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Unit |

Mathematical Models and Classification of second order equation: Classical Equations-
Vibrating string — Vibrating membrane — waves in elastic medium — Conduction of heat in
solids — Gravitational potential — Second order equations in two independent variables —
canonical forms — equations with constant coefficients — general solution.

Chapter 1: Sections 1.1 to 1.10

Mathematical Models:

1.1.The Classical Equations:

The three basic types of second order partial differential equations are:

a) The wave equation uy, — c2(Uyye + Uy +Uzy) =0 oo (1)
b) The heat equation u; — k(Uyy + Uyy + Uyz) = 0 e e (2)
c) The Laplace equation u,, +uy, tu,, =0 .............. 3)

e We list a few more common linear partial differential equations.

d) The Poisson equationV?u = f(x,y,2) ............. (4)

e) The Helm holt z equation V2u+Au=0 ..........(5)

f) The biharmonic equation V*u = V2(V?u) =0 ... ... ... ... ... (6)
g) The biharmonic wave equation u,, + ¢?V*u =0 ... ... ... (7)
h) The telegraph equation wu;; + au, + bu = c?Uyy ... ..... (8)

(i) The Schrodinger equation in Quantum physics

e Schrodinger time dependent wave equation we know that 1 = %

h
xX=—
pXx
_ h N 21
Px =737 2
_ h 2m
2 A
Px = h2Z where h = -
A 21
P.=h-k Wherekz%ﬂ
_Px
k = Y e (1)
By Quantum theory.
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Eeh ><27T
= 21
= h X 2
=0 (47
= h2mv
E =ho (w = 2mv)
E
_E .............. (2)

Total Energy of system
E=k-E+P-E

1
E=-mv’+v

2
1 mmuv?
E=—- + v
2 m
_hﬁﬁ+
1Px?
= ET'F v (P, =mv)
2
Multiple by  YE = 2 +vp ... 3)

plane wave equation

Y = ae_i[%t_%x]
Y = aei[%x_%t]
Y =e/MxP, — Et] ... (4)

Differentiation (4) w.r.to t % = qel/hxPx=Btl(_ g/

d = —F : fr 4
_ Wi, i
= E
ap EY
dt  ih
L ay
lhE =Ey........(5)
Diff (4) w.r.to x
dy , Bt ni/h
a — gqel/hlxPx Et]le/
dy PP
Pl R (6)

Differentiation (6) w.r.to x
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http://w.r.to/

dzlp dl/) i/h

dx?  dx P*
= Yper-pc /" from (6)
2 2
—h? ‘;x”’ =YDz e, @
(from (6) (3) becomes
ih % == (—n?< 1”) FVY e (8) [ from (5) x (7)]

for 3 dimension
—p2
. — 2
in, = I_Zm VY +v(x,y, z)z/)l

iy = [V + vy, 2|0 9)
This equation is the Schrodinger time dependent wave equation
e Schrodinger time independent wave equation

0y Y Py _ 107

WK T34 st 552 = yrggr e (D
1 9%y 92 92 @2
2 — i 2
Vi = e (2) <v ot aZZ>

Solution for equation (2),

Y(x,y,2) =Po(x,y,2)e @t .. (3)
Diff Q)w-r-t

we ™1y (x, y, 2)

E —_—
Again Differentiation w.r.to t
Y
Froie —iw(—iw)e Yo(x,y,2)

— _wze—iwtlpo(x' y, Z)

0%y o,

i WY e (4) (by (3))
sub (4) in (2)
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Vi +— =0 e (5)

We know that,

Tw=2TV
w=2n(v/1)

sub (6) in (5) we get

, 42
Vl/)+7l/)=0

2 2.,2
V2 + 47“’[’# =0 e (7) ( 1= %)
E=K-E+P-E
1 2
= Emv +v
E—v=lmﬁ
2
2(E —v) = mv?
G — (®)
sub(8) in (7) we get
2
V2 + 47;21/’ [2m(E —v)] = 0
my
VA + g (E—0) = 0
W¢+§ﬂ%1@¢=0
2
Vi + h_rzn (E—v(xy,2)P=0. ...(9)

This is the Schrodinger time independent wave equation.

j) The Klein - Gordon Equation

Schrodinger's relativistic wave equation. The non-relativistic Schrodinger equation obtained
by replacing P by i th —iaV and E by ind/ dt in the classical energy expression of a free
particle E = P?/2m & allowing the resulting operator equation on the wave equations

The corresponding relativistic energy relation
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E? = c?p? +m?c* ... (1)
By replacing E&P we get

2

—h? 3= —c?h?V? + m2c*x
2 92 a2 9% . .
Vo= ozt 37 to51s the Laplace equation.

operator in rectangular Cartesian co-ordinate x, y, z Allowing this operator equation to
operate on the wave function u(r, t)

wave function

1 92 , . mic?
*u—ﬁwu=—v u-+ 72
—-10*u  _, m?c?
o TN T Tz

, 107 m?c?
2|V T @ee|t T TR

u

2
u = A%2u where 1 = %and

, 102
=V aae

is the D" Alembertion and all the equation A, a, b, ¢, m, E are constants and h = 2m# is the

"plank constant™.

1. 2. The vibrating string:
Vibrations of a stretched string (or) Derive one dimensional wake equation.
We shall obtain the equation of the motion of the string under the following assumptions.

1. The string is flexible and elastic, that is, the string cannot resist bending moment and
thus the tension in the String is always in the direction of the tangent to the existing
profile of the string.

2. There is no elongation of the single segment of the string and hence by Hooke’s law,
the tension is constant.

(i.e.) string move only in the vertical direction, there is no motion in the horizontal
direction.
(i.e.) sum of the forces in the horizontal direction must be zero

~Tcosfp —Tcosa =0
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. The weight of the string is small compared with the tension in the string.

3

4. The direction is small compared with the length of the string.

5. The slope of the displaced string at any point is small compared with unity.
6. There is only pure transverse vibration.

(we consider a differential element of the string.

Let T be the tension at the end point. The force acting on the element of the string in the

vertical direction are Tsin § — Tsina

Gravitational forces on the string is neglected,

Then by Newton's and law of motion,

Mass x acceleration = resultant force
2
= pAs - (ZTZ) =1sinff —tsina ....... (1)
Where p is the line density & As is the small arc length of the string. Since the slope of the

displaced string is small, we have As = Ax RN ¢7))

Since the angle a + § are small sina = tana, sinff =~tanf ...... 3)

= %Axutt =tanf —tana ........ (4)

= =—t —t
Upe p x[an,B an a|

By calculus
tana = (u,), = (s) (b)pe of the stringat x) ............ ®)
tan B = (U,)x + Ax (slop of the string at x + Ax. ........... (6)

S 2) DUy = [(ux)x+Ax - (ux)x]

T
pAx
_ Z I(ux)x+Ax B (Ux)xl

p Ax

=—U,,atAx = 0 lim(Ux)x—-l_szu
p ¥ Ax~0  Ax xx
= Uy = C%Uy, Where c2 =T /p - (7)
This is called the one-dimensional wave equation)
Note: If there is an external force f per unit length acting on the string (3) assumes the form
Uy = Uy + " =f/p > (4

Where f may be pressure, gravitation, resistance and so on...
10
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1.3. The vibrating membrane:
Derivation of two dimensional wave equation We shall obtain the equation for the vibrating
membrane under the following assumption.
1. The membrane is flexible and elastic.
2. The Tension is constant.
3. The weight of the membrane as small as compared with the tension in the membrane.
4. The deflection is small compared with the minimal diameter of the membrane.
5. The slope of the displayed membrane at any point is small compared with unity.
6. There is only pure transverse vibration.
consider a small element of the membrane. Since the defection and slope are small, the area of
the elemental approximately equal to AxAy.
If T is the tensile force per unit length, then the forces acting on the sides of the element are
TAx & TAy.
=~ The forces acting on the element of the membrane in the versicle direction are
(TAxsin f — TAxsina) + (TAysind — TAysiny)  ......... (1)
since the slopes are small,

sina = tana,sin f = tanf,sinv = tany,

sind =tané ..........(2)
(1) =TAxtanf —TAxtanf + TAytan§ — TAy tany
=>TAx(tanf — tana) + TAy(tan§ — tany) ...... ... 3)

Now, by newton's 2" law of motion, the resultant force is equals to the mass times the
acceleration.

hence TAx(tan f —tana) + TAy(tan 6 — tanv) = pAAutt ............(4)

Where p is the man per unit area.

AA = AxAy is the area of this element.

u(x,y,t) is the position of the membrane at time ' ¢t ' after an interval disturbance is give
x is the displacement along x axis

y is the displacement along y axis

Now, tan a = slope of membrane at x; = u, (x;,y)t}

11
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tan § = slope of membrane at x, = U, (x5, y + Ay)t
tan y = slope of membraneat y; = u, (x,y;)t (5)

tan § = slope of membrane at y, = aty, = U,(x + Ax, y,)t
Where x; X x, are values of x between x & x + sx, y; & y, are values of y between
y & y + Ay sub there values in (4) we get

TAx[uy (x5, y + Ay) — uy(xl,y)] + TAy[u, (x + Ax, y,)

Uy (x,y,)] = p AA Uy

= TAx[uy (x5, y +Ay) — uy(xl,y)] + TAy[u, (x + Ax, y,)

—u, (x,y1)] = pAx Ay Uys ov v ev v .. (6)

T |u,(x,,y +Ay) —u,(x, u,(x + Ax, — u,(xq,
N y( 2y y) y( Y)+ x( y2) x(x1, 1) N )
p Ay Ax

Taking limit in (7)as Ax — 0, Ay - 0 we get,
T
E [uyy + uxx] = Uyt

T
2 Uy =2(Uyy + Upy) v e o (8) ,where ¢2 = 5

This equation is called the two dimensional wave equation

Note: If there is an external force f per unit area acting on the membrane equation (8) take the
form Uy = f2(U,, + Uyy) + f* Where f* = /8§

1.4. Waves in an Elastic Medium:

Derivation of three dimensional wave equation:

If a small disturbance is originated at a point in an elastic medium, neighbouring particles are
set into motion and the medium is put under a state or stain

we consider such states of motion to extend in all directions. We assume that the displacement
of the medium is small.

Let the body under investigation be homogenous and isotropic.

Let Av be a differential volume of the body and let the stresses acting on the forces of the
volume be Ty, Tyy, T2z Tays Txzs Tyxs Tzys Tyz Tz 1NE first three stress are called normal
stresses and the rest are shear stresses.

We shall assume that the stress tensor 7;; = 7;; ,  1,j=X\y,Z.

