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Unit-1

Measure on the Real line - Lebesgue Outer Measure - Measurable sets - Regularity - Measurable
Functions - Borel and Lebesgue Measurability.

Chapter—1Sec 1.1to 1.5

Measure on the Real line

We consider a class of sets (Measurable sets) on the real line and the functions (Measurable
functions) arising from them.

1.1.Lebesgue Outer Measure:

All the sets considered in this chapter are contained in R, the real line, unless stated otherwise. We
will be concerned particularly with intervals I of the form I=[a,b), where a and b are finite, and
unless otherwise specified, intervals may be supposed to be of this type. When a=b, | is the empty
set ¢p. We will write I(1) for the length I, namely b-a.

Definition 1:

The Lebesgue Outer Measure (or) Outer Measure of a set A is given by m*(4) = inf), [(I,)

where infimum is taken over all finite or countable collection of intervals [I,] such that A cuU I,

ie,mx (4) = {infz £(1,)/A cu In}

Theorem 1:

() m*(4) >0

(i) m*(¢) =0

(iii) m*(A) < m*(B) if A € B (Monotonicity property)
(ivym*([x]) =0forany x € R

Proof:

(i) We know that, m*(4) = {irf¥¢(I,)) | A U IL,}
Obviously, ¢(I,) > 0Vn

inf z [(I,) > 0 vn

m*(A) > 0
(i) Clearly, for an empty set
m*(¢) =0  (~ length =0)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



(iif) We know that
m*(4) = {infz £(,) | ASU Ty}
m*(B) = {infz #(B) 1 B SUR,}
since A € B = inf}£(I,,) < inf}¢(P,)
m*(4) < m*(B).
(iv) Since, x € I, = [x,x + 1/n]

() =x+1/n—x
~f() =1/n

Inf Z 2(1,) = 0
x)=0

Example 1:
Show that for any set A, M*(A) = M*(A+x) where A+ x = [y +x:y € A]
(i.e.) the Outer Measure is translation invariant.
Proof:
For each £ > 0, 3 a collection [I,,] such that A cu I,, and
m*(A) = iHf Y £(1,).

= m*(4) > Z () —€ ....(1) ( m*(4) = Z f’(ln)>

But clearly, A+ x € U(I,, + x)

So for each ¢,

m*(A+x) < Z (I, +x) = Z () =m"(A) +¢
(By equation (1))

Similarly, we can prove that, M*(A — x) < M*(A)
Replace Aby A+ x, M*"(A) < M*(A+x) ........... 3)
From (2) and (3),

M*(A) = M*"(A+x)
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Theorem 2:

The outer measure of an interval equal its length

Proof:

case (i): Suppose that I is a closed interval I = [a, b] (say)
Then for each € > 0,

m*([a,b]) £ M*([a,b + €))

=b—a+¢
m*([a,b]) < b—a
M (D<b—a .....(1

(** [a,b] € [a,b + ¢€) and by theorem 1)
It is enough to prove m*(I) > b —a
For each € > 0, | may be covered by a collection of intervals [I,] = [a,, b,) s.t m*[I]

i, —¢€ .......... 2
Foreachn, Letl,’ = (an —= bn)

o
Thenl, c I,
£(1,) = b, —a,
. £
f([n) =b, —a, +2_n
£
o) = €U + 5
£
2(1,) = €(1) — T 3)

Now, I € Up-y In € Upzy I

From equation (3),

i (1) = i o) - i o
n=1 n=1 n=1
- nZl o) —¢

ey ) =X, AU ) —€e (4)
Theorem 3:
"For a compact set AcR, every open cover has a finite sub cover

There is a finite sub collection of I, say J;, /5, ..., Jy Where Jy = (cy, dy) covers |
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e %

No J; is obtained in any other we have supposing that c; < ¢, < - < ¢y

N N-1

dy —c; = Z (dy — cp) — Z (dr — Ck+1)
k=1 k=1
N

< Z (i) N )

k=1
From equation (2), (4) and (5)

m()> ) o) - e
= i () —e—¢

>Z 2(Jx) — 2¢

k=1

>dy —cy — 2¢

=b—a-—2¢
since € > 0 is arbitrary, we trave m*(I) >b—a ........ (6)
From equation (1) and (6)
~M(D)=b—a
case (ii)
We have suppose that I = (a, b] where a > a
Ifa=bm(I)=41)=0
Takea#b,a<b=>b—a>0
Nowwehave 0 < e <b—a
Consider I' = [a + &, b]
and Hence I' € I
m*(I') <m*(I)
m (1) >m*(I") = ¢(I")
=b—a—c¢

=¢()—¢

emt (D) =2f()—€ e (D).
Consider I = [a,b + €)
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>lcl”

m*(I) <m*(I") =1(")
=b—a+c¢
=4()+¢

>m") <)+ . (2)

From equation (1) and (2),

(D) —e<m () <) +¢
=>m"() =¢() +¢

since € > 0 is arbitrary

~m*(I) = £(I).

case (iii):

Suppose | is an infinite interval. there are 4 types of intervals: (—oo, a), (—, a], (a, o] and [a, o)
Assume that [ = (—o0, a]

For any M > 0, there exist k such that
the finite interval I, = [k, k + M]
clearly, I, € I

M (D) >M ) =¢,)=k+M—k
=M
aM()=M

Butm*(I) =¢(I) =a+ o0 =00

am*(I) = o =£(I)

the other cases follow similarly.

Hence the outer measure of an interval equal to its length
Theorem 4:

For any sequence of set {E;}, m* (U2, E;) < X2, m*(E;)
(the property of Countably Sub additivity).

Proof:

For each i, and for any ¢ > 0

There exists a sequences of Intervals {I; ;;j = 1,2, ... }

suchthat E; < U2, I;jand ... (*)
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j=1
€
= Z o) Sm B+ (1)
ij=1
From (*), U2, E; € U, U,
“(Us) Uy
i=1 i=1 j=1
= Z o(1,;)
(=1
= Z Z {)(IU])
i=1 j=1
) * . |
S Z [m (E) + ;] (by equation (1))
i=1
m* (U Ei> < z m*(E;) + Z o
=1 i=1 i=1
= Z m*(E;) + ¢
i=1

since € > 0 is arbitrary
L (U El-) <) mE)
i=1 i=1
Example 2:
Show that for any set A and for any € > 0, there is an open set 0 containing A and such that
m*(0) <m*(A) + ¢
consider the sequence of intervals {I,,} such that A < Uy, I,,
m*(A) > Yo PUy) —€/2 ......... (1)
If I, = [a,, b,) and choose I, = (an — bn)

2n+1'

10

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



U = U I
n=1 n=1

clearly, A€ Uy_, 1, € Uy_

Take 0 = Uy_, I is an open set containing A.
Now, m*(0) =m*(UyiL,")

<> ma)
= ¥ 1)

= Yn=1 (bn —ap t %)

&
=y (f(ln) + 2n+1)
&
=Ya=1 () + X0y preEy

<m'(A) + =+ -
<m*(4) >t5

=m"(4) +¢
~m*(0) <m*(4) +e.

1.2.Measurable sets

Definition:

The set E is lebesgue measurable or measurable if for each set A, we have
m*(A) =m*(ANE)+m*(An E°)

Result

E is measurable if and only if for each set A we have m*(4) > m*(ANE) + m* (AN E°)

Proof:

Assume that E is measurable then for any set A,
m*(A) =m*(ANE)+m* (AN E°)

From this, we get

m*(A) < m*(ANE) + m*(A n E°)
and m*(A) >m*(ANE) +m*(ANE®)
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Hence proved.

Conversely, assume that

m*(A) >m*(ANE)+m* (AN E°)

It is enough to prove

m*(A) <m*(ANE)+m*(An E®)

We have, A = (AN B) U (AN B°)

m*(A) = m*[(ANnB) U (AN B°)]

By Countably Sub additive

m*(4) < m*(ANnB) +m*(An B°)

Hence, m*(A) < m*(ANE) + m* (AN E°)
m*(A) =m*(ANE)+m*(An E®)

= E is measurable.

Example 4:

Show that if m*(E) = 0 then E is measurable.

Solution:
Assume that m*(E) = 0
ANECE
mANE)<m"(E) =0 ......(1)
ANECCA
m(ANE®) <m*(A) .......(2)

WD+ R2)=>m*(ANE)+m* (ANE®) < 0 +m*(4)
m*(A) >m*(ANE)+m* (AN E®)

= E is measurable (By the previous result).

From equation

Definition: (o — algebra)

The class of subsets of an arbitrary space X is said to be a g-algebra (or) o-field if x belongs to the
class and the class is closed under the formation of countable unions and of complements.

We will denote by M the class of Lebragur measurable sets

Theorems 5:

The class M is a g-algebra.

Proof:

(1) By definition of Lebesgue measurable sets, we have k € M
12
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(m*(A) = m*(ANnR)+m*(ANR°)
=m"(4)

(ii) For every E € M, to prove E€ € M
ForEeM
m*(A) =m*(ANE)+m* (AN E°)
=m* (AN (E)) +m* (AN E°)
m*(A) = m*"(ANE®) + m*(An (E)°)
>E‘eM
(iii) I {E;} is a sequence of sets in M, then prove that U2, E; € M
Let A be any arbitrary set
ifissince E; e M

m*(A) =m*(ANnE) +m"(ANEf)
Also E, e M
m*(A) =m* (ANE,) +m*(ANES)
Take A= ANE;
LANE “nE3)

m(ANE)=m"(ANEfNE,)+m y

We have E; € M
m*(A) =m*(ANE;) + m*"(ANES)

Take A= ANE; NE;
mANEfNES) =m* (ANE{ NES NE;) +m*(AnE{ NES NES)

forn>2
Continuing in this way, we get

m*(4) =m* (AN Ey) + X, m*[(AnE 0 (N EF)] +m (A n (T0, Ef)]

m (ANB) =m (ANE) + X%, m[AnE n (U B)] +m[an (UL, E)]

For any n,

13
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j=1 Ej € UL E;
(U E) 2 (UR, E)
An (Ul E) 24n (U, E)
m*[An (UL, )] >m'[an (UL, B)]

Using equation (2) in (1) we get

> mAnE)+ 3L, m (A0 E0 (U B) +m (40 (U B))
n n
c
=1 i=1
[ee] ¢ (o]
i=1 j<i i=1
[ee] c (o]
) J<t )
i=1 i=1
(o] (o] c
m'|AN UEi =m*U<AnEin(_U,E'j>]
\ \ Jj<i
=1 =1
@ Cc
- Jj<i
=1
(o] [e'e] ¢
From equation (3) = m*(A) > m* [An <U El-) ++m*|AN U E;
i=1 j=1
[ee] [e'e] ¢
m*(4) >m* AN UEj +m AN UE]
j=1 j=1
~ Uj=1 E; is measurable (by the result)
~ M is a o-algebra
14
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Example 5:

Show that if F € M and m*(FAG) = 0 then G is measurable.

Solution:

We have FAG = (F—-G)VU (G —F)

m*(FAG) = 0 = FAG is measurable

= (F — G) U (G — F) is measurable

= F — G and G_ — F are measurable

FNG=F-—(F—G)is measurable

“G=(FNG)U (G- F) is measurable

=~ G is measurable.

Theorem 6:

If {E;} is any sequence disjoint Hrasurab set. Then m*(U{2, E;) = Y72, m*(E;)
(i.e.) m* is countably additive on disjoint set of M

Proof:

Given {E;};2, is a sequence of disjoint measurable set. . E; NE; = ¢,i # j
We know that U2, E; is Measurable

(by definition of M )

Also by theorem 3,

m (U El-) < Z m* (E;)

i=
To prove: m* (U2, E;) > X2, m*(Ey).
e} n

E 2| | E

Asn — oo, we get

15
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i=1
From equation (1) and (2),

m’ (CJ Ei) =§: m*(E;)

i=
Note:
e If E is a measurable set, then we will write m(E") in place of m*(E)
e m(E) is called the lebesgue measure of E
Theorem 7:
Every Interval is measurable.
Proof:
We may assume that the interval to be of the form [a, o)
Fox any set A we wish to show that m*(A) > m*(A N [a,©)) + m*(A N (==, a))
(i.e.) To prove: m*(A) > m*(AN (—,a)) + m*"(A N [a, o))

let Ay =AN(—x,a)
AZ =AN [a, OO)

By definition of m*, for any € > 0, there exist a intervals {I,,}
suchthat A € Uy, I, and m*(A) > Yo €(I) — € ....... (1)
Write, I, = I, N (—, a)

I} =1, N [a, )

So that I(1,) = €(I},)) + £(I}))

then, A; € Up_, 1),

Ay € Uy Iy
m*(4;) < Xp-1 RU) ¢ (2)
m*(4,) < Xo-1 X))

Now, m*(4;) + m*(4,) < Z?{;M’(L’J + 21(;0=1£(11’1’)

= i £(Iy)
n=1

<m*(4) + & (by (1)

site € > 0 is arbitrary, we have

16
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m*(A) > m*(4,) + m*(4;)
m*(4) >m"(AN (—x,a)) + m*"(A N [a, o))

~ [a, ) is measurable.
Similarly, we can prove this for other type of intervals.
Hence, every interval is measurable.
Theorem 8:
Let A be class of subsets of a space X. Then there exists a smallest g-algebra S containing A. We
say that S is the o-algebra generated by A.
Proof:
Let [S,] br any collection of o-algebra. of subset of X. Then, N, S, is a o-algebra
But, | a o-algebra containing mark namely the class of all subsets of X.
So, taking the intersection of the, o-algebra containing -4 ,we get a o-algebra, necessarily a smallest
containing A.
Definition: (Borel sets) - B
We denote by B, the g-algebra generated by the class of intervals of the form [a, b), its member
are called the Borel sets of R
Theorem 9:
i) B € M, that is every Boral set is treasurable
(ii) B is the og-algebra generated by reach of the following classes: the open intervals, the open
sets, the Gs-sets (countable intersection of open sets, the F; - sets (countable union of open sets)
Proof:
(i) M is the class of lebeague measurable sets.
by theorem 4, the class M is a g-algebra B is a g-algebra generated by the class of intervals of the
form [a, b)
By theorem 6, Every interval is measurable
~BCM
(if) We first claim that B is the o - Algebra generated by the class of open intervals
Let B, be the o- Algebra generated by the open intervals.
to prove: B = B;
Every Opens interval is the Union of Sequence of the interval of the form [a, b)
17
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it is a Boreal set
~B, SB
But every interval (a, b) is the intersection of the sequence of open intervals.

~BCB
.‘.B=B1

since, every open set is the union of the sequence of open intervals, the 2" result follows since, G
sets and F; sets are formed from the open sets using only the countable intersection and
complements, and hence the results in these cases follow similarly.

Example 6:

for any set A, there exists a measurable set E' containing A and such that m*(4) = m(E)

For any set A and for any € > 0, F an open set 0 containing A such that m*(0) < m*(4) + ¢
Take ¢ = 1/n and write 0,, for the corresponding open set

Then the G, set, E = N~ 0, has the required properties

Foreveryn,E <€ 0,

m*(E) <m*(0,) <m*(4) +¢

=>m(E)<m*"(4)+1/n
= m(E) <m"(4)

Now,

Ac ﬂ 0,
n=1

>ACE
=>m*"(4) < m*"(E) = m(E)
=>m*(4) < m(E)

From (2) and (3)

m*(A) = m(E)

Harte Proved.

lim sup and lim inf of E; :

For any sequence of sets {E;}

18

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



lim supE; = ﬂ E; and
n=1 i>n

llm infEi = ﬂ Ei
n=1 i>n

Note:

1. liminfE; € lim supk;
2. If they are equal, this set is denoted by lim E;
3. IfE; € E, C-thenlimE; = U2, E;
4. IfE; 2 E, 2 +--.thenlimE; = Ny~ E;
Theorem 10:
let {E;} be the sequence of measurable sets Then
(i) IFE; € E, < -+, we have m(limE;) = lim m(E;)
(i) IfE; 2 E, = -+, and m(E;) < oo for each i, then we have m(limkE;) = lim m(E;).
Proof:
(i) G:EL € E, € ---.
write F; = E;and F; = E; — E;_;,fori > 1

= U2, E; = U2, F; and the sets F; are measurable and disjoint.

o)

m(limEg) = m (U El-) ( By note 3)

i=1

()

i=1

- Z m(F,) (By thrm 5)
i=1
= lim m(F;)
2

m(limE,;) = limm (U Fl-)

i=1
= limm(E,)
s~ m(limkE;) = limm(E;)
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(ii) Gm:El 2 EZ 2 b
= _E1 g _Ez g _E3 g cee
El_El gEl_Ez gEl_ES’ g"'
s>m(lim(E;, — E;)) = limm(E, — E;)
m(lim(E; — E;)) = m(E;) — limm(E;)
But lim (E; — E;) = U2, (E; — E;) (By note(3)
~mlim(E; — E;) = m[UZ,(E; — E;)]

oo}

i=1
= m[E, — limE,]
mlim(E; — E;) = m(E;) — m limE;
Equating (1) and (2)
m(E;) — limm(E;) = m(E;) — mlimE;
= limm(E;) = m limE;

=m

Example 7:
(1) Show that every non-empty open sets has positive measure.

(i) The Rational Q are enumerated as q4, g5, -..... and the set G is defined by

G=Uyy (qn —n—lz,qn +n—12) Prove that for any closed set F, m(GAF)>0

Proof:

(i) since non empty open set is the union of disjoints open intervals and Also the outer measure of
an interval is its length. Hence, the first (i) follows

(if) We know that GAF = (G —F)U(F-G)m(G—F) >0

m(GAF) =m(G —F) +m(F — G)

m(G — F) > 0, there’s nothing to prove

If m(G — F) = 0,then G — F is open

Also, we have G € F

G contains Q whose closure is R

SOF =R,m(F) =0

20
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W
s

(qn — 1/n?q, +1/n?)

3
1l
-

I
NgE

m(G) [qn + 1/n* — g, + 1/n?]

3
1l
oy

I
NgE

[2/n?]

S

N

=2 (1/n?)

n=

m(G)=2(1+1/22+1/32+--)>0

~m(F —G)=m(F)—m(G)
=0 >0
~ m(GAF) > 0.

Example 8

Show that there exist uncountable sets of zero measure.
Solution:

Here to show that the cantor set P is uncountable and m(p) = 0
Construction of cantor set

Consider the interval [0,1]

Let P, = [0,1] , No of intervals- 2°

First, remove (1/3,2/3).

Let P, =[0,1/3]U [2/3,1], Then No of intervals- 21

Then remove (1/9,2/9) and (7/9,8/9)

Let P, =[0,1/9]U [2/9,1/3] U [2/3,7/9] U [8/9,1] , Then No of intervals- 22
Continuing in this way, we get

P, is the union of 2 closed intervals whose length is 1/3 K
Then P = N,_, B, is the cantor set

~a€P&1EP,P isnon-empty.

Letx € P

Then3 x, € B, —:|x — x,| <1/3n
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~ () - x
~ x is a limitpoint. in P.
(i.e.,) P has no isolated points.
Also P is a closed set
~ P isaperfect set [ If p is closed & have no isolated points then p is perfect set]
Hence P is uncountable
[~ A non-empty perfect set is uncountable ]
Here P is a countable intersection of closed sets - P is measurable.
Also on each step we remove 2%~ intervals of length 1/3 K.
~m(P) =m([01]) — (1/3 4+ 2/32 4 22/33 4 -+)

® 2k—1
(1=0)- Z 3k
k=1

1 /2\F 1
=1—— —
32, 3)
k=1
1 1 1
7 31-2/3
=1 1><3
N 371
=1-1=0
~m(P)=0.

Hence the cantor set P is uncountable of of zero measure.

1.3. Regularity:

The next results states that the measurable sets are those which can be approximated closely, in
terms of m*, by open or closed sets.

A non-negative countably additive set function satisfying the conditions (ii) to (iii)* below is said.
to be a regular measure.

Theorem 10:

The following statements regarding the set E are equivalent:

(i) E is measurable

(if) ve > 0,70, an open set, 0 2 E such that m*(0 — E) < ¢

(i) 3G, aGs — set, G 2 E such that m*(G — E) = 0,
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(i)* ve > 0,7 F, aclosed set, F € E suchthat m*(E —E) < ¢
(iii) *3F, an F; — set, F € E suchthat m*(E — F) =0
Proof:

(i) = (i)

Given E is measurable.

Case 1 m(E) < o0

By Ex:2, for any ¢ > 0, their existanopenset 0 2 E 3 :
m0) <m(E)+¢e ... (1)

~EC0,0 =(0—-E)UE

Now, O — E & F are disjoint

= m(0) = m(0 — E) + m(E) [~ By Additive Property |
= m(0) —m(E) =m(0 — E)
>m(0—E)=m(0) —m(E) <e[by 0]

Case 2: m(E) = o

« R is open, it is the union of countable number of disjoint open intervals

(ie.,) R = Uz I
LetE, =E NI,

- I, is of finite measure, m(E,,) is finite.

So by case 1, for any £ > 0,7 an open set 0,, such that m(0,, — E,,) < —

Take 0 = Uy-, 0,

= 0 is an open set [+ each on is open ]
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Also E, =ENI,

n=1 n=1
=>U En=En<U In>=En]R=E
n=1 n=1
:E=U E,
n=1
0—E=U On_U EnQU (0, — E,)
n=1 n=1 n=1

(ie.,), m(0O —E)< ¢

(or) equivalently, m*(0 — E) < €

To prove: (ii) = (iii)

By (ii), for each 'n ', let on be an open set suchthat E < 0,, & m*(0, — E) <Y,
Let G = n0O,

= G isa Gg-set [ each on is open ]

Now, ECO,, foreach'n"

=>ECNno,

>ECG & G—E<C0,—E(-G<O0,)
>m*(G —E) <m*(0,—E)

<V, for 1,2,3,...

(ie), m*(G—E) <Y,

Asn - oo,m*(G—-—E)=0

To prove: (iii) = (i)

By (iii), there exists a Go-set ' G ' containing E suchthat E = G — (G — E)
We know that any Gg-set is measurable

“m(G—E)=0,G— E is measurable
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“G—ECG,E=G—(G—E)ismeasurable
=~ E is measurable.

To prove: (i) = (ii)*

Suppose E is measurable

= E€ is also measurable

By (ii), Ve > 0,30, an open set, 0 > E* such that
m(0—E)<¢e ......... (1)

We know that O — E€ = E — O¢
~(D)=>m"(E-0°<¢

Take F = 0¢

~m"(E—-F)<e¢

Hence Ve > 0,F, a closed set, F € E such that
m*'(E—F)<¢

To prove: (ii)* = (i)

By (ii)*, for each 'n ', let F,, be a closed set z:
E, S Eandmi,(E—F) <1/n

Let F = Uy, F,

= F isan F,-set (-~ each E, is closed)

Now, F, € E foreach 'n".

= UF,CE

(ie.,)FCSE

m(E—-F)<m(E—-FE,) <y,Vvn
Asn —» o, m"(E—-—F)=0

To prove: (iii) * = (i)

By (iii) *, 3 an F; — set ' F ' contained in E¥.
F=E—(E—E) 2E=E+ (E—-E)
W.K.T any F,-set is measurable . m(E — E) = 0, E — F is measurable
~E—FCEE=F+ (E—F)is measurable.

(ie.,) E is measurable.
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Theorem 11:

If m"(E) < oo, then E is measurable if Ve > 0,3 disjoint finite intervals I,,1,,...,I,3 :
m*(EAU™, I;) < e. We may stipulate that the intervals *=I; be open, closed or half open.
Proof:

only if Part

suppose that E is measurable.

=>Ve>0,3anopenset0 D E:

mO—-E)<e ... Q)

~Ec0m(0—-E)=m(0)—m(E)

=> m(0) —m(E) < e[ by (1)]

=>m(0) <m(E) +¢

= m(0) is finite (~ m(E) < o (e), m(E) is finite) *- 0 is open, O is the union of countable number
of disjoint open intervals I;, i = 1,2, ...

(ie.) 0= U2,

- m(0) is finite, Y72, I(I;) is a convergent series.

