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Chapter 1

Unit 1

1.1 Basics of Ring Theory

In this section, we collect basic definitions and results on rings.

Definition 1.1.1. A ring (R, +, ·) is a nonempty set R together with

binary operations ‘+’and ‘·’defined on R, which satisfy the following

conditions:

(i) (R, +) is an abelian group

(ii) a · (b · c) = (a · b) · c, for all a, b, c ∈ R

(iii) a · (b + c) = a · b + a · c, for all a, b, c ∈ R

(iv) (a + b) · c = a · c + b · c, for all a, b, c ∈ R.

3



Definition 1.1.2. A ring R is called commutative if for every a, b ∈ R,

a·b = b·a. A ring R which is not commutative is called a noncommutative

ring.

Example 1.1.3. Let Mn(Z) denote the set of all n×n matrices over the

ring of integers Z. Let ‘+’and ‘·’denote the usual matrix addition and

multiplication, respectively. Then (Mn(Z), +, ·) is a noncommutative

ring.

Definition 1.1.4. Let R be a ring. An element e ∈ R is called an

identity element if ea = ae = a for all a ∈ R. The identity element of a

ring R is denoted by ‘1’.

Definition 1.1.5. Let R be a ring with identity. An element u ∈ R is

called a unit element if there exists v ∈ R such that uv = 1 = vu. The

set of all units in R is denoted by R×.

Definition 1.1.6. A ring R with identity is called a division ring if

every nonzero element of R is a unit. A commutative division ring R is

called a field.

Definition 1.1.7. A nonzero element x of a ring R is a left zero-divisor(right

zero-divisor) if there exists a nonzero element y ∈ R such that xy =
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0 (yx = 0). An element that is both a left and a right zero-divisor is

simply called a zero-divisor. The set of all nonzero zero-divisors of R is

denoted by Z(R)∗.

Definition 1.1.8. A commutative ring R is called an integral domain if

R has no zero-divisors.

Definition 1.1.9. An ideal I of a ring R is called a proper ideal if

I 6= {0} and I 6= R.

Definition 1.1.10. An ideal P of a ring R is called a prime ideal if

P 6= R and for all a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P .

Definition 1.1.11. Let R be a commutative ring with identity. An

ideal I of R is called a principal ideal if I = 〈a〉 = {ra : r ∈ R} for some

a ∈ R.

Definition 1.1.12. An element x of a ring R is called nilpotent if there

exists some positive integer n such that xn = 0.

Definition 1.1.13. Let R be a ring. The characteristic of R is the least

positive integer n such that na = 0 for all a ∈ R. If no such positive

integer exists, then R is said to be of characteristic zero.
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Remark 1.1.14. The set N(R) of all nilpotent elements in R is an ideal.

The ideal N(R) is called the nilradical of R.

Definition 1.1.15. An ideal I of R is called a nil-ideal if each element

of I is a nilpotent. An ideal I of R is called nilpotent if Ik = (0) for

some positive integer k ≥ 1.

Definition 1.1.16. Let R be a ring with identity. The Jacobson radical

of R, denoted by J(R), is the intersection of all maximal ideals of R.

Definition 1.1.17. A ring R is called reduced if it contains no nonzero

nilpotent elements.

Definition 1.1.18. An ideal I of a ring R is called an annihilating-ideal

if there exists a nonzero ideal I ′ of R such that II ′ = (0).

Definition 1.1.19. A ring R is said to be a local ring if it contains

unique maximal ideal.

Definition 1.1.20. A ring R is said to satisfy the descending chain

condition of ideals if, for every chain of ideals I1 ⊇ I2 ⊇ I3 ⊇ . . . , there

exists a positive integer m such that Ik = Im for all k ≥ m. A ring R

is said to be an Artinian if it satisfies the descending chain condition of

ideals.
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Definition 1.1.21. A ring R is said to satisfy the ascending chain con-

dition of ideals if, for every chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ . . . , there

exists a positive integer m such that Ik = Im for all k ≥ m. A ring R

is said to be Noetherian if it satisfies the ascending chain condition of

ideals.

Remark 1.1.22. If R is an Artinian ring, then N(R) = J(R).

1.2 Homomorphisms

In studying groups we have seen that the concept of a homomorphism

turned out to be a fruitful one. This suggests that the appropriate ana-

log for rings could also lead to important ideas. To recall, for groups a

homomorphism was defined as a mapping such that φ(ab) = φ(a)φ(b).

Since a ring has two operations, what could be a more natural extension

of this type of formula than the

Definition 1.2.1. A mapping φ from the ring R into the ring R′ is said

to be a homomorphism if

1. φ(a + b) = φ(a) + φ(b),

2. φ(ab) = φ(a)φ(b),

for all a, b ∈ R.

7



As in the case of groups, let us again stress here that the + and ·

occurring on the left-hand sides of the relations in 1 and 2 are those of

R, whereas the + and · occurring on the right-hand sides are those of

R′.

A useful observation to make is that a homomorphism of one ring,

R, into another, R′, is, if we totally ignore the multiplications in both

these rings, at least a homomorphism of R into R′ when we consider

them as abelian groups under their respective additions. Therefore, as

far as addition is concerned, all the properties about homomorphisms of

groups proved carry over. In particular, merely restating Lemma 1.2.2

for the case of the additive group of a ring yields for us

Lemma 1.2.2. lf φ is a homomorphism of R into R′, then

1. φ(0) = 0.

2. φ(−a) = −φ(a) for every a ∈ R.

If both R and R′ have the respective unit elements 1 and 1′ for their

multiplications it need not follow that φ(1) = 1′. However, if R′ is an

integral domain, or if R′ is arbitrary but φ is onto, then φ(1) = 1′ is

indeed true. In the case of groups, given a homomorphism we associated

with this homomorphism a certain subset of the group which we called

the kernel of the homomorphism.

Definition 1.2.3. If φ is a homomorphism of R into R′ then the kernel
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of φ, I(φ), is the set of all elements a ∈ R such that φ(a) = 0, the

zero-element of R′.

Lemma 1.2.4. If φ is a homomorphism of R into R′ with kernel I(φ),

then

1. I(φ) is a subgroup of R under addition.

2. If a ∈ I(φ) and r ∈ R then both ar and ra are in I(φ).

Proof. Since φ is, in particular, a homomorphism of R, as an additive

group, into R′, as an additive group, (1) follows directly from our results

in group theory.

To see (2), suppose that a ∈ I(φ), r ∈ R. Then φ(a) = 0 so that

φ(ar) = φ(a)φ(r) = 0φ(r) = 0 by Lemma 1.2.2. Similarly φ(ra) = 0.

Thus by defining property of I(φ) both ar and ra are in I(φ).

Before proceeding we examine these concepts for certain examples.

2

Example 1.2.5. Let R and R′ be two arbitrary rings and define φ(a) = 0

for all a ∈ R. Trivially φ is a homomorphism and I(φ) = R and hence

φ is called the zero-homomorphism.

Example 1.2.6. Let R be a ring, R′ = R and define φ(x) = x for every

x ∈ R. Clearly φ is a homomorphism and I(φ) consists only of 0.
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Example 1.2.7. Let J(
√

2) be all real numbers of the form m + n
√

2

where m, n are integers; J(
√

2) forms a ring under the usual addition

and multiplication of real numbers.

Define φ : J(
√

2) −→ J(
√

2) by φ(m + n
√

2) = m − n
√

2. Then φ is

a homomorphism of J(
√

2) onto J(
√

2) and its kernel I(φ) = {0}.

Example 1.2.8. Let J be the ring of integers, Jn, the ring of integers

modulo n. Define φ : J −→ Jn by φ(a) = remainder of a on division by

n. Then φ is a homomorphism of J onto Jn and that the kernel, I(φ),

of φ consists of all multiples of n.

Example 1.2.9. Let R = C[0, 1] be the set of all continuous, real-valued

functions on [0, 1]. Then (R, +, ·) is a commutative ring with identity.

Define φ : R −→ R by φ(f(x)) = f(1
2). Then φ is a homomorphism of

R onto R and its kernel I(φ) = {f ∈ R : f(1
2) = 0}.

Definition 1.2.10. A homomorphism of R into R′ is said to be an

isomorphism if it is a one-to-one mapping.

Definition 1.2.11. Two rings are said to be isomorphic if there is an

isomorphism of one onto the other.

Lemma 1.2.12. The homomorphism φ of R into R′ is one to one if and

only if I(φ) = (0).
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Proof. Suppose φ is one to one. Let x ∈ I(φ). Then φ(x) = 0′ = φ(0)

and by hypothesis, x = 0 and hence I(φ) = (0).

Conversely, assume that I(φ) = (0). Let x, y ∈ R. Suppose φ(x) =

φ(y). Then φ(x − y) = 0′ and so x − y ∈ I(φ). By hypothesis, x = y

and φ is one to one. 2

1.3 Ideals and Quotient Rings

Once the idea of a homomorphism and its kernel have been set up for

rings, based on our experience with groups, it should be fruitful to carry

over some analog to rings of the concept of normal subgroup. Once this

is achieved, one would hope that this analog would lead to a construction

in rings like that of the quotient group of a group by a normal subgroup.

Finally, if one were an optimist, one would hope that the homomorphism

theorems for groups would come over in their entirety to rings.

Definition 1.3.1. A nonempty subset J of R is said to be a (two-sided)

ideal of R if

1. J is a subgroup of R under addition.

2. For every u ∈ J and r ∈ R, both ur and ru are in J .

Definition 1.3.2. An ideal M of a ring R is called a maximal ideal if

M 6= R and the only ideals containing M are M and R.
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Lemma 1.3.3. If U is an ideal of the ring R, then R/U is a ring and

is a homomorphic image of R.

Proof. Given an ideal U of a ring R, let R/U = {a+U : a ∈ R} be the

set of all the distinct cosets of U in R and a + U + b + U = (a + b) + U .

Since (U, +) is a subgroup of (R, +), (R/U, +) is a group. Since R is an

abelian group under addition, (R/U, +) is an abelian group. From this

0 + U is an additive identity in R/U and −a + U is an additive inverse

of a + U in R/U

Define (a+U)(b+U) = ab+U . If a+U = a′ +U and b+U = b′ +U ,

then under our definition of the multiplication, (a + U)(b + U) = (a′ +

U)(b′ + U). Equivalently, it must be established that ab + U = a′b′ + U .

To this end we first note that since a + U = a′ + U , a = a′ + u1 where

u1 ∈ U ; similarly b = b′+u2 where u2 ∈ U . Thus ab = (a′+u1)(b+u2) =

a′b′ +u1b
′ +a′u2 +u1u2; since U is an ideal of R, u1b

′ ∈ U , a′u2 ∈ U , and

u1u2 ∈ U .

Consequently u1b
′ + a′u2 + u1u2 = u3 ∈ U . But then ab = a′b′ + u3 ,

from which we deduce that ab + U = a′b′ + u3 + U , and since u3 ∈ U ,

u3 + U = U . Hence ab + U = a′b′ + U .

If X = a + U , Y = b + U , Z = c + U are three elements of R/U ,

where a, b, c ∈ R, then (X + Y )Z = ((a + U) + (b + U))(c + U) =

((a+ b)+U)(c+U) = (a+ b)c+U = ac+ bc+U = (ac+U)+(bc+U) =
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(a + U)(c + U) + (b + U)(c + U) = XZ + Y Z. Similar way we get

Z(X + Y ) = ZX + ZY and hence (R/U, +, ·) is a ring.

Clearly, if R is commutative then so is R/U , for (a + U)(b + U) =

ab + U = ba + U = (b + U)(a + U). If R has a unit element 1, then R/U

has a unit element 1 + U .

Define φ : R → R/U by φ(a) = a + U for all a ∈ R. Then φ(a + b) =

a+b+U = a+U+b+U = φ(a)+φ(b) and φ(ab)ab+U = (a+U)(b+U) =

φ(a)φ(b) and so φ is ring homomorphism. For any x = a + U ∈ R/U ,

x = a + U = φ(a) and so φ is onto. Let a ∈ I(φ). Then φ(a) = 0 + U

implies a + U = 0 + U and so a ∈ U . Hence I(φ) = U . 2

Theorem 1.3.4. Let R, R′ be rings and φ a homomorphism of R onto

R′ with kernel U . Then R′ is isomorphic to R/U . Moreover there is

a one-to-one correspondence between the set of ideals of R′ and the set

of ideals of R which contain U . This correspondence can be achieved by

associating with an ideal W ′ in R′ the ideal W in R defined by W = {x ∈

R | φ(x) ∈ W ′}. With W so defined, R/W is isomorphic to R′/W ′.

1.4 More Ideals and Quotient Rings

We continue the discussion of ideals and quotient rings. We now ask the

explicit question: Under what conditions is the homomorphic image of
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a ring a field? For commutative rings we give a complete answer in this

section.

Lemma 1.4.1. Let R be a commutative ring with unit element whose

only ideals are (0) and R itself. Then R is a field.

Proof. In order to effect a proof of this lemma for any a = I = 0 ∈ R

we must produce an element b = I = 0 ∈ R such that ab = 1.

So, suppose that a = 1 = 0 is in R. Consider the set Ra = {xa | x ∈

R}. We claim that Ra is an ideal of R. In order to establish this as

fact we must show that it is a subgroup of R under addition and that if

u ∈ Ra and r ∈ R then ru is also in Ra. (We only need to check that

ru is in Ra for then ur also is since ru = ur.)

Now, if u, v ∈ Ra, then u = r1a, v = r2a for some r1, r2 ∈ R.

Thus u + v = r1a + r2a = (r1 + r2)a ∈ Ra; similarly −u = −r1a =

(−r1)a ∈ Ra. Hence Ra is an additive subgroup of R. Moreover, if

r ∈ R, ru = r(r1a) = (rr1)a ∈ Ra. Ra therefore satisfies all the defining

conditions for an ideal of R, hence is an ideal of R.

By our assumptions on R, Ra = (0) or Ra = R. Since 0 6= a =

Ia ∈ Ra, Ra 6= (0); thus we are left with the only other possibility,

namely that Ra = R. This last equation states that every element in R

is a multiple of a by some element of R. In particular, 1 ∈ R and so it
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can be realized as a multiple of a; that is, there exists an element b ∈ R

such that ba = 1. 2

Definition 1.4.2. An ideal M 6= R in a ring R is said to be a maximal

ideal of R if whenever U is an ideal of R such that M ⊂ U ⊂ R, then

either R = U or M = U .

In other words, an ideal of R is a maximal ideal if it is impossible to

squeeze an ideal between it and the full ring. Given a ring R there is no

guarantee that it has any maximal ideals! If the ring has a unit element

this can be proved, assuming a basic axiom of mathematics, the so-called

axiom of choice. Also there may be many distinct maximal ideals in a

ring R; this will be illustrated for us below in the ring of integers.

Example 1.4.3. Let R be the ring of integers, and let U be an ideal of

R. Since U is a subgroup of R under addition, from our results in group

theory, we know that U consists of all the multiples of a fixed integer n0

; we write this as U = (n0). What values of n0 lead to maximal ideals?

We first assert that if p is a prime number then P = (p) is a maximal

ideal of R. For if U is an ideal of R and U ⊂ P , then U = (n0) for

some integer n0 . Since p ∈ P ⊂ U , p = mn0 for some integer m;

because p is a prime this implies that n0 = 1 or n0 = p. If n0 = p, then

P ⊂ U = (n0) ⊂ P , so that U = P follows; if n0 = 1, then 1 ∈ U , hence
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r = lr ∈ U for all r ∈ R whence U = R follows. Thus no ideal, other

than R or P itself, can be put between P and R, from which we deduce

that P is maximal.

Suppose, on the other hand, that M = (n0) is a maximal ideal of R.

We claim that n0 must be a prime number, for if n0 = ab, where a, b

are positive integers, then U = (a) ⊂ M , hence U = R or U = M . If

U = R, then a = 1 is an easy consequence; if U = M , then a ∈ M and

so a = rn0 for some integer r, since every element of M is a multiple of

n0. But then n0 = ab = rn0b, from which we get that rb = 1, so that

b = 1, n0 = a.Thus n0 is a prime number.

In this particular example the notion of maximal ideal comes alive

it corresponds exactly to the notion of prime number. One should not,

however, jump to any hasty generalizations; this kind of correspondence

does not usually hold for more general rings.