S Ty = Ty Tox = Tazs Tyz = Tzy

Neglecting the body forces, the sum of all the forces acting on the volume elements in the

12
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x-direction is

[(Txx)x+Ax - (TXX)X]AyAZ + [(Txy)x+Ax - (TxY))x]AxAZ

+ [(7x2) y4ax — (Tx2)x]AxAy ... .......(1)
By Newton law of motion

Resultant forces is equal to the mass times the acceleration. Thus we obtain

[(TXX) x4 nx — (Tx2)X]AYAZ +[(TXY) x4ax — (TXY)X]
AxAz +[(txz)x + Ax — (txz)x]AxAy

= pAxAyAzu,,
[Where p is the densify of the body and w is the displacement component in x-direction]
AxAyAz AxAyAz
= [(Tx)x+Ax_(Txx)x] A— + [(Tx:V)x + Ax — (TX}/)X] AL
X Ay
AxAyAz
+[(t,)x + Ax — (1x2)x] A—i = pAxAyAz
(Toex) x+ax = (Txx)x (Tay)x+Ax—(Txy)X
Coreenn(Tae] e
+ [t = pu,
Taking limit AU — 0
we get
0Txx | OTxy 0Txz _ E
o T 3y t TPz e 3)
.. 0Ty | 0Tyy | 0Ty, a_Zv
Similarly, Pl 3y Ll v RPN (4)
Oz | Oz | 0Tgz _ 0w
And ps 3 +oEEp o (5)

where v and w are the displacement component in y and z directions respectively.

Now, we define linear strain

du ow v
Exx = ax Eyz = Ezy :34'5

Syy _6y y _@ ax
=00 g 00 0u
§zz = . Ezx = et o, e (6)

13
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In which ¢,,,¢,,,&,, represent unit elongations and ¢yz, &zx,&xy represent unit shearing

strains
In the care of an isotropic body, generalized nook's low takes the form.
Txx = A6 + Zlufxx Tyz = /’léyz

Tyy = A0 + 208y, Ty = fsx oo, (7)
Ty + A6 + Zlufzz Tyx = .uéyx

where 6 = {xx + Eyy + &zz is called dilation and Aku are Lame's constants.

Expressing stresses in terms of displacements

= A0 + Z,uau\l

v 6u ¥
dx 6y

e =i+ 2]

Differentiating equation (8)

0Ty /160 ) 0%u
dx ox | “Hox
0Ty 0%v 0*u
ox “axaz+”‘ay2
0t,e  0%u N 0%u
ox  Hoxaz " Moz
sub. (9) in (3) we get

26
[Aa +2’“‘a l l Haxay +“ayZl [ axaz”ﬁl
0%u

=Pon
100 0%u 0%u 0%u 0%u 0°w

we have Ty, =t [

0%u

=z d0x +”ax2+“ax2+“axay+“ay2+“axaz
N 0%y  0°u
Hoz2 =~ Poar

LN [#[[azy e azu>l
dx 0x?  dy? 0z2
0’u  0*u 0%u 0%u
'ul(')xz + 9% 0y + 9% azl =p 5pz

(10)

Now,

14
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:
62u+ 0%v N ?w 0 6u+6u+aw _ov
0x?  0xdy 0xdz oxlox ody 09zl ox

0> 9% 02

a2 Y ay2 T 922

The symbol A or V2 is called the Laplace operator Hence (10) bennes

00, 00 0%
ox KU TR T P
2

0 5 u
> (/'l+,u)—x+uV U=Po e e (11)

and A = V%=

Similarly,

A+ )69+ VZy = v 12
WtV v =pas e (12)

0*w

In vector form, (A + ) grad div u + uV?u = puy,

0
()l+u)a+uv w=p e (13)

where u = ui + vj + wk and 6 = divu

case (i)

If divu = 0, the general equation becomes
uViu = putt

= utt = EVzu
p

= att = c?V2u ... (15)

where the velocity ¢ of Propagated wave is ¢ = m

This is the case of an equivoluminal wave propagation, the volume expansion 8 is zero for way
moving with this velocity. Sometimes these waves are called waves of distortion because the
velocity of propagation depends on u X p, the shear modulus u characterizes the distortion and
rotation of the volume element.

case(ii):when curl u = 0, the identity

curl curl u = grad div u — V?u

= graddivu = V?u

The general equation becomes

15
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A+ 2p)viu = puy
A+2u

p
= Uy = 2V2U v (16)

where velocity of propagation is ¢ = /’”%

This is the care of an irrational or dilatational wave equation propagation, - curl u =0

Viu

U =

describes irrotational motion.

Equation (15) & (16) are called the three -dimensional wave equation.

1.5. conduction of heat in Solids:

Derivation of Heat Equation:

Let a domain D* be bounded by a closed Surface B*. Let D be an arbitrary bounded by closed
surface B in D*

Let U(x,y,z,t) be the temperature at a point heat flows from places of higher temperature to
places of lower temperature.

Now by Fourier’s law, ' v ' which is the heat of flow of heat (or) velocity of heat flow is
proportional to gradient of temperature

(ile)vagradu (or) v = —k gradu ........(1)

Where constant k is called the thermal conductivity of the body.

[v=rate of heat flow=velocity of heat flow=—k grad u].....(1)

Now, amount of heat leaving D per unit time = rate of decrease of heat in D

Now, Amount of heat leaving D per unit time

:ffg (v-n)ds =g dw(v) dx dy dz

j-f (V-v)dxdydz ff (V- (=kgradu))dxdydz by(1)

= —kfffvzudxdydz

~ Amount of heat leaving D per lent time

:-kﬂfD Viudxdydz ............ (2)

Now, amount of heat in D = [[[ opudxdydz
16
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Where p is the density of the material of the body & ¢ is its specific hook.

- rate of decrees of heat in D = —% (fff opudxdydz)

using (2) & (3) we get —k [[f,, VZudxdydz = — [[f, op3: dxdydz

I, lopu, — kV?uldydxdz =0 ...........(4)

Assuming integrand in (4) is continuous.

(4) gives

The integrand oput — kA?u = 0

(ONu, =kV?u .......... (5) when k = U—"p

1.6. The Gravitational Potential:

Laplace equation:

Laplace equation (or) Potential equation

Laplace equation is a 2" order partial differential eq.

Named after French scholar P.S. Laplace

Laplace equation appears in many physical problems such as in problem of electrical,
magnetic & gravitational potential etc.

Laplace equation in three dimensions is V2u = 0, V- Vu = 0 (or) div grad u = 0

where V is the divergence operator (or div) V is the gradient operator (or grad) u(x,y, z) isa

twice differentiable real valued function

. d.,0 ., 0
Del operation V— V= it oy + Zk
Laplace operator V2=V - V

V2=V .V

_(6 " d - 6k>
B axl ay] 0z
(6 - d - 6k>
axl ay] 0z
0? 0> 0?
6x2+6y2+622

. ou . ou . ou, -
For a function u(x,y,z) grad u = Vu = LT P + Ek IS a vector.

divgrad u = V- Vu is a scalar quantity. So in Laplace equation div grad u = 0
17
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Y=

e Between two objects (or) particle in the universe there is a force that tends to attract

them towards each other.
e This force is gravity or gravitational force
e Every object in the universe is surrounded by a gravitational field.

e Newton's low of Gravitation

The gravitational force F = GT—ZM (= F; = F,) acts along the line joining their

centers. mass m & M at a distance reappear G is the gravitational constants
e Gravitational potential:
Gravitational potential (or) potential at a point Q due to a particle of man m at a point P It's the
workdone in bringing a particle of unit mass form infinity up to the point Q, by the force M of

particle of mass m

m
m=TWherer=pQ

Gravitational potential at a point Q due to a system of particle of masses m,, m,, ... m,, at points
P, P,,...P,
Its the work done in bringing a particle of unit mass from infinity upto the point Q, by the force

of attraction of masses m,, m,, ..., m,
mV = -G z’l-gl%where, rn=P0, r,=P0..... r, = P,Q

Derivation of Laplace's Equation for Gravitational:
Potential:

consider a particle of mass m placed at a Point P(a, b, ¢) at a distance r from point Q (x, y, z).

The potential V/, at a point Q dueto mars'm'isV = _GTm

Now,
r’=x—-a)+ @ —-b)Z+Z—-¢c)?.....(1)
2 o _ 2
T (x—a)
or 2(x—a) x-—a
F i e .. (2)
Similarly,
or y-—>»
y r

18

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Fp TSRS 4)
Now, asV = %
s ov _ —m (—1) ar
rx r2) dx
ov _ G_m(x—a)
e e Y (5)
Similarly,
dv Gm av Gm
3 =— (y = b) .. ..(6) =73 z—=¢) viieevn (1)
Now,
0’v 0 (617)
0x2  9x \dx
6 Gm
(x — a)]
= Gm [( 3 0) o
1 3 (x—a)
=om[5 - )
5_’;_ [%_f_s(x—a)z ................ (8)
Similarly, G [ﬁ — % (y — b)z] ................ 9)
9? 1 3
a_z’;:Gm[ﬁ—ﬁ(z—c)z ................ (10)

Adding (8),(9),(10) we
0%v N 0%v N 0%v _3Gm  3Gm
0x?  9y?  09z2 13 rd

[(x —a)* + (y — b)*

3Gm 3Gm 5
I B r

3Gm 3Gm
~ T3 3

0%v N 0%v N 0%v 3
(o) ox?  9y?  0z%

02 02 02
- (E)xz + dy? + (')ZZ)U =0

= V2V = 0 which is Laplace's equation.

19
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Note: When there are particles of mess ' m; ' placed at a points p(a, b, ¢) at a distance r; from

point Q(x,y,z).
or; (x —a;) or (y b;) or; (Z_Ci)

ox rn, oy r, ‘0z  r,
i=123..n

AsV = —GY™, 1

0x r
i=1
n
dv m;
TN
i=1
n
ov m
5 =0, 55
i=1 '
OZ_U_GZn: _ﬂ_gml(x_a 2
ox2 Li|rP 15 '
=1
0%V = [m; 3m
_=GZ M 2 b2
ayz ' T'l-s _rls (y l)
=1
0%v S ('m;  3m;
57 =6 . =
i=1 -

-
T; ;5

_0%v  0*v  0°U i [3mi 3m;

i=1

[(x — ad)? + (v = bi)? + (z — ¢)?]

z [3ml 3ml ]
TL
3m; m;
O
6 62 N 02 v
0x? 6y2 0z?
ViV =0
Which is the laplace equation.
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Exercises Problem:

Various forms of wave equation

1.Show that the equation of motion of a long string = c?u,, — g Where g is the gravitational

accelation.

Solution:

consider a small element ab of the given string. To find the eq. of motion, the following

assumptions are made

1. The tension in the string is always in the direction of the tangent to the existing profile

of the string
. The tension is constant

2

3. The weight of the string is small compared with the tension in the string
4. The deflection is small compared with the length of the string.
5

. The slope of the displaced string at any point is small compared with unity.