~ Given € > 0, we can find an ' n ' such that

Yo ael) <e ... (2)
Using this 'on, we let U = 0,1,
> Uco
Now, E cOand U c O
“ENU=(E-U)UWU—-E)SO-U)U©Q—=E) ......... ()
Now,
(o] n [ee]
O—U:U IL—U Ii: U IL
i=1 i=1 i=n+1
>m0—-U) =m*"(U2, ]
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(le,)mO-U)<e .......... 4)
Now,

3)=>EAUCS (0-U)U(0O—-E)

= m(EAU) <m(0 —U) +m(0 —E)
<e+e(by(1)&4)
=2e=¢&

~ Their exist a finite union U of disjoint open intervals such that m*(EAU) < e.
If we wish the intervals to be, say, half-open, we first obtain open intervals I, I,, ..., I,, as above
and then for each ' i ' choose a half-open interval J; c T;0;
m(l; —Ji) < ¢&/n
clearly, the intervals J; are disjoint
We know that for any sets E, F, G we have
EAFC(EAG)U(GAF)

(U n)< (s 1) (U 10U )

i=1 i=1 i

n
i=1 i=1
n n
= EAUR,J; € (EA U IL-> U U (IL,AJ)
1 i=1

i=
n

w OE E,A0D F, = U (EL-AFL-)]

i=1
()= (eo ) ( U
<e+ g/n [ by (5)d (6)]
2
=&+ ¢/n(n)
= 2¢
(ie.,) m(EA nl-) <2e=¢

=~ G afinite union U}, J; of half open intervals such that

m(EALnJ L-) <e.

i=1
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if Part
Assume that for all € > 0,7 a finite union U = U}, I; of disjoint open intervals such that
m*(UAE) <& ........... (7)
To prove: E is measurable.
It is enough to prove that
Ve>0,Fanopenset0 O F 3:m*(0—E) < ¢
mO)<m (E)+e .. (8)
Given U = UL, [;
Define U' =0OnU
=>u c0
We know that O A E = (OAU") U (U'AE)
= m*(0AE) < m*(0OAU") + m*(U'AE)  ............... (9)
now,
To prove: m*(0OAU") & m*(U'AE) seperately.
Now,U' CU=U —ECU—-E ........ (10)
Also, E €0
“E-U=EnOnl)[~U =0nU]
=En (0UD)
=(ENOYUEND)

=¢UE-U)["ECSO0=>ENO=¢]
=E-U .....(11)

Now,

UcCcU=>UAEcCUAE

=> m*(U'AE) < m*(UAE)

<e[by(D]

~m*(U'AE) <¢ ......(12)
Now,

ESC0&U cO
=>FE c U'UU'AE)
>m*(E) < m*(U") + m*(U'AE)

>m*(E)xm*U)+ ¢ .......... (13)
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wu' ' <0,m*(0AU") =m*(0—-U")
=> m*(0AU") = m*(0) — m*(U’)

<m*(E) + e —m"(U") [ by (8)]
<m*(U')+e+e—m"(U') [ by (13)]
= 2¢

~m*(0AU") < 2¢ - (14)

“ECOm(0OAE)=m"(0—-E)

© (9) > m*(0 — E) <m*(0AU") + m*(U'AE)

<2e+e(by(12) + (14)

=>m*(0—FE) < 3¢
For all € > 0, their existanopenset E € 0 m*"(0 — E) < ¢
=~ E is a measurable.
1.4 Measurable Functions:
Sets of infinite measure and functions taking the values co or —oo occur in a natural way.
To avoid inconvenient restrictions we use the extended real-number system, (i), we add o0& — oo
to the real number system with the conventions that
a+o =00 (a> real,ora= )
a-o00 =00 (a>0)
a-o=—00 (a<0)
00 - 00 = 00
0-00=0
Similarly, for —oo
We do not define co + (—o0)
Definition 7:
Let' f ' be an extended real-valued function defined on a measurable set E. Then' f ' is a Lebesgue-
measurable function (or) a measurable function if, for each a € R, the set {x: f(x) > a} is
measurable
In practice the domain of definition of ' f " will usually be either R or R — F where m(F) = 0.
Theorem 12:
The following statements are equivalent:
(i) f is a measurable function / Va, [x: f (x) > «a] is measurable
(i) Va, [x: f(x) > a] is measurable
(i) Va, [x: f(x) < a] is measurable
29
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(iv) Va, [x: f(x) < a] is measurable
Proof:
To prove: (i) = (ii)
Suppose, ' f ' is a measurable function
(ie), Va, {x: f(x) > a} is measurable
Now,
{x:f(X)za}S{x:f(x) >a—1/n}Vn
> f@>a) =[] tefe) > a—1/m)

n=1
We know that, a countable intersection of measurable set is measurable.
sz {x: f(x) > a — 1/n} is measurable
=~ {x: f(x) > a} is measurable. Thus (i) = (ii)
To prove: (ii) = (iii)
suppose Va, {x: f(x) > a} is measurable
= {x: f(x) > a} is measurable Va
(i.e.,), {x: f(x) < a} is measurable Va. Thus (ii) = (iii)
To prove: (iii) = (iv)
suppose Va, {x: f(x) < a} is measurable

Foreachn = 1,2, ...

fx:fx)<a}S{x:f(x) <a+1/n}
= [ f(x) < a} = ﬂ (o F(x) < a + 1/m)

Here {x:f(x) <a+1/n} is measurable [By hypothesis] = Ny {x:f(x) <a+Y,} is
measurable

= {x: f(x) < a} is measurable Va

Thus (iii) = (iv)

To prove: (iv) = (i)

Suppose Va, {x: f (x) < a} is measurable

= {x: f(x) < a} is measurable.

30

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



(i.e.,) {x: f(x) > a} is measurable
(i.e.,) f is a measurable function.
Thus (iv) = (i)

Hence the theorem.

Example 9:

Show that if * f ' is measurable, then {x: f(x) = a} is measurable for each extended real number
a.

Solution:

Given f ' is measurable

(ie), {x: f(x) > a} is measurable V real ' a.
Case 1: '« ' is finite

We know that, f(x) = aif f(x) > a&f (x)
s f() =a}={x:f(x) > a} n{x: f(x)

~ A{x: f(x) = a} is measurable.

a

n N

a} is the intersection of two measurable sets.

case 2: ¢ = oo

o)

pef@=a =[] tfw>n

n=1
Now,
{x: f(x) > n}is measurable forn = 1,2, ...
= Ny=;{x: f(x) > n} is measurable.
(ie.,) = ,2{x: f(x) = a} is measurable.

case 3:a@ = —oo

pof@=ay =[] fe) < -n

Now, {x: f(x) < —n} is measurable forn = 1,2, ...
= [In=1{x: f(x) < —n} is measurable
(i.e.,)., {x: f(x) = a} is measurable

Hence {x: f(x) = d} is measurable for each extended real number ' « ".
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Example 10:

The constant functions are measurable.

Solution:

Let ' f ' be a constant function

= f(x)=cVx€eR

Ifa >c, then {x: f(x) >a}=¢

Ifa <c, then. {x: f(x) >a} =R

* both ¢ + R are measurable, {x: f(x) > a} is measurable for every ' «a ".
(i.e.,) the constant function ' f ' is measurable.

Example 11:

The characteristic function x, of the set A4, is measurable inf A is measurable.

Solution:
Suppose A is measurable

Then the characteristic function y, of 4 is

1 €A
XA(X)z{O ieA

To prove: x, is measurable

For ¢ € R, we have

R ifa<0
{x:ixy(x) >a}={4 if0oga<1
o ifa>1

In each case the set on the right hand side is measurable
~ x, isameasurable function

conversely,

suppose y, is a measurable function

To prove: A is measurable.

Take A = {x: x,(x) > 0}

Hence A is measurable.

Example 12:

continuous functions are measurable.

Solution:
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Let ' f ' be continuous function

Now,
(@) > a} = {x:f(x) € (@)

= {x:x € f~'(a, )}

= /7 (a,)
s f(x) > a} = f(a, )
We know that (@, o) is open in R
Also ' f ' is continuous
=~ Inverse image of an openset (a, ) is open in 1 ? (6)., f ~*(a, ) is open in R
(ie.,)., {x: f(x) > a} is open
= {x: f(x) > a} is measurable Va € R
Hence' f ' is measurable.
Theorem 13:
Let ¢ be any real number and let f + g be real-valued measurable functions defined on the some
measurable set E. Then f +c,cf, f + g, f — g and fg are also measurable.
Proof:
Let c be any real number
Given f + g are real-valued measurable functions defined on the same measurable set E.
(i) Foreach'a ', we have {x: f(x) + c > a} = {x: f(x) > a — c}
~ " "is measurable on E = {x: f(x) > a — c} is measurable
= {x: f(x) + ¢ > a} is measurable Va
(i.e.,), f + c is measurable.
(ii) If ¢ = 0, then cf is itself a constant function - is is measurable (by ex:10)
If ¢ > 0, then {x: cf(x) > a} = {x: f(x) > a/c} is measurable since ' f ' is measurable.
If c < 0,then {x:cf > a} = {x: f(x) < a/c} is measurable since ' f 'is measurable. .- af is
measurable
(iif) To prove: For every ' a ', A = {x: f(x) + g(x) > a} is measurable. Now, f(x) + g(x) >
ae f(x)>a—g(x)
= f arational number r;0,f(x) >, > a—g(x),i =12, ..
sx€e{xifx)>rt+xe{xigx)>a—-nr}......... (1)
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=
and both the sets are measurable by hypothesis = x € {x: f(x) > y;} N {x: g(x) > a —y;} and

this is measurable as it is the intersection of two measurable sets.
Let B =U2, [{x:f(x) >ri}n{x:g(x) >a—rn]]
claim: A=B
Letx€e A. Asxe (1),xeB ~ACBHB
Conversely, if x e Bthenx e A~ BC A
~A=B
Here B is a countable union of measurable sets . B is measurable
= A is measurable.
(i.e) f + g is measurable.
(iv) By (ii), if ¢ = —1, then —g is measurable
= f — g ismeasurable [~ f + (—g) = f — g]
(v) Lemma: ' f ' is measurable = f2 is measurable.
Proof:
If « < 0, then f2(x) > aVx € R
=~ {x: f?(x) > a} = R and this is measurable.
If « > 0, then f2(x) > avVx € R
= f(x) > tVa
= +/a < f(x) < —a
Hence x € {x:f(x) >+a} and x € {x: f(x) < —/a} and both the sets are measurable by
hypothesis - {x: f2(x) > a} = {x: f(x) > Va} N {x: f(x) < —/a} is a measurable set.
Hence the lemma.
Now, f + g are measurable
= f+ g,f — g are measurable

= (f + 9)% (f — g)? are measurable

= fg = i{(f + 9)* — (f — g)*?} is measurable.

Hence the theorem.
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Corollary:
The results hold for extended real-valued measurable functions except that f + g is not defined
whenever f = co and g = —oo or vice versa, and similarly for f — g.

For,
(e f) + 900 > a} = U (b ) > v} 0 G g () > @ = YU
({3 ) = 0} — {x:9x) = ~oo]) U (B2 (2) = 0} — {x: ) = —<o))

IS a measurable set. The case of f — g is similar.

Theorem 14:

Let {f,,} be a sequence of measurable functions defined on the same measurable set. Then
(i) supici<n f; Is measurable for each ' n ".

(i) inf; <;<p, f; 1s measurable for each ' n ",

(iii) sup f,, is measurable

(iv) inf in is measurable

(v) lim sup f,, is measurable

(vi) lime inf in is measurable.

Proof:

Let fin? be a sequence of measurable functions defined on the same measurable set. E .
() Let sup{fs, f2, ... fu} = fON E

claim {x: f(x) > a} = UT- {x: fi(x) > a}

If f(x) > a, then f;(x) > a for some 'i".

sfxif(x) >a}c U {x: fi(x) > a}

If x € UL, {x: fi(x) > a}, then x € {x: f;(x) > a} for some i.
= x € {x: f(x) > a}
s e fi(e) > a) = (e f(x) > al

sefe>a=| ] i@ >a

Given f; is measurable for each ' i

= {x: f;(x) > a} is measurable
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= UL, {x: f;(x) > a} is measurable.

=~ {x: f(x) > a} is measurable Va

(i.e.,)' f "is measurable.]

() WKT {x:sup;cicn fi(x) > a} = UL, {x: fi(x) > a}
Given f; is measurable for each ' i

= {x: f;(x) > a} is measurable

= UL, {x: f;(x) > a} is measurable

~ {x: supycien fi(x) > a} is measurable (by equation (1))
(i) To prove inf; <<, f; IS measurable.

We know that inf;, _; . fi = —supicicn (=fi) ... (2)
Given: f; is measurable for each ' i ".

= —f; is measurable for each ' i .

= SUP;c;<n (—f;) is measurable  (by(i))

= —SUp;cicn (—f;) is measurable

I.e., inf; ;< f; is measurable (by (2))

(iii) T.P sup f,, is measurable.

We know that {x: supf,,(x) > a} = Up=q {x:fu(x) > a} ............ (3)
clearly RHS of (3) is measurable.

~ {x:supf,, (x) > a} is measurable.

(v) We know that inf f;, = —sup(—£,)

=~ By (iii), inf f;, is measurable.

(v) We know that limsupf,, = inf (sup;>p f; ) -...... 4)
By(iii), sup;s,, f; is measurable

By (iv) inf (sup;s, f;) is measurable

=~ lim sup f;, is measurable (by (4) )

(vi)We know that lim inf f;, = —limsup(—f,) ........ (5)
By (v), limsup(—f,) is measurable

= —limsup(—f,) is measurable

(e), lim inf fn,, is measurable (by (5))
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Definition 8:

In line with Definition 5, we say that the function' f ' is Borel Measurable or a Borel Function if
Va, {x: f(x) > a} is a Borel set.

Note:

Theorems 12,13,14 and their proofs, apply also to Bore functions when 'measurable function' and
'measurable set' are replaced throughout by 'Borel measurable function' and 'Bores set'
respectively.

Definition 9:

If a property holds except on a set of measure zero, we say that it holds almost everywhere, usually
abbreviated to a.e.

Theorem 15:

Let f be a measurable function and let f = g a.e. Then g is measurable.

Proof:

Let f & g be any two functions.

Given, f isa measurable function

= Vreal a, {x: f(x) > a} is measurable ........ (1)

Given, f =g ae

= f & g have the same domain & m{x: f(x) # g(x)} =0 ........ (2)

To prove: g is measurable

(ie) T.P: vV real a, {x: g(x) > a} is measurable.

Let E; = {x: f(x) > a}

&E, ={x:g(x) > a}

Now, x € E; A E,

= x € (E; — E3) U (E; — Ey)
=>x€F, —FE,(or)x €EE, — E;
>x€E +x€E,(or) xEE, +x & E;
=2 f(x)>a+g(x)>a(or)glx)>adf(x) Xa
((0),x € {x: f(x) # g(x)}
~ E1AE; € {x: f(x) # g(x)}
= m(E;AE,) <m({x: f(x) # g(x)})
(ie.), m(E;AE,) =0 ... 3)
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=
Here E; is measurable of m(E,AE,) = 0 (by (1) & (3))

By Example:5, E, is measurable.

(ie), {x: g(x) > a} is measurable Va

(i.e.), g is measurable.

Hence the theorem.

Example 13:

Let {f;} be a sequence of measurable functions convergingaceto ' f . Then' f ' is measurable.
Solution:

Let {f;} be a sequence of measurable functions = lim;_,, f; is measurable.

Given, {f;} - f ae

(ie), lim; . f; = f are

From the above theorem, ' f "is measurable.

Example 14:

If' f " is a measurable function, then so are f* = max(f, 0) and f~ = —min(f, 0).
Solution:

Given, ' f 'is measurable

=~ constant function is measurable, ' O ' is measurable By Theorem 14 (i) & (ii),
sup{f, g} & inf{f, g} are measurable

~ max{f, g} & min{f, g) are measurable.

o fT =max{f,0} of f~ = —min{f, 0} are measurable.

Example 15:

The set of points on which a sequence of measurable functions {f;,,} converges, is measurable.
Solution:

By Theorem 14, (v) & (vi)),

lim sup f,, & lime inf f,, are measurable

= lim sup f,, — lim inf f,, is measurable

~ {x: (lim sup f;, — liminff;,)(x) = a} is measurable Va.

In particular, « = 0

{x: (lim sup f;, — limin f;,) (x) = 0} is measurable
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=
(i), {x:lim sup £, (x) = lim inf £, (x)} is measurable

(i), the set of these points for which {f;,} converges is measurable.

Definition 10:

Let f be a measurable function. Then inf {a: f < aa - e} is called the essential supremum of f”,
denoted by ess sup f.

Example 16:

show that f < essup f, ale.

Solution:

If ess sup f = oo, then the result is obvious {m{x, f, % X oo} suppose est sup f = —oo.

Then by Definition 10,

VnezZf<n a-e
o f =—,ae

Suppose that ess sup f is finite

Write E, = {x: f(x) > 1/n+ esssup f}
& E={x:f(x) > esssup f}

0
O U En
n=1

From Definition, 10,
Clearly, m(E,) =0

~m(E)=0
~ f < esssupf,ae.

Example 17:

Show that for any measurable functions f and g ess sup (f + g) < ess sup f + ess sup g, and
give an example of strict inequality.

Solution:

From example 16,

f < esssupfae g< esssupga.e
= f+g< esssupf+ esssup g a.e
= esssup (f +g) < esssup f + esssup g

Example of strict inequality
Let f = X[_llo) - x[oll] and g = _f
39
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Thenf +g =0

&esssupf =1&esssupg =1
~oesssupf+ esssupg=1+1=2
0<2

Definition 11:

Let f be a measurable function; Then sup {a: f > a a.e} is called the essential infimum of' f
denoted by ess inf f.

Example 18:

Ess sup f = — ess inf(—f)

Solution:

esssupf =infla:f < aa-e}
=infla:—f > —aa-e}
= —sup{—a:—f > —aa-e}

= —essin f(—f)
~ esssup f = —essin f(—f).

Note:
So results analogous to those holding for ess sup f, for example those of Examples 16&17, hold
also for iss inf £, with the obvious alterations. Definition 12
If £ is a measurable function and iss sup |f| < oo, then f is said to be essentially bounded. If
Example 19:
Let f be a measurable function and B a Bores set; then f~1(B) is a measurable set.
Solution:
We have f~1(U2,4;) = U2, f~1(4))
& f7H(AC) = (f 1 (A))°
The class of sets whose inverse image under f are measurable forms a o-algebra
But this class contains the intervals. .. it must contain all Borel sets.
2.5 Borel and Lebesgue Measurability:
Note:
e B- Borel set
e M -class of Lebesgue -measurable set

e P(iR) - class of all subsets of R

40
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e (Theorem8): B € M < P(R)
e (Ex:11): x4 is measurable & A is measurable
e x, is Borel measurable & A is a Borel set
Theorem 16:
Let E be a measurable set. Then for each ' y 'the set E + y = {x + y:x € E} is measurable and
the measures are the same.
Proof:
Given E is measurable
By theorem 10, Ve > 0,3 anopenset0 2 E +:m(0 —E) < ¢
Now, 0 is open = 0 + y is also open
Wehave EC0 =2 E+yc0+y
Now,
O+y)—(E+y)=0—-E)+y
=>m[(0+y)—(E+y)]=m[(0—-E)+y]
=m(0 — E) [ by ex: 1 m*(A)m*(4 + x]
< e (by (1))
(ie),m[(0O+y)-(E+W]<e¢
Hence Ve > 0, their existanopenset 0+ y > E 4+ y suchthatm[(0 4+ u) — (E +y)] < &.
Thus E + y is measurable
Again example 1, we have
m*(E) =m*(E +y)
« E & E+y are measurable,
m(E) = m(E +y)
Hence the theorem.
Theorem 17:
There exists a non-measurable set.
Proof:
Letx,y € [0,1]
Letx ~yify—x€Q, =0Qn[-11]

(1) claim: ' ~ "is an equivalence relation on [0,1]
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(i) Reflexive: x € [0,1]. Thenx —x =0 =2€Q; ~x~x,
(i1) Symmetric: x,y € [0,1]. Suppose x ~y =y —x € Q,

“x=y=-(-x)€Q ~x—y€EQ;
~y~x.Hencex ~y=>y~x.

(iii) Transitive: x,y,z € [0,1]. Suppose x ~ y of y ~ z
>x—y€EQ; &y—z€0,
S@x-N+tO-2 €
>x—2z€Q
=>X~2Z
SX~YtYy~ZD X~

~ '~ "is an equivalence relation on [0,1]

~x ~y e [0,1] = UE,, E, — disjoint sets

where x + y are in same E,.

+ Q, is countable, Each E, is countable.

~+ [0,1] is uncountable, there are uncountable many set E,,.

By the Axiom of Choice,

we consider a set V in [0,1] containing just one element x, from each E,.

To prove: V is not a measurable set.

suppose V is measurable

let {r;} be an enumeration of Q,

For each n, write V, =V + 1,

claim: () V, NV, =¢p,n#m

(i) UV, = [0,1]

MV NV, =¢
NV, #¢

m
suppose V;,
, NnVm

Lety €
=>y€l,andy €V},
= yXq +xp € VI
Y =Xq +1&Y =xp+ 1y
S XgtTh =X+ 1y
DX~ Xg =Ty — T € Q4
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(i.e.). xpg — x4 € Qq

S X~ Xp

“ Xq & xg are in the same class E,
=6 (v xgx5 EV)

=~ Our assumption is wrong.

~ VNV, =¢forn+m.

(i) UV, = [01]

Now, let x € [0,1]

= x € E, for some «

> X=X, + 1y

Now, Let x € UV,

= x € V,, for some n
>x€eV

= x € [0,1]

~ UV, <[0,1] ........(D)

Now, By our assumption, V is measurable

By theorem 16, we have ¥}, isolso measurable & m(V) = m(v,)

(1) =>[0,1] =UV,

= m([0,1) = m(UV,)
= 1=3% m(,)

= 1=) m(v)

Here the sum Em(v) = 0 (or) o
“1#0&1#

2 our assumption is wrong

Now,

~ V' is not a measurable set.
Theorem 18:
Not every measurable set is a Borel set.

Proof:
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Let x € [0,1]

Write x in binary form as

(o)
&
X = n
n=1

with &, = 0 (or) 1, choosing a non-terminating expansion for each x > 0.

B

N

Define a cantor function f:[0,1] — P defined by

2&,

fe=)

n=1
The value of ' f ' lie entirely in the cantor set p. Here &, is a measurable function of x

~ f is a measurable function.  ......... Q)
since the value f(x) defines the sequence {e,} in the expansion Y, 23% uniquely, so ' x ' is

determined uniquely.

=~ f is a one-to-one mapping from [0,1] onto its range.

(i.e.)., f is abijective function ....... (2)

let B & M be the class of Borel set & Lebesgue measurable set.
We know that, B € TM. "TIP. 8 # TM /. suppose f =1

suppose B = M
Let B be a Borel set. ........ 3)

By example:19, f~1(B) is a measurable set [ by equation (1)&(3)]
Let V be a non-measurable set in [0,1]
ThenB = f(v) c P

>m(B)<m(P)=0
=>m(B)=0

= B is measurable.
Now, B = f(V)

S B =V (~ fis1—1)
= f~1(B) is non-measurable

Se

~pcM
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Jg@
Hence Not every measurable set is a Borel set.

Example 20:
Let T be a measurable set of positive measure and let T* = {x — y:x € T,y € T}. show that T*
contains an interval (—a, @) for some a > 0.
Solution:
Let T be a measurable set of positive measure Let T* = {x —y/x €T,y € T}.
By Theorem 10,
T contains a closed set ¢ of positive measure.
Now, m(c) = lim,_,m(c N [—n,n])
~ we may assume that C is bounded
By Theorem 10,
Janopenset U, U D C such that m(U — C) < m(C)
Define the distance between two sets A and B to be d(4, B) = inf{|x — y|:x € A,y € B}
clearly, |x — y| is a continuous function of x # y. If A&B are disjoint closed sets one of which is
bounded, the distance between A + B is positive. Let &« = d(c, U¢)
~a>0
Let x be any point of (—a, a) (i.e.,.)x € (—a, @)
Toshowthatc N (c —x) # ¢
Now,c —x ={y:y +x € c}
Vx € (—a,a),3z€C —:z' =z+x€C
>x=2z—z€T"(ie)x €T
vl < a
= ¢ — x C u [by the definition of a]
~m(c—(c—x)) <m(u-—(c—x))
=m(u) —m(c— x)
= m(u) — m(c)(by Theorem 16)
<m(c)
~m(en(c—x)) >0
~en(c—x) #= ¢
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Example 21:
Suppose that f is any extended real-valued function which for every x and y satisfies
fG+f)=fx+y)
(1) Show that f is either everywhere finite or everywhere infinite.
(i) Show that if f is measurable and finite, then f(x) = x. f(1) for each x.
Solution:
Let f be any extended real-valued function & f(x) + f(y) = f(x +y) Vx &y. ....... (1)
(i) f cannot take both values co & — oo
suppose f(x) = oo for some x.
Thenf(x+y) =f()+f(y) =0+ f(y) =&
S f(x+y)=oVy.
. f = oo everywhere
similarly, if f(x) = —oo for some x
Then f(x +y) = f(x) + f(¥) = —o0 + f(¥) = —oo
“f(x+y)=—ooVy
s f = —oo everywhere.
(i) () gives f(nx) = n - f(x) Vx & Yn > 0 [By induction]

= f(x/n) =n7'f (x).

= £ (%) = mnf ()

n

In particular, f(r) =r - f(1) Vr € Q.
 f is finite, 3 a measurable set E :
m(E)>0&|f|]<MONE.
LetE* ={x—y:x€t,yeT}
Letz€e E*=z=x—ywhere x,y €EE
Then |[f()| = f(x == IfX) = fI<M+M=2M
(ie)lf(2)] < 2M

By Ex :20, E* contains an interval (—a, a) with @ > 0

(ie),(—a, @) € E* Now, if |x| < a/n
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|f (nx)| < 2M
2M
= |f(x)| < o for each n

Let x be real of let r be a rational -: | r — x I< a/n

IfG) —xf(D=1fx)— f() + ¥ —0)f (D]
Now, =|fx—-y)+ ¥ —x) f)]
<THIIF@L e

Asn - oo, f(x) =x- f(1)
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Unit 1l

Integration of Functions of a Real variable - Integration of Non- negative functions - The
General Integral - Riemann and Lebesgue Integrals.