Example 1.4.4. Let R be the ring of all the real-valued, continuous

functions on the closed unit interval. Let

M = {f(x) ∈ R | f(1
2) = 0}.

M is certainly an ideal of R. Moreover, it is a maximal ideal of R, for if

the ideal U contains M and U 6= M , then there is a function g(x) ∈ U ,

g(x) /∈ M . Since g(x) /∈ M , g(1
2) = α 6= 0. Now h(x) = g(x) − α is such
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that h(1
2) = g(1

2) − α = 0, so that h(x) ∈ M ⊂ U . But g(x) is also in

U ; therefore α = g(x) − h(x) ∈ U and so 1 = αα−1 ∈ U . Thus for any

function t(x) ∈ R, t(x) = 1t(x) ∈ U , in consequence of which U = R.

M is therefore a maximal ideal of R. Similarly if γ is a real number

0 ≦ γ ≦ 1, then Mγ = {f(x) ∈ R | f(γ) = 0} is a maximal ideal of R.

Example 1.4.5. If R is a field, then (0) is a maximal ideal in R

Example 1.4.6. If R = Zn, where n = pk1

1 · · · pkt

t , where pi’s are distinct

primes, then (pi) is only maximal ideal in R

Theorem 1.4.7. If R is a commutative ring with unit element and M

is an ideal of R, then M is a maximal ideal of R if and only if R/M is

a field.

Proof. Suppose, first, that M is an ideal of R such that R/M is a

field. Since R/M is a field its only ideals are (0) and R/M itself. But

by Theorem 1.3.4 there is a one-to-one correspondence between the set

of ideals of R/M and the set of ideals of R which contain M . The ideal

M of R corresponds to the ideal (0) of R/M whereas the ideal Rof R

corresponds to the ideal R/M of R/M in this one-to-one mapping. Thus

there is no ideal between M and R other than these two, whence M is

a maximal ideal.
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On the other hand, if M is a maximal ideal of R, by the correspon-

dence mentioned above R/M has only (0) and itself as ideals. Fur-

thermore R/M is commutative and has a unit element since R enjoys

both these properties. All the conditions of Lemma 1.4.1 are fulfilled for

R/Mso we can conclude that, R/M is a field. 2

1.5 The Field of Quotients of an Integral Domain

Let us recall that an integral domain is a commutative ring D with the

additional property that it has no zero-divisors, that is, if ab = 0 for

some a, b ∈ D then at least one of a or b must be 0. The ring of integers

is, of course, a standard example of an integral domain.

The ring of integers has the attractive feature that we can enlarge it

to the set of rational numbers, which is a field. Can we perform a similar

construction for any integral domain? We will now proceed to show that

indeed we can.

Definition 1.5.1. A ring R can be imbedded in a ring R′ if there is

an isomorphism of R into R′. (If R and R′ have unit elements 1 and 1′

we insist, in addition, that this isomorphism takes 1 onto 1′.)

R′ will be called an over-ring or extension of R if R can be imbed-

ded in R′. With this understanding of imbedding we prove
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Theorem 1.5.2. Every integral domain can be imbedded in a field.

Proof. Let D be our integral domain; roughly speaking the field we

seek should be all quotients a/b, where a, b ∈ D and b 6= 0. Of course in

D, a/b may very well be meaningless. What should we require of these

symbols a/b? Clearly we must have an answer to the following three

questions:

1. When is a/b = c/d?

2. What is (a/b) + (c/d)?

3. What is (a/b)(c/d)?

In answer to 1, what could be more natural than to insist that a/b = c/d

if and only if ad = bc? As for 2 and 3, why not try the obvious, that is,

define

a

b
+

c

d
=

ad + bc

bd
and

a

b

c

d
=

ac

bd

In fact in what is to follow we make these considerations our guide. So

let us leave the heuristics and enter the domain of mathematics, with

precise definitions and rigorous deductions.

Let M be the set of all ordered pairs (a, b) where a, b ∈ D and b 6= 0.

(Think of (a, b) as a/b.) In M we now define a relation as follows:

(a, b) ∼ (c, d) if and only if ad = bc.

We claim that this defines an equivalence relation on M . To establish

this we check the three defining conditions for an equivalence relation
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for this particular relation.

1. If (a, b) ∈ M , then (a, b) ∼ (a, b) since ab = ba.

2. If (a, b), (c, d) ∈ M and (a, b) ∼ (c, d), then ad = bc, hence cb = da,

and so (c, d) ∼ (a, b).

3. If (a, b), (c, d), (e, f) are all in M and (a, b) ∼ (c, d) and (c, d) ∼ (e, f),

then ad = bc and cf = de. Thus bcf = bde, and since bc = ad, it

follows that adf = bde. Since D is commutative, this relation becomes

afd = bed; since, moreover, D is an integral domain and d 6= 0, this

relation further implies that af = be. But then (a, b) ∼ (e, f) and our

relation is transitive. Let [a, b] be the equivalence class in M of (a, b), and

let F be the set of all such equivalence classes [a, b] where a, b ∈ D and

b 6= 0. F is the candidate for the field we are seeking. In order to create

out of F a field we must introduce an addition and a multiplication for

its elements and then show that under these operations F forms a field.

We first dispose of the addition. Motivated by our heuristic discussion

at the beginning of the proof we define [a, b] + [c, d] = [ad + bc, bd]

Since D is an integral domain and both b 6= 0 and d 6= 0 we have

that bd 6= 0; this, at least, tells us that [ad + bc, bd] ∈ F . We now

assert that this addition is well defined, that is, if [a, b] = [a′, b′] and

[c, d] = [c′, d′], then [a, b] + [c, d] = [a′, b′] + [c′, d′]. To see that this is so,

from [a, b] = [a′, b′] we have that ab′ = ba′; from [c, d] = [c′, d′] we have
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that cd′ = dc′.

What we need is that these relations force the equality of [a, b]+ [c, d]

and [a′, b′] + [c′, d′]. From the definition of addition this boils down to

showing that [ad + bc, bd] = [a′d′ + b′c′, b′d′], or, in equivalent terms,

that (ad + bc)b′d′ = bd(a′d′ + b′c′). Using ab′ = ba′, cd′ = dc′ this

becomes: (ad+bc)b′d′ = adb′d′+bcb′d′ = ab′dd′+bb′cd′ = ba′dd′+bb′dc′ =

bd(a′d′ + b′c′), which is the desired equality.

Clearly [0, b] acts as a zero-element for this addition and [−a, b] as

the negative of [a, b]. It is a simple matter to verify that F is an abelian

group under this addition.

We now turn to the multiplication in F . Again motivated by our

preliminary heuristic discussion we define [a, b][c, d] = [ac, bd]. As in the

case of addition, since b 6= 0, d 6= 0, bd 6= 0 and so [ac, bd] ∈ F . A

computation, very much in the spirit of the one just carried out, proves

that if [a, b] = [a′, b′] and [c, d] = [c′, d′] then [a, b][c, d] = [a′, b′][c′, d′]. One

can now show that the nonzero elements of F (that is, all the elements

[a, b] where a 6= 0) form an abelian group under multiplication in which

[d, d] acts as the unit element and where [c, d]−1 = [d, c].

It is a routine computation to see that the distributive law holds in

F . F is thus a field.

All that remains is to show that D can be imbedded in F . We shall
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exhibit an explicit isomorphism of D into F . Before doing so we first

notice that for x 6= 0, y 6= 0 in D, [ax, x] = [ay, y] because (ax)y = x(ay);

let us denote [ax, x] by [a, 1]. Define φ : D −→ F by φ(a) = [a, 1] for

every a ∈ D. We leave it to the reader to verify that φ is an isomorphism

of D into F , and that if D has a unit element 1, then φ(1) is the unit

element of F . The theorem is now proved in its entirety.

F is usually called the field of quotients of D. In the special case

in which D is the ring of integers, the F so constructed is, of course, the

field of rational numbers. 2

Remark 1.5.3. If F is a field, then the field of quotient of F is F itself.

Example 1.5.4. 1. Q is the field of quotient of Z

2. If F is a field, then F [x] is an integral domain and so F (x) is the

field of quotient of F [x].
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Chapter 2

Unit 2

2.1 Euclidean Rings

The class of rings we propose to study now is motivated by several exist-

ing examples-the ring of integers, the Gaussian integers, and polynomial

rings. The definition of this class is designed to incorporate in it certain

outstanding characteristics of the three concrete examples listed above.

Definition 2.1.1. An integral domain R is said to be a Euclidean ring

if for every a 6= 0 in R there is defined a nonnegative integer d(a) such

that

1. For all a, b ∈ R, both nonzero, d(a) ≦ d(ab).

2. For any a, b ∈ R, both nonzero, there exist t, r ∈ R such that a = tb+r

where either r = 0 or d(r) < d(b).
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We do not assign a value to d(O). The integers serve as an example of

a Euclidean ring, where d(a) = absolute value of a acts as the required

function. In the next section we shall see that the Gaussian integers also

form a Euclidean ring. Out of that observation, and the results developed

in this part, we shall prove a classic theorem in number theory due to

Fermat, namely, that every prime number of the form 4n + 1 can be

written as the sum of two squares.

Theorem 2.1.2. Let R be a Euclidean ring and let A be an ideal of R.

Then there exists an element a0 ∈ A such that A consists exactly of all

a0x as x ranges over R. 2

Proof. If A just consists of the element 0, put a0 = 0 and the conclusion

of the theorem holds.

Thus we may assume that A 6= (0); hence there is an a 6= 0 in A. Pick

an a0 ∈ A such that d(a0) is minimal. (Since d takes on nonnegative

integer values this is always possible.)

Suppose that a ∈ A. By the properties of Euclidean rings there exist

t, r ∈ R such that a = ta0 + r where r = 0 or d(r) < d(a0). Since a0 ∈ A

and A is an ideal of R, ta0 is in A. Combined with a ∈ A this results in

a− ta0 ∈ A; but r = a− ta0 , whence r ∈ A. If r 6= 0 then d(r) < d(a0),

giving us an element r in A whose d-value is smaller than that of a0 , in

contradiction to our choice of a0 as the element in A of minimal d-value.

Consequently r = 0 and a = ta0 , which proves the theorem.

We introduce the notation (a) = {xa | x ∈ R} to represent the ideal
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of all multiples of a. 2

Definition 2.1.3. An integral domain R with unit element is a prin-

cipal ideal ring if every ideal A in R is of the form A = (a) for some

a ∈ R.

.

Corollary 2.1.4. A Euclidean ring possesses a unit element.

Proof. Let R be a Euclidean ring; then R is certainly an ideal of R, so

that by Theorem 2.1.2 we may conclude that R = (u0) for some u0 ∈ R.

Thus every element in R is a multiple of u0. Therefore, in particular,

u0 = u0c for some c ∈ R. If a ∈ R then a = xu0 for some x ∈ R, hence

ac = (xu0)c = x(u0c) = xu0 = a. Thus c is seen to be the required unit

element. 2

Definition 2.1.5. If a 6= 0 and b are in a commutative ring R then a is

said to divide b if there exists a c ∈ R such that b = ac. We shall use

the symbol a | b to represent the fact that a divides b and a ∤ b to mean

that a does not divide b.

The proof of the next remark is so simple and straightforward that

we omit it.

Remark 2.1.6.
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1. If a | b and b | c then a | c.

2. If a | b and a | c then a | (b ± c) .

3. If a | b then a | bx for all x ∈ R.

Definition 2.1.7. If a, b ∈ R then d ∈ R is said to be a greatest common

divisor of a and b if

1. d | a and d | b.

2. Whenever c | a and c | b then c | d.

We shall use the notation d = (a, b) to denote that d is a greatest common

divisor of a and b.

Lemma 2.1.8. Let R be a Euclidean ring. Then any two elements a

and b in R have a greatest common divisor d. Moreover d = λa + µb for

some λ, µ ∈ R.

2

Let A be the set of all elements ra + sb where r, s range over R. We

claim that A is an ideal of R. For suppose that x, y ∈ A; therefore

x = r1a + s1b, y = r2a + s2b, and so x ± y = (r1 ± r2)a + (s1s2)b ∈ A.

Similarly, for any u ∈ R, ux = u(r1a + s1b) = (ur1)a + (us1)b ∈ A.

Since A is an ideal of R, there exists an element d ∈ A such that

every element in A is a multiple of d. By hint of the fact that d ∈ A

and that every element of A is of the form ra+ sb, d = λa+µb for some

λ, µ ∈ R. Now by the above corollary, R has a unit element 1; thus
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a = la + Ob ∈ A, b = Oa + 1b ∈ A. Being in A, they are both multiples

of d, whence d | a and d | b.

Suppose, finally, that c | a and c | b; then c | λa and c | µb so that c

certainly divides λa+µb = d. Therefore d has all the requisite conditions

for a greatest common divisor and the lemma is proved. 2

Definition 2.1.9. Let R be a commutative ring with unit element. An

element a ∈ R is a unit in R if there exists an element b ∈ R such that

ab = 1.

A unit in a ring is an element whose inverse is also in the ring.

Lemma 2.1.10. Let R be an integral domain with unit element and

suppose that for a, b ∈ R both a | b and b | a are true. Then a = ub,

where u is a unit in R.

Proof. Since a | b, b = xa for some x | R; since b | a, a = yb for some

y ∈ R. Thus b = x(yb) = (xy)b; but these are elements of an integral

domain, so that we can cancel the b and obtain xy = 1; y is thus a unit

in R and a = yb, proving the lemma. 2

Definition 2.1.11. Let R be a commutative ring with unit element.

Two elements a and b in R are said to be associates if b = ua for some

unit u in R.

The relation of being associates is an equivalence relation. Note that

in a Euclidean ring any two greatest common divisors of two given ele-

ments are associates.

27



Up to this point we have, as yet, not made use of condition 1 in the

definition of a Euclidean ring, namely that d(a) ≤ d(ab) for b 6= 0. We

now make use of it in the proof of

Lemma 2.1.12. Let R be a Euclidean ring and a, b ∈ R. If b 6= 0 is not

a unit in R, then d(a) < d(ab).

Proof. Consider the ideal A = (a) = {xa | x ∈ R} of R. By condition

1 for a Euclidean ring, d(a) ≤ d(xa) for x 6= 0 in R. Thus the d-value

of a is the minimum for the d-value of any element in A. Now ab ∈ A;

if d(ab) = d(a), since the d-value of ab is minimal in regard to A, every

element in A is a multiple of ab. In particular, since a ∈ A, a must be a

multiple of ab; whence a = abx for some x ∈ R. Since all this is taking

place in an integral domain we obtain bx = 1. In this way b is a unit in

R, in contradiction to the fact that it was not a unit. The net result of

this is that d(a) < d(ab). 2

Definition 2.1.13. In the Euclidean ring R a nonunit π is said to be a

prime element of R if whenever π = ab, where a, b are in R, then one

of a or b is a unit in R.

A prime element is thus an element in R which cannot be factored in

R in a nontrivial way.

Lemma 2.1.14. Let R be a Euclidean ring. Then every element in R

is either a unit in R or can be written as the product of a finite number

of prime elements of R.
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Proof. The proof is by induction on d(a).

If d(a) = d(1) then a is a unit in R, and so in this case, the assertion

of the lemma is correct.

We assume that the lemma is true for all elements x in R suth that

d(x) < d(a). On the basis of this assumption we aim to prove it for a.

This would complete the induction and prove the lemma.

If a is a prime element of R there is nothing to prove. So suppose

that a = bc where neither b nor c is a unit in R. By above Lemma,

d(b) < d(bc) = d(a) and d(c) < d(bc) = d(a). Thus by our induction

hypothesis b and c can be written as a product of a finite number of prime

elements of R; b = π1π2 · · ·πn, c = π′
1π

′
2 · · ·π′

m where the π’s and π′’s are

prime elements of R. Consequently a = bc = π1π2 · · ·πnπ
′
1π

′
2 · · ·π′

m and

in this way a has been factored as a product of a finite number of prime

elements. This completes the proof. 2

Definition 2.1.15. In the Euclidean ring R, a and b in R are said to be

relatively prime if their greatest common divisor is a unit of R.

Since any associate of a greatest common divisor is a greatest common

divisor, and since I is an associate of any unit, if a and b are relatively

prime we may assume that (a, b) = 1.