6. There is only pure transverse vibration.

As acceleration due to gravity, (i.e.) g acts on the string. Therefore, the resultant force acting

on the element ab of the string in the vertical direction is
TsinB — Tsina — pAsg — (1)

As slope of displaced string is small

As = Ar

And by Newton’s 2™ law of motion

T -sinfB —Tsina — pAsg = pAsuy ... ... ... (2)
Since the angle a, 8 are small
sina =~ tana,sin f = tan
~(2)=> TtanB — Ttana — pAxg = pAxutt

tana = U, (x,t)
tanf = U, (x + Ax, t)

TU,(x,t) — Tu(x + Ax, t) — pAxg = pAxuy,

T
pA_x [ux(x' t) — u,(x + Ax, t)] — g = Uy

T [u,(x, t") —u,(x + Ax, t)
p Ax

— 9 = U
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taking Ax = 0
T
Euxx — 9 =Uy

T
S U = €Uy, — 9 when ¢? = PRRRRIRTE (3)

~ equation (3) is the form of wave equation for a a vibrating string, when gravitational

acceleration is taken in to consideration.

2. Derive the damped wave equation of a string u,, +au, = c?U,, where the damping force
is proportional to the velocity & a is constant. Considering a restoring force is proportional
to the displacement of a string Show that the resulting en is u;; + au; + bu = c?u,, where
b is a constant. This equation is called telegraph equation.

Solution:

Damped wave equation:

To discuss problem of vibrating string, when a damping force acts on the string.

Damping force:

1. Adamping force is any force, such as air resistance which acts when a child is swinging,
which prevents the vibratory motion of a body. In the care of a vibrating string, a
damping force tries to bring the string in rest position by dissipation of energy.

2. The damping force is directly proportion d to the velocity u, and the magnitude of the
damping force F; at time t is g, by Damping coefficient time velocity at time
t(ie) F; = —au; = (1)

Where a negative sign is there as the direction of the damping force is opposite to the direction

of velocity at time t.

The resultant force acting on the element ab of the string in the vertical direction is

Tsin f — Tsina + pAsF;
(ie.) Tsin B — Tsina + pAS(—au,;)

+ The angles a, 8 are small

sina = tana,sinf =~ tan §,As = Ax
s~ Ttanf — Ttana — pAx au; ... .........(2)
By Newton's 2™ law of motion

Ttanf — T tan a — pAxau; = pAxuy,
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T
= WTX [tanf —tan a] — au; = Uy

Ttanf —tana
= ; [A—x] —au; = utt) e (3)

tana = u, (x,t);tan f = u, (x + Ax, t)
T [ux(x + Ax,t) —u,(x,t)

—aus =1u
p Ax t tt
Taking limit Ax = 0
T
“Uxx — AU = Uyt
. — 2 2 _
S Uy = —QAUp + €Uy, Where ¢* = 5
— 2
Upr = CoUyy — AUp  eev ven e . (4)

(4) is the Dumped wave equation.
Telegraph Equation:
To discuss problem of vibrating string When a damping force as well as a restoring force acts
on the string.
Restoring force:
1. A restoring force is any force such as gravity acting on the pendulum when it swings
which acts to bring a body to its equilibrium position
2. The restoring force is a function of position ' u ' only k it is always directed back
towards the equilibrium position of the system.
3. The restoring force F, isgivenby F, = —bu ..............(5)
When both the Damping force F; as well as the restoring force F, act on the string then:
The resultant force acting on the element ab of thestring in the vertical direction is
Tsin B — Tsina + {pAs(F, + F,)}
By newton's 2™ law of motion
TsinpB —Tsina + pA(F, + F,) = pAsuy oovevennnn.n (7)
As slope of displaced string is small
As =~ Ax
 The angles a & f are small
sina =tanasinf =~ tanf

o~ (7) = Ttan B — Ttana + pAx(F; + F,) = pAxuy
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tan a = u,(x,t)
tan f = u,(x + Ax, t)
& Tu,(x + Ax, t) — Tu,(x, t) + pAx(—aut — bu)

= pAxug
T pAx
> ohx [u,(x + Ax, t) — u, (x, t)] — ohx (au; + bu)
= Uyt
T ru,(x + Ax, t) —u,(x,t)
= — ] —au; — bu
p Ax
= Uge
taking limit Ax — 0
T
— Uy — AU — bu = Uy,
= Uy = C2Uyy —au, —bu ..........(8)

where ¢2 —T/p
= (8) is also called telegraph eqn.
Classification of Second Order Equations:
1.7. Second - order equation in two independent variables:
consider the PDE of 2"¢ order in two independent variables x & (dependent variable u ) as
AUy + BUyy, + CU,, + DU, + EU, + FU =G ........ (1)
Where the coefficients are functions of x & y and do not vanish simultaneously & the function
u&A,B,C,D, EF,G are twice continuously differentiable in some domain R.
The classification of 2" order equations is based upon the possibility of reducing (1) by a
coordinate transformation to canonical (or) standard form at a point.
An equation is said to be hyperbolic, parabolic, or elliptic at a point (x,, y,) according as

B2 —4AC > 0,=0,< 0, at (Xg,Yo) v eeeveveee . (2)

If it is true at all points, then the equation, is said to be hyperbolic, parabolic, or elliptic in a
domain.
To transform (2) to a canonical form we make a change of independent variables. Let the new

variable be & = &(x,y), n = h(x,y) ..coeenn.. 3)
Assuming that ¢ & n are twice continuously differentiable and that the Jacobian

24

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



_|$x Sy
eyl

determined uniquely from the system (3) Let x x y be twice continuously differentiable

......(4) 1s non zero in the region under consideration, then xky can be

J

function of ¢ & n.
Then we have
Uy = UgEX + Uyl \
Uy = Uy +uymy
U = Ugedx? + 2UEn8, 1y + Uy
FUexx + UpNxx ST (5)
Upy = Uggéxly + Ugy (fxny + Eynx)
FUnnMxMy + Uggxy + Upay
Uyy = Ugely + 2Ugnéymy + Upyny 2 + Uy + uynyy )
Substituting (5) in (1) we obtain
A*Uge + B*Ugy + C*Upy + D*Ug + E*Uy + FFU =G* ............ (6)

where

A* = A& x? + E&xéy + c&?y

B* = 2A¢&, ny +B(‘>;x77y+ Eynx) + Zcfyny

c* = Anx? + Bnxny + cny?

D* = Aéxx + Béxy + Céyy + Déx + EEy

E* = ANy + BNy, +Cny, + D +E Ny,

F*=F

G"'=G
The classification of (1) depends on the coefficients A, B, C, at a given point (x, y).
we shall rewrite (1) as

AUy + BUyy + CUyy = H e v (8)

where H = H(x, v, U, ux,uy)

equation (6) as A*Ugg + B*Ugy + C'Uqy = 4" v e oo (9) Where n* = H*(€,m,u, ug, uy)
1.8. Canonical form

Transforming first order linear PDE into Canonical form.

Step 1:

compare the given PDE with the standard PDE

AUyy + BUy, + CUyy + DU, + FU, + FU =G .......... (1)

Step 2:
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B K

Find the discriminant B2 — 4AC and classify the given PDE as follows.

Discriminant PDE
B? —4AC >0 hyperbolic
B2 —4AC =0 parabolic
B2 —-4AC<0 elliptic
Step 3:
Find the characteristic equations:
PDE Characteristic equation
dy —éx -B+VB?-— 4AC\|
. dx & 2A
Hyperbolic & cer e e e (2)
dy —-nx —B—-+vB?—4AC
dx 2y 24 )
ic &y _-$tx_ B
Parabolic x5y A 3
dy _ B-VB2—-4AC
sl dx 2A
Elliptic ay  BwETmc T 4)
dx 24
step 4:

$Coy) =p1(x,y) =
Integrate the characteristic equations to obtain, 7(x,y) = @,(x,y) = ¢,

hyperbolic ¢(x,y) =c¢; & n(x,y) =c,
parabolic é(x,y) = ¢, & n is chosen such that it is not parallel to the £-coordinate
(i.e.) n is chosen such that the Jacobian of the transformation is not zero

Elliptic £ (x,y) = c;&n(x,¥) = ¢,

Introduce the 2"¢ trans formation such that a = &Tn &p = &n

2i
Step 6:

The transformed canonical equation n is given by

= (2) A'Ugs + B*Ug, + C*uyy, + D*Ug + E*U, + F*U = G
Where,
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A* = A& x? + E&x&y + c&%y

B* =248 +B(Sxmy + §y ) + 208, 1y

c* = Anx? + Bnxny + cny?

D* = Aéxx + Béxy + CEyy + Déx + EEy

E* = Anyy + BNy, +Cny, + Dy +E Ny,

F*=F

G"'=G
Equation (2), (3) & (4) which are known as the characteristic equations, are the ODE for
families of curves in the xy-plane along ¢ = constant &, = constant. The integral of (5) are
called the characteristic curves.
Since the equations are 1% order ODE, the solution may be written as
1(x,¥) = c1& 92 (x,y) = ¢
Hence the transformation & = ¢, (x,y) < n = @, (x,y) will transform
AU,y + BUyy + CU,, = H.
where H = H(x, y,u,u,,u,) to canonical form.

A. Hyperbolic Type:

NIy —+/B2_—
If B2 —4AC > 0, then integration of % = w * Z—i’ = % yields two real k

distinct families of characteristics.
Equation, A*UEE + B*Use77 + c*U7777 =A"
where x* = x*(x, Y, U, ug,un)
reduces to Ug,, = n, where H; = H*/B".
It can be easily shown that B* # 0. This form is called the first canonical form of the hyperbolic
equation.
Now if the new independent variable « = ¢ +n & f = & — n are introduced then Uzn = n, is
transformed into Uy, — Ugp = ny(a, B, U, ug, Ug)
This form is called the 2* canonical form of the hyperbolic equation.
B. Parabolic Type:
For the parabolic equation the discriminant
B%? —4AC = 0 whichcanbe if B* =0&A*orC* =0
suppose A* = 0 then A* = Aéx? + Béx2y + Céy? =0
= Aéx? + Béxéy + Céy?2 =0
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. §xy* §x _
—byfyzA(5> +B(5>+C—O
éx B+VB?-4AC -B , . e -

Hence we find the equation £(x,y) = ¢, = ¢;

B% — 4AC we getz—z = % % get the implicit solution &(x, y) = c;,n = y or any other function
independent of x We can verify that A* = 0, B* = 0 as follows:

B* = 2A8x 1, + B(§x 1y +$y ) +2C5y m,,

= 24¢8x n, + 2VAVCExX ny + 2VAVCEy 1,

+2céy 1y

= 2VAEx (VA + Ve ny) + 2v/c&y(VAnx + Veny)

= (VAnx + Veny) (2VAéx + 2+en,)
= 2(VAnx + Veny) WAéx +\cEy)
= 2[—Vcéy + Ve&y] [VAnx + Ven, ]

B . &x B —-B _—2\/2\/2
“ ey T 24 24
_—Ve

A
(VAgx = —Jcgy)
~ A* = B* = 0 then n can be chooses in anyway
we take as long as it is not parallel to ¢ coordinate
In other words, we choose n there Jacobian of the transformation is not equal to zeno.
Thus we can write the canonical equation for parabolic care by substituting & > h in

by substiting,
AUgs + BU SN + CUpy + DUE + EU, + F =0

which reduce to either Ugz = H,(&,7m,U, Ug, Uy, )

(on) Urm = H,($,n,v,US, Un).
This is called the canonical form of the parabolic equation.