Chapter - 2 Sec 2.1-2.3

Integration of Functions of a Real variable

In analysis it is often convenient to replace an expression of the form [ 3:f,,dx by 3.[ f,dx (or)
Jlimf,dx by lim[ f,dx (or) [ limg_q, fydx by limg_,, | fodx

In this chapter we give a definition of an integral which applies to a large class of Lebesgue
measurable functions and which allows the interchange of integral and sum or limit in very general
circumstances.

2.1. Integration of Non-negative functions:

We consider first the class of non-negative measurable functions, define the integral of such a
function and examine the properties of the integral. For the present we will suppose these functions
to be defined for all real ' x ".

Definition:

A non-negative finite-valued function ¢(x), toking only a finite number of different values, is
called a simple function.

If a,, a,, ..., a, are the distinct values taken by Q and A; = {x: ¢(x) = a;}, then clearly

n

px) = Z a;xa, (x)

=1
where y,, is called the characteristic function of 4;.

_ 0 x€A4
(i.e.,) x4,(x) = {1 i ¢ Ai

Result:
@ is measurable < The sets Ai are measurable
Proof:

Assume that ¢ is measurable.
A; = {x/p(x) = a;}vi
Ai = (p_l({ai}) . (1)
48
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¢ is measurable, ¢~ is also measurable.

~ A; i1s measurable. (by (1))

Conversely,

suppose that A; is measurable

By example 11, x,, is measurable

V=1 aix4,(x) is measurable.

~ Q is measurable. If

Definition:1

Let ¢ be a measurable simple function. Then

where, [ @dx = ¥, am(4;)

a, a,, ..., a, are distinct values taken by ¢ and

A; = {x: p(x) = a;} is called the integral of ¢.

Example 1:

let the sets A; be defined as above. Then 4; N A; = ¢, i # jand UL; 4; = R.
Definition 2:

For any non-negative measurable function' f ', the integral of ' f 'is givenby [ fdx = sup [ ¢dx
where the supremum is taken over all measurable simple functions ¢, ¢ < f.
Definition 3:

For any measurable set E, and any non-negative measurable function ' f ',fE fdx = [ fxgdx
is the integral of ' f ' over E. If the set E = [a, b], then [ fdx = fffdx.

If a > b, then f;fdx = —fbafdx. This integral f;fdx is referred to as lebesgue Integral
Example 2:

If ¢ is a measurable simple function, Definition I and definition 2 both give a value for its integral.
show that these values are the same.

Solution:

Let Q be a measurable simple function.

Write [ *(pdx =supfpdx ... (1)

where 1 is any measurable simple function — — ¢y < @
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write [ ¢pdx = Y™, a;m(4;)
where a4, a,, ..., a,, are distinct values taken by ¢ and
A ={xio(x) = a;}

To prove: [ pdx = [¢@* dx .

clearly, [ pdx < [@*dx ......... 3)
If Y < ¢ is a measurable simple function with

distinct values bj (j = 1,2,...,m) and ¢ = Y., b]-xB].,
m m n

then 4 . ¢
= j=1 i=1

a; ifm(Bj NA;) >0

Zn: bm(B; n A;)

i=1

where b;

j

f ]

< Z Z am(B; N 4;) [ b < ay]
j=1 i=1

= zn: a; - m(4;)

i=1

=f ¢dx
f Ydx <f ¢dx

:supf l/)dx<f ¢dx

(ie.) [ @ dx <[ odx
From (3) & (4) we get

fd)dx:j-(p*dx.

Theorem 1:

//\

Ms

1l
[

If ¢ is a measurable simple functionand ¢ (x) = ¥iL; a;xs, (x), where aq, ay, ..., a, are the distinct
values taken by ¢ and A; = {x:¢@(x) = a;}, then (i) fE¢dx =Y am(A4; nE) for any

measurable set E, (ii) [, ,@dx = [, @dx + [, @dx for any disjoint measurable

AUB

50

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



(iii) [ apdx = af pdx ifa > 0.

proof:

Let Q be a measurable simple function

Let Q(x) = X1y ayxy, (x)

where a4, a,, ..., a,, are the distinct values taken by ¢ and A; = {x: p(x) = a;}
Let E be any measurable set.

(i) To prove : [,Qdx = Y- a;m(4; N E)

Now, [, Qdx = [ ¢xgdx [ by definition 3]

= qubdx =Yy ,a; -m(Ai N E) [ by definition 1]

iii) Let A & B be any disjoint measurable sets

To prove: [, ,¢dx = [, pdx + [, ¢pdx.

Now, [, @dx + [ @dx = ¥ a;m(4; N A) + ¥ a;m(A; N B)

n

= z aim(AL- N (A V) B))

i=1

=

2 Qdx = f (pdx+f pdx.
AUB A B

(iii) Let @ > 0
To prove: [ apdx = af @dx.

As ¢ takes the value a;, ap takes the distinct values aa;.

n

f apdx = z aa; - m(4;)

i=1
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Example 3:

Show that if f is a non-negative measurable function, then f = 0 a.e. & [ fdx = 0.
Solution:

Let ' f ' be a non-negative measurable function Let ' ¢ ' be a measurable simple function
EH I (1) Suppose f =0 a.e

clearly, [ pdx = 0 by (1)

o~ [ fdx = sup[ ¢pdx =0

o fdx =0

conversely,

Suppose that [ fdx = 0

Let £, = {x: f(x) > 1/n}

Then

1
jfdx>f ExEndx

=n"t-m(E,)

f fdx > n"'m(E,)

= 0>n"tm(E,) [~ ffdx = 0]

> m(E,) =0
Now (EF() >0} = URy B,
' ~f=0ae.
Theorem 2:

Let f of g be non-negative measurable functions

() If f < g, then [ fdx < [ gdx

(ii) If A is a measurable set and f < g on 4, then [, fdx < [, gdx
(iii) If a > 0, then [ afdx = af fdx

(iv) If A & B are measurable sets and A < B, then [, fdx > [, fdx.
Proof:

Let f & g be non-negative measurable functions

() Given: f < g

52

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



To prove: [ fdx < [ gdx

Now,
j fdx = sup U ¢dx: ¢ < f} [+ By defn:2]
< sup{j ¢pdx: ¢ <g} (+f<g}

=j gdx.
] fdx<j gdx.

() Givenf < g
Let A be a measurable function.
To prove: [, fdx < [, gdx.

Now,
j fdx = f fxudx [ By def: 3]
A f

< f gxadx [By () ]
A

= f gdx.
A

f fdx < f gdx.
A A
(iii) Given: a > 0
T.P: [ afdx = af fdx.
If a = 0, then obviously, [ afdx = af fdx.

suppose a > 0. Then ¢ is a measurable simple function with ¢ < af ifs ¢ = ay, where Y is a

simple function t: ¢y < f
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f (pdx=f aydx

:j pdx = aj Ydx [By theorem 1:(iii)]

j afdx supj pdx

(iv) Let A & B are measurable sets & A2 B I. [, fdx > [, fdx
We know that fx, > fxg (+ A LB)

= [ rrdrs | frodx By

zfAfdx>fodx

Theorem 3 [Fatou's Lemma]:

Let {f,,n = 1,2, ...} be a sequence of non-negative measurable functions.
Then liminf[ f,dx > [ lim inf f,,dx.

Proof:

Let {f,,,n = 1,2, ...} be a sequence of non-negative measurable functions.
To prove: [ liminf f,dx < liminff f,dx.

Let f = liminf f,

Then f is a non-negative measurable function.

- To prove: [ fdx < liminf[ f,dx.

(i.e.,) To prove: For every measurable simple function Q < f, | ¢dx < limln [ fndx.
Case(i) | pdx = oo

Then for some measurable set A, we have

m(A) =wandp >a>0

(ie.,) A = {x: p(x) > a}

Define g, (x) = inf;, f;(x) of the measurable set
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A, ={x:gx(x)>a}fork>n
Letx €A, = gr(x) >aVk>n

= gr(x) >avVk>n+1
=>x € Apyq

An < An+1
Also g (x) = Inff;(x)
<650

= Gk+1(%)
Gk (%) < Gra1 (%)

=~ gr(x) 1S monotone increasing

Now, lim g, (x) = lim }g,{fj () =f(x) >9X)
= 1im g, (x) > ¢ (x)

LetxeA= @p(x) >a

= lim g, (x) > ¢(x) > a

= Ilim gk(x) >a

oo
:xEU A,
n=1

~AC

An

s

n=1

Taking measure, m(4) < m(Us-,4,)

= m(4) <m(lim A,)
n—oo
= m(4) < limm(4,)
n-—-oo
+w m(A) = oo, limm(4,) >
n—-oo
= m(4,) > ©
Now,  gn(x) = Infy, fi(x)
< fn (x) vn
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fo29n VN
zj fndx>j gndx

> j gndx
A

n

>a dx
An

= aj Xa, dx
=am(4,)

> o
j fndx>oo

:liminff fndx>oo=f(p(x)

jq)(x) < lim inff fndx

case (ii) [ pdx < oo

Define B = {x: ¢(x) > 0} = m(B) < o

Let M be the largest value of ¢. (i.e.,)p <M

Let 0 < e < 1.Define B, = {x: gx(x) > (1 —&)p(x)},Vk > n
= B,, are measurable.

Ifx € By, then g, (x) > (1 — &)ep(x)Vk >n
= gr(x) > (1 -8)px)Vk>n+1

= X € Bpyq

~“ B, € B,1Vn

[ee)

Also B = U B, -+
n

=1
:>B—U B,
n=1
ﬁﬂ (B_Bn):(p
n=1

B_Bn>B_Bn+1(Bnan+1)

Q.

~ {B — B,} is a monotone decreasing sequence and Ny, (B —B,) = ¢
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Asm(B) <, IN »>-m(B—Bn) <evVn >N
Now, Vn > N, (By Theorem 9)

]fndx>j gndx

> gt

n

- j In(X)dx
B—(B-Bp)

> | (1 - Hp()dx
B—(B—By)

—(1-9) [ f p()dx - f , 90

>1-9 [ swar- |  p@ax

B-By

>f qbdx—ff @dx —m(B — B,)-M
>f qbdx—ff pdx —e-M

=fWM—4f¢m+M]

& is arbitrary and M is finite
f fndx > f Qdx
(ie.) [ @dx < [ frdx
= f (pdeliminff fndx
- From case (i) & (ii), we get, | ¢pdx < lim inf [ f,dx

:supf ddx <liminff fndx
oS

:>f fdx<liminff fndx

= f lim inf f,dx < lim inf f fndx
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Theorem 4 [Lebesgue's Monotone Convergence»Theorem]

Let {f,,,n =1,2,..., be a sequence of non-negative measurable functions such that {f;,(x)} is
monotone increasing for each x. Let f = limfn,,. Then [ fdx = lim/ f,dx.
Proof:

Let {f,,n = 1,2, ...} be a sequence of non-negative measurable functions.
Let {f,,(x)} be a monotone increasing for each ' x ",

let f = limf, (ie,)fn = f

T.P: [ fdx = lim/ f,dx

Now, limf, = f = liminff, = f ....... (1)

By Fatou's Lemma, we get.

[ lim inf f,dx < liminf[ f,dx.

zj fdx < lim inff fndx — (2) (by equation (1))

Here fn is increasing of f,, - f

<f vn
:f fndx < f fdx
zlimsupf fndx <f fdx ...........(3)

From (2) of (3), we get,
limsupf fndx Sf fdx < liminff fndx < limsupf fadx SJ. fdx
:>f fdx = limsupf fndx = liminff fndx
:>f fdx = limf fndx

Theorem 5:

Let f be a non-negative measurable function Then there exists a sequence {&®,,} of measurable
simple functions such that, for each x, ¢, (x) T f(x)

Proof:

Let f be a non-negative measurable function.

We define the sequence {¢,} as follows:
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Divide [0,1] in two equal portions
Let Ey; = {x:0 < f(x) <1/2}
E, ={x:1/2< f(x) < 1}

&F ={x:f(x)>1}

Let o, = Oxg,, + 1/2xg, + 1xp,
Divide [0,2] into 8 equal parts
Let £,y = {x:0 < f(x) < 1/4}

E3; ={x:%<f(x) <%}

Eyg = {x:7/4 < f(x) < 8/4}

& F, = {x:f(x) > 2}

Let 9, = Oxg,, + 1/4xE,, + -+ 7/4xg,, + 2xg,

In general we divide [0, n] into n - 2™ equal intervals

LetE,, = {xzkz;nl < f(x) < %},k =12,..,n2" & E, = {x: f(x) > n}

_ yn2n k-1
Let @, = YrZ5 S XEn + nxg,

Then the functions @,, are measurable simple functions Also ¢, (x) < @,41(x) foreach' x .
If f(x) is finite, thenx € F, € V large n ".

~fG) —en()l <27

S () T f(x)

If f(x) = oo, thenx € N;-; E,

“~ @n(x) =nVn
“ () T f(x)
Corollary:

limf @,dx = [ fdx where f is a nonnegative measurable function &{®,} is a sequence of
measurable simple functions.
Proof:

By theorem 5, {¢,,} is a monotone increasing sequence.
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- By theorem 4, [ fdx = lim[ ¢, dx.

Theorem 6:

Let f and g be non-negative measurable functions. Then [ fdx + [ gdx = [ (f + g)dx.
Proof:

Let f & g be non-negative measurable functions.

Let Q & i be measurable simple functions

Let the values of ¢ be a4, a,, ..., a, takenon sets A, 4,, ..., A,,.

Let the values of ¢ be by, b,, ..., b,,, taken on sets By, By, ..., B,

Then the simple function ¢ + i has the value a; + b; on the measurable set 4; N B;

By Theorem 1 (i), we get, fAinB]_ (¢ +P)dx = fAinBj pdx + fAinBj Ydx. ... (1)

But the union of n m disjoint sets A4; N B; is R.

~ (D)= (¢ +y)dx = jR pdx + JU Ydx.

u(4;inB;) (ninB))

=>f ((p+1/))dx=f Ydx
R R
ﬁf (p +P)dx = f pdx +f Ydx e (2)

Let {®,,}, {y,} be sequences of measurable simple functions.

~ By Theorem5,®, Tf &Y, T9g. =2, &Y, Tf+g

By (2), | (¢n +¥n)dx=[ @ndx+ [ Ppdx

letting n — oo & By Theorem 4, we get [ (f + g)dx = [ fdx+ [ gdx

Theorem 7:

Let {f,,} be a sequence of non-negative measurable functions. Then [ Y%, f,dx = 3%, [ f,dx
Proof:

Let {f,,} be a sequence of non-negative measurable functions.

By Theorem 6, we get, [ (f + g)dx = [ fdx + [ gdx .......... (D)

By induction, (1) applies to a sum of ' n ' functions.
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Let S, = z fi
i=1
n
zj Sndx=j Z fidx
i=1

= [ Gt fot et pax
=j fldx+j fzdx+---+f fndx.

j Sndx=zn: f fidx

Letf =Y. eeeenn ()
Clearly S,, T f
. By Theorem 4, [ fdx =lim|[ s, dx.
J3E, fidx=lim ¥, fidx =%, [ fidx.
fZ%Zlfndx = Zfﬂffndx-
Example 4:

(by (1) & (2)

Give an example where strict inequality occurs in Fatou's Lemma.
Solution:

Let fo,_1 = x[0,1]»f2n = X2, =12, ..

Thenliminff,,(x) =0 Vx

= [ liminfff,(x)dx = 0

Also [ f,(x)dx = 1Vn

= liminf[ f,(x)dx = 1

0<1

[ liminff, (x)dx < liminf[ f, (x)dx

Example 5:

Show that f1°° ‘i—x =

The function x~1 is a continuous function for x > 0 .. x~1 is measurable.
clearly it is positive

= The integral is defined also [ 100 ‘;—x > | 100 ‘;—x.
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1
But, 1/x > % onlk—1,k)

nq - ("1
j ;dx>Zj Ex(k_l,k)dx
1 = 1
1

>

NgE

=
U
N

- asn — oo

]°°dx
— =00
. X

Example 6:
f(x),0 < x < 1,isdefined by f(x) = 0 for x rational, if x is irrational, f(x) = n, where n is the

number of zeros immediately after the decimal point, in the representation of x on the decimal
scale. Show that f is measurable and find fol fdx.

Solution:

0 x — rational

GiveniForo < x < 1, f(x) = {n © > irrational

where n — No. of zeros immediately after the decimal point

For x € (0,1],

0 x=1
Let g(x) = {n 10-(+D ¢ x < 10,7 = 0,12
Thenf<g=>f=ga-e ... (1)

Here' g ' is measurable
=~ " f "also measurable.

By Example 3,

(1):>j:fdx=j:gdx

Now, folgdx = Yr-on (L . )

1om 10™+1
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2.2 The General Integral:

Definition 4:

fT(x) = max(f(x),0)&
f~(x) = max(—f(x),0)

are said to be the positive and negative parts of f , respectively.

If £(x) is any real function,

Theorem 8:

Df=f"=r5Ifl=f"+f55f >0

(ii) f is measurable iff f* + f~are both measurable.

Proof:

Let f(x) be any real function

Let f*(x) = max(f(x),0) & f~1(x) = max(—f(x),0)
= —min(f(x),0)

(hclaim: f+,f~ >0

If f(x) > 0, then f*is positive

If f(x) < 0,then —f(x) >0

~ fTis positive

“fY >0

claim: f = f* — fd|f| = f* + f~

We know that,

For any two functions f & g, max(f, g) = V‘m#

Take g = 0.

. f* = max(f,0) = [If] + f1/2
= f~ =max(—f,0) = [1 = | +(=N)1/2 = [If| - f1/2
cpropm T D iy o pe o

o =L T ey v e = 0p

(ii) Suppose ' f " is measurable.
We know that, The constant function ' O ' is measurable. Then sup {f,0} & inf {f,0} are

measurable. . max(f,0) & —min(f,0) are measurable (i.e.,) f* of f~are measurable

conversely,
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Suppose that f* of f~are measurable

Then f* — f~is measurable

(i.e.,) f is measurable (by (i)

Definition 5:

If £ is a measurable function and [ f*dx < oo, [ f~dx < oo, we say that f is integrable, and its
integral is given by [ fdx = [ ftdx— [ f~dx

Clearly, a measurable function' f " is integrable inf |f| is also measurable.

Also j |f|dx = f frdx +f fdx

Definition 6:

If E is a measurable set, f is a measurable function, and xzf is integrable, we say that f is
integrable over E, and its integral is given by [ fdx = [ fxgdx. The notation f € L(E) is then
sometimes used.

Definition 7:

If £ is a measurable function such that at least one of [ f*dx, [ f~dx is finite, then

[ fdx = [ ftdx — [ fdx.

Note:

' f "is said to be integrable only if the conditions of Definition ' 5 " are satisfied, (i.e.,) if |f] has a
finite integral.

Theorem 9:

Let f & g be integrable functions.

(i) af is integrable and [ af dx = af fdx.

(i) f + g is integrable, and [ (f + g)dx = [ fdx + [ gdx.

(iii) If f = 0 a.e, then [ fdx =0

(iv) If f < g a.e, then [ fdx < [ gdx

(v) If A and B are disjoint measurable sets, then [, fdx + [, fdx = fdx.

Jaun
Proof:

Let f & g be integrable functions.

:»ff+dx<00&ff‘dx<00&ffdx=ff+dx—ff‘dx
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Case (i):a>0

(@) =af  (4) =q
zj (af)+dx <o & j (af) dx < o

=~ af is integrable

]afdx=j aj!dx—f a — dx
=aU fﬂix—ff‘dx]
=aj fdx

j afdxzaf fdx.

case (il):a = —1
(@)t === &) =" =17
:f f‘dx<00&f ftdx < o
~ af = —f is integrable.

&.[ afdx=f af*dx—f af ~dx

:>f (—f)dxzf f‘dx—f frdx

] o e
| pax=-] rax
case (iii):a <0
af = —|alf
f afdx = —f la|fdx = —|a|f fdx (by case (1))
= aj- fdx
From case (i), (ii) & (iii) we get, [ afdx =a [ fdx
(i) Now, We know that (f + 9)* < f*+g "+ (f+9) < f +g~ ~ f+g are integrable,
J(f+g)tdx <o+ [ (f + g)~dx < o = (f + g) is integrable.
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Also, f+g@) =+ - +9)
&f+g=f"—-f"+g9g"—g°

>+ -+ =f"—-f+g"—-g
>+t +f+rg =F+g) +fT+g"

> [ g+gr+r+glan= [ (F+o) +1* +gax
:] (f+g)+dx+ff‘dx+f g‘dx=f (f+g)‘dx+J f+dx+J gtrdx
=>] (f+g)+dx—f (f+g)‘dx=f f+dx—J f‘dx+J g*dx—J g-dx
=>] (f+g)dx=f fdx+f gdx.

(i)

Given f =0 a.e
> ft=0aef " =0ae

« f+& f~are non-negative measurable functions,
.[ ftdx =0 +f f~dx = 0 [ By example :3]
:f f+dx—f f~dx=0

(ie.,) fdx =0
(iv) Given: f < g a.e

Letg=f+(g—-/)

| gax=| rax+ | @-prax-| @-prax
Here (g — £)~ = 0 ae

o[ @-prax=o (by (i)

f gdxzf fdx+f (g — ) dx

=>f gdx >f Fdx
(ic.,) f fdx < f gdx

(v) Let A & B be disjoint measurable sets.
Now, | fdx = [ fx,updx
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AUB = f fXa+ xp)dx [ xaup = Xa + X5l

=j fodx+j fxgdx

=Lfdx+j3fdx
fdx=]Afdx+jdex.

AUB

Note:
From theorem 9, if f = g a.e and f & g are integrable, then | fdx = [ gdx.
We can extend our results to the case where f is measurable and f is defined except on the set E
such that m(E) = 0 and fEC|f|dx < oo, Then we define f arbitrarily on E to get a function g
which clearly is necessarily integrable.
Example 1:
Show that if f & g are measurable, |f| < |g| a.e and g is integrable, then f is integrable.
Solution:
Let f & g be measurable.
Let |f] < |g|a-e & g is integrable
To prove: f is integrable.
Redefine ' f ' on a set of measure zero.
suppose |f] < |g|
=>fr<Igl\&f™ < gl
= [ rrax< | glars [ rrax< | igias

« g is integrable, [ |g|dx < o

f frdx < oooff frdx < oo

~ f is integrable.

Example: 8

Show that if f is an integrable function, then |ffdx| < [ |f|dx. When does equality occur?
Solution:

Given: f is an integrable function.
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We know that |f| > f
=|fl-f>0

= [ 1r1-f)ars o
zj |f|dx—jfdx>0
:] |f|dx>j fdx o (1)

Also | > —f
= |fl+f>0

= [ a1+ naxso
zf |f|dx+f fdx >0

=>f Ifldx>—f fdx .......(2)
~ From (1) & (2),
[ fldx > |f fdx| ... 3)

Necessary Condition for Equality:

if [ fdx > 0,then [ |f|dx = [ fdx

= [ an-pax=o
= |f|—f = 0 a.e [By Example 3]
> |fl = fae

If [ fdx < 0,then [ |f|dx = [ (—f)dx

= | an+nar=o

= |f|+f=0ale

= |fl=—fa-e
From (4) & (5), we get [ fdx > 0= |f| = f a.e
&[fdx<0=|fl=—fa-e
= |[ fdx| = [ |f|dx only when f > 0 abe (or) f < O a.e
Example 9:

If ' f ' is measurable and g integrable and «, 8 are real numbers such that « < f < g ale., then

there exists y, « < y < f such that [ f|gldx = y[ |g|ldx
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Solution:
Let' f ' be measurable & ' g ' be integrable. Let , 8 be real numbers 7:a < f < S a.e.

To Prove: Iy,a <v < B 3: [ flgldx =y [ |gldx.

Ifgl=1f1-19l
Now, <(al+18D-1gl a-e
~fgl < (al+ 18D - 1gl a-e

= fg is measurable (by Example:7)

Alsoa < f<B ae
= algl < flgl <PBlgl a-e

:a] |g|dx<f f|g|dx<ﬁf gldx

ifj |g|dx = 0, then
g=0ae
f f|g|dx=0=yf \gldx

ifj |gldx # 0, then
takey = (| figiax)(] 1g1ax)

= | riglax =y | giax

Example 10:

1

Extend Theorem 9 to any functions such that the integral involved are defined in the sense of
Definition 7. (i) [ fdx = [ f*dx — [ f~dx.

Solution:

We consider, for example, the extension of (ii): If [ (f + g)dx, [ fdx + | gdx are defined, then
[ (f + g)dx = [ fdx + | gdx whenever the right hand side is defined.