Lemma 2.1.16. Let R be a Euclidean ring. Suppose that for a, b, c ∈ R,

a | bc but (a, b) = 1. Then a | c.
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Proof. Note that the greatest common divisor of a and b can be realized

in the form λa+µb. Thus by our assumptions, λa+µb = 1. Multiplying

this relation by c we obtain λac + µbc = c. Now a | λac, always, and

a | µbc since a | bc by assumption; therefore a | (λac + µbc) = c. This is,

of course, the assertion of the lemma.

We wish to show that prime elements in a Euclidean ring play the

same role that prime numbers play in the integers. If π in R is a prime

element of R and a ∈ R, then either π | a or (π, a) = 1, for, in particular,

(π, d) is a divisor of π so it must be π or 1 (or any unit). If (π, a) = 1,

one-half our assertion is true; if (π, a) = π, since (π, a) | a we get π | a,

and the other half of our assertion is true. 2

Lemma 2.1.17. If π is a prime element in the Euclidean ring R and

π | ab where a, b ∈ R then π divides at least one of a or b.

Proof. Suppose that π does not divide a; then (π, a) = 1. Applying

Lemma 2.1.16 we are led to π | b. 2

Corollary 2.1.18. If π is a prime element in the Euclidean ring R and

π | a1a2 · · · an then π divides at least one a1, a2, . . . , an.

Theorem 2.1.19. (Unique Factorization Theorem) Let R be a

Euclidean ring and a 6= 0 a nonunit in R. Suppose that a = π1π2 · · ·πn =

π′
1π

′
2 · · ·π′

m where the πi and π′
j are prime elements of R. Then n = m

and each πi, 1 ≤ i ≤ π is an associate of some π′
j, 1 ≤ j ≤ m and

conversely each π′
k is an associate of some πq.
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Proof. Look at the relation a = π1π2 · · ·πn = π′
1π

′
2 · · ·π′

m. But π1 |
π1π2 · · ·πn, hence π1 | π′

1π
′
2 · · ·π′

m. By above lemma, π1 must divide

some π′
i; since π1 and π′

i are both prime elements of R and π1 | π′ − i

they must be associates and π′
i = u1π1, where u1 is a unit in R. Thus

π1π2 · · ·πn = π′
1π

′
2 · · ·π′

m = u1π1π
′
2 · · ·π′

i−1π
′
i+1π

′
m cancel off π1 and we

are left with π2 · · ·πn = u1π
′
2 · · ·π′

i−1π
′
i+1π

′
m. Repeat the argument on

this relation with π2. After n steps, the left side becomes 1, the right

side a product of a certain number of π′ (the excess of m over n). This

would force n ≤ m since the π′ are not units. Similarly, m ≤ n, so that

n = m. In the process we have also showed that every πi has some π′
i as

an associate and conversely.

From above arguments, we have that every nonzero element in a Eu-

clidean ring R can be uniquely written (up to associates) as a product

of prime elements or is a unit in R.

We finish the section by determining all the maximal ideals in a Eu-

clidean ring.

Now we proved that any ideal A in the Euclidean ring R is of the

form A = (a0) where (a0) = {xa0 | x ∈ R}. 2

Lemma 2.1.20. The ideal A = (a0) is a maximal ideal of the Euclidean

ring R if and only if a0 is a prime element of R.

Proof. We first prove that if a0 is not a prime element, then A = (a0)

is not a maximal ideal. For, suppose that a0 = bc where b, c ∈ R and

neither b nor c is a unit. Let B = (b); then certainly a0 ∈ B so that
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A ⊂ B. We claim that A 6= B and that B 6= R.

If B = R then 1 ∈ B so that 1 = xb for some x ∈ R, forcing b to be a

unit in R, which it is not. On the other hand, if A = B then b ∈ B = A

whence b = xa0 for some x ∈ R. Combined with a0 = bc this results in

a0 = xca0 , in consequence of which xc = 1. But this forces c to be a

unit in R, again contradicting our assumption. Therefore B is neither

A nor R and since A ⊂ B, A cannot be a maximal ideal of R.

Conversely, suppose that a0 is a prime element of R and that U is an

ideal of R such that A = (a0) ⊂ U ⊂ R. By above Theorem, U = (u0)

Since a0 ∈ A ⊂ U = (u0), a0 = xu0 for some x ∈ R. But a0 is a prime

element of R, from which it follows that either x or u0 is a unit in R. If

u0 is a unit in R then U = R. If, on the other hand, x is a unit in R,

then x−1 ∈ R and the relation a0 = xu0 becomes u0 = x−1a0 ∈ A since

A is an ideal of R. This implies that U ⊂ A; together with A ⊂ U we

conclude that U = A. Therefore there is no ideal of R which fits strictly

between A and R. This means that A is a maximal ideal of R. 2

2.2 A Particular Euclidean Ring

An abstraction in mathematics gains in substance and importance when,

particularized to a specific example, it sheds new light on this example.

We are about to particularize the notion of a Euclidean ring to a concrete

ring, the ring of Gaussian integers. Applying the general results obtained

about Euclidean rings to the Gaussian integers we shall obtain a highly
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nontrivial theorem about prime numbers due to Fermat.

Let J [i] denote the set of all complex numbers of the form a + bi

where a and b are integers. Under the usual addition and multiplication

of complex numbers J [i] forms an integral domain called the domain of

Gaussian integers.

Our first objective is to exhibit J [i] as a Euclidean ring. In order to

do this we must first introduce a function d(x) defined for every nonzero

element in J [i] which satisfies

1. d(x) is a nonnegative integer for every x 6= 0 ∈ J [i].

2. d(x) ≤ d(xy) for every y 6= 0 in J [i].

3. Given u, v ∈ J [i] there exist t, r ∈ J [i] such that v = tu + r where

r = 0 or d(r) < d(u).

Our candidate for this function d is the following: if x = a + bi ∈
J [i],then d(x) = a2 + b2. The d(x) so defined certainly satisfies property

1; in fact, if x 6= 0 ∈ J [i] then d(x) ≥ 1. As is well known, for any

two complex numbers (not necessarily in J [i]) x, y, d(xy) = d(x)d(y);

thus if x and y are in addition in J [i] and y 6= 0, then since d(y) ≥ 1,

d(x) = d(x)1 ≤ d(x)d(y) = d(xy), showing that condition 2 is satisfied.

All our effort now will be to show that condition 3 also holds for this

function d in J [i]. This is done in the proof of

Theorem 2.2.1. J [i] is a Euclidean ring.

Proof. As was remarked in the discussion above, to prove Theorem

2.2.1 we merely must show that, given x, y ∈ J [i] there exists t, r ∈ J [i]
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such that y = tx + r where r = 0 or d(r) < d(x).

We first establish this for a very special case, namely, where y is

arbitrary in J [i] but where x is an (ordinary) positive integer n. Suppose

that y = a + bi; by the division algorithm for the ring of integers we can

find integers u, v such that a = un + u1 and b = vn + v1 where u1 and

v1 are integers satisfying |u1| ≤ 1
2n and |v1| ≤ 1

2n. Let t = u + vi and

r = u1+v1i; then y = a+bi = un+u1+(vn+v1)i = (u+vi)n+u1+v1i =

tn+r. Since d(r) = d(u1 +v1i) = u2
1 +v2

1 ≤ n2/4+n2/4 < n2 = d(n), we

see that in this special case we have shown that y = tn + r with r = 0

or d(r) < d(n).

We now go to the general case; let x 6= 0 and y be arbitrary elements

in J [i]. Thus xx̄ is a positive integer n where x̄ is the complex conjugate

of x. Applying the result of the paragraph above to the elements yx̄

and n we see that there are elements t, r ∈ J [i] such that yx̄ = tn + r

with r = 0 or d(r) < d(n). Putting into this relation n = xx̄ we

obtain d(yx̄ − txx̄) < d(n) = d(xx̄); applying to this the fact that

d(yx̄ − txx̄) = d(y − tx)d(x̄) and d(xx̄) = d(x)d(x̄) we obtain that

d(y − tx)d(x̄) < d(x)d(x̄). Since x 6= 0, d(x) is a positive integer, so

this inequality simplifies to d(y − tx) < d(x). We represent y = tx + r0,

where r0 = y − tx; thus t and r0 are in J [i] and as we saw above, r0 = 0

or d(r0) = d(y − tx) < d(x). This the theorem.

Since J [i] has been proved to be a Euclidean ring, we are free to use

the results established about this class of rings in the previous section

to the Euclidean ring we have at hand, J [i]. 2
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Lemma 2.2.2. Let p be a prime integer and suppose that for some in-

teger c relatively prime to p we can find integers x and y such that

x2 + y2 = cp. Then p can be written as the sum of squares of two inte-

gers, that is, there exist integers a and b such that p = a2 + b2.

Proof. The ring of integers is a subring of J [i]. Suppose that the integer

p is also a prime element of J [i]. Since cp = x2 + y2 = (x + yi)(x − yi),

clearly p | (x + yi) or p | (x − yi) in J [i]. But if p | (x + yi) then

x + yi = p(u + vi) which would say that x = pu and y = pv so that

p also would divide x − yi. But then p2 | (x + yi)(x − yi) = cp from

which we would conclude that p | c contrary to assumption. Similarly

if p | (x − yi). Thus p is not a prime element in J [i]! In consequence of

this,

p = (a + bi)(g + di)

where a + bi and g + di are in J [i] and where neither a + bi nor g + di is

a unit in J [i]. But this means that neither a2 + b2 = 1 nor g2 + d2 = 1.

(See Problem 2.) From p = (a + bi)(g + di) it follows easily that p =

(a − bi)(g − di). Thus

p2 = (a + bi)(g + di)(a − hi)(g − di) = (a2 + b2)(g2 + d2).

Therefore (a2 + b2) | p2 so a2 + b2 = 1, porp2 ; a2 + b2 6= 1 since a + bi is

not a unit, in J [i]; a2 + b2 6= p2 , otherwise g2 + d2 = 1, contrary to the

fact that g + di is not a unit in J [i]. Thus the only feasibility left is that
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a2 + b2 = p and the lemma is thereby established.

The odd prime numbers divide into two classes, those which have a

remainder ,of 1 on division by 4 and those which have a remainder of 3

on division by 4. We aim to show that every prime number of the first

kind can be written as the sum of two squares, whereas no prime in the

second class can be so represented. 2

Lemma 2.2.3. If p is a prime number of the form 4n + 1, then we can

solve the congruence x2 ≡ −1 mod p.

Proof. Let x = 1 · 2 · 3 · · · (p − 1)/2. Since p − 1 = 4n, in this product

for x there are an even number of terms, in consequence of which

x ≡ (−1)(−2)(−3) · · ·
(

−
(p − 1

2

)

)

But p − k ≡ −k mod p, so that

x2 ≡
(

1 · 2 · · · p − 1

2

)

(−1)(−2) · · ·
(

−
(p − 1

2

)

)

≡ 1 · 2 · · · p − 1

2

p + 1

2
· · · (p − 1)

≡ (p − 1)! = 1 mod p

We are using here Wilson’s theorem, proved earlier, namely that if p is

a prime number (p − 1)! ≡ −1(p).

To illustrate this result, if p = 13,

x = 1 · 2 · 3 · 4 · 5 · 6 = 720 = 5 mod 13 and 52 = −1 mod 13.
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2

Theorem 2.2.4. (FERMAT) If p is a prime number of the form 4n+

1, then p = a2 + b2 for some integers a, b.

Proof. By above Lemma, there exists an x such that x2 ≡ −1 mod p.The

x can be chosen so that 0 ≤ x ≤ p − 1 since we only need to use the

remainder of x on division by p. We can restrict the size of x even fur-

ther, namely to satisfy |x| ≤ p/2. For if x > p/2, then y = p−x satisfies

y2 ≡ −1 mod p but |y| ≦ p/2. Thus we may assume that we have an

integer x such that |x| ≤ p/2 and x2 + 1 is a multiple of p, say cp. Now

cp = x2 + 1 ≦ p2/4 + 1 < p2, hence c < p and so p ∤ c. Thus we obtain

that p = a2 + b2 for some integers a and b, proving the theorem. 2
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Chapter 3

Unit 3

3.1 Polynomial Rings

Let F be a field. By the ring of polynomials in the indeterminate, x,

written as F [x], we mean the set of all symbols a0+a1x+· · ·+anx
n, where

n can be any nonnegative integer and where the coefficients a1, a2, . . . , an

are all in F .

In order to make a ring out of F [x] we must be able to recognize

when two elements in it are equal, we must be able to add and multiply

elements of F [x] so that the axioms defining a ring hold true for F [x].

This will be our initial goal.

We could avoid the phrase ”the set of all symbols” used above by

introducing an appropriate apparatus of sequences but it seems more

desirable to follow a path which is somewhat familiar to most readers.
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Definition 3.1.1. If p(x) = a0 +a1x+ · · ·+amxm and q(x) = b0 + b1x+

· · · + bnx
n are in F [x], then p(x) = q(x) if and only if for every integer

i ≥ 0, ai = bi.

Thus two polynomials are declared to be equal if and only if their

corresponding coefficients are equal.

Definition 3.1.2. If p(x) = a0 +a1x+ · · ·+amxm and q(x) = b0 + b1x+

· · ·+ bnx
n are both in F [x], then p(x)+ q(x) = c0 + c1x+ · · ·+ ctx

t where

for each i, ci = ai + bi.

In other words, add two polynomials by adding their coefficients and

collecting terms. To add 1 + x and 3 − 2x + x2 we consider 1 + x as

1 + x + 0x2 and add, according to the recipe given in the definition, to

obtain as their sum 4 − x + x2.

The most complicated item, and the only one left for us to define for

F [x], is the multiplication.

Definition 3.1.3. If p(x) = a0 +a1x+ · · ·+amxm and q(x) = b0 + b1x+

· · · + bnx
n, then p(x)q(x) = c0 + c1x + · · · + ckx

k where

ct = atb0 + at−1b1 + at−2b2 + · · · + a0bt.

This definition says nothing more than: multiply the two polynomials

by multiplying out the symbols formally, use the relation xαxβ = xα+β,
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and collect terms. Let us illustrate the definition with an example:

p(x) = 1 + x − x2, q(x) = 2 + x2 + x3.

Here a0 = 1, a1 = 1, a2 = −1, a3 = a4 = · · · = 0, and b0 = 2, b1 = 0,

b2 = 1, b3 = 1, b4 = b5 = · · · = 0. Thus

c0 = a0b0 = 1.2 = 2 ,

c1 = a1b0 + a0b1 = 1.2 + 1.0 = 2,

c2 = a2b0 + a1b1 + a0b2 = (−1)(2) + 1.0 + 1.1 = −1,

c3 = a3b0 + a2b1 + a1b2 + a0b3 = (0)(2) + (−1)(0) + 1.1 + 1.1 = 2,

c4 = a4b0 + a3b1 + a2b2 + a1b3 + a0b4

= (0)(2) + (0)(0) + (−1)(1) + (1)(1) + 1(0) = 0,

c5 = a5b0 + a4b1 + a3b2 + a2b3 + a1b4 + a0b5

= (0)(2) + (0)(0) + (0)(1) + (−1)(1) + (1)(0) + (0)(0) = −1,

c6 = a6b0 + a5b1 + a4b2 + a3b3 + a2b4 + a1b5 + a0b6

= (0)(2) + (0)(0) + (0)(1) + (0)(1) + (−1)(0) + (1)(0) + (1)(0) = 0,

c7 = c8 = · · · = 0.

Therefore according to our definition,

(1 + x − x2)(2 + x2 + x3) = c0 + c1x + · · · = 2 + 2x − x2 + 2x3 − x5.

If you multiply these together high-school style you will see that you

get the same answer. Our definition of product is the one the reader has

always known.

Without further ado we assert that F[x] is a ring with these opera-

tions, its multiplication is commutative, and it has a unit element. We
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leave the verification of the ring axioms to the reader.

Definition 3.1.4. If f(x) = a0 + a1x + · · · + anx
n 6= 0 and an 6= 0 then

the degree of f(x), written as deg f(x), is n.

That is, the degree of f(x) is the largest integer i for which the ith

coefficient of f(x) is not 0. We do not define the degree of the zero

polynomial. We say a polynomial is a constant if its degree is 0. The

degree function defined on the nonzero elements of F [x] will provide us

with the function d(x) needed in order that F [x] be a Euclidean ring.