C. Elliptic type:
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—+v/B2—
For the elliptic case B? —4AC < 0, The characteristic equation Z—i’=u o

24 ‘dx
B+VB2-4AC . . ;
——givesus complex conjugate coordinate &, n.
Now we to make another transformation from (&, 1) to (a, 8) where a = f;’—h = Ez;lh which

gives the required canonical equation in the form of elliptic equation

Uno + Upp = H(a, B, U, U,, Up)

Example 1:

Reduce the equation y2u,, — x?u,, = 0 into canonical form (or) Determine the region in
which the equation. y*u,, — x?U,,, = 0 is hyperbolic, parabolic, elliptic, and trans form the

equation in the respective region to the canonical form.

Solution:

consider the equation y? U,,—x%v,, =0 ............. (1) compare this in to the general
equation.

AUyx + BUy, + CUy,, + DU, + EU, + FU =G ............. (2)

Step 1:

Here A=y, B=0,C=—x% D=E=F=G=0
B%2 — HAC = 0 + 4x2%y?
= 4x2%y?
= (2xy)? > 0.
=~ The equation is hyperbolic everywhere except on the coordinate axes x =0 &y = 0
Step 2 :

dy B ++BZ—4AC

The characteristic equations is —— =

dx 2A
ty4x?y?  E2xy
2y2  2y?
X
=+4=
y

dy x &dy X
dx 'y dx y
~ydy = xdx = &ydy + xdx =0
Step :3

2
integrating, we get >~ =" +¢; ... (3)
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equation (3) is a family of hyperbolas
equation (4) is a family of circles.
step :4

To t transform the given equation to the canonical form

Let & =%y2 —%xz

1 1
—_ a2 A2
n 2y +2x
—2x
€x=T=—x Exx =-1&xy =0
2y
y=—=y &x=0¢yy=1
2x
nx_7_x Nxx 177xy=0
2y
le_7 Y Nyx 077yy_1
step: 5
Ux=U€S;x+Un77x
= —xUg + xU,

Uy = Ug&y + upny

= yUs + yu,

Uz = Uge&x2 + 2Ug$xny + UppTy2

FUgEXX + UpTyx

= (=x)uge + 2(=x) (X)ugy + Upy (x)?

+u5(—1) + un(l)

= XUgs — 2X*Ugy + XPUpy — Ug + U,
ny = U{Efy +U§n (&;xny + $yny)

FUpn My + Ugéxy + Upnyy

=Uge (1)) + Ugy (00 + () ()
+Uyy () + Ug(0) + Uy (0)

= —xyUgs + Upyxy
U

Step:6

vy = Uge§y? + 2UgpSyny + Unyny + UsEyy + Unn,,
= Uge ()% + 2Ugy ) () + Uy ()% + Ug (1) + Upn (1)
= y2U§§ + ZyZUSn + yZUnn + UE + UTI
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Sub. in (2) we get
A(x? Uge— 2x2Ugy + x2Uy, — Ug + Uy,)
+B(—xyUsgs + xy Upy) + C(y?Uge + 2y%ug,
+y Uy, + ug +uy)
+D(—x Ugt+ x Un) + E(y Uet+y Un) +F=0
yz(szgg — 2x%Ugy + x> UM —u,y + Un) +0
—xz(y2 Uug + 2y2Usy + y?Uyy +ug + un) =0
x2y?veé — 2y2x% U én + x%y2vn, — y2ug + y*u,
—x?y?Ugs — 2y*x* U &N — x2y*npy, —x* U &
—-x2un=0
—4x?y*uen —ug(x* + y*) + u, (y* —x*) =0

xZ + yZ uT] (yZ _ xZ) B

us‘n+Us‘ 4x2y?2 - 4x2y?
x2 +v2 U.(y2—x2?

Ve = — y: UG )

én 3 4x2y? 4x2y2

T (L)
3 —u(&2 —n?) T\—4(&2 — n?)
n S
=V oy Uiz o
which is the required canonical

Ug

form of the hyperbolic equation.

Example 2:

Reduce the equation x*U,, + 2xyU,, + y?U,,, = 0 (or) Determine the region in which the
equation x2Uxx + 2xy U xy + y2 U yy = 0 is hyperbolic, parabolic, elliptic, x trans form the

equation into canonical form.

Solution:

consider the equation x2Uy, + 2xy U xy + y2U,,, = 0 ... ... ...... (1) compar this equation into
the general PDE AUy, + BUy, + CUyy, + DU, + EU, + FU =G ... .. ... ... (2)

Step 1:

A:xZ,BZny'C:yZ' D=E=F=(G=0
B* — 4AC = (2xy)* — 4x?y* = —2x%y? + 4x*y* = 0

The equation is parabolic everywhere.
Stop -2:
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. . ..d B+VB%-4AC
The characteristic equation is > = =——————

_ 2xy £/ (2xy)? — 4(x2)y?)

2(x2)
dy 2xy 'y
dx 2x?  x
xdy —ydx =0
LA
d (X) =0
step: 3

integrating, we get% =c, - (3)
Which is the family of straight line
step :4

To transform the given equation to the canonical form. Let § = i—’ &n = y, where n is arbitrary.

— 1
Tl 2yl T XD X T %2
X T ol
-y +2y -1
Sx=77 x=—3 y=_3
1 —
Sy=7 Syx=—z Syy=0
Ne =0 Nex = 0 hxy =
n, =1 Nyx =0 hy, =0
Step 5
Ux_Uffx-l'Unnx
-y
= Ug (25) + Ua(0)
-y
=2z Vs
Uy—Ug€y+Un17y
1
—U;(;)+Un(1)
=-Us + U,

Upx = Uggéx? + 2Up éxn, + Unnx® + Ugéxx
+Upnxx

= g + 2ugy (5) (0 + upy (02 + g ( x3 ) + uy (0)
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y? 2y
Uyy = Ugsx&y + Ugy (fny + fyTIx) + UnyxTly

xz
g (F) + 11, (0)

-y y
=3 Ve =7 U — 3 Us

Uyy =Uggfy2 + ZUganUy + UTITInyz + Ugfyy
TUyNyy

1 1
=ﬁ Us;s; + ZEU&] + U7777 + Uf(O) + 0
1 2
=ﬁ Ug + ;U&? + u,m
step 6: sub. in (2) we get,

2
y 2y —Yy y
A(F U§§+x—3U§) +B (x—sUff _FUfn

1 1 2
_FU€>+C<FU€€+;Ufn+unn>+O:0

2
y 2y -y y 1 2

x? (F Ugg+ FUs‘) +B (F Ugg— 1z Uen +v° (x_z Uge+ L Uen + Unn) +0=0

2 2 2 2 2
y 2y 2y 2y 2y y 2y
PUgs‘FTUg—FUff—TUfT]—7U€+;U§§+TUEU+}/2'&””+O = 0
2y? 2y 2y? 2y
—7 Vet Ve 5 Veem Vet ¥ty = 0
yzu,m =0

Uppy = 0

This is the canonical form of a parabolic equation.

Example 3:

Reduce the equation U, + x*U,,, = 0 to the canonical form.

Solution:

consider the eqn. Uy, + x?Uy;, = 0............. (1) compare this into the general PDE
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AUyy + BUyy + CUyy, + DUx + EU, + FU =G ... ........ (2)

Here A=1B=0C=x?D=E=F=G=0

Step :1

B2 —4AC=0—-4(1)x?>=-4x?2 <0

=~ The equation is an elliptic everywhere except on the coordinate axis x = 0
step 2:

The characteristic equations are

dy B+VBZ—4AC

dx 24

0+./0—4(1)x2 —/—4x2 +i2x
- 2(1) -T2 T2
= +ix
dy . dy

= xi —xi
dx " dx

dy = ixdx dy = —xidx

Step 3:
integrating
.[dy =ifxdx fdy =—if + xdx
x? x?
y =i7+c1 y =—i7+cz
=2y =ix’=¢ 2y +ix? =c,
Step 4:

To transform the given equation to the canonical form

Let§ =2y —ix? &n=2y+ix?

Ex = —i2x &xx = —2i Exy =0
§y =2 $yx =0 §yy =0
nx =i2x nxx = 2i nxy =0
ny =2 nyx =0 nyy =0
Step: 5

Uy = Ugax + Up Py
= Ua(0) + Ug(—2x) = —2xUp
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Uy, = Ugx + UgBy
= U, (2) + Up(0) = 2U,
Urx = Ugq 2x% + 2Uqgpa, By + UppBx? + Ugatyx + Up fxx
= Uga(0) + 2U43(0)(—2x) + U,;,;(—Zx)z + Uy (0) + Up(—2)
= 4X2U[g[g - ZUﬁ
Uy =Uga @y @y + Upgp (axﬁy + ayﬁx) + Ugpty + Ugayy, + U[;,Bxy
= Uga(0)(2) + Ugp(0X0 + 2(—2x)) + Ugp(0)(0) + Us(0) + 0

=—4x U af

Uyy = Ugq@y® + 2Uqpay, By + UggBy* + Ugayy + ugByy
= Vaa (y)z + ZUaB (u)(O) + Uﬁﬁ(o) + Ua(o) + Uﬁ(O)
=4U,,

Step:6 sub in (2) we pet.

A(4x?Upp — 2Up) + c(4Uqq) =0
4X2U[3ﬁ - ZUﬁ + x24U0(0( =0
ZUﬁ

Uaa +Uﬁﬁ = m

1
~ x2 B
28 P

This the canonical form.

Uaa + uﬁﬁ =

1.9. Equations with constant coefficients:

In the case of an equation with real constant coefficients, the equation is of the single type at
all points in the domain. This is because the discriminant B2-4AC is a constant.

From the characteristics equation

dy _ B+VB?-24C

dx 2A
dy _ B-VB%*-4AC (1)
dx — ZA .............
We can see that the characteristics
B+VBZ—4AC
“\" 22 X+

(B—\/BZ—4—AC)

—— X+,

2A

are two families of straight line. Consequently, the characteristic coordinates take the form
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Letd=y—A4x, n =y —Ax

Where 4,, = BEVEIo4AC (4)

2A

The linear second-order partial differential equation with constant coefficients may be written
as
AUyy + BUyy + CUyy, + DUy + EUy + FU = G(%,Y) wve vve .. (5)

(A) Hyperbolic Equation

When B? — 4AC > 0, the equation is of hyperbolic type, in which case the characteristics form
two distinct families.

Using equation (3),

Equation (5) becomes ug, = Dius + Equy + Fiu+ G(§,m) ..o (6)

where D,,E;, and F, are constants. Here, since the coefficients are constants, the lower order
terms are expressed explicitly.