To prove this, suppose | fdx = o = [ gdx

Then [ f~dx <00 & [ g~dx < o
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=>f (f+g)‘dx<oo:>ff(f+g)dx=
We know that (F+ )t +f +g9g = +9) +f" +g°*

:,,] (f+g)+—] (f+g)‘=ff+dx—ff—dx+fg+dx—fg—dx
zj (f+g)dx=jfdx+f gdx

= 00 = 00

oot

The same argument works if | fdx < o0 + |[ gdx| < oo.
Example 11:

Show that if f is integrable, then f is finite valued a.e.
Solution:

Let f be integrable. Suppose |f| = o on a set E with m(E) > 0
j Ifldx > nm(E) ¥n

=< (f integrable = [ |fdx| < o). - f is finite valued a.e.
Example 12:
If f is measurable, m(E) < o and A < f < Bon E, then Am(E) < fEfdx < B-m(E)
Solution:
Let f be measurable, M(E) < o0of A f < BOnE.
To prove: Am(E) < [ fdx < B - m(E)
Now,
A<f<B=Axg <fxe<Bxg

= f Axpdx < f fxedx < f Bxgdx

= Am(E) < f fdx < B - m(E).

E

Theorem 10 [Lebesgue's Dominated Convergence Theorem]:

Let {f,,} be a sequence of measurable functions such that |f,| < g, where g is integrable, and let
limf, = f a.e. Then f is integrable and lim [ f,dx = [ fdx.

Proof:

Let {f;,} be a sequence of measurable functions such that |f;,| < g.

Let g be integrable.
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Let limf, = f a.e.

To prove: f is integrable of lim; [ dx = [ fdx.

Here each f,, is measurable

Then f is measurable.

Also foreachn, |f,| < g

>|fl<g ae.

Bu Example 7, f,, & f are integrable

To Prove: lim/ f,dx = [ fdx.

(i.e.)To prove lim inf [ f,dx > [ fdx &lim sup [ f,dx < [ fdx
Now,

|fn|<g:_g<fn<g
> —g9g< h\&fr<yg
259+H>0&g—f,>0 ... (1)

NOW) g + fn > O
~{g + f.} is a sequence of non-negative measurably functions.

By Fatou's Lemma, we get,
.[ liminf(g + f,)dx < lim inff (g + fdx

:>f gdx+f liminf f,,dx <f gdx + liminff f,dx
(*+ g is independent of n)
= [ liminff,dx < liminf[ f,dx ( [ gdx is finite)
= [ fdx < liminff f,dx Le) .......Q2) [~ limf, = fa - e]

(1) =9 _fn >0
~ {g — f.} is a sequence of non-negative measurable functions.

By Fatou's Lemma, we get,
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) 24

f liminf(g — f,)dx < lim inff (g — fdx

zj gdx+j lim inf(—f,)dx <f gdx+liminff (—fdx
(*+ g is independent of n)

ﬁj liminf(—f,)dx < lim inff (—fn)dx (f gdx — finite)
= —j limsupf,dx < —lim supf fndx
:] limsupf,dx > lim supf fndx
:] fdx > limsupf fndx
Enron (2) & (3) we get,
limsupf fndx <f fdx < liminfj fndx < lim supj fndx
:f fdx =lim supf fndx = lim infj fndx.

zf fdx = limf fndx.
Example 13:
With the same hypotheses as Theorem 10, show that lim [ |f, — fldx = 0
(i.e.,)Let {f,,} be a sequence of measurable functions such that |fn| < g, where g is integrable,

and letlimf, = f ae. Thenlim/[ |f,, — f|dx = 0.

Solution:
Now, |f, = fI<Iful +1fI<g+g=2g
(ie)|fn—fl<2g Vvn

~limf, = fa.e,lim|f, — f| = 0 a.e.

~ By Theorem 10 to {f,, — f}, we get, lim [ |f, — fldx = 0

Theorem 11:

Let {f,} be a sequence of integrable functions such that ¥%_, [ |f,|dx < co. Then the series
N f.(x) converges a.e. its sum f(x) is integrable and [ fdx = 3=, [ f,dx.

Proof:

Let {fn} be a sequence of integrable functions such that Y%, [ |f,|dx <
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To prove:(i) Y n=1 fn(x) converges a.e

(i) f(x) = X%_, fn(x) is integrable.

(iii) J fdx = ¥, [ fodx.

Let p(x) = Xa1 1/l

clearly, |f;,| be a sequence of non-negative measurable,
Then by theorem 7,

]ilfnldx=§:f fuldx

(ie.) =~ @(x)dx = Y0, [ |faldx < oo (= f, is integrable = [ |f,]| < o)
(i), J p(x)dx < o
= ¢’ "is integrable
~ & is a finite valued ace (By Example 11)
Also f =371 fn(x) & = X7 ()],
=>Ifl<o
:f |f|dx<f pdx < o
~ f is integrable.
Let g (x) = Xy £ (%)
=|gn ()] < p(x)d
limg, (x) = f(x) ae
= lim f In(x)dx = f f(x)dx [by Theorem 10]

:iffndxszdx

Example 14:

In Theorems 10 and 11 we may suppose that the hypotheses hold only on a measurable set E. Then
theorem 10 and example 13, with internals taken over E, follow on replacing throughout f,,, f etc.,
by fuxe, f XE, €tc.

Example 15:

Theorem 10 deals with a sequence of functions {f,}. State and prove a ‘continuous parameter'

version of the theorem.
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Solution:
Theorem: For each & € [a,b],—o0 < a < b < oo, let f; be a measurable function, |f; (x)| < g(x)
where g is an  integrable  function, and  let = limgg fr(x) = f(x)

a.e., where &, € [a, b]. Then f is integrable and fll_)r?of fedx = [ fdx

Proof:

Let {&,,} be any sequence in [a, b],limé,, = &,. Then the sequence {ffn} satisfies the conditions of
Theorem 10, and we deduce that f is integrable. Suppose that (3.15) does not hold. Then 36 > 0
and a sequence {B,,}, with limp,, = &, such that for all n, | [ fz, dx — [ f dx| > . But, applying
Theorem 10 to the sequence {f }, we get a contradiction.

Example 16:

(i) I f is integrable, then [ f dx = lim lim_ J, f dx = Jim_lim J, f dx.

(i) If fis integrable on[a,b]land 0 < € < b — a, then

jfdx—hm f dx

a+te

Solution:

f ba fdx=[% X,y dx. (by Example 15)

a a
Jm » Xb,oo)f dx = f_w fdx
A second application of Example 15 gives the first equation of and the second follows in the same
way; (ii) is proved similarly.
The following theorem, which will be generalized in Theorem 9, allows us to calculate integrals
in many cases of importance.

Theorem 12:
If £ is continuous on the finite interval [a, b], then f is integrable, and F(x) = f(ff(t)dt(a <
x < b) is a differentiable function such that F'(x) = f(x).

Proof:

As f is continuous, it is measurable and |f] is bounded. So f is integrable on [a,b]. Ifa <x < b

x+h

we have x + h € (a, b) for all small h, and F(x + h) — F(x) = f f(®)dt.
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But using Example 12 and the continuity of f we have

x+h
j f(Odt = hf(§),§ =x+6h,0< 0 < 1.

So, supposing h # 0, dividing by h and letting h — 0, we get the result.

Corollary 1:

Integrals of elementary continuous functions over finite intervals can be calculated in the usual
way using indefinite integrals.

Corollary 2:

From Example 16 it follows that the integral of an integrable continuous function over an infinite
interval can be obtained if its indefinite integral is known.

Corollary 3:

Techniques involving integration by parts and by substitution can be employed if all the functions
involved are continuous and integrable. Infinite intervals can be dealt with in this case as in
Example 16.

Corollary 4:

In the case of piecewise-continuous functions, if we split the domain appropriately, we can
calculate the separate integrals as in Corollary 1.

Using Theorem 12 and its corollaries we can now give specific examples
which show some ways in which Lebesgue's Dominated Convergence Theorem (Theorem 10) may
be used.

Example 17:

xsin x
1+(nx)*

Show that if > 1, fol dx = o(n~1) asn - oo.

Solution:

We wish to show that lim [ 2522 4y = 0

n-oo “0 1+(nx)«

nxsin x

TremE 0, so we wish to show that Theorem 10 applies to the sequence

Clearly lim,,_,,

nxsin x

fn(X) = m,n = 1,2,
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We consider h(x) = 1 + (nx)* — nx3/2. So h(O) =1,h(1)=1+4+n%*—n.Forl<a<3/2,h
has no stationary point in [0,1], for all large n; for « > 3/2 it has a stationary point at which its

value is easily seen to approach 1 for large n. It follows that for large n, h(x) > 0 on [0,1] and so

nxsin x

< L and the result follows.

1+(nx)@ Vix
Example 18:
. 0o dx
Show that lim fO W =1
Solution:
2
Forn>1,x>0, (1+x/m)" =1 +x +"-2 1)"2 +oe >

So if we define g(x) = 4/x?*(x > 1), g(x) = x~%/2(0 < x < 1) we have
(1+x/n)"x V™ < g(x),(n>1,x > 0).

But g is integrable over (0,0), so lim f,” (1 +x/n)"x~ Y™ dx = [ e~* dx = 1.
Example 19:

2,2
nxe”

Show that lim f dx = 0 for a > 0, but not for a = 0.

n—->oo

Solution:

If a > 0, substitute u = nx to get

foofn(x)dxzfooL_uzduzfoo)( Luzdu

a ng 1+ u?/n? o ey yzme T

and the last integrand is less than ue ¥, an integrable function. But, as a > 0,
im0 X (na,e0) (1 + u? /n?)~1ue~** = 0. So Theorem 10 gives the result.

If a = 0, the same substitution gives

f fu()dx = f ue ™™ (1 4+ u?/n?)"! du - f ue ™ du =1/2
0 0 0

using Theorem 10.

Example 20:

Let f be a non-negative integrable function on [0,1]. Then there exists a measurable function ¢ (x)
such that ¢f is integrable on [0,1] and ¢(0+) = oo.

Solution:
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It follows easily from Example 15 that lim,_, fo fdx =0.SoVvn,3x, (0 < x, < 1), such that

fox"f dx < n~3, and we may suppose that x,, | 0 as n — oo.
Define ¢(x) = Y-, (k — DX xpxp_q]- S0 @(0+) = 0.
But | " pf dx = [ (k — 1)f dx < (k- 2. S0 f of dx < T3, 1/n? < oo.

2.3. Riemann and Lebesgue Integrals

We consider the Riemann integral of a bounded function f over a finite interval [a, b].

Leta =&, < & < -+ < &, = b be apartition, D, of [a, b]. Write S, = X7, M;(§ —&_1)
where M; = supf in [§;_1,&;],i = 1,...,n. Similarly on replacing M; by m; equal to inf f over the
corresponding interval, we obtain s, =Y, m;(; —&;_1). Then f is said to be Riemann
integrable over [a, b] if given € > 0, there exists D such that S, — sp < €. Inthis case we have inf

Sp = supsp, where the infimum and supremum are taken over all partitions D of [a, b], and we

write the common value as Rf:f dx.
Theorem 13:

If £ is Riemann integrable and bounded over the finite interval [a, b], then f is integrable and

b b
Rfafdx=fafdx.
Proof:

Let {D,,} be a sequence of partitions such that, for each n, S, — s, < 1/n. It is easily seen that

b b
Sp, = f U, dx and sp = f [, dx
a a

where u,, and [,, are step functions, u,, > f > [,,. Indeed we may, for example, define u,, = M; on
(&;_1,&;), and at a partition point let u,, be the average of the values M; corresponding to the

intervals ending at that point. Write U = inf,,u,, and L = sup,, ,,. Now

[ee)

[x:U(x) — L(x) > 0] = U [x: U(x) — L(x) > 1/K]

k=1
But if U — L > 1/k, then u,, — ,, > 1/k for each n. So if m[x: U(x) — L(x) > 1/k] = a, then
[ (u, —1,)dx > a/k,and so a/k < 1/n for each n. So a = 0. Hence U — L < 1/k a.e. for each
k,soU =L a.e.
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But u,, [,, and hence U, L are measurable. Also L < f < U, so f is measurable and, being bounded,

is integrable. Clearly
[ lade< [0 fdx< [ uy dx
and letting n — oo, we get Rf;7 fdx = f; f dx.

Note:
The converse does not hold. Consider for example the function f on [0,1] :

-

Then f is measurable, indeed f = 1 a.e. So folf dx = 1. Buteach S, = 1 and each s, = 0, s0 f

x rational
x irrational.

is not Riemann integrable.

That the function f of this example is not Riemann integrable can be seen also from the next
theorem, since f is discontinuous at each x in [0,1]. The theorem shows that the class of Riemann-
integrable functions is quite restricted.

Theorem 14:

Let f be a bounded function defined on the finite interval [a, b], then f is Riemann integrable over
[a, b] if, and only if, it is continuous a.e.

Proof:

Suppose that f is Riemann integrable over [a, b]. Using the notation of the last theorem, suppose
that U(x) = f(x) = L(x), where x is not a partition point of any D,,, the D,, being chosen as
before. Then f is continuous at x; for otherwise there would exist € > 0 and a sequence
(xx}, limx, = x, such that for each k, |f (xy) — f(x)| > €. But then U(x) > L(x) + €. Now, the
set of all partition points of the D,, is countable and so has measure zero, and the set [x: U(x) #
L(x)] has measure zero by the proof of the last theorem. So f is continuous a.e.

Conversely, suppose that f is continuous a.e. Choose a sequence {D,,} of partitions of [a, b] such
that, for each n, D,,,.; contains the partition points of D,, and such that the length of the largest
interval of D,, tends to zero asn — o. Then if u,, [,, are the corresponding step functions as in the
last theorem, we have u,,.; < u, and l,,,; > [, for each n. Write U = limu,, and L = liml,,. Now

suppose that f is continuous at x.
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=
Then, given € > 0, there exists § > 0 such that supf — inff < €, where the supremum and

infimum are taken over (x — &, x + §). For all n sufficiently large, an interval of D,, containing x
will liein (x — 6,x + §), and so u,,(x) — [,,(x) < €. But e is arbitrary so U(x) = L(x).So U = L
a.e. But then, by Theorem 10,

lim[ u,dx=[ Udx=[ Ldx=1im[ [, dxandso f is Riemann integrable.

Definition 8:

If, for each a and b, f is bounded and Riemann integrable on [a, b] and lim_ f: f dx

b—co
exists, then £ is said to be Riemann integrable on (—oo, o), and the integral is written Rff;fdx.
Theorem 15:
Let f be bounded and let f and |f| be Riemann integrable on (—oo, o). Then f is integrable and

LZfdx=Rf_Zfdx

Proof:

From Theorem 13, [7 |fldx = R [} |fldx < R[" |f]dx.

for all a and b. So f is integrable. Theorem 13, applied again, gives fff dx = Rfff dx and
Example 16, gives the result.

The next result may be used to reduce problems involving integrals of measurable functions to
more amenable classes of functions.

Theorem 16:

Let f be bounded and measurable on a finite interval [a, b] and let € > 0. Then there exist

(i) a step function h such that f(f |f —hldx <€,

(ii) a continuous function g such that g vanishes outside a finite interval and f: If —gldx <e
Proof:

(i) As f = f* — f~, we may assume throughout that f > 0. Now fff dx = supf: @dx, where
¢ < f, @ simple and measurable. So we may assume that f is a simple measurable function, with
f = Ooutside [a,b]. So f = XL, aixg,

79

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



with UL, E; = [a,b]. Let €' = ¢/nM where M = supf on [a,b], and M may obviously be
supposed  positive. For each of the measurable sets E; there  exist
open intervals I, ..., I, such that, if G = U*_, I, then m(E;AG) < €'. But x; is a step function
such that [ |xz, — x¢|dx = m(E;AG) < €’. Construct such step functions h;, say, for each E;,
Then ff If =™, a;hildx < X, a;e’ < nMe' = e But Y%, a;h; is a step function.

(i) From (i) there exists a step function h vanishing outside a finite interval (note that this interval
need not be identical with [a, b] ), such that f; |f —h|dx < €/2

The proof is completed by constructing a continuous function g such that [ |h — g|dx < e/2 and
such that g(x) = 0 whenever h(x) = 0. Let h = }i_;a;xg, Where E; is the finite interval
(ci,d),i=1,..,n. Asin (i), it is sufficient to show that each yz, may be approximated. We may
suppose that € < 2(d; — ¢;) and define g by: g = 1 on (¢; + €/4,d; —€/4),g = 0 on C(c;, d;).
Extend g by linearity to (c;,¢; + €/4) and (d; — €/4,d;), as in Fig. 2.1, to get a continuous
function. Clearly [ |xz, — g|dx < €/2, and (i) follows.

Y

" y=g(x)

Figure 2.1
Corollary:
The results of Theorem 16 hold if f is integrable over [a, b], using Exercise 4, p. 60, since, as in
the proof, we may assume f > 0.
Example 24:

Let f be a bounded measurable function defined on the finite interval(a, b). Show that

limﬁ_,oof:f(x)sin Px dx = 0.

Solution:

By Theorem 16, Ve > 0,3h = }I_1 & X (q,p,): SAY, With f: |f — h|dx < €. Then
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b
<f |(f — h)sinfx|dx +

gggg

o A
f hsin fxdx
a

b
f fsin Bxdx

<e+

b
j hsin fxdx
a

Now f;)((ai,bi)sinﬁx dx| = |1/,8fﬁ;iisiny dy| < 2/B < e€/nM for B > B,, say, where M =

max[&,i = 1,...,n]. S0 |[ fsin fx dx| < 2¢, for § > f.

Example 25:

Showthatif f € L(a+ h,b + h) and f,(x) = f(x + h), then f, € L(a,b) and

b+h b
fa+hfdx=fafhdx.

Solution:
Clearly (i)t = (f)n, (i)~ = (f )p, so it is sufficient to prove the result for f > 0. By the
corollary to Theorem 5,there exists a sequence of measurable simple functions {¢,} such that

on < fand [ @, dx T [ f dx. But then (¢,), T f,, and so by monotone convergence

b+h b+h b b
f dx =lim @, dx = limf (@) dx = f frn dx.
a a

a+h a+h
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UNIT 11

Fourier Series and Fourier Integrals - Introduction - Orthogonal system of functions - The
theorem on best approximation - The Fourier series of a function relative to an orthonormal system
- Properties of Fourier Coefficients - The Riesz-Fischer Theorem - The convergence and
representation problems in for trigonometric series - The Riemann - Lebesgue Lemma - The
Dirichlet Integrals - An integral representation for the partial sums of Fourier series - Riemann's
localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point
—Cesaro Summability of Fourier series- Consequences of Fejer's theorem - The Weierstrass
approximation theorem

Chapter 3: Sections 3.1 to 3.14

Fourier Series and Fourier Integrals
3.1. Orthogonal system of functions:

Definition:

Let S = {@,, ¢1, @2, ... } be a collection of functions in L2(1). If (¢, @) = 0 whenever m # n,
the collection S is said to an orthogonal system on I. If, in addition, each ¢, has norm 1%, then s
is said to be orthonormal on I.

Note :

We denote L?(1I) the set of all complexed valued functions which are measurable on I and R
such that |f|? € L?(I) the inner product of (f, g) of two suck function defined by (f, g) =
[ f(x)g(x)dx always exists, then the non- negative number || f II= (f, g)/? is the L? norm of
f.

To Verify s = {¢g, ¢4, P5, ... } is orthonormal on 1.

Let S = {¢y, P41, P>, ... } is orthonormal on 1.

1 cosx sin x
¢o(x) = Nox $,(x) = ﬁ;d)z(x) = N
__cos 2x _ sin 2x
I = [0’27.[] ¢3(X) - W' ¢4(X) - \/E
coS m:c sin mx
¢27T—1(x) = W: ¢2n(x) = \/E
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(P, ¢2) = fozn $1 () P2 (x)dx

_ f27't cosx.sinxd
0 Vvm V&

1 27 sin2x
== dx
b3 fO 2

__ 1 [-cos ZX]ZTC
2T 2 0

-1
= [cos4m — 1]

=—[1-1]
(d)l' ¢2) =0
(¢1,¢1) = fozn % : c:);?x dx

1 2@
=—J, cos2xdx

1 2m 1+4cos2x
== dx
T fO 2

_ 1 [x+sin Zx] 2%

T 2 0

= i[27r+ sin4m — 0]
2

= —[2r+0-0]=1

“ () =1
An orthonormal system of complex-valued functions or every interval of length 2 is given by
e!™  cosmx+isin mx

d)n(x) = \/ﬁ = \/ﬁ
3.2. The Theorem on Best Approximation:

,7t=0,1,2,..

Theorem 1:

Let {¢bo, ©1, P, ... } be orthonormal on I, and assume that f € L2(I). Define two sequences of
functions {s,} and {t,,} on I as follows: S, (x) = Xr=o Ck®@r(X), tn(x) = Xi—o br @i (x)
Where, ¢, = (f, @) for k = 0,1,2, ... - (1) and by, by, by, ..., are arbitrary complex numbers.
Then for each = we have ||f — s, |l < lIf — t,.l

Moreover, equality holds in (2) inf, b, = ¢, fork =0,1,...,n

Proof:

Let {¢po, P1, P, ... } be an orthonormal on |
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=
Define s, (x) = Xi=oCkPr(x) and ty (x) = Y= bxPr ()
where ¢, = (f, ¢) for k = 0,1,2, ...
If = tall> = (f —tu f — ta)
If —tall> = (F, ) = (f t) — (b, ) + (ty t) — — — —(1)
Now, (f, f) =Il f 7= — — —(2)

(f,z bkq)k(x))
k=0

= (f,bo@o + b1y + - + brpy)
= (fi b0¢0) + (f' bl(pl) + -t (f' bn(pn)

= bo(f, @o) + b1 (f, 1) + -+ + by (f, )
= Y=o b(f, oi)

f(Frt) = X0 BrCh v 3)

(t ) = (F t)
= m (*+ by equation (3))

(f tn)

= k=0 DCk
n
w (t f) = Z beCe oo (4)
k=0
n n
(th, tn) = ( bk(Pk:Z bk(Pk)
k=0 k=0

= (bo@o + b1py + -+ + bpp, boo + bypy + -+ bpopp)
= (bo®o, bo®o) + (bo®o, b191) + -+ + (boPo, brPy)
+ o+ (bu®n, bo@o) + (bn@n, b1 1) + -+ + (b @, bppn)
= bobo (@9, Po) + + + byby (9o, Pr)+.. +by b (P, 9o) +
=+ + byby (@, )
= bobo (@0, 9o) + b1by (P1, 1) + ++ + bybn (P, )
= byby + b1by + -+ + b, by,
(tn,tn) = Xk Db = Xy |bi|*---(5)
Substitute (2), (3), (4) and (5) in (1)
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If = tll? =1l f 12— Z Brcy — z bkck+2 bieby

Add and Subtract, Z”_O CrCr

n

n
=l f I?— Z CrCr + Z (b — cx) by
k=0

k=0

+ ) (b= )=
k=0

If = tall® =1 £ 12— g culic + pto (i — ) (Bye = &) ----=(6)
Similarly,

If = sl = (f = s, f = 53
”f - SnHZ = (f:f) - (fisn) - (Snlf) + (Snlsn) (7)

(f,s,) = (fz ckq')k(x)) - z NG

k=0

(Sn;f) = (f Sn) = Z ﬂ: Z CrCr e (9)

k=
(sp,Sp) = (Z ckqbk,z Ck¢k> Z €]§C_k —)!

k=0 k=0 k=0
n
SNFIP= ) Gt e (1)
k=0
If = tall® = If = spll® + XP_ b — cil?
Substitute equation (11) in (6 n =0
quation (L) 1N () = 1 F = el 3 1F = sull o e (12)
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The RHS of (12) has its smallest value when b, = ¢, for each k

Hence we have [|f — syl = [If — t,l

3.3. The Fourier Series of a Function Relative to an Orthonormal System:

Let S = {¢g, P1, P, ... } be orthonormal on | and assume that f € L?(I). The notation,
fxX) =20 Cn@r(x) .oonio.. Q)

where ¢, ¢4, C5, ... are given by the formulas
tn= (80 = [ F@BGIEx (= 0,12,..)
I

The series in (1) is called the Fourier series of f relative to S and the number c,, ¢y, ¢, ... are
called the Fourier coefficients of f relative to S.
Note:

When [ = [0,2r] and S is the system of trigonometric formations ¢,(x) = \[%_n Gor—1(x) =

COS TTX sin x elnx cos x+isin x

N and ¢, (x) = N Pr(x) = == = the series is called the Fourier series

generated by f. We write eqn(1) in the form
2 N .

f(x) = 0} + z (aycosnx + b,sin nx)

n=1

The coefficients bring given in the following formulas

1 21
a, = —f f(t) cosmt dt,

TJo

1 2T
b, = —f f(t) sinmt dt
TJo

in this case the integrals for a,, and b,, exist if f € L([0,2m]).
3.4.Properties of the Fourier Coefficients:
Theorem 2:

Let {¢,, ©1, @ ... } be orthonormal on I, assume that f € L?(I) and suppose that

[ee)

F0)~ D enn(®)

n=0
Then

(a) The series Y|c,,|? converges and satisfies the inequality Yo_, |c, | <Il f II?
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(Bessel's inequality)
(b) The equation Y_olc, |? =Il £ 1> (Parseval's formula) holds if, we also have
lim,_o lIf — s,ll = 0 where {s, } is the sequence of partial sums defined by

Sn(X) = Y=o Ck®r (X).
Note:

e LTXx

The Fourier Coefficients c,, » 0 as H — . Since ¥:|c,,|? converges. Then ¢, (x) = ord and

I = [0,27]. We define lim,,_o, [ " f(x)e~"*dx = 0

21
In other words = lim f(x)cosmxdx = 0;
n—->oo 0

lim - f(x)sinmtxdx = 0;
n=eJo
Note:
I f 2= lcol? + eyl + -+
which is equivalent to || x|? = |x;]% + |x,|? + -+ + |x,|? for the length of the vector
X = (xq,x5,...,%,) €ER"
3.5. The Riesz - Fischer Theorem:
Theorem 3
Assume {¢,, ¢4, ... } is a orthonormal on I. Let {c, } be any sequence of complex numbers such
that Y| c, |? converges then there is a function f in L2(I) such that
a)(f, ¢x) = ¢, foreach k > 0.
b) Il £ 12= %o lck|?
Proof:
Given: {¢g, ¢4, ... } is orthonormal in I and Y|, |* converges, let S, (x) = Y 7-o k@i (X)
(b) To prove: This is a function £ in L*(I)
such that lim,,_,. || f — s, |l = 0. Now, {S,,} is a Cauchy Sequence in the semimetric space

L*(I) because if m > n we have

b4 m 2
2
sn — smll” = z Ck Pk —Z Ck Pk
k=0 k=0
— 2
=l CoPo T C1P1 T "+ Cn®Pp — CoPo — " — CnPn — Cnt1Pn+1 — CmPm I
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i 2
= ”Cn+1(;0n+1 + et Cm(pm"

& 12 m m
= ii Zl Ck(nbkii =< z Ck P, z de’k)

k=n+1 k=n+1

= (Cns1Pn+1 + Cna2Pniz + -+ CPm,
Cn+1Pn+1 T Cny2Pniz + o0 F Cm(pm)
= (Cn+1Pn+1 Cns1Pn+1) T (Crs1Pnsts Cne2 Ptz
ot (Cns1Pnst, Cm®Pm) + - (Cry2Qnazs Cne1Pnsr) +
(Cn+2Qn+2» Cn+2§0n+2) + -+ (Cm+2§0m+2: Cmgom) +

+(Cm®Pms Cns1Pnr1) + 0 F(CmCm (@m, Pm)
Cnt1 Cnt1(Pnst Pnat) o+ Cruz, Cuez (Qnaz, Brsz) + - + CnCin (B, i)
Isp = Smll* = Cos1Cnr1 + CnraCrra + - + Cmlm
= Yhco Cklr = Zpeo - lexl* < e
s isy = smll*> <& {+ mand m are sufficiently large and ¥|c,|2converges}
{S,.} is a cauchy sequence in L?(I).
S, convergesto f
By theorem, (Let {f;,} be a complex Value functions in L2(1).
Assume that for every € > 0. There exists an integer N such that [If,, — f,n |l < &, Whenever T >
7 > N, then there exists a function in [2(1)
such that lim,,_,., I, — fll = 0)
=~ There is a function f in L(I) such that lim,,_,. lIs, — f1l = 0.
(@) We have to show that (f, @) = ¢, foreachk > 0

To prove: (sg, @x) = ¢, ifn>k
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(Sk> Pic) = (Z CkPr, ¢’k>

k=0
M

= Z i (Pr, Pr)

k=0

M
2,

k=0

s () =c¢ forn>k

|(sks i) | = ekl

|Gsks 1) — (F, i) = lex = (f, @)
=l — (f, @) = (s, i) — (f, i) |

< lsi = 1
lim [ = (f, ¢l < lim lis, = 1
e = (f, qid| = 0.

If = skl = (£, £) = (f,50) = (5 ) + (55,50

I f ||2—Z lci |2
k=0
n
lim If = sl = Jim (u f IIZ—Z Icklz)

k=0

0=l £ 1= ) lel?
k=0

[oe]
I F %= Z Pk
k=0

Results:
There exists a Lebesgue Integral function whose Fourier series diverges every where
There exist continuous functions whose Fourier series diverge on an uncountable set

The Fourier series of a function in L2(I) converges almost everywhere on |

3.6. The Convergence and Representation Problems for Trigonometric Series:

Consider the trigonometric Fourier series generated by a function f which is Lebesgue-integrable

on the interval I:[0,2r], say f(x) ~ % + Y-y (aycosnx + b,sin nx).
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Two questions arise. Does the series converge at some point x in 1? If it does converge at x, is its

sum f(x) ? The first question is called the convergence problem; the second, the representation
problem. In general, the answer to both questions is "No." In fact, there exist Lebesgue-integrable
functions whose Fourier series diverge everywhere, and there exist continuous functions whose
Fourier series diverge on an uncountable set.

Ever since Fourier's time, an enormous literature has been published on these problems. The object
of much of the research has been to find sufficient conditions to be satisfied by f in order that its
Fourier series may converge, either throughout the interval or at particular points. We shall prove
later that the convergence or divergence of the series at a particular point depends only on the
behavior of the function in arbitrarily small neighborhoods of the point. (See Riemann's
localization theorem.)

The efforts of Fourier and Dirichlet in the early nineteenth century, followed by the contributions
of Riemann, Lipschitz, Heine, Cantor, Du Bois-Reymond, Dini, Jordan, and de la VVallée-Poussin
in the latter part of the century, led to the discovery of sufficient conditions of a wide scope for
establishing convergence of the series, either at particular points, or generally, throughout the
interval.

After the discovery by Lebesgue, in 1902, of his general theory of measure and integration, the
field of investigation was considerably widened and the names chiefly associated with the subject
since then are those of Fejer, Hobson, W. H. Young, Hardy, and Little wood. Fejer showed, in
1903, that divergent Fourier series may be utilized by considering, instead of the sequence of

partial sums {s,.}, the sequence of arithmetic means {c,,}, where

So(x) +51.(x) + -+ + 551 (%)

on(x) = n

He established the remarkable theorem that the sequence {o,,(x)} is convergen: and its limit is
%[f(x+) + f(x—)] at every point in [0,27] where f(x+) and f (x—) exist, the only restriction on

f being that it be Lebesgue-integrable on [0,27] (Theorem 3). Fejer also proved that every Fourier
series, whether it converges or not, can be integrated term-by-term (Theorem 4) The most striking
result on Fourier series proved in recent times is that of Lennart Carleson, a Swedish
mathematician, who proved that the Fourier series of a function in L?(I) converges almost

everywhere on .
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In this chapter we shall deduce some of the sufficient conditions for convergence of a Fourier

series at a particular point. Then we shall prove Fejer’s theorems. The discussion rests on two
fundamental limit formulas which will be discussed first. These limit formulas, which are also
used in the theory of Fourier integrals, deals with integrals depending on a real parameter «, and
we are interested in the behavior of these integrals as @ — +oco. The first of these is a generalization
of theorem 3 and is known as the Riemann-Lebesgue lemma.

3.7.The Riemann Lebesgue Lemma:

Theorem 4:

Assume that f € L(I). Then, for each real 5 ,we have
lirp [ f@®sin(at+p)dt=0 ....... (1)

a—>+0o

Proof:

If £ is a characteristic function of a compact interval [a, b]

_ b
[ cos(zt + ,B)]a

b
j sin(at + B)dt

—cos(ab + B) + (cosaa + f3)

cos(aa + ) —acos(ab +B)

a

< |cos(aa + B)| + |cos(ab + B)|
a

QI

<
b
lim sin(at + B)dt = 0.

-+
a—-+ a

The result is true if f is a constant on (a, b) and zero outside regardless of how we define f(a)
and f(b).

To prove: For every Lebasque integral function f.

By the theorem, Assure that f € L(x) and Let € > 0 be given. Then there exists a step function S
and a function g in L(I) such that f = s + g where f1|g| <e.

Assume that f € L(I)

Given: e > 0, f astep function s and g € L(I) suchthat f = s+ g.
o1
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The step function holds in (1), there is a positive M,
|/, s(®)sin(at + )dt| < e/2,ifa>M .......... (3)

If @ > M, we have,
]I f(t)sin(at + B)dt = f, f(®)sin(at + f)dt
—~ fl s(t)sin(at + B)dt + fl s(O)sin(at + B)dt
= j[ (f(t) — s(t))sin(at + B)dt + fl s(t)sin(at + B)

U f(®)sin(at + p)dt| < f |f () — s(t)]||sin(at + B)|dt +
£
j s(t) sin(at + B) dt < 3 +¢&/2 = & (by (2)In(3))
U f(®)sin(at + p)dt| < e.
I

s~ lim ff(t)sin(at+,8)dt =0.
a—+oo J,

Note:
Take f = 0, We get

lim ff(t)sin atdt =0
a—+oo I
Theorem 5:

If f € 1(—00,+0), we have

lim j-_oo f(t)ﬂdt _ foof(t) _tf(—t) dt, (1)

a—>+o

whenever the Lebasque integral on the right exists.
Proof:

For each fixed x,

1—-cosxt

Consider
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lim 1—cos at =0.
t—0 t
1-cosat . H
The quotient ———— is continuous and bounded on (—oo, 4+00).

=~ The integral on the left of (1) exists as a lebesgue integral

j f()(l—cosat)d _f o - (1—c d +f Iy (1—ctosat)

_ f £ 1 —cosat gt + J s 1 —cosat dt
o t 0 t

@ 1 —cosat « (1 — cosat)
- reo = Ra | ros =

—cosat

—0+ fo © - 01— ay
_ f°° [O=fD,, f [0/

cos atdt

(le)f f(t)m =']-wwdt—£wwcost dt
. (I—cosat) = (*f(@)—f(-t)

al_l)rlloof f(t)—dt—.]; fdt
a_) Oof Mcosatdt

_ f f0-ft ) o

0
) limf f(t)Ltosxt)dtzf wdt

a—>+oo —o

3.8.Dirichlet Integrals:

sin at

Integrals of the form f g(t)

dt (called Dirichlet Integrals)

[Bonnet's theorem:
Let g be continuous and assume that f /7 on [a, b]. Let A and B be two real numbers satisfying

the condition A < f(a+) B > f(b—). Then there exists a point x, in [a, b] such that

b X0 b
O [ regedr=a( gwax+s [ geod
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In particular if f(x) > 0 for all x € [a, b] such that

(i) fa f(xX)gx)dx = Bf:g(x)dx where x4 € [a, b] ]
Theorem 6: (Jordan)

sin at

If g is of bounded variation on [0, 8]. Then limg_, o —f g(t)

Proof:

sin at

To prove: limg_ —f g0 dt = g(0+)

It is enough to prove that the case in which g is increasing of [0, §]

Ifa>0andifa < h < §, we have

6 sin at
fg(t
0
sin at h sin at
=f g0 =2 - [ gonE 2 ar
0 0
h sin at 8 sin at
+f g0+ fg(t) dt
0 h
R sin at h sin at
| de= [ 19 - g0 e
0 0

t
h
+g(0 +)f —dt+f g(t)smatdt>

h

nxt

fk sinatd J
=, g(t)T t+ | g

f 9 smtat dt = I,(a,h) + I;(a,h) + I3(a,h) — — — (1)
0

sin (Xt

Now, I; (&, h) = ;' [g(t) — g(0+)]

R sin at

=l - g0 [ ZZar

c

" sin at
dt
e t

sin at

L (e, | = |g(h) — g(0+)]

choose M > 0 so that |f dt| <MVb>a>0

sin at

It follows that |f dt| <Mforeveryb>a>0ifa>0
Let € > 0 be given and choose h in (0, §)

Sothat |g(n) — g(0+)| < 5 since g(t) — g(0+) > 0

dt = g(0+)
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& &

i.e,|l;(a, h)| < g. ------- (2)

Now, L (a, h) = g(0+)f, 2% dt

Puty =at dy = adt
whent=0=y =0, t=h=>y=ah

]hsinatd _j“h siny dy
o t v 2 o«
a

@ sin y *h sin ¢t
o Y 0 t

*h sin t
L(a,h) = g(0+)f Tdt
0

s~ L(a,h) = g gl0+)asa - +oo .........(3)

@ sin t
f Tdt—>7‘[/2 as a — +4)
0

sin at
t

dt

8
Now, I;(a, h) = fh g
Apply Riemann-lebesque lemma to I5(«, h) (since the integral fhs @dt exists)

s I3(x,h) - 0 as x = 4+oo. For the same h we car choose A so that @ > A implies that

|I3(a, h)|e/3---(4)
(3) = L (x, h) —m/29(0+)| < &/3 = (5)
Then for a > A, combine (2), (4) and (5) We have
| Ii(a,h) + L,(a,h) —t/2g(0+) + I3(a,h) I< e/3 +¢/3 +¢/3

g sin at
f g dt —m/2g(0t)| < ¢
0

i,
t

g sin at
f g ; dt =m/2g(0+)
0

) 8 sin at
s~ lim Z/nf g(t)——dt = g(0+).
a-+o 0 t

95

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Theorem 7:

Assume that g(0+) exists and suppose that for some § > 0 the Lebesgue integral

f: 9029008 31 exists. They we have Jim %f g(®) 2L qt = g(0+)
Proof:
Given: g(0+) exists and |, o M dt exists
8 8 n sin at
] f g(t)—dt—g(0+)f dt
0 0

sin xt

+g(0+)f

8 in at t 0+ t
j g(t)-smta dtzf %smatdt+g(0t)} sinat
0 0

_f g®) —g(0+)
=)

sin atdt + g(Ot)j Tdt
0

When a — +oo first term on the RHS is zero by using Riethan-Lebesgue and the second term

approaches /2

S g(t)sinat
lim f Ldt=7t/2g(0+)
a-+0 J, t
S .
t)sinat
= hrp Z/nf %dt =g(0+)
X—>+00

3.9. An Integral Representation for the Partial Sums of a Fourier series:
A function f is said to be periodic with period p # 0 if f is defined on R and if f(x + p) =
f(x)Vx. The partial sums of a Fourier series in terms of the function

(sin(m+1/2)t

L | s £/2 if t+2mn
D, (t) = E coskt = 4 (where m is
k=1 | ar integer)
tn +1/2 if t=2mn

(m is an integer)

The function D,, is called the Dirichlet's kernel.
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Theorem 8:
Assume that f € L([0,2r]) and suppose f is periodic with period 2. Let {S, } denote the sequence

of partial sum of the Fourier series generated by f, say,

) n 1 =
sn(¥) =5+ 2wy (@gcoskx + bsinkx),n = 1.2, .. "Then we have the integral representation

Sp(x) =

2 (Mfx+t)+f(x—1t)
;jo D, (t)dt.

2
Proof:

The Fourier Coefficient of f are given by the integral

21 21
I = — f(t)cosntdt, b, = p- f(t)sintdt
0 0

sn<x>=%j O+ [+
0 k=1

21 21
0

1
f(t)cosktcoskxdt + p- f(t)sinkt sinkxdt
0

1 (2" 1
Sp(x) = ;.f JAGR 3 + [cosk + cos kx + sin kt sin kx]dt
0

-2[" o

1 21
Su@) = | FODa -t

_|_

NRRINGE

N| =

cosk(t — x)} dt

&
1l

1

since both f and D,, are periodic with period 27, we can replace the interval of integration by [x —

m,x + m].

1 xX+m
00 = [ f@De-0de

X—T

Putu=t—-x=>t=u+x.
S _1 - D d
w0 =2 | ratop,adx
1(° 1 ("
Sp(x) = Ef f(u+x)D,(w)du +Ef flu+ x)Dn(u)du>
For 1% text
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du = —dt
u - |0
—t T 0

For 2™ termu =t
du=dt

0 T
$:0) = [ fer-0D,(-0(-a0+ [ f+ D0t
b4 0

—lfn Fx—6)D (t)dt+ljn FOx + £)D,(t)dt
), n T J, n

T

2 (T[fG=D+f+D)]
s == | a

1 T
=—L [FGx— ) + f(x + DID, (B)dt

D, (t)dt

3.10. Riemann’s Localization Theorem:
Theorem 9:
Assume that f € L([0,2r]) and suppose f has period 2. Then the fourier series generated by f

will converge for a given value of x if and only if for some positive s < , the following limit

exists lim _J-s fx+t)+f(x-t) . sin(n+1/2)t

i o , dt in which case the value of this limit is the sum of the
TT—00

Fourier series.

Proof.
n
a
let sin(x) = 70 + z [aycos kx + bysinkx] ... (1)
k=1

Integral representation of the partial sums of the Fourier series is

2 ("flx+t)+f(x—1t)
Efo 2

S, (x) = D, (t)dt

from (2), the Fourier series generated by If will converge at a point x iff the following limit exists,

Y 2 (Mfx+t)+f(x—1t) sin(n+1/2)t
noe 77 ), 2 2sin 1/2t
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in which case the value of this limit will be the sum of the series

Replace t = ZSin%t in (3)

Since, Riemann - Lebesgue Lemma allows this replacement without affecting the existence of the

value of the limit.
Tfx+t)+f(x—t) sin(n+1/2)t

e, li : dt
Les n52>n 2 tI2(4)

4)-(3)

lim

n—>007'[j [ 2sin 1/2t

Because the function F defined by the equation

1 1 _
———, ifo<tgm

F(t) =<t 2sin t
0, ift =0

]f(x+t)+f(x_t) 'n(n+%)tdt=0

is continuous on [0, z]. (ie) F is continuous.
Assume that f(x) =1

Then,ay =2,a, =0=b, (k>1)
substitute the Value in (1),

= S, (x)=1

From (2), we have

5()——f fx+)+fx—1)
0

3 D, (t)dt (5)

2 T
t=— j; D, (t)dt
For any arbitrary f € L([0,27])
2 V3
F@ =2 | FeD, @

Equation (5) - (6)
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ok

fx+t)+flx—1t)
2 ”[ 2

Sa(®) = f() = —f (x) £ (O Daeydt

+f(x—1)
; _

), 2

| 2 (™ f(x+0)
lim [$,(x) = f(0)] = zlllﬂlo%fo

fx)=0

= lim [S,(x) — f(x)] = 0.
n—->oo
=~ The convergence problem for the Fouriers series used for finding conditions on f which will
gaurentee the existence of the following limit
2 (" f(x+t)+ f(x—t) sin(n+ 1/2)tdt

lim —
n-e T J 2 t

Then fox ‘any § < m, we have.

ff(x +6) +f(x—t) sin(n+1/2)t
0

dt exist

2
lim —
n—-oo Tr

2 t

3.11. Sufficient Condition for the Convergence of a Fourier Series at a particular point:
Assume that f € ([0,2r]) and suppose that f has period 2 7, consider a fixed x in [0,2 7]
g(t) =D g e [0, 5)

. fx+t)+f(x—t)
s(x) = g(0+) = lim [EEHE0

and a positive s < 7. Let
whenever this limit exists. Note that s(x) = f(x) if f is continuous at x.

3.12. Cesare Summability of Fourier Series:

Theorem 10:

Assume that £ € L([0,2r]) and suppose that f is periodic with period 27. Let S,, denote the nt"
partial sum of the Fourier series generated by f and

So(X) +5(x) + -+ 51 ()
n (n

oz(x) = =12,..)
fn Fx+t)+f(x—t) Sinziﬂt

. . 1
Then we have the integral representation o,,(x) = —Jo > sinls

Proof:

Let S,, denote the n'™ partial sum of the Fourier series generated by
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So(x) +510x) + -+ 5,4 (x)

o (x) = -
1n—1
= szo se(x)
I 2 (fG D+ fx— )
= szo gjo 5 D, (t)dt

A

50 =~ [ [fCet 0+ £ = Okt

0

L o
k,(t) =m; sin(j —1/2)t

n
1
= — in(2j —1)t/2
2nsin t/ZZ sin(2) ot/
]:

o nt
1 sin®

2nsint/2 “sin t/2

kn(t) =

Substitute Equation (2) in (1)

1 ("fx+t)+f(x—1t) Sinz%t
), |

on(x) = 2 sinZ t/2

Note:
If f =1,thensy(x) =s5:(x) =5,(x) = =51 (x) =1

1+1+--1 | n
% 0p(x) =#(nt1mes) =-= 1

= 0,(x) = S, (x) for eachn

Hence, - [ " 2% 4 — 1
ence,; 0 sin2t/2 -

~+ For given any number s, we get

op(x) —s =

1 ("[fx+ )+ f(x—1t) Sinz%t
EJ; [ 2 - sin? t/2

If we can choose a value for such that the integral on the right of (1) tendsto 0 as n — oo
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sop(x) > sasn > ©
Theorem 11: (Fejer)

Assume that f € L([0,2]) and suppose f is periodic with period 2. Define a function by the

following equation: s(x) = J‘%Lw whenever the limit exists. Then, for each x for

which s(x) is defined, the fourier series generated by f is cesaro summable and has (c, 1) sum
s(x). (i.e.,) we have lim g, (x) = s(x) where {g,,} is the sequence of arithmetic means defined by
n—->oo

0, (x) = 2T 4y — 19 If, in addition, f is continuous on [0,27], then the

n

sequence (a,,) converges uniformly to f on [0,27].
Proof:

fHD)+f (x—t)
) =="—"7F—"-s5(0

Let g, .

fx+t)+f(x-t)
2

9.0 =f(X+t) +f(9;—t)— 2 s(x)

Then gx(t) > 0ast - 0F

Wherever S(x) = lim,_+

= For given € > 0,3 a positive § < m such that |g, (t)| < &/2 whenever 0 < t < §.

theorem 10,

1 ("[fx+O+f(x—1t) , Sinz%t
f[ 2 _Sx]

an(x)—s(x):E sinZt)2

Divide the interval of integration in to two subintervals [0, §] and [§, 7]

1 P fx+ )+ f(x —t) — 2s(x)]sin® nt/2
on () = 5(x) = EL [ 2 sin? t/2 dt
1 ("f(x+1t)+f(x—1t)—2s(x)]sin? nt/2dt
__f [ 2 sin?t/2
t/2 t/2d
O (%) — s(x) = f gx(t )Sm 271//2 +—f gx( S‘;ni‘tjz
sm nt | sin2 1t
|0'n(x) _S(x)l < f g( ) t + EL gx(t)ﬁdt OTL[O,S]
2 2
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,nt
1 (S sin? > 1 sin
e R CE e Ry RO R A
,nt

- € j5 sin® —- "
2nm ), sin?t/2

£ 1

s sin? 2
_ =1
< 2 nnf sin? t/2 dt=1 fon[o,7]

1 (™ sin? nt 1 (™ sinz%t
— dt| = — )| ———4=dt
mT,L 9x(t )smz t/2 nnL 19:(D] sin? t/2

| " 1gx(®ldt

<—
= nmsin? §/2 z

1
(= fort > 8D, () < 'n26/2>

1(x)

T
————— where, I(x) = f lg.(t)|dt
= nmsin2 §/2 0 X

I(x)
Now, choose N so that — =~ 7 < g/2

Then forn > N,
From equation (2) =

lo, (x) —s(x)| < e.
s op(x) @ s(x)asn - o

If £ is continuous on [0,27], then by periodicity, f is bounded on R and there is an M such that
|9 (O <M vx.
Replace I(x) by nM
,nt
P Ry RO R ! P L
sin? t/2 nmsin? §/2
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M
choose
N

sin2 §/2

<g/2forn > N.

3.13. Consequences of Fejer’s Theorem:

Theorem 12:

Let f be contimuous on [0,27] and periedic with period 2r. Let {s,,} denote the sequence of partial
sums of the Fourier series generated by f, say

f(x) ~ % + Y-y (apcosnx + bysinnx). ......... (1)

Then we have:

a) 1111—r>r010 sp = f on|0,2m]

0) 2 [T 1f()I2dx = 2+ T2, (a2 + b2) (Parseval's formula).
c) The Fourier series can be integrated term by term. That is, for all x we hate
jxf(t)dt = Dot + Z fx (ajcosnt + b,sinnt)dt.
0 2 n=1 0
the integrated series being uniformly convergent on every interval, even if the
Fourier series in equation (1) diverges.
d) If the Fourier series in equation (1) converges for some x, then it concerges on f(x).
Proof:
Applying formula (3) of Theorem 1, with £, (x) = 0,,(x) = (1/n) X215, ().

we obtain the inequality

fozn If (%) — s, (0)|?dx < fozn lf(x) — o, (0)|?dx. .......... ()
But, since a,, = f uniformly on [0,27]. it follows that lim o,, = f on [0,27]. And (2) implies (a).

n—->oo

Part (b) follows from (@) because of  Theorem 2. Part (©):
also follows from (a). Finally, if {s,,(x)} converges for then {o,,(x)} must converge to the same
limit. But since a,,(x) = f(x) that s,,(x) = f(x), which proves (d).