Lemma 3.1.5. If f(x), g(x) are two nonzero elements of F [x], then deg

(f(x)g(x)) = deg f(x) + deg g(x).

Proof. Suppose that f(x) = a0 + a1x + · · · + amxm and g(x) = b0 +

b1x + · · · + bnx
n and that am 6= 0 and bn 6= 0. Therefore deg f(x) = m

and deg g(x) = n. By definition, f(x)g(x) = c0 + c1x + · · ·+ ckx
k where

c1 = atb0 +at−1b1 + · · ·+a1bt−1 +a0bt. We claim that cm + n = ambn 6= 0

and ci = 0 for i > m + n. That cm+n = ambn can be seen at a glance

by its definition. What about ci for i > m + n? ci is the sum of terms

of the form ajbi−j; since i = j + (i − j) > m + n then either j > m or

(i − j) > n. But then one of ai or bi−j is 0, so that ajbi−j = 0; since

ci is the sum of a bunch of zeros it itself is 0, and our claim has been

established. Thus the highest nonzero coefficient of f(x)g(x) is cm+n

whence deg f(x)g(x) = m + n = deg f(x) + deg g(x). 2
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Corollary 3.1.6. If f(x), g(x) are nonzero elements in F [x] then deg

f(x) ≤deg f(x)g(x).

Proof. Since deg f(x)g(x) = deg f(x) + deg g(x), and since deg g(x) ≥
0, this result is immediate from the lemma. 2

Corollary 3.1.7. If F is a field, then F [x] is an integral domain.

We leave the proof of this corollary to the reader.

Since F [x] is an integral domain, we can construct for it its field of

quotients. This field merely consists of all quotients of polynomials and

is called the field of rational functions in x over F .

The function deg f(x) defined for all f(x) 6= 0 in F [x] satisfies

1. deg f(x) is a nonnegative integer.

2. deg f(x) ≤deg f(x)g(x) for all g(x) 6= 0 in F [x].

In order for F [x] to be a Euclidean ring with the degree function acting

as the d-function of a Euclidean ring we still need that given f(x), g(x) ∈
F [x], there exist t(x), r(x) in F [x] such that f(x) = t(x)g(x)+r(x) where

either r(x) = 0 or deg r(x) < deg g(x). This is provided us by
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Lemma 3.1.8. (The Division Algorithm) Given two polynomials

f(x) and g(x) 6= 0 in F [x], then there exist two polynomials t(x) and

r(x) in F [x] such that f(x) = t(x)g(x) + r(x) where r(x) = 0 or deg

r(x) < deg g(x).

Proof. The proof is actually nothing more than the ”long-division”

process we all used in school to divide one polynomial by another.

If the degree of f(x) is smaller than that of g(x) there is nothing to

prove, for merely put t(x) = 0, r(x) = f(x), and we certainly have that

f(x) = 0g(x) + f(x) where deg f(x) < deg g(x) or f(x) = 0.

So we may assume that f(x) = a0 + a1x + · · · + amxm and g(x) =

b0 + b1x + · · · + bnx
n where am 6= 0, bn 6= 0 and m ≥ n.

Let f1(x) = f(x) − (am/bn)x
m−ng(x); thus degf1(x) ≤ m − 1, so by

induction on the degree of f(x) we may assume that f1(x) = t1(x)g(x)+

r(x) where r(x) = 0 or deg r(x) <deg g(x). But then f(x)−(am/bn)x
m−ng(x) =

t1(x)g(x)+r(x), from which, by transposing, we arrive at f(x) = ((am/bn)x
m−n+

t1(x))g(x) + r(x). If we put t(x) = (am/bn)x
m−n + t1(x) we do indeed

have that f(x) = t(x)g(x) + r(x) where t(x), r(x) ∈ F [x] and where

r(x) = 0 or deg r(x) < deg g(x). This proves the lemma.

This last lemma fills the gap needed to exhibit F [x] as a Euclidean

ring and we now have the right to say 2

In view of division algorithm, we have

Corollary 3.1.9. F [x] is a Euclidean ring.
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Lemma 3.1.10. F [x] is a principal ideal ring.

Lemma 3.1.11. Given two polynomials f(x), g(x) in F [x] they have a

greatest common divisor d(x) which can be realized as d(x) = λ(x)f(x)+

µ(x)g(x).

Definition 3.1.12. A polynomial p(x) in F [x] is said to be irreducible

over F if whenever p(x) = a(x)b(x) with a(x), b(x) ∈ F [x], then one of

a(x) or b(x) has degree 0 (i.e., is a constant).

Irreducibility depends on the field; for instance the polynomial x2 +1

is irreducible over the real field but not over the complex field, for there

x2 + 1 = (x + i)(x − i) where i2 = −1.

Lemma 3.1.13. Any polynomial in F [x] can be written in a unique

manner as a product of irreducible polynomials in F [x].

Lemma 3.1.14. The ideal A = (p(x)) in F [x] is a maximal ideal if and

only if p(x) is irreducible over F .

We shall return to take a much closer look at this field F [x]/(p(x)),

but for now we should like to compute an example.

Let F be the field of rational numbers and consider the polynomial

p(x) = x3 − 2 in F [x]. As is easily verified, it is irreducible over F ,

whence F [x]/(x3 − 2) is a field. What do its elements look like? Let

A = (x3 − 2),the ideal in F [x] generated by x3 − 2.
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Any element in F [x]/(x3 − 2) is a coset of the form f(x) + A of the

ideal A with f(x) in F [x]. Now, given any polynomial f(x) ∈ F [x], by

the division algorithm, f(x) = t(x)(x3 − 2) + r(x), where r(x) = 0 or

deg r(x) <deg (x3 − 2) = 3. Thus r(x) = a0 +a1x+a2x
2 where a0, a1, a2

are in F ; consequently f(x) + A = a0 + a1x + a2x
2 + t(x)(x3 − 2) + A =

a0 + a1x + a2x
2 + A since t(x)(x3 − 2) is in A, hence by the addition and

multiplication in F [x]/(x3−2), f(x)+A = (a0+A)+a1(x+A)+a2(x+A)2.

If we put t = x + A, then every element in F [x]/(x3 − 2) is of the form

a0 + a1t + a2t
2 with a0, a1, a2 in F . What about t? Since t3 − 2 =

(x + A)3 − 2 = x3 − 2 + A = A = 0 (since A is the zero element of

F [x]/(x3 − 2) we see that t3 = 2.

Also, if a0 + a1t + a2t
2 = b0 + b1t + b2t

2, then (a0 − b0) + (a1 −
b1)t + (a2 − b2)t

2 = 0, whence (a0 − b0) + (a1 − b1)x + (a2 − b2)x
2 is in

A = (x3 − 2). How can this be, since every element in A has degree

at least 3? Only if a0 − b0 + (a1 − b1)x + (a2 − b2)x
2 = 0, that is,

only if a0 = b0, a1 = b1, a2 = b2. Thus every element in F [x]/(x3 − 2)

has a unique representation as a0 + a1t + a2t
2 where a0, a1, a2 ∈ F . By

Lemma, F [x]/(x3 − 2) is a field. It would be instructive to see this

directly; all that it entails is proving that if a0 + a1t + a2t
2 6= 0 then

it has an inverse of the form α + βt + γt2. Hence we must solve for

α,β,γ in the relation (a0 + a1t + a2t
2)(α + βt + γt2) = I, where not all of

a0, a1, a2 are 0. Multiplying the relation out and using t3 = 2 we obtain

45



(a0α+2a2β +2a1γ)+ (a1α+a0β +2a2γ)t+(a2α+a1β +a0γ)t2 = 1;thus

a0α + 2a2β + 2a1γ = I,

a1α + a0β + 2a2γ = 0,

a2α + a1β + a0γ = 0.

We can try to solve these three equations in the three unknowns α, β,

γ.When we do so we find that a solution exists if and only if

a3
0 + 2a3

1 + 4a3
2 − 6a0a1a2 6= 0.

Therefore the problem of proving directly that F [x]/(x3 − 2) is a field

boils down to proving that the only solution in rational numbers of

a3
0 + 2a3

1 + 4a3
2 = 6a0a1a2

is the solution a0 = a1 = a2 = 0. We now proceed to show this. If

a solution exists in rationals, by clearing of denominators we can show

that a solution exists where a0, a1, a2 are integers. Thus we may assume

that a0, a1, a2 are integers satisfying the above equation. We now assert

that we may assume that a0, a1, a2 have no common divisor other than 1,

for if a0 = b0d, a1 = b1d, and a2 = b2d, where d is their greatest common

divisor, then substituting in the above equation we obtain d3(b3
0 + 2b3

1 +

4b
)
2 = d3(6b0b1b2), and so b3

0 + 2b3
1 + 4b3

2 = 6b0b1b2. The problem has thus

been reduced to proving that the above equation has no solutions in

integers which are relatively prime. But then the above equation implies

46



that a3
0 is even, so that a0 is even; substituting a0 = 2α0 in the above

equation gives us 4α3
0 + a3

1 + 2a3
2 = 6a0a1a2.

Thus a3
1, and so, a1 is even; a1 = 2α1. Substituting in the above

equation we obtain 2α3
0 + 4α3

1 + a3
2 = 6a0a1a2.Thus a3

2, and so a2 , is

even! But then a0, a1, a2 have 2 as a common factor! This contradicts

that they are relatively prime, and we have proved that the equation

a3
0 + 2a3

1 + 4a3
2 = 6a0a1a2 has no rational solution other than a0 = a1 =

a2 = 0. Therefore we can solve for α, β, γ and F [x]/(x3 − 2) is seen,

directly, to be a field.

3.2 Polynomials over the Rational Field

We specialize the general discussion to that of polynomials whose co-

efficients are rational numbers. Most of the time the coefficients will

actually be integers. For such polynomials we shall be concerned with

their irreducibility.

Definition 3.2.1. The polynomial f(x) = a0 + a1x + · · · + anx
n, where

the a0, a1, a2, . . . , an are integers is said to be primitive if the greatest

common divisor of a0, a1, ..., an is 1.

Lemma 3.2.2. If f(x) and g(x) are primitive polynomials, then f(x)g(x)

is a primitive polynomial.

Proof. Let f(x) = a0+a1x+· · ·+anx
n and g(x) = b0+b1x+· · ·+bmxm.

Suppose that the lemma was false; then all the coefficients of f(x)g(x)
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would be divisible by some integer larger than 1, hence by some prime

number p. Since f(x) is primitive, p does not divide some coefficient ai.

Let ai be the first coefficient of f(x) which p does not divide. Similarl

let bk be the first coefficient of g(x) which p does not divide. In f(x)g(x)

the coefficient of xj+k, cj+k is

cj+k = ajbk + (aj+1bk−1 + aj+2bk−2 + · · · + aj+kb0)

+ (aj−1bk+1 + aj−2bk+2 + · · · + a0bj+k).

Now by our choice of bk, p | bk−1, bk−2, . . . so that p | (aj+lbk−1+aj+2bk−2+

· · · + aj+kb0). Similarly, by our choice of aj, p | aj−1, aj−2, . . . so that

p | (aj−1bk+1 + aj−2bk+2 · · · + a0bk+i). By assumption, p | cj+k. Thus by

the above equation, p | ajbk, which is nonsense since p ∤ aj and p ∤ bk.

This proves the lemma. 2

Definition 3.2.3. The content of the polynomial f(x) = a0 + a1x +

· · ·+ anx
n, where the a’s are integers, is the greatest common divisor of

the integers a0, a1, . . . , an.

Clearly, given any polynomial p(x) with integer coefficients it can be

written as p(x) = dq(x) where d is the content of p(x) and where q(x) is

a primitive polynomial.

Theorem 3.2.4. (Gauss’ Lemma) If the primitive polynomial f(x)

can be factored as the product of two polynomials having rational coeffi-

cients, it can be factored as the product of two polynomials having integer
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coefficients.

Proof. Suppose that f(x) = u(x)v(x) where u(x) and v(x) have ra-

tional coefficients. By clearing of denominators and taking out common

factors we can then write f(x) = (a/b)λ(x)µ(x) where a and b are in-

tegers and where both λ(x) and µ(x) have integer coefficients and are

primitive. Thus bf(x) = aλ(x)µ(x).

The content of the left-hand side is b, since f(x) is primitive; since

both λ(x) and µ(x) are primitive, λ(x)µ(x) is primitive, so that the

content of the right-hand side is a. Therefore a = b, (a/b) = 1, and

f(x) = λ(x)µ(x) where λ(x) and µ(x) have integer coefficients. This is

the assertion of the theorem. 2

Definition 3.2.5. A polynomial is said to be integer monic if all its

coefficients are integers and its highest coefficient is 1.

Thus an integer monic polynomial is merely one of the form xn +

a1x
n−1 + · · · + an where the a’s are integers. Clearly an integer moni

polynomial is primitive.

Corollary 3.2.6. If an integer monic polynomial factors as the prod-

uct of two nonconstant polynomials having rational coefficients then it

factors as the product of two integer monic polynomials

Theorem 3.2.7. (The Eisentein Criterion) Let f(x) = a0 + a1x +

a2x
2 + · · ·+ anx

n be a polynomial with integer coefficients. Suppose that
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for some prime number p, p ∤ an, p | a1, p | a2, . . . , p | a0 , p2 ∤ a0. Then

f(x) is irreducible over the rationals.

Proof. Without loss of generality we may assume that f(x) is primitive,

for taking out the greatest common factor of its coefficients does not

disturb the hypotheses, since p ∤ an. If f(x) factors as a product of two

rational polynomials, by Gauss’ lemma it factors as the product of two

polynomials having integer coefficients. Thus if we assume that f(x) is

reducible, then

f(x) = (b0 + b1x + · · · + brx
r)(c0 + c1x + · · · + csx

s),

where the b’s and c’s are integers and where r > 0 and s > 0. Reading off

the coefficients we first get a0 = b0c0. Since p | a0 , p must divide one of b0

or c0 . Since p2 ∤ a0 , p cannot divide both b0 and c0. Suppose that p | b0,

p ∤ c0. Not all the coefficients b0, . . . , br can be divisible by p; otherwise

all the coefficients of f(x) would be divisible by p, which is manifestly

false since p ∤ an. Let bk be the first b not divisible by p, k ≤ r < n. Thus

p | bk−1 and the earlier b’s. But ak = bkc0 + bk−1c1 + bk−2c2 + · · · + b0ck,

and p | ak, p | bk−1, bk−2 , · · · , b0 , so that p | bkc0 . However, p ∤ c0 ,

p ∤ bk, which conflicts with p | bkc0. This contradiction proves that we

could not have factored f(x) and so f(x) is indeed irreducible. 2

Example 3.2.8. Let f(x) = x3 − 3 ∈ Z[x]. By the Eisentein Criterion,

p = 3 and p|3, p|0 and p does not divide 1, f(x) is irreducible over Z.

50



3.3 Polynomial Rings over Commutative Rings

In defining the polynomial ring in one variable over a field F , no essential

use was made of the fact that F was a field; all that was used was that

F was a commutative ring. The field nature of F only made itself felt

in proving that F [x] was a Euclidean ring.

Let R be a commutative ring with unit element. By the polynomial

ring in x over R, R[x], we shall mean the set of formal symbols a0+a1x+

· · · + amxm, where a0, a1, . . . , am are in R, and where equality, addition,

and multiplication are defined exactly as they were in Section 3.1. As in

that section, R[x] is a commutative ring with unit element.

We now define the ring of polynomials in the n-variables x1, . . . , xn

over R, R[x1, . . . , xn], as follows: Let R1 = R[x1], R2 = R1[x2], the

polynomial ring in x2 over R1, . . . , Rn = Rn−1[xn]. Rn is called the

ring of polynomials in x1, . . . , xn over R. Its elements are of the form
∑

ai1i2...inx
i1
1 xi2

2 · · ·xin
n ,where equality and addition are defined coefficient-

wise and where multiplication is defined by use of the distributive law and

the rule of exponents (xi1
1 xi2

2 · · ·xin
n )(xj1

1 xj2
2 · · ·xjn

n ) = xi1+j1
1 xi2+j2

2 · · ·xin+jn

n .

Of particular importance is the case in which R = F is a field; here

we obtain the ring of polynomials in n-variables over a field. Of interest

to us will be the influence of the structure of R on that of R[x1, · · · , xn].