When A = 0, Eq. (3.3.1) does not hold. In this case, the characteristic equation may be put in
the form —B(dx/dy) + C(dx/dy)* =0

which may again be rewritten as

dx/dy =0
—B + C(dx/dy) =0

Integration gives

X = Cl
x=(B/C)y+c,

where c; and c, are integration constants. Thus, the characteristic coordinates are
E=x

Under this transformation, Eq. (3.3.5) reduces to the canonical form

Usy = Diug + Ejuy + Fiu+ G{(&,m) oo, (8)

where D{, E; and F; are constants.

(B) Parabolic Equation
When B? — 4AC = 0, the equation is of parabolic type, in which case only one real family of
characteristics exists. From Eqgn (4), we find that
A =1, = (B/24)
so that the single family of characteristics is given by
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y=(B/2A)x+ ¢,

where c; is an integration constant. Thus, we have
§=y—(B/2A)x

n=hy+kx ............ 9

where 7 is chosen arbitrarily such that the Jacobian of the transformation is not zero, and h and

k are constants.

With the proper choice of the constants h and k in the transformation (9), Eq. (5) reduces to
Upy = Dyug + Eyuy + Fou+ Go(6,m) e (10)

where D,, E,, and F, are constants.

If B = 0, we can see at once from the relation

B2 —4AC=0

that C or A vanishes. The given equation is then already in the canonical form. Similarly, in the

other cases when A or C vanishes, B vanishes. The given equation is then also in canonical

form.

(C) Elliptic Equation
When B? — 4AC < 0, the equation is of elliptic type. In this case, the characteristics are
complex conjugates.
The characteristic equations yield

y=Mhx+¢
where A, and A, are complex numbers. Accordingly, ¢, and c, are allowed to take on complex
values. Thus,

E=y—(a+ib)x
where A;, =a=xib in which a and b are real constants, and a = B/24A and b =
V4AC — BZ/24A.

Introduce the new variables

1
a=-(E+n)=y—ax
Application of this transformation readily reduces Eq. (3.3.5) to the canonical form
Ugq + Ugp = D3ug + Ezug + Fsu + Gs(a,B) ... (14)

where D5, E5; and F5 are constants.
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We note that B2 — AC < 0, so neither A nor C is zero.

Example 1:

Consider the equation 41y, + 5ty + Uyy + Uy + U, = 2

Since A=4,B=5,C=1, and B> — 4AC =9 > 0, the equation is hyperbolic. Thus the
characteristic equations take the form

dy

a—l
dy 1
dx 4

and hence the characteristics are

The transformation

y=x+c
y=(x/4)+c;
§=y—x
n=y-(x/4)
therefore, reduces the given equation to the canonical form
1 8

U =3Un ~ g

This is the first canonical form.

The second canonical form may be obtained by the transformation
a=¢+7
B=¢—m

AS Ugq — Ugp = gua —guﬁ —g

Example 2:

The equation uy, — 4u,,, + 4u,, = e”

is parabolic since A = 1,B = —4,C = 4 and B? — 4AC = 0. Thus, we have from Eq. (9)

E=y+2x
n=y
in which n is chosen arbitrarily. By means of this mapping, the equation transforms into
1
Unn = Ze"
Example 3:

Consider the equation u,, + Uy, + Uy, +u, =0
SinceA=1,B=1,C =1, and B> — 4AC = —3 < 0, the equation is elliptic.
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We have

5 =Bi\/Bz—4AC=1+i§
12 24 272
and hence,

1 3
€=y—<§+l7>x

1 3
n=y—<§—l7>x

Introducing the new variables

1 = 1
a—z(f n=y X

1 V3
p=s@-m=—7x

the given equation is then transformed into canonical form

2 2

Ugq + Ugp = gua + ﬁuﬁ

Example 4:
Consider the wave equation u,; — c?u,, = 0, ¢ is constant
Since A =—c%B=0,C =1, and B> —4AC = 4c? > 0, the wave equation is hyperbolic

everywhere. According to (3.2.4), the equation of characteristics is
2
—c? (%) +1=00rdx?—c%dt?=0

x + ct = ¢ = constant
X — ct =n = constant

Therefore

Thus the characteristics are straight lines, which are shown in Fig. 3.3.1. The characteristics
form a natural set of coordinates for a hyperbolic equation.

In terms of new coordinates ¢ and n defined above, we obtain

Uyy = Uge + 2Ugy + Upy

U = CZ(“EE — 2Ugy + unn)

so that the wave equation becomes

—4czu5n =0
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Figure 1. Characteristics for the wave equation.
Since ¢ # 0, we have
Ugy =0
Integrating with respect to &, we obtain u, = (1)

where 1, is the arbitrary function of 7. Integrating again with respect to n, we obtain

w@n) = [ iy +6(6)

If we set (1) = [ ¥, (n)dn, the solution is
u($,n) =) +vm)

which is, in terms of the original variables x and ¢,

u(x,t) = ¢(x +ct) + P(x —ct)

provided ¢ and v are arbitrary but twice differentiable functions.

Note that ¢ is constant on ‘wavefronts' x = —ct + ¢ that travel toward decreasing x, as t
increases, whereas 1 is constant on wavefronts x = ct + n that travel toward increasing x as t
increases. Thus, any general solution can be expressed as the sum of two waves, one traveling

to the right with constant velocity ¢ and the other traveling to the left with the same velocity c.

1.10. General Solution:

In general, it is not so simple to determine the general solution of a given equation. Sometimes
further simplification of the canonical form of an equation may yield the general solution. If
the canonical form of the equation is simple, then the solution can be immediately ascertained.
Example 1:

Find the general solution of x2u,, + 2xyu,y, + y*u,, = 0
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:
using the transformation & = y/x,n = y, this equation was reduced to the canonical form

Upy = 0 for y # 0
Integrating twice with respect to n, we obtain u(&,n) = nf(§) + g(¢)

where f(§) and g(&) are arbitrary functions. In terms of the independent

variables x and y, we have u(x,y) = yf (%) +g (X)

X

Example 2:
Determine the general solution of 4u,, + 5uy, +u,, +u, +u, =2

Using the transformation ¢ = y —x,n = y — (x/4), the canonical form of this equation is

1 8

Ugp =3Un — 35
By means of the substitution v = w,,, the preceding equation reduces to

1 8
Usz:gv—g

This can be easily integrated by separating the variables. Integrating with respect to &, we have
8 1
=—_4+_e@/3)
v 3 + 3 e F(n)
Integrating again with respect to n, we obtain

8 1
u€m =31 +§g(n)ef/3 + (&

where (&) and g(n) are arbitrary functions. The general solution of the given equation is

therefore

8 X 1 xy\ 1
e - _ 2\ p30y=x%) _
Example 3:
Obtain the general solution of 3u,, + 10u,, + 3u,, =0

Since B? —4AC = 64 >0, the equation is hyperbolic. Thus, from Egs. (3.3.2), the

characteristics are

y=3x+c¢
y= 3x C2
Using the transformation
E=y—3x
_ 1
n=y—3x
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the given equation is reduced to
64

3 U =0

Hence, we obtain ug, = 0

Integration yields u(¢,n) = f(&) + g(n)
In terms of the original variables, the general solution is u(x,y) = f(y —3x) + g (3’ - §)

Exercises:
1. Determine the region in which the given equation is hyperbolic, parabolic, or elliptic,

and transform the equation in the respective region to the canonical form.
& XlUyy + Uy = x2

b. Uyy + y2uy, =y

C. Uyy + XYUyy, =0

d. x%Uyy, — 2XYUyy, + YPu,, = e*

€. Uyy + Uyy — XUy, =0

X —
f. e*u, +edu,, =u
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UNIT- 11

Cauchy Problem: The Cauchy problem — Cauchy-Kowalewsky theorem — Homogeneous
wave equation — Initial Boundary value problem- Non-homogeneous boundary conditions —
Finite string with fixed ends — Non-homogeneous wave equation — Riemann method — Goursat
problem — spherical wave equation — cylindrical wave equation.

Chapter 2: Sections 2.1 to 2.11

2.1. The Cauchy Problem.

consider a second order partial differentiation equation for the function u in the independent
variables x and y and suppose that this equation can be solved explicitly for u,,, and hence can
represented in the form.

Uyy = F(X, 5, Uy, Gy, U Uy )

For some value y = y,, we prescribe the initial values of the unknown function and of the

derivative with respect to y.

u (x,y0) = f(x)
uy (x,y0) = g(x).

The problem of determining the solution of equation satisfying the initial conditions is known
as initial value problem.
Initial - value problem of a vibrating string:

The curve equation, u,, = c?u,., satisfying the initial conditions.
u(x, ty) = uy(x).
ue(x, to) = vo(x).
where u,(x) is the initial displacement and v, (x) is the initial velocity.
Note: Cauchy problem:
In initial value problems, the initial values usually refer to the data assigned at y = y,. It is
not essential that these values be given along the line y = y,, they may very well
be prescribed along some curve L, in the xy plane. In such a context, the problem is called
the Cauchy problem instead of the initial value problem.
In general, let us consider the equation.
Auyy + Buyy, + Cu,yy, = F(x, v, ulux,uy) - (%)

where A, B & C are functions of x & y.
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Let (x,, yo) denote points on a smooth curve L, inthe x — y plane. Let the parametric equation

of this curve Ly be xy = x4 (1), yo = yo(4).
where A is a parameter.

Two function f (1) & g(A) are proscribed along the curve L.

u = f(A).
% _ @
= g).

The functions (1) & g(4) are called the Cauchy data.

The solution of the Cauchy problem is a surface called an integral surface.

=a=f()

diffw.rt'a".

S du_oudx oudy _df
dA  0dxdA OJdydx dA

Now 2= g(4)

n

ou dx oudy

. u
=D —=—— e
Expand this o = oman T ayan =9 (2)
d d d d
But==—2and 2 ==,
dx ds dan ds
u _ _oudy | oudx _
an  odxds dy ds =9
ax dy
i i dA| _ dx dx  dydy
From equation (2) Lay ax|T @ t
ds ds
_ (dx)*+(dy)?
=" a7 0.

Equation (1) diff. w.rt, x, 22 4 0w dy _ i(a_”)

ax2dA = dxdydA  dA

Equation (1) diff. w.r.ty.

0’u dx 0d*udy d (ou
i Puay_ ooy,
dxdy dA 0dy?dA dA\dy
0%u 0*u 0*u
(x) >A— + B +C=—=F > (5)

0x? d0x 0y dy?

From equation 3,4,5.
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0
A da _dxy dx dy

dx dy\ =z Baal
di dA
A B C
dy[o 2% 4+ 0
da da '
dx\* dxdy dy\?
=c(z) Baa+4(@)
* 0.
b (dx)2
Y\ax)
;@)
c-BIy 4\ _
& (@
dx da
-2 a(2) <o
dx dx)
dy2 dy
ﬁA(&) —B(a)i-C—O.

which is the characteristic equation.

If Equation (*) and functions f (1) & g(4) are analytic. The solution is

SN 1 o
U= ) Y e = (= 1)~y

L L k)! axk ayprk

2.2. Cauchy-Kowalewsky Theorem.

Let the partial differential equation be.