3.14. The Weierstrass Approximation Theorem:
Fejer's theorem can also be used to prove a famous theorem of Weierstrass which
states that every continuous function on a compact interval can be uniformly approximated by a

polynomial. More precisely, we have:
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Theorem 13:

Let f be real-valued and continuous on a compact interval [a,b]
Then for every € > 0. there is a polynomial p (which may depend on ¢ ) such that

|[f(x) —p(x)| < € forevery x in [a, b]. ........ (1)

Proof:

Ift € [0,m), let g(t) = fla + t(b — a)/m];

If t € [mr,2m], lat g(t) = fla + (2r — 1)(b — a)/m] and define g outside [0,27] so that g has
period 2 . For the & given in the theorem, we can apply Fejer's theorem to find a function defined
by an equation of the form

N
o(t) =Ag+ Z (Ajcoskt + Bpsin kt)
k=1

such that |g(t) — a(t)| < &/2 for every t in [0,27]. (Note that N, and hence O, depends on c.)
Since o is a finite sum of trigopnometric functions, it generates a power series expansion about the
origin which converges uniformly on every finite interval. The partial sums of this power series
expansion constitute a sequence o! polynomials, say {p,}, such that p,, - o uniformly on [0.27].

Hence, for the same ¢, there exists an m such that
&
| () — o ()] < > for every t in [0,27].

Therefore we have |p,,(t) — g(t)| < ¢, foreverytin[0,27]. ...... (2)
Now define the polynomial p by the formula p(x) = p,,[r(x — a)/(b — a)]. Then inequality (2)

becomes (1) whenwe put t = n(x —a)/(b — a).
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Unit IV

Multivariable Differential Calculus - Introduction - The Directional derivative - Directional
derivative and continuity - The total derivative - The total derivative expressed in terms of partial
derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of
chain rule - The mean - value theorem for differentiable functions - A sufficient condition for
differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's
theorem for functions of R" to R*

Chapter 4: Section 4.1t0 4.14

Multivariable Differential Calculus

4.1 Introduction:

Partial derivatives of functions from R™ to R! were discussed briefly in Chapter 5. We also
introduced derivatives of vector-valued functions from R* to R*. This chapter extends derivative
theory to functions from R* to R™.

The partial derivative is a somewhat unsatisfactory generalization of the usual derivative because
existence of all the partial derivatives D, f, ..., D,, f at a particular point does not necessarily imply
continuity of f at that point. The trouble with partial derivatives is that they treat a function of
several variables as a function of one variable at a time. The partial derivative describes the rate of
change of a function in the direction of each coordinate axis. There is a slight generalization, called
the directional derivative, which studies the rate of change of a function in an arbitrary direction.

It applies to both real- and vector-valued functions.

4.2 The Directional Derivative:

Let S be a subset of R™, and let f: S — R" be a function defined on S with values in R™. We wish
to study how f changes as we move from a point c in S along a line segment to a nearby point ¢ +
u, where u # 0. Each point on the segment can be expressed as c + ha, where h is real. The vector
u describes the direction of the line segment. We assume that c is an interior point of S. Then there
is an n-ball B(c; r) lying in S, and, if h is small enough, the line segment joining ¢ to ¢ + hu will

lie in B(c;r) and hence in S.
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Definition 1:

The directional derivative of f at c in the direction n, denoted by the symbol f'(c; u), is defined by
f(c+hu)—f(c)

- 1)

whenever the limit on the right exists.

the equation f'(c; x) = }Ling

Note: Some authors require that || a ||= 1, but this is not assumed here.

Examples:

1. The definition in (1) is meaningful if « = 0. In this case f'(c; 0) exists and equals 0 for
every cinS.

2. If u = uy, the k th unit coordinate vector, then f’(c; u,) is called a partial derivative and is
denoted by D, f(c).

3. Iff=(fi, ..., fn), then f'(c; u) exists if and only if f;/(c; u) exists for each k = 1,2, ..., m,
in which case f'(c; u) = (f{ (c; v), ..., fm (c; u)) In particular, when v = a; we find
Dif(c) = (Drfi(€), oo, Difrn(€)) e, (2)

4. If F(t) = f(c + tu), then F'(0) = f'(c; u). More generally, F'(t) = f'(c + tu; ) if either
derivative exists.

F(t)=f(c+tu) = (c+tu)- (c+tu)
=l clI?+ 2tc-u+t? |l u |I?
so F'(t) = 2c-u+ 2t |l u lI?; hence F'(0) = f'(c;u) = 2¢ - u.

5. If f(x) =l x II?, then

6. Linear functions. A function f: R® — R™ is called linear if f(ax + by) = af(x) + bf(y) for
every x and y in R™ and every pair of scalars a and b. If f is linear, the quotient on the right

of (1) simplifies to f(w), so f'(c; u) = f(u) for every c and every wu.

4.3. Directional Derivatives and Continuity:
If f'(c; u) exists in every direction u, then in particular all the partial derivatives D, f(c), ..., D,f(c)

exist. However, the converse is not true. For example, consider the real-valued function

f:R* = R given by f(x,y) = {

Then D, f(0,0) = D,£(0,0) = 1. Nevertheless, if we consider any other direction u = (a4, a,),

fO+hw)-f(0) _ f(hw) _ 1
h h n’

x+y ifx=0o0ry=0,
1 otherwise.

where a; # 0 and a, # 0, then
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and this does not tend to a limit as h — 0.
A rather surprising fact is that a function can have a finite directional derivative f’(c; u) for every

2 2 4 :
u but may fail to be continuous at c. For example, let f(x,y) = {xy /GeF+y®) ifx# 0,

0 ifx = 0.
2
Let u = (ay, a,) be any vector in R2. Then we have £(0 + hw) — £(0) =~ (h“;’h‘”) = af:jay
1 2
2 ifa, #0
n h n l; : — {aZ/al 1 1
and hence f'(0; u) 0 ifa, =0

Thus, f'(0; u) exists for all u. On the other hand, the function f takes the value % at each point of

the parabola x = y? (except at the origin), so f is not continuous at (0,0), since £(0,0) = 0.

Thus we see that even the existence of all directional derivatives at a point fails to imply continuity
at that point. For this reason, directional derivatives, like partial derivatives, are a somewhat
unsatisfactory extension of the one-dimensional concept of derivative. We turn now to a more
suitable generalization which implies continuity and, at the same time, extends the principal
theorems of one-dimensional derivative theory to functions of several variables. This is called the

total derivative.

4.4 The Total Derivative:

In the one-dimensional case, a function f with a derivative at ¢ can be approximated near c by a
linear polynomial. In fact, if f'(c) exists, let E.(h) denote the difference

E.(h) =10 () ith =0, ... 3)

and let E.(0) = 0. Thenwe have f(c + h) = f(c) + f'(c)h + hE.(h) ......... 4)

an equation which holds also for h = 0. This is called the first-order Taylor formula for
approximating f(c + h) — f(c) by f'(c)h. The error committed is hE.(h). From (3) we see that
E.(h) - 0ash — 0. The error hE.(h) is said to be of smaller order than h as h — 0.

We focus attention on two properties of formula (4). First, the quantity f'(c)h is a linear function
of h. That is, if we write T,(h) = f'(c)h, then T.(ah, + bh,) = aT.(h,) + bT.(h,).

Second, the error term hE, (h) is of smaller order than h as h — 0. The total derivative of a function

f from R™ to R™ will now be defined in such a way that it preserves these two properties.
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Let f: S — R™ be a function defined on a set S in R™ with values in R™. Let c be an interior point

of S, and let B(c; r) be an n-ball lying in S. Let v be a point in R™ with || v [[< r,sothatc+ v €
B(c; 7).

Definition 2:

The function f is said to be differentiable at c if there exists a linear function T.: R* = R™ such
that f(c +v) = f(c) + T.(W)+I v Ec(v) ............ (5) where E.(v) » 0asv — 0.

Note:

Equation (5) is called a first-order Taylor formula. It is to hold for all vin R* with || v [< r. The
linear function T, is called the total derivative of f at c. We also write (5) in the form
fc+v)=f(c)+T.(v)+o(llvI) asv—-0.

The next theorem shows that if the total derivative exists, it is unique. It also relates the total
derivative to directional derivatives.

Theorem 3:

Assume f is differentiable at ¢ with total derivative T,. Then the directional derivative f'(c; u)
exists for every u in R™ and we have T.(u) = f'(c;u).  .............. (6)

Proof:

If v=0then f'(c;0) = 0 and T.(0) = 0. Therefore we can assume that v # 0. Take v = hu in
Taylor's formula (5), with h # 0, to get

f(c + hu) — f(c) = T.(hu)+Il hu |l Ec(v) = hT.(u) + |h| | u Il E.(v)

Now divide by h and let h — 0 to obtain (6).

Theorem 4:

If f is differentiable at c, then f is continuous at c.

Proof:

Let v — 0 in the Taylor formula (5).

The error term || v || E.(v) — 0; the linear term T, (v) also tends to 0 because

if v=wvu; + -+ v,u,, where uy, ..., u, are the unit coordinate vectors,

then by linearity we have T, (u) = v, Te(uy) + -+ + v, T (u,,),

and each term on the right tendsto 0O as v — 0.
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Note:

The total derivative T, is also written as f’(c) to resemble the notation used in the one-dimensional
theory. With this notation, the Taylor formula (5) takes the form

f(c+v)=f0) +f'()W+IVIE(v) .ot (7)

where E.(v) = 0 as v = 0. However, it should be realized that f'(c) is a linear function, not a
number. It is defined everywhere on R™; the vector f'(c)(v) is the value of f'(c) at q.

Example.

If f is itself a linear function, then f(c + v) = f(c) + f(v), so the derivative f' 'c) exists for every c

and equals f. In other words, the total derivative of a linear function is the function itself.

4.5 The Total Derivative Expressed in terms of Partial Derivatives:

The next theorem shows that the vector f'(c)(v) is a linear combination of the partial derivatives
of f.

Theorem 5:

Let f;S — R™ be differentiable at an interior point c of S, where S € R™. If v=vn; + -+

v,Nn,,, Where ug, ..., u, are the unit coordinate vectors in R™, then

n

PO = ) v

k=1
In particular, if f is real-valued (m = 1) we have f'(c)(v) =Vf(c) v, .......... (8)
the dot product of v with the vector Vf(c) = (D;f(c), ..., Dof (c)).
Proof:

We use the linearity of f'(c) to write

n

FEOM =) FOE) = ) vl @)
k=1

k=1
n n
= Z vef'(cuy) = z v D f(c)
k=1 k=1

Note:
The vector Vf(c) in (8) is called the gradient vector of f at c. It is defined at each point where the

partials D, f, ..., D, f exist. The Taylor formula for real-valued f now takes the form
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Fle4v) = F(©) +VF© v o(lvI) asv — 0.

4.6 An Application to Complex-Valued Functions:
Let f = u + iv be a complex-valued function of a complex variable. A necessary condition for f
to have a derivative at a point c is that the four partials D,u, D,u, D;v, D,v exist at ¢ and satisfy
the Cauchy-Riemann equations:
Dyu(c) = D,b(c), Dyv(c) = —D,u(c).
Also, an example showed that the equations by themselves are not sufficient for existence of f'(c).
The next theorem shows that the Cauchy-Riemann equations, along with differentiability of u and
v, imply existence of f'(c).
Theorem 6:
Let u and v be two real-valued functions defined on a subset S of the complex plane. Assume also
that u and v are differentiable at an interior point ¢ of S and that the partial derivatives satisfy the
Cauchy-Riemann equations at c. Then the function f = u + iv has a derivative at c. Moreover,
f'(c) = Dyu(c) + iD;v(c).
Proof:
We have f(z) — f(c) = u(z) —u(c) + i{v(z) — v(c)} for each z in S. Since each of u and v is
differentiable at c, for z sufficiently near to ¢ we have
u@)—ule)=vVu(c)-(z=c)+o(llz—=cl)
v(z)—v(c)=Vv(c)-(z—=c)+o(lz—=c ).
Here we use vector notation and consider complex numbers as vectors in R?. We then have
f@) = f(c) ={Vu(c) + iVv(c)}- (z—c) +o(l z—c )
Writing z = x + iy and ¢ = a + ib, we find

{Vu(c) +iVv(c)} - (z— )

= Dyu(c)(x — a) + Dyu(c)(y — b) + i{Dyv(c)(x — a) + D,v(c)(y — b)}

= Dyu(c){(x —a) +i(y — b)} + iD,v(c){(x — a) +i(y — b)}
because of the Cauchy-Riemann equations. Hence
f(2) = f(c) = {Dyu(c) + iD,v(c)}(z —c) + o(ll z—c II).
Dividing by z — ¢ and letting z — ¢ we see that f'(c) exists and is equal to
Dyu(c) + iDyv(c).
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4.7. The Matrix of a Linear Function:

In this section we digress briefly to record some elementary facts from linear algebra that are useful
in certain calculations with derivatives.

Let T: R™ — R™ be a linear function. (In our applications, T will be the total derivative of a function
f.) We will show that T determines an m X n matrix of scalars (see (9) below) which is obtained
as follows:

Let a,, ..., a,, denote the unit coordinate vectors in R™. If x € R™ we have x = x;u; + - + x,,u,

so, by linearity,

n

() = ) T

k=1
Therefore T is completely determined by its action on the coordinate vectors uy, ..., u,,.
Now let e, ..., e, denote the unit coordinate vectors in R™. Since T (u,) € R™, we can write T(uy,)

as a linear combination of ey, ..., e,,, say

m

T(uy) = z Lik€i-

i=1
The scalars t, ..., t,,; are the coordinates of T(u,). We display these scalars vertically as follows:
1k
Lok
tmk

This array is called a column vector. We form the column vector for each of T(u,), ..., T(u,) and

t tiz 0 lin
. . . tr Ttz 0 lpn

place them side by side to obtain the rectangular array | : A IR 9)
tm1 tmz  tmn

This is called the matrix of T and is denoted by m(T). It consists of m rows and n columns. The
numbers going down the k th column are the components of T'(u, ). We also use the notation

m(T) = [ty ]i¥2, or m(T) = (ty) to denote the matrix in (9).
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Now let T: R®™ — R™ and S: R™ — RP be two iﬂinezao;gnfunctions, with the domain of S containing the
range of T. Then we can form the composition S - T defined by

(SoT)(x) = S[T(x)] for all x in R*.

The composition S o T is also linear and it maps R™ into RP.

Let us calculate the matrix m(S o T). Denote the unit coordinate vectors in R",R™, and RP,
respectively, by

Uq, .o, Uy, €1, ..., 8y, and wy, ey Wp.

Suppose that S and T have matrices (s;;) and (¢;;), respectively. This means that

and S(ex) = X2, syw; fork=1.2,..,m

Then T(uj) = Yy teje forj=12,..,n

so)(uy) = S[T(w)] = Z tS(er) = Z ,qz SaWi

k=
p m
=21 (3 o
i=1 k=1

So m(S T) - [Z =1 Sik kj]l] 1

In other words, m(SeT) is a pxn matrix whose entry in the i th row and j th
column is Y3ty Sity;

the dot product of the i th row of m(S) with the j th column of m(T). This matrix is also called
the product m(S)m(T). Thus, m(S e T) = m(S)m(T).

4.8 The Jacobian Matrix:

Next we show how matrices arise in connection with total derivatives.

Let f be a function with values in R™ which is differentiable at a point c in R™, and let T = f'(c)
be the total derivative of f at c. To find the matrix of T we consider its action on the unit coordinate
vectors uy, ..., u,. By Theorem 3 we have

T(uy) = f'(c; ug) = Dif(0).

To express this as a linear combination of the unit coordinate vectors e, ..., e,, of R™ we write
f= (f,, ..., f) S0 that D f = (Difi, ..., Difin), and hence
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T(u) = Def(@) = ) DifiC)e

Therefore the matrix of T is m(T) = (D, f;(c)). This is called the Jacobian matrix of f at c and is
Difi(c) Dyfi(c) -+ Dnfi(c)

denoted by Df(c). That is, Df(c) = lef(c) DZf?(C) an:z(C)

Difm(c) Dafim(c) -+ Dpfin(c)
The entry in the i th row and k th column is Dy f; (c). Thus, to get the catries in the k th column,
differentiate the components of f with respect to the k th coordinate vector. The Jacobian matrix
Df(c) is defined at each point c in R™ where all the partial derivatives D, f; (c) exist.
The k th row of the Jacobian matrix (10) is a vector in R™ called the gradient rector of f;,, denoted
by Vfi.(c). Thatis, Vfi.(c) = (D1fi (C), -, Dpfic(€))
In the special case when f is real-valued (m = 1), the Jacobian matrix consists of only one row.
In this case Df (c) = Vf(c), and Equation (8) of Theorm 12.5 shows that the directional derivative
f'(c; v) is the dot product of the gradient vector V£ (c) with the direction v.
For a vector-valued function f = (fy, ..., fin)
we have f'(c)(v) = f'(v) = X1ty fr(oVer = Xy (VA - viler.  oooeen. (11)
so the vector f'(c)(v) has components (Vf;(¢) - v, ..., Vi, (c) - V)
Thus, the components of f'(c)(v) are obtained by taking the dot product of the successive rows of
the Jacobian matrix with the vector v. If we regard f'(c)(v) as an m X 1 matrix, or column vector,
then f'(c)(v) is equal to the matrix product Df(c)v, where Df(c) is the m x n Jacobian matrix and
v is regarded as an n X 1 matrix, or column vector.
Note:
Equation (11), used in conjunction with the triangle inequality and the Cauchy-Schwarz inequality,
gives us [If" ()Wl = lIXk1 {Vfi(©) - vierll < Xty [V (©) - vl <N v I XRL, 1Vf (Ol
Therefore we have [If'(c)(WI<M v, .......... (12)
where M = Y7, IVfi. (©)ll. This inequality will be used in the proof of the chain rule. It also shows
that f'(c)(v) » 0asv — 0.
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4.9 The Chain Rule:
Let f and g be functions such that the composition h = f o g is defined in a neighborhood of a
point a. The chain rule tells us how to compute the total derivative of h in terms of total derivatives
of f and of g.
Theorem 12.7:
Assume that g is differentiable at a, with total derivative g’'(a). Let b = g(a) and assume that I is
differentiable at b, with total derivative 1'(b). Then the composite function h =fog is
differentiable at a, and the total derivative h'(a) is given by h'(a) = f’(b) o g’(a), the composition
of the linear functions f’(b) and g'(a).
Proof:
We consider the difference h(a + y) — h(a) for small || y Il, and show that we have a first-order
Tayior formula. We have h(a +y) — h(a) = f[g(a + y)] — f[g(a)] = f(b + v) — f(b), ...... (13)
where b = g(a) and v = g(a +y) — b. The Taylor formula for g(a + y) implies
v=g'(@)+Ily ll Es(y), where Eq(y) > 0asy — 0.

The Taylor formula for (b + v) implies

f(b+v)—f(b)=f'(b)w)+lvl E,(v), where E,(v) = 0asv — 0. (15)
Using equation (14) in (15) we find
f(b + v) — f(b) = £'(B)[g' @] + £y Il Ea(»)]+1 v Il Ey(V)

vl

where E(0) = 0 and E(y) = f'(b)[E.(y)] + mEb(V) ify+0. ... (17)

To complete the proof we need to show that E(y) - 0 asy — 0.

The first term on the right of (17) tends to 0 as y — 0 because E, (y) — 0. In the second term, the
factor E,(v) — 0 because v — 0 as y = 0. Now we show that the quotient || v Il /Il y Il remains
bounded as y — 0. Using (14) and (12) to estimate the numerator we find

v lg @MI+Iy HE.MI<Il'y I {M + IEs()II},

where M = Y7, [IVgr (a)ll. Hence

Wy 1E, )l
yl= aly

so [l v II/Il y Il remains bounded as y — 0. Using (13) and (16) we obtain the Taylor formula
h(a+y) —h(a) =f'(b)[g' @I+l y I E),
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where E(y) = 0 asy — 0. This proves that h is differentiable at and that its total derivative at a is

the composition f'(b) o g’(a).

4.10 Matrix form of the Chain Rule:

The chain rule states that h’(a) = f'(b) e g’'(a)  ............ (18)

where h=fog and b =g(a). Since the matrix of a composition is the product of the
corresponding matrices, (18) implies the following relation for Jacobian matrices:

Dh(a) = Df(b)Dg(z).  «eeeen...... (19)

This is called the matrix form of the chain rule. It can also be written as a set of scalar equations
by expressing each matrix in terms of its entries.

Specifically, suppose that a € RP,b = g(a) € R", and f(b) € R™. Then h(a) € R™ and we can
write g = (g, ... gn), £ = (fi, s fin), h = (hy, ..., hyp).

Then Dh(a) is an m X p matrix, Df(b) is an m X n matrix, and Dg(a) isann X p

matrix, given by Dh(a) = [Djhi(a)]:;'zl, Df(b) = [Dyf;(b)I72,, Dg(a) = [ngk(a)]:f:l.
The matrix equation (19) is equivalent to the mp scalar equations

Djh;i(a) = Y k-1 Difr(b)Djgx(a), fori=1,2,..,mandj = 1.2,..,p.

These equations express the partial derivatives of the components of h in terms of the partial
derivatives of the components of f and g.

The equation in (20) can be put in a form that is easier to remember. Write y = f(x) and x = g(t).

ay; ay; 8
Theny = f[g(t)] = h(t), and (20) becomes a—i’} =yn_. azkaitf ......... (21)
Where 2i = p.p,, i p d Ze—p

ere 5 = Dihy, o = kfi an o, ~ Didk

Examples. Suppose m = 1. Then both f and h = f o g are real-valued and there are p equations

in (20), one for each of the partial derivatives of h :

Dih(@) = ) Dif (D)Dsgie(@, j = 12,1
k=1

The right member is the dot product of the two vectors Vf(b) and D;g(a). In this case Equation
(21) takes the form
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n
0 dy 0x
%2 a—ya—tk,j=1,2,...,p.
= R

In particular, if p = 1 we get only one equation,

h'(a) = Z Drf (b)gi(a) = V£ (b) - Dg(a)
k=1

where the Jacobian matrix Dg(a) is a column vector.

The chain rule can be used to give a simple proof of the following theorem for differentiating an
integral with respect to a parameter which appears both in the integrand and in the limits of
integration.

Theorem 12.8:

Let f and D, f be contimuous on a rectangle [a, b] X [c, d]. Let p and q be differentiable on [c, d],
where p(y) € [a, b] and q(y) € [a, b] for each y in [c, d]. Define F by the equation

Q)
Fo) = | feuydx, ity e el
r(¥)
Then F'(y) exists for each y in (c,d) and is given by
)
F'(y) = f( ) D,f (x;¥)dx + f(@(),y)q' ) — fF(e(), y)p' ().
ry

Proof:
Let G(xy, Xy, X3) = fxxlzf(t, x3)dt whenever x; and x, are in [a, b] and x5 € [c,d]. Then F is the

composite function given by F(y) = G(p(y),q(y),y). The chain rule implies

F'(y) =D:G(p(), q(y),¥)p' () + D.G(0(¥), q(¥),¥)q'¥) + D:G(0 (), q(¥),y)-
By Theorem 7.32, we have D;G (x4, x5, x3) = —f (xq,x3) and D,G(xy, x5, x3) = f(x5,x3). By

X2
D3G(x1,xZ,X3) = f sz(t,x3)dt
X3

Using these results in the formula for F’(y) we obtain the theorem.
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=)
4.11 The Mean-Value Theorem for Differentiable Functions

The Mean-Value Theorem for functions from R* to R? states that

fO)—fX)=f @Dy —x), .vverennnn (22)

where z lies between x and y. This equation is false, in general, for vector-valued functions from
R* to R™, when m > 1. (See Exercise 12.19.) However, we will show that a correct equation is
obtained by taking the dot product of each member of (22) with any vector in R™, provided z is
suitably chosen. This gives a useful generalization of the Mean-Value Theorem for vector-valued
functions.

In the statement of the theorem we use the notation L(x, y) to denote the line segment joining two
points x and y in R™. That is,

Lix,y)={tx+(1—-t)y:0 <t <1}
Theorem 9 (Mean-Value Theorem.):

Let S be an open subset of R™ and assume that f: S — R™ is differentiable at each point of S. Let
x and y be two points in S such that L(x,y) € S. Then for every vector a in R™ there is a point z
in L(x,y) suchthata - {f(y) —fx)} =a - {f'@(y—x)} ..cccoern..n. (23)

Proof:

Letu =y — x. Since S isopenand L(x,y) € S, thereisa d > 0 such that x 4+ tu € S for all real ¢
in the interval (=8,1 4+ §). Let a be a fixed vector in R™ and let F be the real-valued function
defined on (=48, 1 + &) by the equation
F(t) =a-f(x+ tu).

Then F is differentiable on (=48, 1 + §) and its derivative is given by

F'(t) =a-f'(x+ tu;u) =a- {f'(x+ tu)(u)}

By the usual Mean-Value Theorem we have

Now

F(1) —F(0)=F'(0), where 0 <6 < 1.