Lemma 3.3.1. If R is an integral domain, then so is R[x].
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Proof. For 0 6= f(x) = a0 + a1x + · · · + amxm, where am 6= 0, in R[x],

we define the degree of f(x) to be m; thus deg f(x) is the index of the

highest nonzero coefficient of f(x). If R is an integral domain we leave it

as an exercise to prove that deg (f(x)g(x)) = deg f(x)+ deg g(x). But

then,for f(x) 6= 0, g(x) 6= 0, it is impossible to have f(x)g(x) = 0. That

is, R[x] is an integral domain. 2

Corollary 3.3.2. If R is an integral domain, then so is R[x1, . . . , xn].

In particular, when F is a field, F [x1, . . . , xn] must be an integral do-

main.As such, we can construct its field of quotients; we call this the field

of rational functions in x1, . . . , xn over F and denote it by F (x1, . . . , xn).

This field plays a vital role in algebraic geometry. In arbitrary integral

domains, R, with unit element. Two elements a, b in R are said to be

associates if a = ub where u is a unit in R.

An element a which is not a unit in R will be called irreducible (or a

prime element) if, whenever a = bc with b, c both in R, then one of b or

c must be a unit in R.

An irreducible element is thus an element which cannot be factored

in a “nontrivial”way.

Definition 3.3.3. An integral domain, R, with unit element is a unique

factorization domain if

(i) Any nonzero element in R is either a unit or can be written as the
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product of a finite number of irreducible elements of R.

(ii) The decomposition in part (a) is unique up to the order and associates

of the irreducible elements.

From the above theorem, a Euclidean ring is a unique factorization

domain. The converse, however, is false; for example, the ring F [x1, x2],

where F is a field, is not even a principal ideal ring, but as we shall soon

see it is a unique factorization domain.

In general commutative rings we may speak about the greatest com-

mon divisors of elements; the main difficulty is that these, in general,

might not exist. However, in unique factorization domains their exis-

tence is assured. This fact is not difficult to prove and we leave it as an

exercise; equally easy are the other parts of

Lemma 3.3.4. If R is a unique factorization domain and if a, b are in

R, then a and b have a greatest common divisor (a, b) in R. Moreover, if

a and b are relatively prime (i.e., (a, b) = 1), whenever a | bc then a | c.

Corollary 3.3.5. If a ∈ R is an irreducible element and a | bc, then

a | b or a | c.

Proof. We now wish to transfer the appropriate version of the Gauss

lemma, which we proved for polynomials with integer coefficients,to the

ring R[x], where R is a unique factorization domain.

Given the polynomial f(x) = a0 + a1x + · · · + amxm in R[x], then

the content of f(x) is defined to be the greatest common divisor of
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a0, a1, . . . , am. It is unique within units of R. We shall denote the content

of f(x) by c(f). A polynomial in R[x] is said to be primitive if its content

is 1 (that is, is a unit in R). Given any polynomial f(x) ∈ R[x], we can

write f(x) = af1(x) where a = c(f) and where f1(x) ∈ R[x] is primitive.

(Prove!) Except for multiplication by units of R this decomposition of

f(x), as an element of R by a primitive polynomial in R[x], is unique.

Lemma 3.3.6. If R is a unique factorization domain, then the product

of two primitive polynomials in R[x] is again a primitive polynomial in

R[x].

Proof. Given f(x), g(x) in R[x] we can write f(x) = af1(x), g(x) =

bg1(x), where a = c(f), b = c(g) and where f1(x) and g1(x) are primitive.

Thus f(x)g(x) = abf1(x)g1(x). By Lemma 3.3.6,f1(x)g1(x) is primitive.

Hence the content of f(x)g(x) is ab, that is, it is c(f)c(g). 2

Corollary 3.3.7. If R is a unique factorization domain and if f(x), g(x)

are in R[x], then c(fg) = c(f)c(g) (up to units).

By a simple induction, the corollary extends to the product of a finite

number of polynomials to read c(f1f2 · · · fk) = c(f1)c(f2) · · · c(fk). Let

R be a unique factorization domain. Being an integral domain, it has a

field of quotients F . We can consider R[x] to be a subring of F [x]. Given

any polynomial f(x) ∈ F [x], then f(x) = (f0(x)/a), where f0(x) ∈ R[x]

awhere a ∈ R.
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It is natural to ask for the relation, in terms of reducibility and ir-

reducibility, of a polynomial in R[x] considered as a polynomial in the

larger ring F [x].

Lemma 3.3.8. If f(x) in R[x] is both primitive and irreducible as an

element of R[x], then it is irreducible as an element of F [x]. Conversely,

if the primitive element f(x) in R[x] is irreducible as an element of F [x],

it is also irreducible as an element of R[x].

Proof. Suppose that the primitive element f(x) in R[x] is irreducible

in R[x] but is reducible in F [x]. Thus f(x) = g(x)h(x), where g(x), h(x)

are in F [x] and are of positive degree. Now g(x) = (g0(x)/a), h(x) =

(h0(x)/b), where a, b ∈ R and where g0(x), h0(x) ∈ R[x]. Also g0(x) =

αg1(x),h0(x) = βh1(x), where α = c(g0), β = c(h0), and g1(x), h1(x) are

primitive in R[x]. Thus f(x) = (αβ/ab)g1(x)h1(x), whence abf(x) =

αβg1(x)h1(x). By Lemma 3.3.6, g1(x)h1(x) is primitive, whence the

content of the righthand side is αβ. Since f(x) is primitive, the content

of the left-hand side is ab; but then ab = αβ; the implication of this is

that f(x) = g1(x)h1(x), and we have obtained a nontrivial factorization

of f(x) in R[x], contrary to hypothesis. (Note: this factorization is

nontrivial since each of g1(x), h1(x) are of the same degree as g(x), h(x),

so cannot be units in R[x]. We leave the converse half of the lemma as

an exercise. 2

Lemma 3.3.9. If R is a unique factorization domain and if p(x) is a
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primitive polynomial in R[x], then it can be factored in a unique way as

the product of irreducible elements in R[x].

Proof. When we consider p(x) as an element in F [x], we can factor

it as p(x) = p1(x) · · · pk(x), where p1(x), p2(x), . . . , pk(x) are irreducible

polynomials in F [x]. Each pi(x) = (fi(x)/ai), where fi(x) ∈ R[x] and

ai ∈ R; moreover, fi(x) = ciqi(x), where ci = c(fi) and where qi(x) is

primitive in R[x]. Thus each pi(x) = (ciqi(x)/ai), where ai, ci ∈ R and

where qi(x) ∈ R[x] is primitive. Since pi(x) is irreducible in F [x], qi(x)

must also be irreducible in F [x], hence it is irreducible in R[x].

Now

p(x) = p1(x) · · · pk(x) =
c1c2 · · · ck

a1a2 · · · ak

q1(x) · · · qk(x),

whence a1a2 · · · akp(x) = c1c2 · · · ckq1(x) · · · qk(x). Using the primitivity

of p(x) and of q1(x) · · · qk(x), we can read off the content of the left-hand

side as a1a2 · · · ak and that of the right-hand side as c1c2 · · · ck. Thus

a1a2 · · · ak = c1c2 · · · ck, hence p(x) = q1(x) · · · qk(x). We have factored

p(x), in R[x], as a product of irreducible elements. Can we factor it in

another way? If p(x) = r1(x) · · · rk(x), where the ri(x) are irreducible

in R[x], by the primitivity of p(x), each ri(x) must be primitive, hence

irreducible in F [x] by Lemma 3.3.8. But by Lemma 3.1.5 we know

unique factorization in F [x]; the net result of this is that the ri(x) and

the qi(x) are equal (up to associates) in some order, hence p(x) has a

unique factorization as a product of irreducibles in R[x].

We now have all the necessary information to prove the principal
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theorem of this section. 2
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Theorem 3.3.10. If R is a unique factorization domain, then so is R[x].

Proof. Let f(x) be an arbitrary element in R[x]. We can write f(x)

in a unique way as f(x) = cf1(x) where c = c(f) is in R and where

f1(x),in R[x], is primitive. By Lemma 3.3.9 we can decompose f1(x) in

a unique way as the product of irreducible elements of R[x]. What about

c? Suppose that c = a1(x)a2(x) · · · am(x) in R[x]; then O = deg c = deg

(a1(x))+ deg (a2(x)) + · · ·+ deg (am(x)). Therefore, each ai(x) must be

of degree 0, that is, it must be an element of R. In other words, the only

factorizations of c as an element of R[x] are those it had as an element of

R. In particular, an irreducible element in R is still irreducible in R[x].

Since R is a unique factorization domain, c has a unique factorization as

a product of irreducible elements of R, hence of R[x].

Putting together the unique factorization of f(x) in the form cf1(x)

where f1(x) is primitive and where c ∈ R with the unique factorizability

of c and of f1(x) we have proved the theorem. 2

Given R as a unique factorization domain, then R1 = R[x1] is also

a unique factorization domain. Thus R2 = R1[x2] = R[x1, x2] is also a

unique factorization domain. Continuing in this pattern we obtain

Corollary 3.3.11. If R is a unique factorization domain then so is

R[x1, . . . , xn].

Corollary 3.3.12. If F is a field then F [x1, . . . , xn] is a unique factor-

ization domain.
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Chapter 4

Unit 4

4.1 Semisimple ring

Definition 4.1.1. The Jacobson radical of a ring R, denoted by rad

R, is the set

rad R = ∩{M |M is a maximal ideal of R}.

If rad R = {0}, then R is said to be a ring without Jacobson radical or,

more briefly, R is a semisimple ring.

The Jacobson radical always exists, since we know that any commu-

tative ring with identity contains at least one maximal ideal. It is also

immediately obvious from the definition that rad R forms an ideal of R

which is contained in each maximal ideal.

To fix ideas, let us determine the Jacobson radical in several concrete

rings.
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Example 4.1.2. The ring Z of integers is a semisimple ring. For, accord-

ing the maximal ideals of Z are precisely the principal ideals generated

by the prime numbers; thus,

rad R = ∩{(p)|p is a prime number}.

Since no nonzero integer is divisible by every prime, we see at once that

rad R = {0}.

Example 4.1.3. A more penetrating illustration is furnished by the

ring R = map (X, F ), where X is an arbitrary set and F a field. For

any element x ∈ X, consider the function 1τxf = f(x) which assigns

to each function in R its value at x. It is easily checked that τx is a

homomorphism of R into F ; since R contains all the constant functions,

this homomorphism actually maps onto the field F . Thus,its kernel is

the maximal ideal

Mx = {f ∈ R|f(x) = 0}.

Because rad R ⊆ ∩Mx = {f ∈ R|f(x) = 0 for all x ∈ X} = {0}, it

follows that R must be a semisimple ring.

Example 4.1.4. For a final example, we turn to the ring R[[x]] of formal

power series. Here, there is a one-to-one correspondence between the

maximal ideals M of R and maximal ideals M ′ of R[[x]] in such a way

that M ′ corresponds to M if and only if M ′ is generated by M and x.

Thus,
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rad R[[x]]= ∩{M ′|M ′ is a maximal ideal of R[[x]]}
= ∩{(M, x)|M is a maximal ideal of R}
= (∩M, x) = (rad R, x).

In particular, if R is taken to be a field F , we have rad F [[x]] = (x), the

principal ideal generated by x.

Our first theorem establishes a basic connection between the Jacobson

radical and invertibility of ring elements.

Theorem 4.1.5. Let I be an ideal of the ring R. Then I ⊆ rad R if

and only if each element of the coset 1 + I has an inverse in R.

Proof. We begin by assuming that I ⊆ rad R and that there is some

element a ∈ I for which 1 + a is not invertible. Our object, of course, is

to derive a contradiction. By the corollary to Theorem 53, the element

1 + a must belong to some maximal ideal M of the ring R. Since a ∈
rad R, a is also contained in M , and therefore 1 = (1 + a)− a lies in M .

But this means that M = R, which is clearly impossible.

To prove the converse, suppose that each member of 1 + I has a

multiplicative inverse in R, but I * rad R. By definition of the Jacobson

radical, there will exist a maximal ideal M of R with I * M . Now, if

a is any element of I which is not in M , the maximality of M implies

that the ideal (M, a) = R. Knowing this, the identity element 1 can be

expressed in the form 1 = m + ra for suitable choice of m ∈ M and

r ∈ R. But then, m = 1 − ra ∈ 1 + I, so that m possesses an inverse.
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The conclusion is untenable, since no proper ideal contains an invertible

element.

The form which this result takes when I is the principal ideal gener-

ated by a ∈ rad R furnishes a characterization of the Jacobson radical

in terms of elements rather than ideals. Although actually a corollary

to the theorem just proved, it is important enough to be singled out as

a theorem. 2

Theorem 4.1.6. In any ring R, an element a ∈ rad R if and only if

1 − ra is invertible for each r ∈ R.

This theorem adapts itself to many uses. Three fairly short and in-

structive applications are presented below.

Corollary 4.1.7. An element a is invertible in the ring R if and only if

the coset a+ rad R is invertible in the quotient ring R/rad R.

Proof. Assume that the coset a+rad R has an inverse in R/rad R, so

that

(a+rad R)(b+ rad R) = 1+ rad R

for some b ∈ R. Then 1− ab lies in rad R. By above Theorem, r = l, to

conclude that the product ab = 1 − 1(1 − ab) is invertible; this, in turn,

forces the element a to have an inverse in R. The other direction of the

corollary is all but obvious. 2
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Corollary 4.1.8. The only idempotent element in rad R is 0.

Proof. Let the element a ∈ rad R with a2 = a. Taking r = 1 in the

preceding theorem, we see that 1−a has an inverse in R; say (1−a)b = 1,

where b ∈ R. This leads immediately to

a=a(1 − a)b=(a − a2)b=0,

which completes the proof. 2

Corollary 4.1.9. Every nil ideal of R is contained in rad R.

Proof. Let N be a nil ideal of R and suppose that a ∈ N . For every

r ∈ R, we then have ra ∈ N , so that the product ra is nilpotent.

Therefore implies that 1 − ra is invertible in R. This shows that the

element a lies in rad R, from which it follows that N ⊆ rad R. 2

Although the Jacobson radical of a ring R is not necessarily a nil ideal,

very little restriction on R forces it to be nil. We shall see subsequently

that, if every ideal of R is finitely generated, then rad R is not only nil

but nilpotent.

This is a convenient place to also point out that a homomorphic image

of a semisimple ring need not be semisimple. An explicit example of

this situation can easily be obtained from the ring mathbbZ of integers.

While Z form a ring without a Jacobson radical, its homomorphic image

Zpn, (p a prime; n > 1) contains the nil ideal (p); appealing to above

Corollary, we see that Zpn cannot be semisimple.
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Example 4.1.10. Consider F [[x]], the ring of formal power series over

a field F . It is known that an element f(x) = a0 +a1x+ · · ·+anx
n + · · ·

has an inverse in F [[x]] if and only if the constant term a0 6= 0. This

observation implies that if g(x) = b0 + b1x + · · · + bnx
n + · · · , then

rad F [[x]] = {f(x) : 1 − f(x)g(x) is invertible for all g(x) ∈ F [[x]]}
={f(x) : 1 − a0b0 6= 0 for all b0 ∈ F}
={f(x) : a0 = 0} = (x).

Thus, we have a second proof of the fact that the Jacobson radical of

F [[x]] is the principal ideal generated by x.

We next prove several results bearing on the Jacobson radical of quo-

tient rings. The first of these provides a convenient method for manu-

facturing semisimple rings; its proof utilizes both implications of the last

theorem.

Theorem 4.1.11. For any ring R, the quotient ring R/rad R is semisim-

ple; that is, rad(R/rad R) = {0}.

Proof. Before becoming involved in details, let us remark that since

rad R constitutes an ideal of R, we may certainly form the quotient ring

R/rad R. To simplify notation somewhat, we will temporarily denote

rad R by I.

Suppose that the coset a + I ∈ rad (R/I). Our strategy is to show

that the element a ∈ I, for then a + I = I, which would imply that rad

(R/I) consists of only the zero element of R/I. Since a + I is a member

of rad (R/I),
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(1 + I) − (r + I)(a + I) = 1 − ra + I

is invertible in R/I for each choice of r ∈ R. Accordingly, there exists a

coset b + I (depending, of course, on both r and a) such that

(1 − ra + I)(b + I) = 1 + I.