Uyy = F(y, X1y X2y evey Xy Ug Uy, Use , U,y woey Uy
Us s Uy e Uy Uy xcp Uiy s ...,uxnxn).
Let the initial conditions.

U= f(x1,Xg, e, Xp).
uy, = g(xg, Xz, o0, Xy)

be given on the non-characteristic manifold y = y,.
2.3. Homogeneous Wave Equation:

Cauchy problem of an infinite string with initial condition.

Ut — C2 Uy = 0 ev e e (1)
Initial condition, u(x,0) = f(x) ........... (2)
U(x,0)=gx) .ol 3)
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A=—c%4B=0,C=1
~B? —4AC = 4c¢* > 0.

(i.e.) The given equation is Hyperbolic V the domain

Here

Now
dE_Bi\/Bz—ALAC
dx 24
_ 4 Véc? _+26
T 2(=c?) T 2c?
_1 1
¢ ¢
1
dt = —dx.
c
1 1
t=—x+¢ dt = ——dx.
c c
1
ct —x = cq. t=—zx+ Cy
ct+x = cy,.

Introducing the characteristic coordinates
E=ct+x & =1 n,=1
n=x—ct &=c nN=-c

$xx =0 M =0

$See =0 1My =0

Uye = Ugg + 2Ugpy + Uy, e 4

U = Uge (€)% + 2ugy(c)c — c)+ Upy (—€)?

= cz[u&r — 2ug, + u,m] .............. (5)

U — C2U,, = 0.

CPUgs — CPUgy + Uy ° — Cllgs — 2¢%Ugy — 2Uyy = 0

—4czugn =0

Integrating w.r.t &,

f 2o
9¢ \on ¢ =
Z—Z = Y™ (n). where 1" (n) is arbitrary function of 7.
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Integrating w.r.to n,

[ wn=| v

u=vym + o).
~u(§,m) = ¢ + ).

where ¢ and y are arbitrary function.

Transforming to the original variable x and ¢, we find the general solution of wave equation,

ulx,t)=¢px+ct) +Pp(x—ct) ... (7
provided, ¢ and y are twice differentiable function.

Substituting equation (2) in (7),

f(x)=u(x0)=¢x) +¢Xx) ...... (8)
Substituting equation (3) in (9)
u(x,t)y=cp'(x+ct) —cp(x —ct) ......... 9)
gx)=u(x,t) = cp'(x) —cP’'(x) .......... (10)

From equation (10) =
cp'(x) —cp’(x) = g(x)
S 00—V =)
Integrating, w.rto x, ¢(x) —y(x) = %f;ﬂ gndr+k..... (11)

where x, & k are

Solving equation (9) & (11) we get.

9) + (11) =2 2¢(x) = f(x) +%fxg(r)dt+ k.

$O) =) +5-[o g@dT+5 (12)
From equation (9) - (11)
= 2Y(x) = f(x) —= [ g(x)dr -

= f@) -7 g(@dr-=.
Substituting (12), (13) in (7).
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t—l +ct) + fxm d+k+1(+t

x—ct

bk
2c), g(mdr —5

=%[f(x+ct) +f(x—ct)] +

ZLC Ux:ﬂt g(t)dr — L:_Ct g(T)dTl

_E[JC(X"‘CU‘|‘f(9f—0t)]‘|'i fx+€t (T)dr+jx0
2 2c|J,, 9

x—ct

=%[f(x+ct)+f(x—ct)]+ifx C g(r)dr% e e e (14)

2c

x—ct

This is called the d'Alembert solution of the Cauchy problem for the one dimensional wave

equation.
Exercises 1:
a) u, — c*u,, = 0,u(x,0) = 0,u,(x,0) =1

Solution:

U — C2Uyy, =0 ooiiiinll, (1)
u(x,0)=0 ... 2)
u(x,0)=1 ... 3)

B? —4Ac=—-c?B=0,C = 1.
= 4¢? > 0. (Hyperbolic)

dy 0++4c? 2c 1
dx —2c2 —2c2 c
dy 1 p 1d
V= e
dx ¢ e cx
t —1 +
y—cx 1.

C4=x+Cl.

dy 1
a_—zzcdy——dx
cy =—x+c,
X+ cy = cy.
$C1=X+Ct.

c, = x — ct.

Introducing the new variable,
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E=x+ct. & =1
n=x—ct &,=0
Uy =u§€x+unnx §e=c
Ut =u§‘ft+un77t $ee =0

Nx =1
Nxx = 0
Me = —¢
Nee =0

Uy = u{fxx +u€€€x€x + ur)nxx + nxunnnx-
+€xu€n7’x + nxunftfx-

SUge+2UUgy + Upy ... (4)
U =C* [Uge+2Uugy + Upy] oo (5)
Substituting in (1),
—462u5n = 0.
uén =0 (= c#0) - (6).
Integrating, w - r - to ¢,
Un =P ()
Integrating w - r - to n,

u(e,n) =¥ + (&)

W) = dlx + ct) + P(x — cb) T (7)
Now sub (2) in (7), we get

u(x,0)=¢px)+yPx)=0 ............. (8)

U,y =¢'(x+ct)(c) —cyp'(x —ct) ..oeen..... 9)

Substituting (3) in (9), u:(x,0) =¢'(x)c—cy'(x) =1

= Integratingw - r - to, t

¢'(x) — ' (x) =-g(x) - 1

o (11)
$(x) —p() =[] dr+k

(8)+ (11) : 2¢p(x) == [, dr+k

(8) - (11) 29 (x) = —%f;‘o dt—k.  ......(13)

(12), (13) in (7)
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1 1 x+ct 1
U(X,t)=§<zf d’l’+k>+
Xo

xX+ct 1 x—ct
=— dt + - ——
2c %o 2 2c o
x+ct 1 [Xo
=— drt + — dr.
2c Xo 2c x—ct
1 x+ct
=— dr.
2¢ )yt
! + ct + ct
=5z [x + ct — x + ct]

! 2ct =t
= — X = t.
2c ¢

b.) u, — c®u,, = 0,u(x,0) = sinx, u,(x,0) = x2.
Solution:
uscn = 0.
u(x,t) = ¢(x + ct) + P(x — ct).
u(x,t) = cp’'(x + ct) — cp’'(x — ct).
= u(x,0) = ¢p(x) + Y(x) =sinx.......... (1)
u(x,0) = cd’'(x) — cp’(x) = x2.

¢'(x) —¢'(x) = %xz-
d(x) —P(x) =%f;‘0 T2dT+ Kk e, 2)

D+ 2)= Q¢(x) =sinx +%j-xr’r'dr +k

(1) — (1) = 2Y(x) =sinx —Ej:;o T'dt — k

1 x+ct k
:>u(x,t)=—sin(x+ct)+—f 2dt+ =+
Xo

2 2c 2
1 . 1 x—ct Zd k
2sm(x ct) o LO tidr — 5.
1 x+ct
= —[sin(x + ct) + sin(x — ct)] + —f T2dr.
2 2¢ )yt
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1 lz sin(x + ct) + sin(x — ct) cos(x + ct —x+ ct)
"2

x+ct
2
T4dT.
z k1 I
2x  2ct 1 [xtet
— >< 2 [sm—cos— +—f T2dt.
2 2¢ ) ot
1 x+ct
= sin xcos 2t + —j t2dr.
2c ct
3 X+ct
= sin xcos ct +—l l

x—ct
x+ct)d—(x—ct

—smxcosct+—l( ) 3( )’ ..(3)
a3 — b3 = (a — b)(a? + b? + ab).

Take (x + ct)3® — (x — ct)® = [x + ct — x + ct][(x + ct)?
(x — ct)? + (x + ct)(x — ct)].

= (2ct)[x? + 2ctx + c?t? + x? — 2ctx + c?t?
+x% — xct + xc' — c?/t?].
= 2ct X [3x? + c?t?].

Substituting equation in (3)

1
= sin xcosct + 2— X 2ct

3x? + c%t?
3

c?t3
= sin xcosct + tx? + —

C.) Ug —

2y, = 0,u(x,0) = x3 u,(x,0) = x.
Solution:
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u(x,t) = ¢(x + ct) + p(x — ct).
u(x,0) = p(x) + p(x) = x3 - (1)

1
6(x) — 1 (x) =Ej tdrt k. @),

(1)+(2)=>2qb(x)=x3+§fxrdr+k.

0

(1)—(2):21p(x)=x3—%fx27dr—k

, _(x+ct)3+ lf““ 4 +k+x3—ct 1J"‘Ct it
utn ) == 2c) TR T ") T
1 x+ct
=—[(x+ct)® + (x —ct)3] + —j Tdrt.
2 2 x—ct

a®+ b3 = (a + b)(a® + b? — ab).

1 1 TZ x+ct
=—[2 3 242 .
2[ x3 4+ 6x c?t ]+—2cl—zl

x—ct

1 1
=5 2[x3 + 3xc?t?] + >0 [(x + ct)? — (x — ct)?]

1
= (x3 + 3xc?t?) + —4xct.
4c
= x3 + 3xc?t? + 2xt.
d.) u, — c*u,, = 0,u(x,0) = cosx,u,(x,0) = e L.
Solution:
u(x,t) = ¢p(x + ct) + P(x — ct).
u(x,0) = ¢p(x) + P(x) = cosx ... cev ... (1)

1 X
d(x) —yP(x) = Ee‘lf dt+k - (2)
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1 X
(D + (2) 2 2¢(x) = cosx+ze‘1f dt+k

0

1 _ [
()-(Q2) = 2yP(x) = cosx — Ee‘lf dr — k.

u(x, t) =w+ie‘1 fx+€t dr+E+
' 2 2c¢ ), 2
cos(x —ct 1 x—ct k
2 2 ), 2
1 1 x+ct
= —[cos(x + ct) + cos(x — ct)] + e~ 1 f dr.
2 2 x—ct
_1[2 (x+ct—x+ct> <x+ct+x—ct)]
= > |2cos 5 cos 5 )
1
+2—C[T]§f§f Xe™?

1
=cosctcosx+2—c[x+ct—x+ct] x e 1,

A+B>
5 .

A—B
cosA +cosB = ZCOS( > )cos(

1
= Ccos ctcosx+z>< 2ct X e~

= cosctcosx + t/e

e.) u, — c*u,, =0, u(x,0) =log(1 + x2), u,(x,0) = 2.