F'(0) =a-{f'(x + o) (W} =a - {f' @)y - %)},

wherez=x+ 6 u € L(x,y). But F(1) — F(0) = a- {f(y) — f(x)}, so we obtain (23). Of course,

the point z depends on F, and hence on a.
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Note:
If S is convex, then L(x,y) € S for all x,y in S so (23) holds for all xand y in S.

Examples:

1. If fisreal-valued (m = 1) we can take a = I in (23) to obtain
fO-fRO=f@DG-x=Vf(2) - G—x). ... (24)

2. If f is vector-valued and if a is a unit vector in R™, || a™ = 1, Eq. (23) and the Cauchy
Schwarz inequality give us Il f(y) — f(x) IS lif'(2)(y — x)Ii. Using (12) we obtain the
inequality I f() —f() ISM Iy —xIl, where M =Y, | Vfi.(2) Il. Note that M
depends on z and hence on x and y.

3. If 5 is convex and if all the partial derivatives D, f}, are bounded on S, then there is a
constant A > 0 such that |l f(y) —f(x) IS Ally—x|l. In other words, f satisfies a
Lipschitz condition on S.

The Mean-Value Theorem gives a simple proof of the following result concerning functions with
zero total derivative.

Theorem 10:

Let S be an open connected subset of R™, and let f: S — R™ be differentiable at each point of S. If
f'(c) = 0 for each c in S, then f is constant on S.

Proof:

Since S is open and connected, it is polygonally connected. Therefore, every pair of points x and
y in S can be joined by a polygonal arc lying in S. Denote the vertices of this arc by p;, ..., p;,
where p; = x and Pr = y. Since each segment L(p;;,,p;) € S, the Mean-Value Theorem shows
that a - {f(p;+1) — f(p))} = 0,

for every vector a. Adding these equations for i = 1,2, ..., — 1, we find a - {f(y) — f(x)} = 0,
for every a. Taking a = f(y) — f(x) we find f(x) = f(y), so f is constant on S.
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4.12. A Sufficient Condition for Differentiablllty:w
Theorem 11:

Assume that one of the partial derivatives D,f, ..., D, f exists at c and that the remaining n — 1
partial derivatives exist in some n-ball B(c) and are continuous at c. Then f is differentiable at c.
Proof:

First we note that a vector-valued function f = (f;, ..., f;,,) is differentiable at c if, and only if, each
component f; is differentiable at c. (The proof of this is an easy exercise.) Therefore, it suffices to
prove the theorem when f is real-valued.

For the proof we suppose that D, f (c) exists and that the continuous partials are D,f, ..., D, f.
The only candidate for ' (c) is the gradient vector Vf(c). We will prove that
flc+v)—f(c)=Vf(c)-v+o(llvi) asv—-0,

and this will prove the theorem. The idea is to express the difference f(c + v) — f(c) as a sum of
n terms, where the k th term is an approximation to D, f (c)v.

For this purpose we write v = Ay, where || y lI= 1 and 4 =|| v |l. We keep 4 small enough so that
c + y lies in the ball B(c) in which the partial derivatives D,f, ..., D, f exist. Expressing y in terms
of its components we have y = y;b; + - + y,u,,

where uy is the k th unit coordinate vector. Now we write the difference f(c+v) — f(c) as a
telescoping sum, f(c+v) — f(c) = f(c+ Ay) — f(c) = Y- {f (c +ivy) — f(c+ ivie_1)},
Where Vo = 0, Vi = Y1iUq, V2 = Y1Uq + YoUuy, ...,V = Y1Uq + .-+ VnlUn.-

The first term in the sum is f(c + Ay,w;) — f(c). Since the two points ¢ and ¢ + Ay;u; differ
only in their first component, and since D, f (c) exists, we can write

flc+Ay1a1) — f(c) = Ay, D1 f(©) + Ay, E1 (D),

where E; (1) - 0as 1 — 0.

For k > 2, the k th term in the sum is

flc+ Avi_y + Ayeug) — fc+ Av_y) = f(bg + Ayieur) — f(by),

where b, = ¢ + Av,_;. The two points b, and by, + Ay, uy differ only in their k th component,
and we can apply the one-dimensional Mean-Value Theorem for
derivatives to write f (b, + Ay, wy) — f(b) = Ay Dif (@), .ovenen.. (26)
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where a lies on the line segment joining by, to by, + Ay, n,. Note that b, — c and hence n;, = ¢

as A — 0. Since each D, f is continuous at c for k > 2 we can write
Dyf(ay) = Dy f(c) + E;(1),. where E; (1) » 0as 1 - 0.
Using this in (26) we find that (25) becomes

FeAN=F©=2) Df©i+2) ki)
k=1 k=1

=Vf(c)- v+l vl E(R),
Where E(1) = X}-1 YkEx(A) = 0as v -0
Note:
Continuity of at least n — 1 of the partials D, f, ..., D,,f at c, although sufficient, is by no means

necessary for differentiability of f at c.

4.13. A Sufficient Condition for Equality of Mixed Partial Derivatives:
The partial derivatives D, f, ..., D,,f of a function from R™ to R™ are themselves functions from
R™ to R™ and they, in turn, can have partial derivatives. These are called second-order partial
derivatives. We use the notation introduced in Chapter 5 for real-valued functions:

0°f
0x, 0xy,

Dy f = D, (D,f) =

Higher-order partial derivatives are similarly defined.

2 _ a2 2 2 i
The example f (x,) = {o O~ /7Y ) = 00

shows that D, , f (x,y) is not necessarily the same as D, ; f (x, y). In fact, in this example we have

y(x* +4x?y? —y*)
D ,Y) =
1f(x y) (xz + yz)z

and D,£(0,0) = 0. Hence, D, f(0,y) = —y for all y and therefore
D,,1f(0,y) = -1, D,,f(0,0) = —1.

On the other hand, we have D, f (x,y) =

, i (x,y) # (0,0)

x(x*—ax2y2-y*)
(x21y2)2

, if (x,y) # (0,0),
and D,f(0,0) = 0, so that D,f(x,0) = x for all x. Therefore, D, ,f(x,0) =1, D;,£(0,0) =1,
and we see that D, ;£(0,0) # D, ,£(0,0).
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The next theorem gives us a criterion for determining when the two mixed partials D, ,f and D, ; f

will be equal.

Theorem 12:

If both partial derivatives D;f and D,f exist in an n-ball B(c; §) and if both are differentiable at c,
then D, ¢f (c) = Dy f(C).  ovvvenennnnnnn (27)

Proof.

Iff = (fy, ..., fm), then Dif = (Dy fi, .., D fin)- Therefore it suffices to prove the theorem for real-
valued f. Also, since only two components are involved in (27), it suffices to consider the case
n = 2. For simplicity, we assume that c = (0,0). We shall prove that

D, ,£(0,0) = D,,£(0,0).

Choose h # 0 so that the square with vertices (0,0), (h,0), (h,h), and (0, k) lies in the 2 -ball
B(0; 6). Consider the quantity

A(h) = f(h,h) = f(h,0) = £(0,h) + £(0,0).

We will show that A(h)/h? tends to both D, , £(0,0) and D;,£(0,0) as h — 0.

Let G(x) = f(x,h) — f(x,0) and note that A(h) = G(h) — G(0). .......... (28)

By the one-dimensional Mean-Value Theorem we have

G(h) — G(0) = hG'(xy) = h{Dyf(xy, h) — Do f (1,00}, oovvvin. (29)

where x; lies between 0 and h. Since D, f is differentiable at (0,0), we have the first-order Taylor
formulas

D;f(x1,h) = D1£(0,0) + Dy ,£(0,0)x; + Dy 1f(0,00h + (x? + h2)Y/2E, (h),

And D;f(x1,0) = D;£(0,0) + Dy 1£(0,0)x; + |x1|E;(h),

where E; (h) and E,(h) = 0 as h — 0. Using these in (29) and (28) we find

A(h) = Dy, (0,0)h* + E(h)

where E(h) = h(x? + h?)Y/2E,(h) + h|x,|E,(h). Since |x;| < |h|, we have

0 < |E(h)| < V2h?|EL(h)| + h?|E,(R)],

A(h
) = D,,f(0,0)

Applying the same procedure to the function H(y) = f(h,y) — (0, y) in place of G(x), we find

that lim A’g’;) = D,,f(0,0)

So lim
h—-0
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As a consequence of Theorems 11 and 12 we have:

Theorem 13:

If both partial derivatives D.f and D,f exist in an n-ball B(c) and if both D, ,f and D, ,.f are
continuous at c, then D, 5 f (c) = Dy f (¢)

Note:

We mention (without proof) another result which states that if Dy, D, f and Dy, ,.f are continuous in
an n-ball B(c), then D, f (c) exists and equals Dy ff (c).

If f is a real-valued function of two variables, there are four second-order partial derivatives to
consider; namely, Dy 1 f,D;,f,D,+f, and D, ,f. We have just shown that only three of these are
distinct if f is suitably restricted.

The number of partial derivatives of order k which can be formed is 2%. If all these derivatives are
continuous in a neighborhood of the point (x, y), then certain of the mixed partials will be equal.
Each mixed partial is of the form D,. , ..., 7, f, where each r; is either 1 or 2 . If we have two such

mixed partials, Dy, ..., 7« f and D, , ..., pp, f, Where the k-tuple (ry, ..., 7y) is a permutation of the

Py
k-tuple (p4, ..., p), then the two partials will be equal at (x, y) if all 2% partials are continuous in
a neighborhood of (x, y). This statement can be easily proved by mathematical induction, using
Theorem 13 (which is the case k = 2 ). We omit the proof for general k. From this it follows that
among the 2% partial derivatives of order k, there are only k + 1 distinct partials in general,
namely, those of the form D,. , ..., 7 f, where the k-tuple (r, ...,7) assumes the following k + 1
forms:

(2,2,..,2), (1,2,2,..,2), (1,1,2,...,2), ... (1,1,...,1,2), (1, ...,1).

Similar statements hold, of course, for functions of n variables. In this case, there are n* partial
derivatives of, order k that can be formed. Continuity of all these partials at a point x implies that
D, ..., f(x) is unchanged when the indices 7, ..., 7, are permuted. Each r; is now a positive

integer < n.
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4.14. Taylor's Formula for Functions from R* To R':

Taylor's formula can be extended to real-valued functions f defined on subsets of R™. In order to
state the general theorem in a form which resembles the one-dimensional case, we introduce
special symbols £ (x;t), f"' (x;t), ..., f ™ (x; t),for certain sums that arise in Taylor's formula.
These play the role of higher order directional derivatives, and they are defined as follows:

If x is a point in R* where all second-order partial derivatives of f exist, and if t = (¢, ..., t,) is
an arbitrary point in R*, we write

We also define £ (x;t) = X7=y X7y Di;f (Xt;t,

f'xo = Zn: Zn: Dj i f (X)tit;t;

n
i=1 j=1 k=1

if all third-order partial derivatives exist at x. The symbol £ ™ (x; t) is similarly defined if all mth-
order partials exist.

These sums are analogous to the formula f'(x;t) = X7, Dpf(X)t;

for the directional derivative of a function which is differentiable at x.

Theorem 14 (Taylor's formula):

Assume that f and all its partial derivatives of order < m are differentiable at each point of an

openset S in R™. Ifa and b are two points of S such that L(a, b) < S, then there is a point z on the
line segment L(a, b) such that f(b) — f(a) = X! %f(") (a;b—a) + %f(m) (z;b — a).

Proof:

Since S is open, there isa § > 0 such thata + t(b — a) € S for all real t in the interval -6 < t <
1+ 4. Define g on (=38, 1 + &) by the equation g(t) = f[a+ t(b—a)].

Then f(b) — f(a) = g(1) — g(0). We will prove the theorem by applying the one-dimensional
Taylor formula to g, writing

g —g(0) =3t —g®(©0) +—g™(6), where0 <O <1. ... (30)

Now g is a composite function given by g(t) = f[p(t)], where p(t) = a+ t(b—a). The k th
component of p has derivative p,(t) =b, —a,. Applying the chain rule,

we see that g’ (t) exists in the interval (=&, 1 + &) and is given by the formula
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(t)—Z DfIPO1(b — ) = f'(P(8);b — 2).

Again applying the chain rule, we obtain

g"(®) = Z Z Dy fp@)](b; — a)(b; — a) = " (p(e);b — )

i=1 j=

Similarly, we find that g™ (t) = £ (p(t); b — a). When these are used in (30) we obtain the
theorem, since the point z = a+ 8(b — a) € L(a,b).
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Unit vV

Implicit Functions and Extremum Problems: Functions with non-zero Jacobian determinants — The
inverse function theorem-The Implicit function theorem -Extrema of real valued functions of
severable variables -Extremum problems with side conditions.

Chapter 5: Sections 5.1- 5.7

Implicit Functions and Extremum Problems

5.1 Introduction:

This chapter consists of two principal parts. The first part discusses an important theorem of
analysis called the implicit function theorem; the second part treats extremum problems. The
implicit function theorem in its simplest form deals with an equation of the form

flx,t)=0. ... Q)

The problem is to decide whether this equation determines x as a function of t. If so, we have

x = g(t), for some function g. We say that g is defined "implicitly” by (1).

The problem assumes a more general form when we have a system of several equations involving
several variables and we ask whether we can solve these equations for some of the variables in
terms of the remaining variables. This is the same type of problem as above, except that x and t
are replaced by vectors, and f and g are replaced by vector-valued functions. Under rather general
conditions, a solution always exists. The implicit function theorem gives a description of these
conditions and some conclusions about the solution.

An important special case is the familiar problem in algebra of solving n linear equations of the
form 7., ajx; =t (1=12,..n) ... (2)

where the a;; and ¢; are considered as given numbers and x;, ..., x,, represent unknowns. In tinear
algebra it is shown that such a system has a unique solution if, and only if, the determinant of the
coefficient matrix A = [a;;] is nonzero.

Note:

The determinant of a square matrix A = [a;;] is denoted by det A or det [a;;]. If det [a;;] # 0, the
solution of (2) can be obtained by Cramer's rule which expresses each x; as a quotient of two

determinants, say x;, = A, /D, where D = det[aij] and A, is the determinant of the matrix
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obtained by replacing the k th column of [aijj by 11 ..., ty. In particular, if each t; = 0, then each
x, = 0. Next we show that the system (2) can be written in the form (1). Each equation in (2) has
the form f;(x,t) = 0 where x = (xq, ..., Xp), t = (t1, .., tp), and f(x, 1) = Y7o a;x; — t;.
Therefore the system in (2) can be expressed as one vector equation f(x,t) = 0, where f =
(f1, -, fn)- 1T D;f; denotes the partial derivative of f; with respect to the j th coordinate x;, then
D;fi(x,t) = a;j. Thus the coefficient matrix A = [ai]-] in (2) is a Jacobian matrix. Linear algebra
tells us that (2) has a unique solution if the determinant of this Jacobian matrix is nonzero.

In the general implicit function theorem, the non -vanishing of the determinant of a Jacobian matrix
also plays a role. This comes about by approximating f by a linear function. The equation

f(x,t) = 0 gets replaced by a system of linear equations whose coefficient matrix is the Jacobian
matrix of f.

Notation:

If £ = (fy, ..., fu) and x = (x4, ..., ), the Jacobian matrix D(x) = [D;f(x)] is an n x n matrix.

Its determinant is called a Jacobian determinant and is denoted by J¢(x). Thus,
6(f1:---:fn)

is also used to denote the Jacobian
0(X1,0Xn)

Jo(x) = detDf(x) = det[D;f;(x)]. The notation

determinant J,(x). The next theorem relates the Jacobian determinant of a complex-valued
function with its derivative.

Theorem 1:

If f =u+iv is a complex-valued function with a derivative at a point z in C, then J¢(z) =
If' @2

Proof:

We have f'(z) = Dyu + iDyv, s0 |f'(2)|* = (D;uw)? + (D,v)?. Also,

D D
Js(2) = det Di:j Dz:j] = DyuD,v — D;vD,u = (D;u)? + (D,v)?,

by the Cauchy-Riemann equations.
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5.2 Functions with Nonzero Jacobian Determinant:

This section gives some properties of functions with nonzero Jacobian determinant at certain

points. These results will be used later in the proof of the implicit function theorem.

iB)
f f(a)
——
|
Figure 5.1

Theorem 2:

Let B = B(a;r) be an n-ball in R™, let 0B denote its boundary, 0B = {x:ll x —a ll=1},

and let B = B U dB denote its closure. Let f = (fi, ..., f;,) be continuous on B, and assume that all
the partial derivatives D;f;(x) exist if x € B. Assume further that f(x) # f(a) if x € 0B and that
the Jacobian determinant J.(x) # 0 for each x in B. Then f(B), the image of B under f, contains
an n-ball with center at f(a).

Proof:

Define a real-valued function g on dB as follows: g(x) =Il f(x) —f(a) I ifx € dB.

Then g(x) > 0 for each x in dB because f(x) # f(a) if x € dB. Also, g is continuous on dB since
f is continuous on B. Since 0B is compact, g takes on its absolute minimum (call it m ) somewhere

on dB. Note that m > 0 since g is positive on dB. Let T denote the n-ball

T = B (f(a); %)

We will prove that T < f(B) and this will prove the theorem. (See Fig. 5.1.)

To do this we show that y € T implies y € f(B). Choose a point y in T, keep y fixed, and define
a new real-valued function h on B as follows:

h(x) =l f(x) —y Il ifx € B.

Then h is continuous on the compact set B and hence attains its absolute minimum on B. We will

show that h attains its minimum somewhere in the open n-ball B. At the center we have h(a) =l|
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f(a) —y llI<K m/2 since y € T. Hence the minimum value of h in B must also be < m/2. But at
each point x on the boundary d B we have
h(x) =Il f(x) — y lI=Il f(x) — f(a) — (y — f(a)) I

21£(x) — £(a) | =1 f(a) —y I> g() — 5 = =,
so the minimum of h cannot occur on the boundary dB. Hence there is an interior point c in B at
which h attains its minimum. At this point the square of h also has

a minimum, Since

n

P20 =) =y 1= ) [£09 = w17,

r=1
and since each partial derivative D, (h?) must be zero at ¢, we must have

n

2 [£.(0) = 3 IDof(c) = 0 fork =12, ..,7.

r=1
But this is a system of linear equations whose determinant J.(c) is not zero, since c € B. Therefore
fr(c) =y, foreach r,or f(c) =y. Thatis, y € f(B). Hencc T < f(B) and the proof is complete.
A function f:S - T from one metric space (S, ds) to another (T, d) is called an open mapping
if, for every open set A in S, the image f(A) isopeninT.

Theorem 3:

Let A be an open subset of R™ and assume that I: A — R™ is contimuous and has finite partial
derivatives D;f; on A. If fis one-to-one on A and if J,.(x) # 0 for each x in A, then f(A) is open.
Proof:

Ifb € f(A), then b = f(a) for some a in A. There is an n-ball B(a; r) € A on which f satisfies the
hypotheses of Theorem 13.2, so f(B) contains an n-ball with center at b. Therefore, b is an interior
point of f(A), so f(A) is open.

The next theorem shows that a function with continuous partial derivatives is locally one-to-one
near a point where the Jacobian determinant does not vanish.

Theorem 4:

Assume that f = (fi, ..., f,) has continuous partial derivatives D; f; on an open set S in R™, and that
the Jacobian determinant J.(a) # 0 for some point a in S. Then there is an n-ball B(a) on which

S is one-to-one.
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Proof:

Let Zy,...,Z, be n points in S and let Z = (Z;; ...; Z,)) denote that point in R™? whose first n
components are the components of Z;, whose next n components are the components of Z,, and
so on. Define a real-valued function h as follows:

h(Z) = det[D;f;(Z))].

This function is continuous at those points Z in R™ where h(Z) is defined because each D;f; is
continuous on S and a determinant is a polynomial in its n2 entries. Let Z be the special point in
R™* obtained by putting Z, = Z, = -+ = Z, = a

Then h(Z) =Ji(a) # 0 and hence, by continuity, there is some n-ball B(a) such that
det[D;f;(Z;)] # 0 if each Z; € B(a). We will prove that f is one-to-one on B (a).

Assume the contrary. That is, assume that f(x) = f(y) for some pair of points x # y in B(a).
Since B(a) is convex, the line segment L(x,y) € B(a) and we can apply the Mean-Value Theorem
to each component of f to write 0 = f;(y) — fi(x) = Vfi(Z)) - (y — x) fori =1,2,...,n,

where each Z; € L(x,y) and hence Z; € B(a). (The Mean-Value Theorem is applicable because f

is differentiable on S.) But this is a system of linear equations of the form

n
z (Vi — xi)ag = 0 with ay = Dy fi(Z;)
k=1

The determinant of this system is not zero, since Z; € B(a). Hence y, — x;, = 0 for each k, and
this contradicts the assumption that x # y. We have shown, therefore, that x # y implies f(x) #
f(y) and hence that f is one-to-one on B(a).

Note:

The reader should be cautioned that Theorem 13.4 is a local theorem and not a global theorem.
The non-vanishing of J;(a) guarantees that f is one-to-one on a neighborhood of a. It does not
follow that f is one-to-one on S, even when J,(x) # 0 for every x in S. The following example
illustrates this point. Let f be the complex-valued function defined by f(z) = e ifz€ C. If z =

x + iy we have

]f(Z) — |f’(Z)|2 — |eZ|2 — er.
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Thus J¢(z) # 0 for every z in C. However, f is not one-to-one on C because f(z;) = f(z,) for
every pair of points z; and z, which differ by 2mi.
The next theorem gives a global property of functions with nonzero Jacobian determinant.
Theorem 5:
Let A be an open subset of R™ and assume that f: A — R™ has continuous partial derivatives D; f;
on A. If J¢(x) # 0 for all x in A, then f is an open mapping.
Proof:
Let S be any open subset of A. If x € S there is an n-ball B (x) inwhich f is one-to-one (by Theorem
13.4). Therefore, by Theorem 13.3, the image f(B(x)) is open in R™. But we can write S =
Uyxes B(x). Applying f we find f(S) = U,esf(B(x)), so f(S) is open.
NOTE. If a function f = (f1, ..., f;,) has continuous partial derivatives on a set S, we say that f is
continuously differentiable on S, and we write f € C' on S.
Theorem 4 shows that a continuously differentiable function with a nonvanishing Jacobian at a
point a has a local inverse in a neighborhood of a. The next theorem gives some local

differentiability properties of this local inverse function.

5.3 The Inverse Function Theorem:

Theorem 6:

Assume f = (f;, ..., f,) € C' onanopenset S in R™, and let T = f(S). If the Jacobian determinant
J-(@) # 0 for some point a in S, then there are two open sets X € S and Y € T and a uniquely
determined function g such that

a)a € Xand f(a) €Y,

b) Y = f(X),

c) f is one-to-one on X,

d) g isdefinedonY, g(Y) = X, and g[f(x)] = x for every x in X,

e)gecC’'onY.

Proof:

The function ], is continuous on S and, since /,.(a) # 0, there is an n-ball B; (a) such that J, (x) #
0 for all x in B;(a). By Theorem 4, there is an n-ball B(a) < B;(a) on which f is one-to-one. Let

B be an n-ball with center at a and radius smaller than that of B(a). Then, by Theorem 2, f(B)
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contains an n-ball with center at (a). Denote this by Y and let X = f~1(Y) n B. Then X is open

since both f~1(Y) and B are open. (See Fig. 5.2.)

Figure 5.2

The set B (the closure of B ) is compact and f is one-to-one and continuous on B. there exists a
function g defined on f(B) such that g[f (x)] = x for all x in B. Moreover, g is continuous on
f(B).Since X € Band Y < f(B), this proves parts (), (b), (c) and (d). The uniqueness of g follows
from (d).

Next we prove (e). For this purpose, define a real-valued function h by the equation h(Z) =

det[Djfi(Zi)], where Z,, ...,Z,, are n points in S, and Z = (Z; ...; Z,,) is the corresponding point

in R™*. Then, arguing as in the proof of Theorem 13.4, there is an n-ball B, (a) such that h(Z) # 0
if each Z; € B,(a). We can now assume that, in the earlier part of the proof, the n-ball B (a) was
chosen so that B(a) € B,(a). Then B € B,(a) and h(Z) # 0 if each Z; € B.

To prove (e), write g = (g4, ..., g»). We will show that each g, € C' onY. To prove that D, gy
exists on Y, assume y € Y and consider the difference quotient [g, (y + tu,.) — g (y)]/t, where
u,. is the r th unit coordinate vector. (Since Y is open, y + tu, € Y if t is sufficiently small.) Let
x = g(y) and let x" = g(y + tu,.). Then both x and x" are in X and f(x') — f(x) = tl. Hence
filx") = fi(x)is0ifi # r,and is t if i = r. By the Mean-Value Theorem we have

A =10 _ g7, X =

where each Z; is on the line segment joining x and x’; hence Z; € B. The expression on the left is

fori=1,2,...,n,

1 or 0, according to whether i = r or i # r. This is a system of n linear equations in n unknowns

(xj — x;)/t and has a unigue solution, since
det[D;f.(Z,))] = h(Z) # 0.
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Solving for the k th unknown by Cramer'sﬂrulem,m we obtain an expression for [g,(y +z,) —
gk(y)]/t as a quotient of determinants. As x — 0, the point x — x, since g is continuous, and
hence each Z; — x, since Z; is on the segment joining x to x'. The determinant which appears in
the denominator has for its limit the number det [D; f; (x)] = Js(x), and this is nonzero, since x €

X. Therefore, the following limit exists:

I gy + tuy) — gk (y)
im

t—0 t

= Drgk (Y)

This establishes the existence of D,.g,(y) for each y in Y and each r = 1,2, ..., n. Moreover, this
limit is a quotient of two determinants involving the derivatives D;f;(x). Continuity of the D; f;
implies continuity of each partial D, g,. This completes the proof of (e).