This is plainly equivalent to requiring

1 − (b − rab) ∈ I = rad R.

From this, we conclude that the element

b − rab = 1 − 1(1 − b + rab)

has an inverse c in R. But then

(1 − ra)(bc) = (b − rab)c = 1,

so that 1ra possesses a multiplicative inverse in R. As this argument

holds for every r ∈ R, it follows that a ∈ rad R = I, as desired.

Continuing this theme, let us express the Jacobson radical of the

quotient ring R/I as a function of the radical of R. 2

Theorem 4.1.12. If I is an ideal of the ring R, then

1) rad (R/I) ⊇ rad R+ I
I

and,

2) whenever I ⊆ rad R, rad (R/I) =(rad R)/I.

Proof. Perhaps the quickest way to establish the first assertion is by

means of the Correspondence Theorem; using this, one has

65



rad (R/I)= ∩{M ′|M ′ is a maximal ideal of R/I}
= ∩{natIM |M is a maximal ideal of R with I ⊆ M}
⊇ natI(rad R + I) = rad R+ I

I

which is the first part of our theorem (the crucial step requires the in-

clusion
⋂

I⊆M M ⊇ I+ rad R).

With an eye to proving (2), notice that whenever I ⊆ rad R, then

rad (R/I) ⊇ rad R+ I
I

⊇ (rad R)/I.

Thus, we need only to show the inclusion (rad R)/I ⊇ rad (R/I). To this

purpose, choose the coset a + I ∈ rad(R/I) and let M be an arbitrary

maximal ideal of R. Since I ⊆ rad R ⊆ M , the image natIM = M/I

must be a maximal ideal of the quotient ring R/I. But then,

a + I ∈ rad(R/I) ⊆ M/I,

forcing the element a to lie in M . As this holds for every maximal ideal

of R, it follows that a ∈ rad R and so a + I ∈ (rad R)/I. All in all,

we have proved that rad (R/I) ⊆ (rad R)/I, which, combined with our

earlier inclusion, leads to (2). 2

Theorem 4.1.13. For any ring R, rad R is the smallest ideal I of R

such that the quotient ring R/I is semisimple (in other words, if R/I is

I semisimple ring, then rad R ⊆ I).

Proof. It is already known that R/rad R is without Jacobson radical.

Now, assume that I is any ideal of R for which the associated quotient
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ring R/I is semisimple. Using part (1) of the preceding theorem, we can

then deduce the equality (I+ rad R)/I = I. This in turn leads to the

inclusion rad R ⊆ I, which is what we sought to prove.

This may be a good place to mention two theorems concerning the

number of maximal ideals in a ring; these are of a rather special charac-

ter, but typify the results that can be obtained. 2

Theorem 4.1.14. Let R be a principal ideal domain. Then, R is semisim-

ple if and only if R is either a field or has an infinite number of maximal

ideals.

Proof. Let {pi} be the set of prime elements of R. Then the maximal

ideals of R are simply the principal ideals (pi). It follows that an element

a ∈ rad R if and only if a is divisible by each prime pi if R has an infinite

set of maximal ideals, then a = 0, since every nonzero noninvertible

element of R is uniquely representable as a finite product of primes. On

the other hand, if R contains only a finite number of primer p1, p2, . . . , pn,

we have

rad R = ∩n
i=1(pi) = (p1p2 · · · pn) 6= {0},

so that R cannot be semisimple. Finally, observe that if the set {pi} is

empty, then each nonzero element of R is invertible and R is a field (in

which case rad R = {0}). 2

Corollary 4.1.15. The ring Z of integers is semisimple.
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Theorem 4.1.16. Let {Mi}, i ∈ I , be the set of maximal ideals of the

ring R. If, for each i, there exists an element ai ∈ Mi such that 1− ai ∈
rad R − Mi, then {Mi} is a finite set.

Proof. Suppose that the index set I is infinite. Then there exists a

wellordering ≤ of I under which I has no last element. (See Appendix

A for terminology.) For each i ∈ I , we define Ii =
⋂

i<j Mj. Then {Ii}
forms a chain of proper ideals of R. By hypothesis, we can select an

element ai ∈ Mi such that 1 − ai ∈ Ii − Mi. Now the ideal I = ∪Ii, is

also a proper ideal of R, since 1 6= I. By our choice of the Ii, I is not

contained in any maximal ideal of R. Indeed, suppose that there does

exist an index i for which I ⊆ Mi, then,

1 − ai ∈ Ii ⊆ I ⊆ Mi,

yielding the contradiction 1 ∈ Mi. But it is known that every proper

ideal of R is contained in a maximal ideal of R. From this contradiction

we conclude that I must be finite. 2

Let us now turn to a consideration of another radical which plays an

essential role in ring theory, to. wit, the prime radical. Its definition

may also be framed in terms of the intersection of certain ideals.

4.2 Radical of the ring

Definition 4.2.1. The prime radical of a ring R, denoted by Rad R (in

contrast with rad R), is the set
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Rad R = ∩{P |P is a prime ideal of R}.

If Rad R = {0}, we say that the ring R is without prime radical or has

zero prime radical.

Lemma 4.2.2. Let I be an ideal of the ring R. Further, assume that

the subset S ⊆ R is closed under multiplication and disjoint from I.

Then there exists an ideal P which is maximal in the set of ideals which

contain I and do not meet S; any such ideal is necessarily prime.

Proof. Consider the family F of all ideals J of R such that I ⊆ J and

J ∩ S = φ. This family is not empty since I itself satisfies the indicated

conditions. Our immediate aim is to show that for any chain of ideals

{Ji} in F , their union ∪Ji also belongs to F . It has already been

established in Theorem 52 that the union of a chain of ideals is again

an ideal; moreover, since I ⊆ Ji for each i, we certainly have I ⊆ ∪Ji.

Finally, observe that

(∪Ji) ∩ S = ∪(Ji ∩ S) = ∪φ = φ.

The crux of the matter is that Zorn’s Lemma can now be applied to infer

that F has a maximal element P ; this is the ideal that we want.

By definition, P is maximal in the set of ideals which contain I but

do not meet S. To settle the whole affair there remains simply to show

that P is a prime ideal. For this purpose, assume that the product

ab ∈ P but that a /∈ P and b /∈ P . Since it is strictly larger than P , the

ideal (P, a) must contain some element r of S; similarly, we can find an

element s ∈ S such that s ∈ (P, b). This means that
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rs ∈ (P, a)(P, b) ⊆ (P, ab) ⊆ P .

As S is hypothesized to be closed under multiplication, the product rs

also lies in S. But this obviously contradicts the fact that P ∩ S = φ.

Our argument therefore shows that either a or b is a member of P , which

proves that P is a prime ideal. 2

Remark 4.2.3. The ideal P need not be a maximal ideal of R, in the

usual meaning of the term, but only maximal with respect to exclusion

of the set S. To put it another way, if J is any ideal of the ring R which

properly contains P , then J must contain elements of S.

Two special cases of this general setting are particularly noteworthy:

S = {1} and I = {0}. In the event S = {1}, the ideal P mentioned

in the lemma is actually a maximal ideal (in the usual ideal-theoretic

sense); consequently, we have a somewhat different proof of the facts

that (i) every proper ideal is contained in a maximal ideal and (ii) each

maximal ideal is prime.

The case where I is the zero ideal is the subject of the following

corollary, a result which will be utilized on several occasions in the sequel.

Corollary 4.2.4. Let S be a subset of the ring R which is closed under

multiplication and does not contain 0. Then there exists an ideal maximal

in the set of ideals disjoint from S; any such ideal is prime.

As it stands, the preceding lemma is just the opening wedge; we can

exploit it rather effectively by now proving.
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Theorem 4.2.5. The intersection of all prime ideals of R which contain

a given ideal I is precisely the nil radical of I:

√
I = ∩{P |P ⊇ I; P is a prime ideal }

Proof. If the element a /∈
√

I, then the set S = {an|n ∈ Z+} does not

intersect I. Since S is closed under multiplication, the preceding lemma

insures the existence of some prime ideal P which contains I, but not a;

that is, a does not belong to the intersection of prime ideals containing

I. This establishes the inclusion

∩{P |P ⊇ I; P is a prime ideal } ⊆
√

I

The reverse inclusion follows readily upon noting that if there exists a

prime ideal which contains I but not a, then a /∈
√

I, since no power of

a belongs to P .

As with the case of the Jacobson radical, the prime radical may be

characterized by its elements; this is brought out by a result promised

earlier. 2

Corollary 4.2.6. The prime radical of a ring R coincides with the nil

radical of R; that is, Rad R is simply the ideal of all nilpotent elements

of R.

The assertion is all but obvious upon taking I = {0} in Theorem.

An immediate consequence of this last corollary is the potentially

powerful statement: every nil ideal of R is contained in the prime radical,

not simply contained in the larger Jacobson radical.
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Example 4.2.7. For an illustration of above Theorem, let us fall back

on the ring Z of integers. In this setting, the nontrivial prime ideals are

the principal ideals (p), where p is a prime number. Given n > 1, the

ideal (n) ⊆ (p) if and only if p divides n; this being so,

√

(n) =
⋂

pi|n(pi)

Thus, if we assume that n has the prime power factorization

pk1

1 pk2

2 · · · pkr

r (ki ∈ Z+),

it follows that

√

(n) = (p1) ∩ (p2) · · · (pr) = (p1p2 · · · pr).

Theorem 4.2.8. An ideal I of the ring R is a semiprime ideal if and

only if I is an intersection of prime ideals of R.

Corollary 4.2.9. The prime radical Rad R is a semiprime ideal which

is contained in every semiprime ideal of R.

Theorem 4.2.10. For any ring R, the quotient ring R/Rad R is without

prime radical.

Proof. For clarity of exposition, set I = Rad R. Suppose that a + I is

any nilpotent element of R/I. Then, for some positive integer n,

(a + I)n = an + I = I,
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so that an ∈ I. But I consists of all nilpotent elements of R. Thus,

we must have (an)m = 0 for suitably chosen m ∈ Z+; this is simply the

statement that a ∈ I, and, hence, a + I is the zero element of R/I. Our

argument implies that the quotient ring R/I has no nonzero nilpotent

elements, which is to say that Rad (R/I) = {0}.
To round out the picture, two theorems are stated without proof; it

will be observed that these take the same form as the corresponding

result established for the Jacobson radical. 2
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Chapter 5

Unit 5

5.1 Partially Ordered sets and Lattices

The most general concept we shall consider in this chapter is that of a

partially ordered set. We recall that a binary relation on a set S is a

subset R of the product set S ×S. We say that a is in the relation R to

b and write aRb if and only if (a, b) ∈ R. We now give

Definition 5.1.1. A partially ordered set is a set S together with a

binary relation a ≥ b satisfying the following conditions:

PO1 If a ≥ a, then a is (reflexivity).

PO2 If a ≥ b and b ≥ a, then a = b (anti-symmetry).

PO3 If a ≥ b and b ≥ c, then a ≥ c (transitivity).

If a ≥ b and a 6= b, then we write a > b. Also we write a ≤ b as an

alternative for b ≥ a and a < b for b > a. In general we may have neither
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a ≥ b nor b ≥ a for a pair of elements a, b ∈ S. If we do have a ≥ b or

b ≥ a for every pair (a, b), then we call S totally ordered (or a chain).

We have encountered quite a few examples of partially ordered sets:

the set P(S) of subsets of a set S where A ≥ B for subsets A and B

means A ⊃ B, the set of subrings of a ring, the set of subgroups of

a group, the set of ideals of a ring, and so onall partially ordered by

inclusion as defined for subsets. In general, if S,≥ is a partially ordered

set, then any subset T of S is partially ordered by the relation ≥ of S

restricted to T .

Other interesting examples of partial orderings arise in discussing

divisibility in monoids and rings. For example, in the multiplicative

monoid of positive integers, we can define a ≥ b to mean a | b (a is a

divisor of b). Then PO1PO3 hold. More generally, let S be a commu-

tative monoid satisfying the cancellation law. We say that S is reduced

if 1 is the only invertible element in S. In this case, a | b and b | a

imply a = b. Then S is partially ordered if we define a ≥ b by a | b.

If S is not reduced, we obtain a non-trivial congruence relation in S by

defining a ∼ b if a = bu, u invertible. The quotient monoid S relative to

this congruence relation is reduced and can be partially ordered by the

divisibility relation.

In a finite partially ordered set, the relation > can be expressed in

terms of a relation of covering. We say that a1 is a cover of a2 if

a1 > a2 and there exists no u such that a1 > u > a2. It is clear that
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a > b in a finite partially ordered set if and only if there exists a sequence

a = a1, a2, . . . , an = b such that each ai is a cover of ai+1. The notion of

cover suggests a way of representing a finite partially ordered set S by a

diagram. We represent the elements of S by dots. If a1 is a cover of a2,

then we place a1 above a2 and connect the two dots by a straight line.

Then a > b if and only if there is a descending broken line connecting a

to b. If no line connects a and b 6= a, then a and b are not comparable,

that is, we have neither a ≥ b nor b ≥ a.

An element u of a partially ordered set S is an upper bound of a subset

A of S if u ≥ a for every a ∈ A. The element u is a least upper bound or

sup of A if u is an upper bound of A and u ≤ v for every upper bound

v of A. It is clear from PO2 that if sup A exists, then it is unique. In

similar fashion, one defines lower bounds and greatest lower bounds or

infs of a set A. Also, if inf A exists, then it is unique. We now introduce

the following

Definition 5.1.2. A lattice is a partially ordered set in which any two

elements have a least upper bound and a greatest lower bound.

We denote the least upper bound of a and b by a∨ b (”a cup b” or ”a

union b”) and the greatest lower bound by a ∧ b (”a cap b” or ”a meet

b”). If a, b, c are elements of a lattice L, then (a ∨ b) ∨ c ≥ a, b, c and if

v ≥ a, b, c, then v ≥ (a∨b), c so v ≥ (a∨b)∨c. Hence, (a∨b)∨c is a sup of

a, b, c. By induction, one shows that any finite set of elements of a lattice

have a sup. Similarly, any finite subset has an inf. We denote the sup
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and inf of a1, a2, . . . , an by a1∨a2∨· · ·∨an, a1∧a2∧· · ·∧an

respectively.

Any totally ordered set is a lattice. For, if a and b are two elements

of such a set, we have either a ≥ b or b ≥ a. In the first case, a ∨ b = a

and a ∧ b = b. If b ≥ a, then a ∨ b = b and a ∧ b = a.

A partially ordered set is called a complete lattice if every subset

A = {aα} has a sup and an inf. We denote these by
∨

aα and
∧

aα,

respectively. If the set {aα} coincides with the underlying set of the

lattice L, then 0 ≡ ∧

aα is the least element of L and 1 ≡ ∨

aα is the

greatest element of L: 0 ≤ a and 1 ≥ a for every a ∈ L. The following is

a very useful criterion for recognizing that a given partially ordered set

is complete lattice.

Theorem 5.1.3. A partially ordered set with a greatest element 1 such

that every non-vacuous subset {aα} has a greatest lower bound is a com-

plete lattice. Dually, a partially ordered set with a least element 0 such

that every non-vacuous subset has a least upper bound is a complete lat-

tice.

Proof. Assuming the first set of hypotheses, we have to show that any

A = {aα} has a sup. Since 1 ≥ aα, the set B of upper bounds of A is

non-vacuous. Let b = inf B. Then it is clear that b = sup A. The second

statement follows by symmetry. 2

77



5.2 Baics Examples

1. For any set S, P(S) is a complete lattice. Here 1 = S and 0 = ∅.

2. The set of subgroups of a group G ordered by inclusion. Since G is a

subgroup and the intersection of any set of subgroups is a subgroup,

the set of subgroups is a complete lattice. The proof of Theorem

8.3 shows that the sup of a set of subgroups is the intersection of

all subgroups containing the given set {Hα}. Clearly, this is the

subgroup generated by all the Hα.

The next four examples are similar to 2. They are complete lattices

in which ≥ means inclusion.

3. The set of normal subgroups of a group. The sup of a set of normal

subgroups is the subgroup they generate.

4. The set of subspaces of a vector space ordered by inclusion. The inf

is the set intersection and the sup is the subspace spanned by the

given set of subspaces.