Solution:
u(x,0) = p(x) + P (x) =log(1 + x2) ........ (1).
d(x) —P(x) = ff)j‘o dt+k oo, 2)

(1) + (2) = 2¢(x) = log(1 + x?) +§fx dt +k

(1) = (2) =2yP((x) =log(1+x2) —%fx dt — k.

log[1+ (x +ct)?) 2 [**< k k log[l+ (x—ct)?) 2 [(* <
v d |
X

2 2¢ 272 dr

ulx,t) =

+2 2+ 2 2c

X0
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[log[1 + x2 + 2xct + c?t?] + log[1 + x? — 2xct + c?t?]
x+ct

j dt

x—ct

2
[log[1 + x? + 2xct + c?t ]+log[1+x2—2xct+c2t2]+z[x+ct—x+ct]

+
|+—x ﬁINl\Jlr—x

{log(1 + x2 + 2cxt + c?t?) + log(1 + x? — 2xct + ¢? +1)}+2t

Nlr—xN

f) u,, — c*u,, = 0,u(x,0) = x,u,(x,0) = sinx.
Solution:

u(x,t) = ¢p(x +ct) + P(x — ct).
ulx,0)=¢pxX)+px)=x.......()

P(x) —p(x) = % f;; sintdt+k ....... (2)

D+ 2)2¢x) =x+ %fx sin tdt + k.

1 2 2 = L dt — k
MH-2)= qb(x)—x—zj;osmr T—

(x + ct) 1 [x+et kt (x — ct)
u(x,t) ==———— +2— smrdr+7+T

Xo

1f ok
2c e SIN TdT >

=l [x +ct+x—ct]+ 1 [—cosT]**et
2 2c '

. +ct) + t
=5 Zc[ (cos(x + ct) + cos(x — ct)]

1
=x + o [—cos(x — ct) + cos(x + ct)].

x—ct+x+ck> . (x+ct—x—ct
sin

—x+—[xsm( ) >

1
= x + —sin x sinct.
c

Note:
The solution u(x, t) depends only on the initial values at pts btwn x — ct and x + ct-and not
at all initial values outside. this interval on the line t = 0. This interval is called the domain of
dependence of the variables (x, t).
Note:
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For every e > 0 and for each time interval 0 <t s to, fr a number 6 (¢, t,) sot
lu(x, t) —u*(x,t)| < e.

whenever,

lf ) =l < 8, [g(x) — g™ ()] <.

From the equation, u(x,t) == [f (x + ct) + f(x — ct)] +5- [ T g(@dr,

we have.

lu(x, t) —u*(x,t)] < %If(x +ct) — f*(x + ct)| +% f(x—ct)—f*(x—ct)

1
Z—Cfxx_tcttlg(x) —g"'(x)|dt < € ,where £ =6§(1+ty)

For any finite time interval 0 < t < t,, a small change in the initial data only produces a small
change in the solution.
Example 1:
Find the solution of the initial value problem
Upe — C2Uxx

,u(x,0) = sinx, u;(x,0) = cosx.

1 x+ct
u(x,t) = = [sin(x + ct) + sin(x — ct)] + —f cos tdr.
2 2¢ Jy_ct

1
= sin xcos ct + o [sin(x + ct) — sin(x — ct)].

= sin x cos ct + —cos x sin ct.
c

Note: 1.
If an initial displacement or an initial velocity is located in a small neighborhood of point

(x0, to). It can influence only the area t > t,, bounded by two characteristics x — ct = constant
and x + ct = constant with slope i% passing through the (x,, t,). This means that the initial

displacement propagates at the speed c, whereas the effect of the initial velocity propagates at

all speeds upto c.This infinite sector is called the domain of influence of the point (x,, t,).

x+ct

Note: 2 According to the equation u(x, t) = %[f(x +ct)+ f(x—ct)] + %fxﬂt g(1)dr,

the value of u(x,, t,) depends on y initial data f and g in the interval [x, — ctq, xo + cty |
initial data f and g in the interval [x, — ct, , x, + ct,] which is cut out of the initial line by

the two characteristic x — ¢t = constant & x + ct = constant
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with slope i% passing through the point (x,, t,). The interval [x, — cty, xo + cty] on the lire

t = 0 is called the domain of dependence.

The physical significance of the d’ Alembert solution.

x+ct

u(x, t) = %f(x +ct) + 2—1Cf0x+Ctg(T)dr + %f(x —ct) — Zicfo g(v)dr,

(or) u(x,t) = ¢p(x + ct) + P(x — ct).
1 1 ¢ 4
66 =5/ O +5. | g

0
i

_ 1 1 g
b =57 -5 | g@ar

0

¢(x + (t) represents a progressive above travelling in the negative x-direction with speed c
without change of shape.

Similarly, ¥ (x — ct) is also a progressive wave propagating in the positive x-direction with
the same speed c. without change of shape. At t = 0, the shape of this function is u = ¢ (x).
At a subsequent time its shape is given by u = ¥(x — ct), (or) u = ¥Y(&) where & = x —ct is
the new coordinate obtatied by translating the origin a distance ct to the right. Thus the shape
of the curve remains the same as time progresses, but moves to the right with velocity c.
u(x,t) = sin(x + ct)

represent sinusoidal waves travelling with speed c in the +ve and - ve directions respectively
without change of shape.

To interpret the d'Alembert formula, we consider two cases:

case (i):

when the initial velocity zero, is g(x) = 0.

Then the d'Alembert solution has the form

1
u(x,t) = 5 [f(x +ct) + f(x —ct)].
Now suppose the initial displacement f(x) is different from zero in an interval (—b, b). Then

in this case the forward and the backward waves are represented by,

1
u =Ef(x).
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2.4. Initial-Boundary value problems:
(A) Semi-Infinite string with a fixed End:
consider a semi-infinite vibrating strong a fixed end, is.
Upp = C%Uyy, 0 < x < 00, t>0
u(x,0) =f(x), 0 <x < oo,
u(x,0) =g(x), 0 <x <o
u(0,t) =0,1)0 < t < oo.
w-k-tu(x,t) =¢(x+ct)+p(x — ct).

1 1 ¢ k
where ¢ (&) = Ef(f) + Z—Cfo g(D)dt + 5 (D
1 1 (" k

Y@ =5f) - Z_C,fo CIQLLE SR ¢)

u(0,t) = ¢(ct) + Y(—ct) = 0.

= P(—ct) = —p(ct)
Let ¢ = —ct.
Y(@) = ~¢(-a).
Replacing a by x — ct, we obtain for x < ct. Y(x —ct) = —¢p(ct —x) ........... (3)
using ¢ (&), (i.e.) equation (1).
(3) becomes, Y (x — ct) = —%f(ct —Xx) — %foxﬂtg(t)dr —g veeeen(d)

=~ The solution of the initial -boundary value problem is

u(x,t) = % [f(x+ct)+ f(x—ct)] + %f;f;f g(t)dt for x > ct :
u(x, t) = % [f(x+ct) — f(ct —x)] +%f:§t;t g@drforx<ct. (5)

Here f must be twice continuously differentiable and g must be continuously differentiable,
f(0) = f"(0) = g(0) = 0.
Example 2:

Determine the solution of the initial-boundary value problem

U = 4Uyy, x>0,t>0.
u(x,0) = |sinx|, x> 0.
ut(x,0) =0, x = 0.
u(0,t) =0, t=>0.
Solution:
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u(x,t) =¢p(x+2t) +P(x — 2t) — (*)w
u(x,0) = ¢p(x) +¢P(x) =l senx) — (1).

1
() + () =5 (0)

=0
>¢x)—yYx)=0 .......... 2)
(1)+(2), = 2¢(x) = |sinx| ......... 3)
(1)-2) = 2y(x) = |sinx| .......... (4)
For x > 2t,

1 1
(x) = u(x,t) = 5 |sin(x + 2t)| + 5 [sin(x — 2t)].
1
=3 [Isin(x + 2t)| + |sin(x — 2t)]]
1
Esin 2t + sin(—2t) =

For x < 2t, [Y(x) = —¢p(x)]
Y(x —2t) = —¢p(2t — x).

— 1 in 2
= —E[sm t—x].
(*) = u(x,t) = > [Isin(x + 20)| + (Isin(2t — ©)])].

= %“sin(x + 2t)| — |sin(2t — x)|].

B) Semi-infinite string with a free End:

consider a semi- infinite string with a free end at x = 0.

Upe = C2Uyy, 0<x<oo,t>0
u(x,0)=f(x), 0<x<oo.
u(x,0) =g(x), 0<x<oo.
u,(0,t) =0, 0<t< oo

Solution:

For x < ct,

u(x,t) = ¢p(x+ct) + Pp(x — ct).

Ue(x,t) = @' (x + ct) +P'(x — ct).

u,(0,t) = ¢'(ct) +p'(—ct) = 0.
Integrating, [ ¢'(ct) + ¥’ (—ct)dt = 0.
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%[Q‘)*(Ct) — 1 (—ct)] = k, x ia constant.
= ¢(ct) —P(—ct) =k .. (1)

Let @« = —ct, in ¢.

¢(—a) —YP(a) =k
—Y(a) = —¢p(—a) + k.
Y(a) = ¢p(—a) — k.

Replacing a by x — ct,

Y(x —ct) = ¢p(ct —x) — k.

_ 1 1 ct—x J k
Il)(x—ct)—if(ct—x)+z—cfo g(1) T2

The solution of the initial boundary value problem,

x+ct

[f(x+ct)+ f(x—ct)]+— fx e g(@dr forx > ct

1
~2
1 x+ct
2

uCet) = 2[f(x +et) + flet — 0] + = | [,
Here f must be twice continuously differentiable and g must be continuously differentiable,
f'(0) = g'(0) = 0.

Example 3:

g(tydr + f g(t). for x < ct.

Find the solution of the initial boundary value prole.

X
u(x,0) = cos—-, 0<x<w

us(x,0) =0, 0<x<oo.
u,(0,t) =0, t>0.
Solution:

Given u,, = u,q, Here c®=1, c=1.
Forx > t,

~c=1.

We know that

1 1 x+ct
u(x, t) = E[f(x +ct)+ f(x—ct)] + Zf_ t g()dz.

—l[cosz(x+t)+cosz(x—t)] [~c=1,9(2) =0]
_2 2 A = 'g =

[ [x+y+x t] nx(xx+t—x+t>]
* COS = :

2 xcos X cos - >

= X 7Tt

_ZCOSZ cos -
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u(x, t) forx < t,

1 1 x+ct
u(x,t)=§[f(x+ct)+f(ct—x)]+2—CU0 g(@)dr +

fo—x g drl

—1[ = (x+ct) + cos (ct— )| +0
=3 cosz(x ct) cosz(c X) .
—1[2 z +ct+ct X T[ + ct t+ ]
=3 cosz(x ct + ct —x) cosz(x ct —ct+x)
B nt I
= COS 7 CteoS = X

j— T[t T .o _1
= cos 5 coszx[. c=1].

2.5. Non- homogeneous Boundary conditions:

Uy = c2uxx, x > 0,t > 0.
u(x,0)=f(x), x =0.
us(x,0) = g(x), x = 0.
u(0,t) =p(t), t =0.
W- K- -Tu(x,t)=¢(x+ct)+yP(x — ct).
u(0,t) = ¢(ct) + P (=ct) = p(0).

put a = —ct.

