tan L + 2 qp Find P(q,p) and $(q.Q)
2. A particle of mass m moves in the xy plane under the action of a potential function
V=ky. For a homogeneous point transform Q, = xy,Q, = %(x2 —y?) . Find the

expression for P, and P, and the generating function F,(q, p). What is the new
Hamiltonian function K(Q, P)

Study Learning Material Prepared by

Dr. S. KALAISELVI M.SC., M.Phil., B.Ed., Ph.D.,
Assistant Professor,

Department of Mathematics,

Sarah Tucker College (Autonomous),
Tirunelveli-627007.

Tamil Nadu, India.

139

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