Note:

The foregoing proof also provides a method for computing D,.g,(y). In practice, the derivatives
D,.g, can be obtained more easily (without recourse to a limiting process) by using the fact that, if
y = f(x), the product of the two Jacobian matrices Df(x) and Dg(y) is the identity matrix. When

this is written out in detail it gives the following system of n? equations:
n 1 -f . -
_ ifi=j
PRI LIAGES P
k=1
For each fixed i, we obtain n linear equations as j runs through the values 1,2, ...,n. These can
then be solved for the n unknowns, D;g;(y), ..., D,g(y), by Cramer's rule, or by some other

method.

5.4 The Implicit Function Theorem:

A point (x,, y,) such that F(x,, y,) = 0, under certain conditions there will be a neighborhood of
(x0, ¥0) such that in this neighborhood the relation defined by F(x, y) = 0 is also a function. The
conditions are that F and D,F be continuous in some neighborhood of (x,,y,) and that
D,F (xq,y,) # 0. In its more general form, the theorem treats, instead of one equation in two

variables, a system of n equations in n + k variables: f,.(xq, ..., xp; ty, ., tx) =0 (r = 1,2, ..., n).
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This system can be solved for xg, ..., x, |n terowrmns of ti,...,ty, provided that certain partial
derivatives are continuous and provided that the n x n Jacobian determinant a(fi, ..., f,)/
d(x4, ..., x,,) is not zero.

For brevity, we shall adopt the following notation in this theorem: Points in (n + k)-dimensional
space R™** will be written in the form (x; t),

where x = (x4, ...,x,) € R* and t = (¢, ..., t;) € R¥.

Theorem 7 (Implicit function theorem):

Let f = (f;, ..., f,,) be a vector-valued function defined on an open set S in R®** with values in
R™. Suppose f € C' on S. Let (xq;ty) be a point in S for which f(x,;t,) = 0 and for which the
n x n determinant det[ Dy f; (xo; to)] # 0. Then there exists a k-dimensional open set T, containing
to and one, and only one, vector-valued function g, defined on T, and having values in R*, such
that

a)g e C'onT,,

b) g(to) = o,

c) f(g(t); t) = 0 for every t in T,

Proof:

We shall apply the inverse function theorem to a certain vector-valued function F =
(Fy, ., Ey; Fpsqy oon, Fyx) defined on S and having values in R**%, The function F is defined as
follows: For1 <m < n, let £, (x;t) = fiu(x;t),and for | < m < k, let F,,.,,(X; t) = t,,,. We can
then write F = (f; 1), where f = (£, ..., f,) and where I is the identity function defined by I(t) = t
for each t in R¥. The Jacobian Jg(x;t) then has the same value as the n X n determinant
det[Djfi (x; t)] because the terms which appear in the last k rows and also in the last k columns of
Jr(x;t) form a k X k determinant with ones along the main diagonal and zeros elsewhere; the
intersection of the first n rows and n columns consists of the determinant det [Dj fi(x; t)], and
DiF, j(x;) =0 forl<i<n 1<j<k

Hence the Jacobian Jg(xq;ty) # 0. Also, F(xq; ty) = (0;t,). Therefore, by Theorem 6, there
exist open sets X and Y containing (x,; t,) and (0; t,), respectively, such that F is one-to-one on
X, and X = F~1(Y). Also, there exists

a local inverse function G, defined on Y and having values in X, such that G[F(x; t)] = (x; t)
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and suchthat G € C' onY.

Now G can be reduced to components as follows: G = (v; w) where v = (vy, ..., v,) is a vector-
valued function defined on Y with values in R™ and w = (wy, ..., wy,) is also defined on Y but has
values in R¥. We can now determine v and w explicitly. The equation G[F (x;t)] = (x;t), when
written in terms of the components v and w, gives us the two equations

v[F(x;t)] =x and w[F(x;t)] =t

But now, every point (x;t) in Y can be written uniquely in the form (x;t) = F(x’;t") for some
(x';t") in X, because F is one-to-one on X and the inverse image F~1(Y) contains X. Furthermore,
by the manner in which F was defined, when we write (x;t) = F(x';t’), we must have t’' = t.
Therefore, v(x;t) = v[F(x';t)] = x’ and w(x;t) = w[F(x';t)] =t

Hence the function G can be described as follows: Given a point (x; t) in Y, we have G(x;t) =
(x";t), where x’ is that point in R* such that (x; t) = F(x’; t). This statement implies that
Flv(x;t);t] = (x;t) forevery (x;t) inY.

Now we are ready to define the set T,, and the function g in the theorem.

Let T, = {t:t € R, (0;t) € Y}

and for each t in T, define g(t) = v(0;t). The set T, is open in R¥. Moreover, g € C’ on T, because
G € C' on'Y and the components of g are taken from the components of G. Also,

g(ty) = v(0;ty) = xq

because (0; t,) = F(x; ty). Finally, the equation F[v(x; t); t] = (x; t), which holds for every ( x; t)
in Y, yields (by considering the components in R? ) the equation f[v(x;t);t] = x. Taking x = 0,
we see that for every t in T,, we have f[g(t); t] = 0, and this completes the proof of statements (a),
(b), and (c). It remains to prove that there is only one such function g. But this follows at once
from the one-to-one character of f. If there were another function, say h, which satisfied (c), then
we would have f[g(t);t] = f[h(t);t], and this would imply (g(t);t) = (h(t);t), or g(t) =
h(t) for every t in T,.

5.5. Extrema of Real-Valued Functions of One Variable:
In the remainder of this chapter we shall consider real-valued functions f with a view toward
determining those points (if any) at which f has a local extremum, that is, either a local maximum

or a local minimum.
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We have already obtained one result in this connection for functions of one variable. In that

theorem we found that a necessary condition for a function f to have a local extremum at an
interior point c of an interval is that ' (c¢) = 0, provided that f’(c) exists. This condition, however,
is not sufficient, as we can see by taking f(x) = x3,c = 0. We now derive a sufficient condition.
Theorem 8:

For some integer n > 1, let f have a continuous nth derivative in the open interval (a, b). Suppose
also that for some interior point c in (a, b) we have

fl@=f"()=-=f"1()=0, but fM(c)*0

Then for n even, f has a local minimum at ¢ if f ™ (c) > 0, and a local maximum at ¢ if f™ (c) <
0. If n is odd, there is neither a local maximum nor a local minimum at c.

Proof:

Since fM™(c) # 0, there exists an interval B(c) such that for every x in B(c), the derivative

£ (x) will have the same sign as £ ™ (c). Now by Taylor's formula (Theorem 5.19), for every x

in B(c) we have £(x) — f(c) = 28D (x _ o)n where x, € B(c).

n!
If n is even, this equation implies f(x) = f(c) when f™(c) >0, and f(x) < f(c) when
f®(c) <0.1fnisoddand f™(c) > 0, then f(x) > f(c) when x > ¢, but f(x) < f(c) when
x < c, and there can be no extremum at c. A similar statement holds if n is odd and ™ (c) < 0.

This proves the theorem.

5.6 Extrema of Real-Valued Functions of Several Variables:

The condition is that each partial derivative D, f(a) must be zero at that point. We can also state
this in terms of directional derivatives by saying that f’(s; u) must be zero for every direction u.
The converse of this statement is not true, however. Consider the following example of a function
of two real variables: f(x,y) = (y —x?)(y — 2x?).

Here we have D, (0,0) = D,f(0,0) = 0. Now £(0,0) = 0, but the function assumes both positive
and negative values in every neighborhood of (0,0), so there is neither a local maximum nor a
local minimum at (0,0). (See Fig. 5.3.)

This example illustrates another interesting phenomenon. If we take a fixed straight line through

the origin and restrict the point (x, y) to move along this line toward (0,0), then the point will
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=
finally enter the region above the parabola y = 2x? (or below the parabola y = x? ) in which
f(x,y) becomes and stays positive for every (x,y) # (0,0). Therefore, along every such line, f
has a minimum at (0,0), but the origin is not a local minimum in any two-dimensional
neighborhood of (0,0).
y=2 -

Iz <0

fiz, g >0
in unshuded regions

Figure 5.3

Definition 9:

If f is differentiable at a and if Vf(a) = 0, the point a is called a stationary point of f. A stationary
point is called a saddle point if every n-ball B(a) contains points x such that f(x) > f(a) and
other points such that f(x) < f(a).

In therefore going example, the origin is a saddle point of the function.

To determine whether a function of n variables has a local maximum, a local minimum, or a saddle
point at a stationary point a, we must determine the algebraic sign of f(x) — f(a) for all x in a
neighborhood of a. As in the one-dimensional case, this is done with the help of Taylor's formula
(Chapter 4, Theorem 14). Take m = 2 and y = a + t in (chapter 4, theorem 14.) If the partial

derivatives of f are differentiable on an n-balt B(a) then

f@+O)—f@) =Vf@) t+5f" @z, .o (3)

where z lies on the line segment joining a and a + t, and

'@y = i i Dy ;f (2)tit

i=1 j=1

At a stationary point we have Vf(a) = 0 so equation (3) becomes
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f@+—f() = %f”(z; D).

Therefore, as a + t ranges over B(a), the algebraic sign of f(a + t) — f(a) is determined by that
of f"'(z;t). We can write (3) inthe form f(a+t) — f(a) = %f” @GO+ tNZE®), oe.n...... 4)
Where, The inequality Il t 12 E(t) = =" (zt) =2 f" (a; 1).

Z Z |Dijf (@) = Dy f @] I eI,

i=1 i=1

ItI* [E()]| <

N| =

shows that E(t) — 0 ast — 0 if the second-order partial derivatives of f are continuous at a. Since
Il t II2 E(¢) tends to zero faster than ||, ]I, it seems reasonable to expect that the algebraic sign of
f(a+t)— f(a) should be determined by that of f''(a;t). This is what is proved in the next
theorem.

Theorem 10 (Second-derivative test for extrema):

Assume that the second-order partial derivatives D; ;f exist in an n-ball B(a) and are continuous
at a, where a is a stationary point of f. Let Q(t) = %f” (a;t) = % =1 2i=1 Dijf @tt;

a) If Q(t) > 0 forall t # 0, f has a relative minimum at a.

b) If Q(t) < 0 forall t # 0, f has a relative maximum at a.

c) If Q(t) takes both positive and negative values, then f has a saddle point at a.

Proof:

The function Q is continuous at each point ¢t in R™. Let S = {¢t: || t l= 1} denote the boundary of
the n-ball B(0; 1). If Q(t) > 0 for all t # 0, then Q(t) is positive on S. Since S is compact, Q has
a minimum on S (call it m ), and m > 0. Now Q(ct) = c2Q(t) for every real c. Taking ¢ = 1/l
t |l where t # 0 we see that ct € S and hence c2Q(t) = m, so Q(t) =m |l t II*>. Using this in (4)
we find f(a+t)— f(@) = QM)+t I Et) =m Il tI* +Il t I* E(b).

Since E(t) = 0 as t — 0, there is a positive number r such that |E(t)| < %m whenever 0 <|| ¢t |l

< r.Forsuch t we have 0 <|| t I* |E(t)| < %m Il t 1%, so

1 1
f@+t) —f@ >mlltl?*— omlt 1= Smllt 12> 0.
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Therefore f has a relative minimum at a, which proves (a). To prove (b) we use a similar argument,

or simply apply part (a) to —f.
Finally, we prove (c). For each A > 0 we have, from (4),
fl@a+ ) —f(@) = Q) + A2 Il t I E(At) = 22{Q(t)+Il t II* E(At)}.
Suppose Q(t) # 0 for some t. Since E(y) — 0 asy — 0, there is a positive r such that
Il tl? E(At) < %|Q(t)| ifo<aA<r.
Therefore, for each such A the quantity A2{Q(t)+Il t II? E(At)} has the same sign as Q(t).
Therefore, if 0 < A < r, the difference f(a + At) — f(a) has the same sign as Q(t). Hence, if Q(t)
takes both positive and negative values, it follows that f has a saddle point at a.
Note:
A real-valued function Q defined on R* by an equation of the type

n n
Qx) = Z Z A;jXiX;

i=1 j=1
where X = (x4, ..., x,,) and the a;; are real is called a quadratic form. The form is called symmetric
if a;; = a; forall i and j, positive definite if x # 0 impties Q (x) > 0, and negative definite if x #
0 implies Q(x) < 0.
In general, it is not easy to determine whether a quadratic form is positive or negative definite.
One criterion, involving eigenvalues, is described in Reference
5.1, Another, involving determinants, can be described as follows. Let A = det[ai]-] and let A,
denote the determinant of the k x k matrix obtained by deleting the last (n — k) rows and columns
of [ai j]. Also, put A, = 1. From the theory of quadratic forms it is known that a necessary and
sufficient condition for a symmetric form to be positive definite is that the n + 1 numbers
Ao, A, ..., Ay, be positive. The form is negative definite if, and only if, the same n + 1 numbers are
alternately positive and negative. The quadratic form which appears in (5) is symmetric because
the mixed partials D; ;f(a) and D; ;f(a) are equal. Therefore, under the conditions of Theorem
13.10, we see that f has a local minimum at a if the (n + 1) numbers Ay, A4, ..., A, are all positive,
and a local maximum if these numbers are alternately positive and negative. The case n = 2 can

be handled directly and gives the following criterion.
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Theorem 11:
Let f be a real-valued function with continuous second-order partial derivatives at a stationary

point a in R?. Let

A= D1,1f(a): B = D1,2f(a)' C= Dz,zf(a)'
_ A Bl_ ,,_ p2

and let A = det[B C] =AC—-B

Then we have:

a) IfA>0and A > 0, f has a relative minimum at a.
b) IfA > 0and A <0, fhas arelative maximum at a.
c) If A <0, f has a saddle point at a.

Proof:

In the two-dimensional case we can write the quadratic form in (5) as follows:
1
Q(x,y) = E{sz + 2Bxy + Cy?}.

If A # 0, this can also be written as

Q(x,y) = 5 [(Ax + By)* + 8y%),

If A > 0, the expression in brackets is the sum of two squares, so Q(x,y) has the same sign as A.
Therefore, statements (a) and (b) follow at once from parts (a) and (b) of Theorem 13.10.

If A < 0, the quadratic form is the product of two linear factors. Therefore, the set points (x, y)
such that Q(x, y) = 0 consists of two lines in the xy-plane intersecting at (0,0). These lines divide
the plane into four regions; Q(x,y) is positive in two of these regions and negative in the other
two. Therefore f has a saddle point at a.

Note: If A = 0, there may be a local maximum, a local minimum, or a saddle point at a.

13.7 Extremum problems with side conditions:

Consider the following type of extremum problem. Suppose that f(x,y,z) represents the
temperature at the point (x, y, z) in space and we ask for the maximum or minimum value of the
temperature on a certain surface. If the equation of the surface is given explicitly in the form z =
h(x,y), then in the expression f(x,y, z) we can replace z by h(x,y) to obtain the temperature on

the surface as a function of x and y alone, say F(x,y) = f[x,y, h(x,y)]. The problem is then
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reduced to finding the extreme values of F. HO\;(;ever, in practice, certain difficulties arise. The
equation of the surface might be given in an implicit form, say g(x,y,z) = 0, and it may be
impossible, in practice, to solve this equation explicitly for z in terms of x and y, or even for x or
y in terms of the remaining variables. The problem might be further complicated by asking for the
extreme values of the temperature at those points which lie on a given curve in space. Such a curve
is the intersection of two surfaces, say g,(x,y,z) = 0 and g,(x,y,z) = 0. If we could solve these
two equations simultaneously, say for x and y in terms of z, then we could introduce these
expressions into f and obtain a new function of z alone, whose extrema we would then seek. In
general, however, this procedure cannot be carried out and a more practicable method must be
sought. A very elegant and useful method for attacking such problems was developed by Lagrange.
Lagrange's method provides a necessary condition for an extremum and can be described as
follows. Let f (x4, ..., x,) be an expression whose extreme values are sought when the variables
are restricted by a certain number of side conditions, say g, (x4, ...,x;,) =0, ..., gm (x4, ..., X)) =
0. We then form the linear combination

POy, e, x) = F (X1, 00, X)) + 2191 (X1, oo, X)) + 0+ A G (X1, o, X)),

where A4, ..., 4,, are m constants. We then differentiate ¢ with respect to each coordinate and
consider the following system of n + m equations:

D, ¢(xq,...,x,) =0, r=12,..,n,
gk(xp '--)xn) =0, k= 1,2,..,m.

Lagrange discovered that if the point (x4, ..., x,,) is a solution of the extremum problem, then it
will also satisfy this system of n 4+ m equations. In practice, one attempts to solve this system for
the n + m "unknowns," A, ..., A4, and x4, ..., x,,. The points (x4, ..., x,,) so obtained must then be
tested to determine whether they yield a maximum, a minimum, or neither. The numbers A,, ..., 4.,
which are introduced only to help solve the system for x,,...,x,, are known as Lagrange's
multipliers. One multiplier is introduced for each side condition.
A complicated analytic criterion exists for distinguishing between maxima and minima in such
problems. However, this criterion is not very useful in practice and in any particular problem it is
usually easier to rely on some other means (for example, physical or geometrical considerations)
to make this distinction.
The following theorem establishes the validity of Lagrange's method:
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Theorem 12:

Let f be a real-valued function such that f € C’' on an open set S in R*. Let g4, ..., g, be m real-
valued functions such that g = (g4, ..., gm) € C’' on S, and assume that m < n. Let X, be that
subset of S on which g vanishes, that is, X, = {x:x € S, g(x) = 0}.

Assume that x, € X, and assume that there exists an n-ball B(x,) such that f(x) < f(x,) for all
x in X, N B(x,) or such that f(x") = f(x,) forall x in X, N B(x,). Assume also that the m-rowed
determinant det [Dj gl(xo)] # 0. Then there exist m real numbers A4, ...,4,, such that the
following n equations are satisfied: D, f (x¢) + Xre1 ADrgx(X0) =0 (r=1,2,...,n) ........ (6)
Note:

The n equations in (6) are equivalent to the following vector equation:

V(%) + 11Vg1(xo) + -+ 4, Vgm(xe) =0

Proof. Consider the following system of m linear equations in the m unknowns A, ..., 4, :

> AeDrgic(x0) = =Dy f (ko) (r = 1.2,..,m)
k=1

This system has a unique solution since, by hypothesis, the determinant of the system is not zero.
Therefore, the first m equations in (6) are satisfied. We must now verify that for this choice of
A1, -, A, the remaining n — m equations in (6) are also satisfied.

To do this, we apply the implicit function theorem. Since m < n, every point x in S can be written
in the form x = (x’; t), say, where x’ € R™ and t € R™~™ In the remainder of this proof we will
write x’ for (x4, ..., x,,) and t for (x,;41, ..., X,,), SO that t, = x,,4. In terms of the vector-valued
function g = (g4, ..., gm), We Can Nnow write

g(xg; to) = 0 if xy = (Xg; to).

Since g € C' on §, and since the determinant det[ngl(xg;tO)] # 0, all the conditions of the
implicit function theorem are satisfied. Therefore, there exists an (n —m)-dimensional
neighborhood T, of t, and a unique vector-valued function h = (hq, ..., h,,,), defined on T, and
having values in R™ such that h € C' on Ty, h(t,) = x;, and for every tin T,,, we have g[h(t); t] =
0. This amounts to saying that the system of m equations

91(x1, e, x) =0, e, g (x4, 0, %) =0
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can be solved for x4, ..., x,, in terms of x4, ..., X;n, Qiving the solutions in the form x,. =
h,(Xpt1, 0 X)), 7 = 1,2, ..., m. We shall now substitute these expressions for x;, ..., x,, into the
expression f (x4, ..., x,) and also into each

expression g, (x4, ..., x,,). That is to say, we define a new function F as follows:

F(Xmatr oor Xn) = L1 mats oo X0y oo g (mgts voos X0 )3 Xim s woer X

and we define m new functions Gy, ..., G, as follows:

Gy (Xms1s s X)) = Gplha Kma1s oo s Xy ooy By (1 oo X5 X1, ooy X -

More briefly, we can write F(t) = f[H(t)] and G,(t) = g,[H(D], where H(t) = (h(t); t). Here
t is restricted to lie in the set Ty,.

Each function G, so defined is identically zero on the set T, by the implicit function theorem.
Therefore, each derivative D, G,, is also identically zero on T, and, in particular, D, G, (t,) = 0.

But by the chain rule (chapter 4 equation.20), we can compute these derivatives as follows:
n
D,G,(t) = Z Dycgy (x0) Dy Hie(te) (r = 1,2, .., n — m).
k=1

But H,(t) = h(t) if 1 < k <m,and H,(t) = x; if m+ 1 < k < n. Therefore, when m+ 1 <
k <n, we have D,.H,(t) =0 ifm+r # k and D, H,,,,(t) = 1 for every t. Hence the above set

p=12,..,m,
r: 1,2,,__’n_m. ....... (7)

By continuity of h, there is an (n — m)-ball B(t,) S T, such that t € B(t,) implies (h(t);t) €

of equations becomes Y.L Dy g, (xo)Dhy(to) + Dpirgp(Xo) =0 {

B(x,), where B(x,) is the n-ball in the statement of the theorem. Hence, t € B(t,) implies
(h(t);t) € X, N B(x,) and therefore, by hypothesis, we have either F(t) < F(t,) forall t in B(t,)
orelse we have F(t) = F(t,) forall t in B(t,). That is, F has a local maximum or a local minimum
at the interior point t,. Each partial derivative D,.F(t,) must therefore be zero. If we use the chain

rule to compute these derivatives, we find
n
DoF(tg) = ) Dief (co)DpH(t). (= 1,..,m = m),
k=1
and hence we can write 27, Dy f(xq)Dhy(ty) + Dppyr f(Xg) =0 (r=1,...,n—m) ....... (8)

If we now multiply (7) by 4,,, sum on p, and add the result to (8), we find
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D |PfGo)+ D 4Dy (x0) | Drhe(to) + Do f (56 + D ApDimar gy (x0) =0,

k=1 p=1 p=1
for r=1,..,n—m. In the sum over k, the expression in square brackets

vanishes because of the way A4, ..., 4,,, were defined. Thus we are left with
m

Dpar f (x0) + Z ApDimsrgp(%9) =0 (r = 1,2,...,n —m).
p=1

Example:

A quadric surface with center at the origin has the equation

Ax? + By? + Cz? + 2Dyz + 2Ezx + 2Fxy = 1. Find the lengths of its semi-axes.

Solution:

Let us write (x, x,, x3) instead of (x,y, z), and introduce the quadratic form

q(x) = 23y Tiog ayXiX; 9)

where x = (x4, x,x3) and the a;; = a;; are chosen so that the equation of the surface becomes
q(x) = 1. (Hence the quadratic form is symmetric and positive definite.) The problem is
equivalent to finding the extreme values of f(x) =Il x I’= x# + x2 + x2 subject to the side
condition g(x) = 0, where g(x) = q(x) —1. Using Lagrange's method, we introduce one
multiplier and consider the vector equation Vf(x) + AVqg(x) =0 .......... (10)

(since Vg = Vq ). In this particular case, both f and g are homogeneous functions of degree 2 and
x-Vf(x) + 1x - Vq(x) = 2f (x) + 2Aq(x) = 0.

Since q(x) = 1 on the surface we find A = —f(x), and equation (10)

becomes tVf(x) —Vq(x) =0, ...(11)

where t = 1/f(x). (We cannot have f(x) = 0 in this problern.) The vector equation (11) then
leads to the following three equations for x4, x,, x5 :

(a;1 —t)x; +agpx; + a;3x3 =0
Ay1x1 + (az; —t)x; + azzx3; =0
a31x1 + a32x2 + (a33 - t)x3 == 0.

Since x = 0 cannot yield a solution to our problem, the determinant of this systern must

aj;; —t ap ais
vanish. That is, we must have |az; Ay —t a3 =0. ... (12)
aszi asz azz —t
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Equation (12) is called the characteristic equation of the quadratic form in (9). In this case, the

geometrical nature of the problem assures us that the three roots t,, t,, t; of this cubic must be real
and positive. [Since q(x) is symmetric and positive definite, the general theory of quadratic forms
also guarantees that the roots of (12) are all real and positive. The semi-axes of the quadric surface

1/2 ,-1/2

are t] %, t5 % t;
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