5. The set of ideals of a ring R. Inf is the set intersection, sup is the

ideal generated. For two ideals I1, I2, this is I1 + I2, the set of sums

b1 + b2, bi ∈ Ii.

6. The set of left (right) ideals of a ring.

7. The set of positive integers partially ordered by divisibility:

a ≥ b ⇐⇒ a | b. Here, a ∨ b is the greatest common divisor of a
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and b and a ∧ b is the least common multiple of a and b. This is a

lattice but it is not complete.

8. All the diagrams above except the last one represent lattices (nec-

essarily complete since they are finite).

9. The set Q of rational numbers with a ≥ b having the usual signifi-

cance. This is totally ordered and hence, as we noted above, Q is a

lattice. However, Q is not complete.

10. Even the subset of Q of rationals between 0 and 1 is not complete.

On the other hand, the real interval [0, 1] (with the usual order) is

a complete lattice.

It is useful to sort out the basic properties of the binary compositions

a∧b and a∨b in a lattice L. This will lead us to an alternative definition

of a lattice in terms of conditions on two binary compositions on a set.

We note first that it follows from the definitions that a∨ b and a∧ b are

symmetric in the two arguments. Hence we have the commutative laws:

a∨b = b∨a and a∧b = b∧a. Also, we saw that (a∨b)∨c is the sup of

a, b, and c. Since the sup is a symmetric function of a, b, and c, it follows

that: (a∨b)∨c = a∨(b∨c), and similarly, (a∧b)∧c = a∧(b∧c). It is clear

that every a is idempotent relative to ∨ and ∧: a∨a = a and a∧a = a.

Also, it is clear that if a ≥ b, then a ∨ b = a and a ∧ b = b. Hence, for

any a and b we have: (a ∨ b) ∧ a = a and

(a ∧ b) ∨ a = a.

Conversely, let L be any set in which there are defined two binary

79



compositions ∨ and ∧ satisfying the conditions we have noted:

L1. a ∨ b = b ∨ a, a ∧ b = b ∧ a.

L2. (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c).

L3. a ∨ a = a, a ∧ a = a.

L4. (a ∨ b) ∧ a = a, (a ∧ b) ∨ a = a

We shall show that L is a lattice relative to a suitable definition of ≥
and that a ∨ b and a ∧ b are the sup and inf of a and b in this lattice.

Before proceeding to the proof, we remark that we have made pre-

cisely the same assumptions on the two compositions ∨ and ∧. Hence,

we have the important principle ofduality that states that, if S is a

statement which can be deduced from our axioms, then the dual state-

ment S ′, obtained by interchanging ∨ and ∧ throughout S can also be

deduced. We note next that, if a, b ∈ L (satisfying L1-L4), then the

conditions a ∨ b = a and a ∧ b = b are equivalent. We shall now define

a relation ≥ in L by specifying that a ≥ b means that a ∨ b = a, hence

a ∧ b = b. Evidently, in dualizing, a statement a ≥ b has to be replaced

by b ≥ a.

We shall now verify that the ≥ we have introduced satisfies PO1-PO3.

Since a ∨ a = a we have a ≥ a, so PO1 holds. If a ≥ b and b ≥ a, then

we have a ∨ b = a and b ∨ a = b. Since a ∨ b = b ∨ a, this gives a = b,

which proves PO2. Next, assume that a ≥ b and b ≥ c. Then a ∨ b = a
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and b ∨ c = b. Hence

a ∨ c = (a ∨ b) ∨ c = a ∨ (b ∨ c) = a ∨ b = a,

which means that a ≥ c. Hence PO3 is valid. Since (a ∨ b) ∧ a = a, by

L4, a ∨ b ≥ a. Similarly, a ∨ b ≥ b. Now let c be an element such that

c ≥ a and c ≥ b. Then a ∨ c = c and b ∨ c = c. Hence

(a ∨ b) ∨ c = a ∨ (b ∨ c) = a ∨ c = c

so c ≥ a ∨ b. Thus a ∨ b is a sup of a and b in L. By duality, a ∧ b

is an inf of a and b. This completes the verification that a set L with

binary compositions satisfying L1-L4 is a lattice and a ∨ b and a ∧ b are

the sup and inf in this lattice. A subset M of a lattice L is called a

sublattice if it is closed under the compositions ∨ and ∧. It is evident

that a sublattice is a lattice relative to the induced compositions. On the

other hand, a subset of a lattice may be a lattice relative to the partial

ordering ≥ defined in L without being a sublattice. For example, the

lattice of subgroups of a group G is not a sublattice of the set P(G)

since H1 ∪ H2 is generally not a subgroup.

If a is a fixed element of a lattice L, then the subset of elements x

such that x ≥ a ( x ≤ a) is evidently a sublattice. If a ≤ b, the subset

of elements x ∈ L such that a ≤ x ≤ b is a sublattice. We call such a

sublattice an interval and we denote it as I[a, b].
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The definition of a lattice by means of the axioms L1-L4 makes it

natural to define a homomorphism of a lattice L into a lattice L′ to be

a map a → a′ such that: (a∨ b)′ = a′∨ b′ and (a∧ b)′ = a′∧ b′. In this

case, if a ≥ b, then we have a ∨ b = a; hence a′ ∨ b′ = a′ and a′ ≥ b′. A

map between partially ordered sets having this property is called order

preserving. Thus, we have shown that a lattice homomorphism is order

preserving. However, the converse need not hold. A bijective homomor-

phism of lattices is called an isomorphism. These can be characterized

by order preserving properties, as we see in the following

Theorem 5.2.1. A bijective map of a lattice L onto a lattice L′ is a

lattice isomorphism if and only if it and its inverse are order preserving.

Proof. We have seen that if a → a′ is a lattice isomorphism, then

this map is order preserving. It is clear also that the inverse map is an

isomorphism of L′ into L, so it is order preserving. Conversely, suppose

a → a′ is bijective and it and its inverse are order preserving. This

means that a ≥ b in L if and only if a′ ≥ b′ in L′. Let d = a ∨ b. Then

d ≥ a, b, so d′ ≥ a′, b′. Let e′ ≥ a′, b′ and let e be the inverse image of

e′. Then e ≥ a, b. Hence e ≥ d and e′ ≥ d′. Thus we have shown that

d′ = a′ ∨ b′. In a similar fashion, we can show that (a ∧ b)′ = a′ ∧ b′. 2

5.2.1 Distributivity and Modularity

One of the compositions of a lattice may be viewed as the analogue

of addition in a ring, and the other can be taken as the analogue of

82



multiplication. Depending on which we use for addition and which for

multiplication, we can formulate the following two distributive laws:

D a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

and its dual

D′ a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

It is a bit surprising thatas we shall now showthese two conditions

are equivalent. Suppose D holds. Then

(a ∨ b) ∧ (a ∨ c) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c)

= a ∨ ((a ∨ b) ∧ c)

= a ∨ ((a ∧ c) ∨ (b ∧ c))

= (a ∨ (a ∧ c)) ∨ (b ∧ c)

= a ∨ (b ∧ c),

which is D′. Dually D′ implies D. A lattice in which these distributive

laws hold is called distributive. There are some important examples of

this. First, as we showed in the Introduction (p. 4), the lattice P(S)

of subsets of a set S is distributive. Second, we have the following Any

totally ordered set is a distributive lattice.

Proof. We wish to establish D for any three elements a, b, and c and

we distinguish two cases:

1. a ≥ b, a ≥ c
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2. a ≤ b or a ≤ c

In (1), we have a ∧ (b ∨ c) = b ∨ c and (a ∧ b) ∨ (a ∧ c) = b ∨ c. In

(2), we have a ∧ (b ∨ c) = a and (a ∧ b) ∨ (a ∧ c) = a. Hence, in both

cases (D) holds. 2

This lemma can be used to show that the set of positive integers ordered

by divisibility is a distributive lattice. In this example,

a ∨ b = (a, b) the g.c.d. of a and b and a ∧ b = [a, b] the l.c.m. of a

and b. Also, if we write a = pa1

1 pa2

2 · · · pak

k , b = pb1

1 pb2

2 · · · pbk

k where the

pi are distinct primes and the ai and bi are non-negative integers, then

(a, b) =
∏

p
min(ai,bi)
i , [a, b] =

∏

p
max(ai,bi)
i . Hence, if c = pc1

1 pc2

2 · · · pck

k , ci

non-negative integral, then

[a, (b, c)] =
∏

p
max(ai,min(bi,ci))
i ,

and

([a, b], [a, c]) =
∏

p
min(max(ai,bi),max(ai,ci))
i .

Now the set of non-negative integers with the natural order is totally

ordered, and max(ai, bi) = ai ∨ bi, min(ai, bi) = ai ∧ bi in this lattice.

Hence, the distributive law D′ in this lattice gives the relation

max(ai, min(bi, ci)) = min(max(ai, bi), max(ai, ci)).

Then we have

[a, (b, c)] = ([a, b], [a, c])

which is D for the lattice of positive integers ordered by divisibility.
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The same reasoning applies to any reduced factorial monoid.

Another remark on distributivity which is worth noting is that in any

lattice we have a ∧ (b ∨ c) ≥ (a ∧ b) and a ∧ (b ∨ c) ≥ a ∧ c. Hence

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c).

Thus in order to establish distributivity it suffices to establish the reverse

inequality

(1) a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c).

The most important lattices which occur in algebra (e.g., the lattice of

sub-modules of a module, the lattice of normal subgroups of a group) are

not distributive. For instance, let L(V ) denote the lattice of subspaces

of a vector space V over a field F . Assume dim V ≥ 2 and let x and y

be linearly independent vectors in V . Then

F (x + y) ∩ (Fx + Fy) = F (x + y)

but F (x + y) ∩ Fx = 0 and F (x + y) ∩ Fy = 0

so F (x + y) ∩ (Fx + Fy) 6= (F (x + y) ∩ Fx) + (F (x + y) ∩ Fy). As

we shall see in a moment, the lattice L(V ) satisfies a weakening of the

distributive condition, which was first formulated by Dedekind. This is

the condition:

M If a ≥ b, then a ∧ (b ∨ c) = b ∨ (a ∧ c).

Since b = a ∧b, the right-hand side can be replaced by (a∧ b)∨ (a∧ c).
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Hence, the condition M is equivalent to D in the special case in which

a ≥ b (or a ≥ c).

Condition M is called modularity, and a lattice satisfying it is

said to be modular. The dual condition M’ reads: If a ≤ b, then a ∨
(b ∧ c) = b ∧ (a ∨ c).

Clearly, this is the same as M. It follows that, as for distributive lattices,

the principle of duality is valid in modular lattices.

The importance of modular lattices in algebra stems from the

following.

Theorem 5.2.2. The lattice of normal subgroups of a group is modular.

The lattice of submodules of a module is modular.

Proof. The normal subgroup generated by two normal subgroups H1

and H2 of a group G is H1H2 = H2H1. Hence we have to prove that if

Hi, i = 1, 2, 3, are normal subgroups such that H1 ⊃ H2 then

H1 ∩ (H2H3) = H2(H1 ∩ H3).

The remark above about the distributive law shows that it is enough to

prove that

H1 ∩ (H2H3) = H2(H1 ∩ H3).

Suppose a ∈ H1 ∩ (H2H3). Then a = h1 = h2h3, hi ∈ Hi, and

h3 = h−1
2 h1 ∈ H1, since H1 ⊃ H2. Thus h3 ∈ H1 ∩ H3 and a = h2h3 ∈

h2(H1 ∩ H3). This proves the required inclusion. The argument for

modules is similar and simpler so we omit it. 2
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An alternative definition of modularity which is sometimes useful can

be extracted from the following

Theorem 5.2.3. A lattice L is modular if and only if whenever a ≥ b

and a ∧ c = b ∧ c and a ∨ c = b ∨ c for some c in L, then a = b.

Proof. Let L be modular and let a, b, c be elements of L such that

a ≥ b, a ∨ c = b ∨ c, and a ∧ c = b ∧ c. Then

a = a ∧ (a ∨ c) = a ∧ (b ∨ c) = b ∨ (a ∧ c) = b ∨ (b ∧ c) = b.

Conversely, suppose that L is any lattice satisfying the condition stated

in the theorem. Let a, b, c ∈ L and a ≥ b. We know that a ∧ (b ∨ c) ≥
b ∨ (a ∧ c). Also,

(a ∧ (b ∨ c)) ∧ c = a ∧ ((b ∨ c) ∧ c) = a ∧ c.

and

a ∧ c = (a ∧ c) ∧ c ≤ (b ∨ (a ∧ c)) ∧ c ≤ a ∧ c.

Hence

(b ∨ (a ∧ c)) ∧ c = a ∧ c.

since b ≤ a the dual of our first relation is

(b ∨ (a ∧ c)) ∨ c = b ∨ c.
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and the dual of the second one is

(a ∧ (b ∨ c)) ∨ c = b ∨ c.

Thus, we have

(a ∧ (b ∨ c)) ∧ c = (b ∨ (a ∧ c)) ∧ C,

(a ∧ (b ∨ c)) ∧ c = (b ∨ (a ∧ c)) ∧ C.

Hence the assumed property implies that a∧ (b∨ c) = b∨ (a∧ c), which

is the modular axiom. 2

We shall prove next an analogue for modular lattices of the second iso-

morphism theorem for groups, namely,

If a and b are elements of a modular lattice, then the map x → x ∧ b

is an isomorphism of the interval I[a, a ∨ b] onto I[a ∧ b, b]. The inverse

isomorphism is y → y ∨ a.

Proof. We note first that in any lattice the maps x → x ∨ a and

x → x ∧ a are order preserving. For, we have x ≥ y if and only if

x ∨ y = x and if and only if x ∧ y = y. Then x ∨ y = x implies

(x ∨ a) ∨ (y ∨ a) = (x ∨ y) ∨ (a ∨ a) = (x ∨ y) ∨ a = x ∨ a. Hence,

x ≥ y implies x ∨ a ≥ y ∨ a. Similarly, we have x ∧ a ≥ y ∧ a. Now, if

a ≤ x ≤ a ∨ b, then a ∧ b ≤ x ∧ b ≤ b = (a ∨ b) ∧ b, and if a ∧ b ≤ y ≤ b,

then a = a∨(a∧b) ≤ y∨a ≤ a∨b). Hence, x → x∧b and y → y∨a map

I[a, a∨ b] into I[a∧ b, b] and I[a∧ b, b] into I[a, a∨ b], respectively. Since
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these maps are order preserving, the theorem will follow from above

theorem if we can show that they are inverses. Let x ∈ I[a, a∨ b]. Then,

since x ≥ a, by modularity

(x ∧ b) ∨ a = x ∨ (a ∨ b),

and since x ≤ a ∨ b, this gives (x ∧ b) ∨ a = x. Dually, we have that

if y ∈ I[a ∧ b, b], then (y ∨ a) ∧ b = y. This proves the two maps are

inverses. 2

This theorem leads us to introduce a notion of equivalence for inter-

vals, which in modular lattices is stronger than isomorphism. First, we

define the intervals I[u, v] and I[w, t] to be transposes if there exist a

and b in the lattice such that one of these coincides with I[a, a ∨ b] and

the other with I[a ∧ b, b]. The intervals I[u, v] and I[w, t] are projective

if there exists a finite sequence

I[u, v] = I[u1, v1], I[u2, v2], . . . , I[un, vn] = I[w, t]

such that consecutive pairs I[uk, vk], I[uk+1, vk+1] are transposes. It is

immediate that this is an equivalence relation. Also it is clear from

Theorem 5.8 that in a modular lattice projective intervals are isomorphic.
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5.2.2 The Theorem of Jordan-Hölder-Dedekind

A partially ordered set S is said to be of finite length if the lengths

(number of distinct terms) of its chains (= totally ordered subsets) are

bounded. If a and b are elements of a partially ordered set of finite

length and a > b, then we can find a finite sequence of elements a =

a1, a2, . . . , an = b such that each ai is a cover of ai+1. A sequence of

elements having this property is called a connected chain from a to b. A

desirable property is that any two connected chains from a to b (a > b)

have the same length. We shall now show that this property is assured

for a lattice L of finite length if L is semi-modular, in the sense that if

a ∨ b covers a and b, then a and b cover a ∧ b. We have seen that if L is

modular, then I[a∧ b, a] and I[b, a∨ b] are isomorphic. Hence, it is clear

that modularity implies semi-modularity. The following theorem is the

lattice analogue of the Jordan-Hlder theorem for finite groups.

Theorem 5.2.4. THEOREM OF JORDAN-HÖLDER-DEDEKIND.

Let L be a semi modular lattice of finite length. Then any two connected

chains from a to b, a > b, have the same length. Moreover, if L is

modular and

(2) a = a1 > a2 > · · · > am+1 = b

(3) a = a′1 > a′2 > · · · > a′m+1 = b

are two connected chains from a to b, then the corresponding inter-

vals I[ai+1, ai] and I[a′j+1, a
′
j] can be paired so that the paired ones are

projective.
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Proof. The proof imitates the proof of the group result. We use induc-

tion on n where n + 1 is the length of one of the connected chains from

a to b. If n = 1, then a is a cover of b and the result is clear. If a2 = a′2,

then we have two connected chains from a2 to b and the theorem follows

by induction on n. Now suppose a2 6= a′2. Then a1 is a cover of a2 and

of a′2 6= a2, which implies that a2 ∨ a′2 = a1. Then the semi-modularity

implies that a2 and a′2 are covers of a′′3 ≡ a2 ∧a′2. Also, a′′3 ≥ b. If b = a′′3.

In this case, m = n = 2 and, in the modular case, I[a2, a1] and

I[b, a′2], and I[a′2, a1] and I[b, a2] are transposes. If a′′3 > b, then we can

find a connected chain a′′3, a
′′
4, . . . , a

′′
q+1 = b. Then the result follows by

induction on n applied to a2, a3, . . . , an+1 = b, and a2, a
′′
3, . . . , a

′′
q+1 = b

as well as to a′2, a
′′
3, . . . , a

′′
q+1 = b (using q = n) and a′2, a

′
3, . . . , a

′
m+1 = b.

Also, in the modular case we have to use the fact that I[a2, a1] and

I[a′′3, a
′
2] and I[a′′2, a1] and I[a′′3, a2] are transposes as in the proof of the

group result. The remaining details are left to the reader. 2

Assume now that L is modular with a least element 0, and that L is

of finite length. If we have a connected chain a1 = a, a2, . . . , an+1 = b

from a to b, then we shall call the number n (uniquely determined by a

and b) the length of the interval I[b, a]. We denote the length of I[0, a]

as d(a) and call this the rank of a. If a ≥ b, then it is clear that

d(a) = d(b) + length I[b, a].

91



Hence for any a and b in L we have

d(a ∨ b) = d(a) + length I[a, a ∨ b]

d(b) = d(a ∧ b) + length I[a ∧ b, b]

Since I[a, a ∨ b] and I[a ∧ b, b] are isomorphic, they have the same

lengths. Hence,

d(a ∨ b) − d(a) = d(b) − d(a ∧ b)

or

(4) d(a ∨ b) = d(a) + d(b) − d(a ∧ b)

which is analogous to the dimensionality formula for the subspaces of a

finite dimensional vector space.

5.3 Boolean Algebras

Definition 5.3.1. A Boolean algebra is a lattice with a greatest element

1 and least element 0 which is distributive and complemented.

The most important instances of Boolean algebras are the lattices of

subsets of any set S. More generally, any field of subsets of S, that is,

a collection of subsets of S which is closed under union and intersection,

contains S and ∅, and the complement of any set in the collection is

a Boolean algebra. The following theorem gives the most important

elementary properties of complements in a Boolean algebra.
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Theorem 5.3.2. The complement a′ of any element a of a Boolean alge-

bra B is uniquely determined. The map a → a′ is an anti-automorphism

of period ≤ 2: a → a′ satisfies

(11) (a ∨ b)′ = a′ ∧ b′, (a ∧ b)′ = a′ ∨ b′,

(12) a′′ = a.

Proof. Let a ∈ B and let a′ and a − 1 satisfy a ∨ a′ = 1, a ∧ a1 = 0.

Then

a1 = a1 ∧ 1 = a1 ∧ (a ∨ a′) = (a1 ∧ a) ∨ (a1 ∧ a′) = a1 ∧ a′.

Hence, if in addition, a∨ a1 = 1 and a∧ a′ = 0, then a′ = a′ ∧ a1, and so

a′ = a1. This proves the uniqueness of the complement. It is clear that

a is the complement of a′. Hence a′′ ≡ (a′)′ = a, and a → a′ is of period

one or two; hence bijective. Now, let a ≤ b. Then a ∧ b′ ≤ b ∧ b′ = 0, so

b′ = b′ ∧ 1 = b′ ∧ (a ∨ a′) = (b′ ∧ a) ∨ (b′ ∧ a′) = b′ ∧ a′.

Hence b′ ≤ a′. Since a → a′ is its own inverse and is order inverting,

it follows from Theorem 5.1.4 that a → a′ is a lattice anti-isomorphism.

2

Historically, Boolean algebras were the first lattices to be studied.

They were introduced by Boole to formalize the calculus of propositions.

For a long time it was supposed that the type of algebra represented by

these systems was of a different character from that involved in number

systems and their generalizations (algebras in the technical sense and

93



rings). However, it was discovered rather late in the day by M. H. Stone

that this is not the case. In fact, any Boolean algebra, if properly viewed,

becomes a special type of ring. In order to make a ring out of a Boolean

algebra B, we introduce the new composition

a + b = (a ∧ b′) ∨ (a′ ∧ b),

which is called the symmetric difference of a and b.

We have

(a ∨ b) ∧ (a ∧ b)′ = (a ∨ b) ∧ (a′ ∨ b′)

= ((a ∨ b) ∧ a′) ∨ ((a ∨ b) ∧ b′)

(13) = ((a ∧ a′) ∨ (b ∧ a′)) ∨ ((a ∧ b′) ∨ (b ∧ b′))

= (b ∧ a′) ∨ (a ∧ b′)

= a + b.

The first formula shows that in the Boolean algebra of subsets of a set,

U + V is the set of elements contained in U or in V , but not in both:

We shall now show that B is a ring with + as just defined, the product

ab = a ∧ b, and 1 as the unit of B.

Evidently + is commutative. To prove associativity we note first that,

by (13),

(a + b)′ = (a ∨ b)′ ∨ (a ∧ b) = (a ∧ b) ∨ (a′ ∧ b′)

94



Hence,

(a + b) + c = [((a ∧ b′) ∨ (a′ ∧ b)) ∧ c′] ∨ [((a ∧ b) ∨ (a′ ∧ b′)) ∧ c]

= [(a ∧ b′ ∧ c′) ∨ (a′ ∧ b ∧ c′)] ∨ [(a ∧ b ∧ c) ∨ (a′ ∧ b′ ∧ c)]

= (a ∧ b′ ∧ c′) ∨ (a′ ∧ b ∧ c′) ∨ (a ∧ b ∧ c) ∨ (a′ ∧ b′ ∧ c)

This is symmetric in a, b, and c. In particular, (a + b) + c = (c + b) + a.

Commutativity therefore, implies the associative law for +. Evidently,

a + 0 = (a ∧ 1) ∨ (a′ ∧ 0) = a

and

a + a = (a ∧ a′) ∨ (a′ ∧ a) = 0.

Hence (B, +, 0) is a commutative group.

We know that · (= ∧) is associative and commutative. Also, a · 1 =

1 ·a = a∧1 = a for all a in B. It remains to check one of the distributive

laws. Now we have
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(a + b)c = (a ∧ b′) ∨ (a′ ∧ b) ∧ c

= (a ∧ b′ ∧ c) ∨ (a′ ∧ b ∧ c)

ac + bc = ((a ∧ c) ∧ (b ∧ c)′) ∨ ((a ∧ c)′ ∧ (b ∧ c))

= ((a ∧ c) ∧ (b′ ∧ c′)) ∨ ((a′ ∨ c′) ∧ (b ∧ c))

= (a ∧ c ∧ b′) ∨ (a′ ∧ b ∧ c).

Comparison shows that (a + b)c = ac + bc. Hence (B, +, ·, 0, 1) is a ring.

We have noted also that the ring B is commutative and every element

is of order ≤ 2 in the additive group. Also every element is idempotent:

a2 = a ∧ a = a. These properties of a ring are not independent; for, as

we now note, if every element of a ring is idempotent, then the ring is

commutative and 2a = 0 for every a. To prove this we observe that

a + b + ab + ba = a2 + b2 + ab + ba = (a + b)2 = a + b.

Hence, ab+ ba = 0. Then 2a = 2a2 = aa+aa = 0, and so a = −a. Then

ab = −ba = ba. These considerations lead us to introduce the following

Definition 5.3.3. A ring called Boolean if all of its elements are

idempotent.

We have seen that such a ring is of characteristic two. We shall prove

next that any Boolean ring B defines a Boolean algebra, and that, in fact,
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these two concepts are equivalent. Suppose (B, +, ·, 0, 1) is a Boolean

ring. In order to reverse the process we used to go from a Boolean

algebra to a Boolean ring, we now define

a ∨ b = a + b − ab = 1 − (1 − a)(1 − b).

The second expression for a ∨ b shows that if we introduce the map

σ : x → 1 − x in B, then a ∨ b = σ−1(σ(a)σ(b)), since σ2 = 1. It is

clear from this and the associative law of multiplication in B that ∨ is

associative and, of course, this composition is commutative. Also,

a∨a = 2a−a2 = −a2 = a. We now define a∧b = ab. Then associativity

and commutativity are clear, and a ∧ a = a since every element of B is

idempotent. Also we have (a ∨ b) ∧ a = (a + b − ab)a = a and

(a ∧ b) ∨ a = ab + a − a2b = a. Thus the defining conditions L1L4 on ∨
and ∧ for a lattice hold. It is immediate that the ring 1 and 0 are the

greatest and least elements of the lattice (B,∨,∧), and that 1 − a is a

complement of a, since a ∨ (1 − a) = 1 and a ∧ (1 − a) = 0. The lattice

is distributive since

(a ∨ b) ∧ c = (a + b − ab)c

= ac + bc − abc

= ac + bc − acbc

= (a ∧ c) ∨ (b ∧ c).

Thus, (B,∨,∧, 0, 1,′ ) is a Boolean algebra. It remains to show that
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the process of passing from a Boolean algebra to a ring and the process

of passing from a ring to a Boolean algebra are inverses. Thus suppose

we begin with a Boolean algebra (B,∨,∧, 0, 1,′ ). Then we obtain the

ring (B, +, ·, 0, 1) in which a + b = (a ∧ b′) ∨ (a′ ∧ b) and ab = a ∧ b. An

application of the second process to this ring gives a Boolean algebra in

which 1 = 1, 0 = 0, a′ = 1 − a, and the new ∨ and ∧ which we now

denote as ∨̄ and ∧̄ respectively are a∨̄b = a+b−ab = 1−(1−a)(1−b) =

(a′ ∧ b′)′ = a ∨ b and a∧̄b = ab = a ∧ b. Hence, ∨̄ = ∨, ∧̄ = ∧, and so

we obtain the original Boolean algebra. On the other hand, suppose

we start with a Boolean ring (B, +, ·, 0, 1) and we obtain the Boolean

algebra (B,∨,∧, 0, 1,′ ) in which a ∨ b = a + b − ab, a ∧ b = ab, 0 = 0,

1 = 1, and a′ = 1 − a. Then, applying the process we gave yields a ring

in which the new addition ⊕ and multiplication ⊙ are

a ⊕ b = (a ∧ (1 − b)) ∨ ((1 − a) ∧ b)

= a(1 − b) ∨ (1 − a)b

= (a − ab) ∨ (b − ab)

= a − ab + b − ab − (a − ab)(b − ab)

= a − ab + b − ab − ab + ab + ab − ab

= a + b

a ⊙ b = a ∧ b = ab.

Also 1 = 1, 0 = 0 so we obtain the original ring. We have therefore

proved the following theorem, which is due to Stone.
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Theorem 5.3.4. Boolean algebra and Boolean ring.

There is one more remark worth making. In passing from a Boolean

algebra to a Boolean ring we could have used ∨ for ∧, ∧ for ∨, 1 for

0, and 0 for 1 in the construction. This follows from the principle of

duality, which is applicable to Boolean algebras. Our process then leads

to a ring B′ with the same underlying set B and with the addition

a +′ b = (a ∨ b′) ∧ (a′ ∨ b)

and multiplication

a ·′ b = a ∨ b.

Also the new 0 and 1 are 0′ = 1, 1′ = 0. In terms of the ring B, we have

a +′ b = (a + (1 − b) − a + ab)(b + (1 − a) − b + ab)

= (1 − b + ab)(1 − a + ab)

= 1 − (a + b),

a · b = a + b − ab.

We define an ideal of a Boolean algebra B to be an ideal of the

associated Boolean ring (B, +, ·, 0, 1). The conditions for a subset I to

be an ideal are:

(1) if u, v ∈ I, then u + v ∈ I, and

(2) if a is arbitrary in B, then ua ∈ I.

Since ua = u ∧ a and ua = a if and only if a ≤ u, the second
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condition is equivalent to: if u ∈ I, then b ∈ I for every b ≤ u. Since

u ∨ v = u + v + uv , u ∨ v ∈ I for every u, v ∈ I.Conversely, let I be a

subset of B such that if u, v ∈ I, then u∨ v ∈ I and if u ∈ I, then every

b ≤ u is in I. Then u ∧ v′ and v ∧ u′ ∈ I ( u′ and v′ the complements

of u and v). Hence, u + v = (u ∧ v′) ∨ (v ∧ u′) ∈ I and so I is an ideal.

Thus a subset I of a Boolean algebra is an ideal if and only if it is closed

under ∨ and contains every b ≤ u for any u ∈ I.

An ideal I is called proper if I 6= B. It is clear that I is proper if and

only if 1 /∈ I. If u ∈ B, then (u) = {x ∈ B | x ≤ u} is an ideal called the

principal ideal generated by u. An ideal I is maximal if I is proper and

there is no proper ideal Ī properly containing I(Ī ) I). We now observe

that an ideal I is maximal if and only if I is proper and for every a ∈ B

either a or a′ ∈ I. First, suppose I is maximal and let a /∈ I. Consider

the set Ī of elements of the form u+ b where u ∈ I and b ≤ a. This is an

ideal properly containing I, so, by the maximality of I, it coincides with

B. Thus, 1 = b + u where b ≤ a and u ∈ I. Hence, b′ = 1 + b = u ∈ I.

Since a′ ≤ b′, it is also true that a′ ∈ I. Conversely, let I be a proper

ideal such that for every a ∈ B, either a or a′ ∈ I. Let I be any ideal

properly containing I and let a ∈ Ī , /∈ I. Then a′ ∈ I, and so a′ ∈ Ī

and 1 = a + a′ ∈ Ī. Thus Ī = B and I is maximal.

All of this can be dualized by applying the same considerations to the

second ring B′ = (B, +′, ·′, 0′, 1′) associated with the Boolean algebra B.

Accordingly, we define a filter (dual ideal) of B to be an ideal of B′. The

foregoing results can be dualized as follows. First, we note that the dual
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of our criterion for a subset to be an ideal is that a subset F of a Boolean

algebra B is a filter if and only if it is closed under ∧ and containing

every b ≥ u for any u ∈ F . Since (a∧b)′ = a′∧b′ and (a∨b)′ = a′∨b′, it is

clear that F is a filter if and only if the set F ′ of complements a′, a ∈ F ,

is an ideal. Condition (1) is equivalent to the finite intersection property:

F is closed under finite intersections. A filter is proper in the sense that

F 6= B if and only if 0 /∈ F . A maximal ideal of B′ is called an ultrafilter

of the Boolean algebra B. A filter F is an ultrafilter if and only if (1)

0 /∈ F , (2) for any a ∈ B, either a or a′ ∈ F . If a ∈ B, the subset of

elements x ≥ a is a filter called the principal filter generated by a.

We conclude our brief introduction to Boolean algebras by giving a

couple of examples of filters.

Examples:

1. Let R be the real line endowed with its usual topology and let S

denote the collection of non-vacuous open subsets of R. This has

the finite intersection property. The set S̄ of subsets which contain

open subsets of R is a filter.

2. Let S be any set, B = P(S) the set of subsets of S. Let I be the

set of finite subsets of S. This is an ideal in B; hence the set F of

complements of the finite subsets is a filter.
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