$(—a) + (@) =p (=2)

c
a

= Y@ =p(-=) - ¢(-a)

c
Replacing a by x — ct;
ct—x
Y(x—ct)=P (T) — ¢(ct —x)
x
=P(t—z)—q,’>(ct—x)
For x < ct,
u(x,t) = @(x + ct) + P(x — ct).

x 1
= (p(t—z)+§[f(x+ct)—f(ct—x)]
1
+Zf g(r)dr.
X
=p(t—z)+qb(x+ct)—1/)(xt—x).

where ¢(e) =~ f (&) +-f, g(¥)dr.
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w()—3+()+ifn (0)dt
77—2 n ZCOg .

For x > ct,

x+ct

w(x, t) = %[f(x +ct)+f ("t_ Ct)] + zicf g(D)dr

- X x—ct
provided f must be twice diff contivicuouly f must be continuously differentiable, P must be
twice continuously diff in t,
p(0) = £(0),p'(0) = g(0),p" (0) = c*f"(0).
case (ii):
let us consider the initial boundary value problem.

Upe = C%Uyy, x > 0,8 > 0.
u(x,0) = f(x), x = 0.
us(x,0) =g(x), x = 0.
u,(0,t) = q(t), .t = 0.

We know that,

u(x,t) = ¢p(x + ct) —P(x — ct).
Ue(x,t) = ¢’ (x + ct) + (x — ct).
Apply initial boundary conditions,
U (0,8) = ¢'(ct) + ' (—ct) = q(t).

Integrating, > (ct) —2p(—ct) = f, q(1)dT +k
t

¢(ct) —Y(—ct) = c.l; q(t)dr + k.

if we let @ = —ct, then .

t
b0 -p@=c | a@dr+k
0

—-a/c

P(@) = p(—a) — ¢ f q(Odr — k

Replace a by x-ct.

X

Y(x —ct) =p(ct —x) — cf ‘ q(t)dt — k.

0

1 x+ct k 1
u(x,t)zif(x+ct)+zj; g(r)dr+§+§t(ct—x)

1 ct—x k t—x/c
— g(r)dr+——cf q(t)dr — k.
ZC_];) 2 0
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For x < ct,
1 1 x+ct
u(x,t)=E[f(x+ct)+f(ct—x)]+2—CU0 g(odr +

LCt_x g(r)drl - jot_X/C q(r)dr.

provided f is twice continuously differential y, and g must be continuously differ.
In addition £'(0) = ¢q(0),g'(0) = q'(0).

Note:

we can use the elastic boundary end in the same manner.

u,(0,t) + hu(0,t) = 0, h = constant.

2.6. Finite string with fixed Ends:

Up = C2Uyy, 0<x<1t>0
u(x,0)=f(x), 0<x<1.
uU(x,0)=g(x), 0<x<1.

u(0,t) =0 t=>0.

u(l,t) = 0. t=0.

we know that u(x, t) = @(x + ct) + P(x — ct).
Apply the initial ends.

u(x,0) =p) +Px) =f(X)0<x <1 - (¢)

us(x,t) = cp'(x + ct) — cyp’(x — ct) = g(x) Osx=<l
We know that (p(E)=1f(4f)+lf€g(1')dﬂc+E 0<é&<L .. (A)
2 2¢ ), 2
@ () =n1f(n) -1
<p(n)=%f(n)—%fo g(T)dT—g 0<n<l ....(B)

1 x+ct
~u(x, t) = 5 [f(x+ct)+ f(x—ct)] + Zf g(r)dr.

x—ct
forog<x+ct<land0 << x—ct <L
The solution is determined by the initial data in the region,

0<x+4+ct<l=>—x<ct<sl—x.
X l—x
——<t<
c c

X X
nt<S t<—=t>0.
C C

Applying boundary cads,
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u(0,t) = p(ct) +P(—ct) =0,t =0
ull,t) =l +ct)+yYp(l—ct) =0,t =20........(2)

seta = —ct,

D) =e(a)+yY(a) =0
= Y(a) = —p(—a), a<0......(3).

ifweseta =1+ ctin(2).

p@+yYp(l—-(a—-D)=0.
pl@)=—vyYQRl—a),a=l .....(4).

Puté = —nin(1)

1 1" k
o-m=5fm+y [ (9@ar+3),

0
From (4) and (5),

o) ==2f(-m-=f " g@dr-%, —1<n<0 s (6)
Rang of ¢ (m) isextendedtoa —1 < m < 1.

Puta=5in(4)= @) =—yYQRL-§&),&E=1] ... (7)
Putn =21 —¢ in(B)

p21-¢§) =
Sub in (7)

1 1 (2l -¢ k
Zf(Zl—E)_;fo g(T)dT_E,0S2l—€Sl ............ (8)

21l-¢

1 1 k
¢(f)=—§f(21—f)+zj; g(r)dr+§,lsfs2l,

The range of @ (&) is extended to 0 < & < 2. continuing in this manner, ¢(¢) Hence the
solution is determined V0 < x < l.and [ > 0.

In region 1- only direct waves propagate

In regions 2 and 3 - Both direct and reflected waves propagate.

In region 4,5,6,... — several waves propagate along is characteristics reflected from both of the
boundaries x = 0 and x = L.

Example 4:

Determine the sol of u;; = c?u,, 0 <x <, t > 0.

u(x,0) =sin(?). 0<x<l

us(x,0) = 0. 0<x<l
u(0,t) = 0. t=0
u(l,t) =0. t=0.

63

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Proof:

§

1 1 k
We know that, (&) = Ef(f) + 2_cf g(@dr + > 0<¢é<i
0

_1 ijn d EO< <l
w(n)—zf(n)—ZC . g(®) T-2,0=n=<

=>¢>(E)=1sin”—€+5, 0<&<L
271 T2

1

=>¢()=—sin@—5,os <l

W=7y n
-1

v =5/ -5 [ @ir— X _i<n<o
m=-5ftm=5] 9 5, —l<n<ol.

1 . mny  k
=>¢(n)=—§sm(—7)—§.,—lsnso.
1 oy ko L
= 5 sin (T) — E(. sin(—0) = —sin )

21-¢

¢(f)——lf(21—f)+ij (T)dT+E I <E2
- 2 2c o g 2’ SRR .

1 Z k
= ¢(é) = —Esmf(ZZ - &) +§ l<¢&<2l
[¢(@) = ¢p(), Y(a) = —¢p(—a),a < 0].
1 k
S Pt = — [——sinz(ZZ + 1) +—] ,—2l<n < -1
2 l 2
Ty o<
proceeding in this manner, we determine the solution
u(x,t) = ¢ + ).
_ 1 = +1 om +16 k/2

E=x+ct

1y . T
= u(x,t) =§[sm7(x+ct)+sm7(x—c,t)] n=2x—ct.

xin (0,0) and Vt > 0.
2.7. Non-Homogeneous Wave Equation:
The Cauchy problem for the non-homogeneous wave equation.
Uy = CPUy + R () (1)
with the initial conditions,

u(x,0) = f(x)
ue(x,0) = g*(x)
By the coordinate transformation,
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o y dt 1
=ct.ot=y/c>—=—
y y dy ¢
Now, consider 24 = 2% 4t
dy at dy
uy, = (ut)z.=> Up = CUy o eon.. (3)
. 0%u 1
1.e.) — =5
dy c
_ Y
= Uy = 2
2 Uy = CPUyy oo, 4)

sub(3) & (4)in (1) & (2).

= cuyy = Uy, + h*(x,t)

* h*
uyy = Uy + h ((;C’t) h(x, y) = — C—Z
Uyy = Uxx — h(x,y)
U(x,0) =f(x) ........... (6)
cu, = g*(x)

u, = g*(x)/c. where g(x) = g*/c

Uy (x,0) =g(x) .......... (7

Let Py(x,, yo) be a point of the plane, let Q, be the point (x,, 0) on the initial line y = 0. Then
the characteristics x + y = constant of equation (5) are two straight lines drawn through the
point P, with slopes +1. They intersect the x-axis at the points P;(x, —y,,0) and
P,(xo + vo,0). Let the sides of the triangle P, P, P, be designated by B,, B;, and. B,. Let R be
the region representing the interior of the triangle and its Boundaries B.

Now Integrating equation (5), we obtain.

ffR (tx — Uy )dR = ffR h(x,y)dR ... ......(8)

Using, Green's theorem; we obtain

ffR (uxx — uyy)dR = ¢ B(uxdy + uydx) N )
Since B is composed of B, B; and B,

(Xo+¥0)
Jy, (uxdy +uydx) = f(;‘o(’_ y{;’) Uy dx e (10) [Here, a & Bo, y=0 dy=0]
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(x0+0,0)

(urdy + uydx) = +f (urdx + u,dy)
By (x0.%0)
(x0+0,0) (x0.50)
=+ dwesyn == doy)
(x0,50) (x0+0,0)
= eI
= —[u(xg, ¥o) — ulxy + ¥o,0)]
= u(xg + ¥0,0) —ulxy,y0) = (11):
(uxdy + uydx) = (uxdx + uydy)
B, B;

= u(XO — Yo 0) - u(XOJ.VO) - (12)
Adding (10), (11) & (2).

¢ (uxdy + uydx) = —2u(x, ¥o) + ulxg — ¥o,0) + ulxy + yo, 0).
XotYo
+f uydx

X0—Yo

1 1
u(xgy, yo) = —Efﬁ (uxdy + uydx) + 3 [u(Cxy + vo,0) +

1 [*¥otYo

ulxg — yo5,0)] + —f aydx.
2)..,

0

= S || AR +5 o + 30,00 +uxy = 0, 0)
k

1 XotYo
+ f wydy [y (D& @) oo (14)

X0—Yo
we Replace x, by x & y, by y.
(14) = uGy) =5 [fGc+ ) + fe =M +35 [ g(@) - dr —3 [f, h(x,y)dR.

Now, y = ct.

xc+ct

1
u(x,t)=§[f(x+ct)+f(x—ct)]+zf g (r)-dt —

x=ct
1
—ff h(x, t)dR.
2 R

Determine the solution of

Example 5:

Uyy — Uy, = L.
u(x,0) = sinx.
uy (x,0) = x.

Solution:
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1 1 *y 1
wGey) =5 G+ + - +5 [ g@-de—3 [ hyar
x—y R

Now the characteristics are x +y = xy + y, ,

X—=Y=Xo— Yo

Xot+Yo
[sin(xq + yo) + sin(xg — yo)] + Ef () - dr

X0—Yo

X =Y =X0~— Yo

1 (Yo [~Y+XotVo 1 (*otYo
- = dxdy.— d
2[0 fy xdy 2] tdt

+Xo—Yo Xo0—Yo

N| =

u(xo; yO) =

Now dropping the subscript zero,

1 (x+y)
= u(x,y) =5 [sin(x + y) + sin(x — y)] + EJ rdt

xX=y

1 rY -y+x+y

- = f f dxdy.
2 0 V+x-=y

1 | 122 1
=3 [sin(x + y) + sin(x — y)] + > [7L_y - E(Y)

2.8 Riemann method:

The Linear Hyperbolic equation L[u] = u,,, + au, + buy, + cu = f(x,y) — (1)

denotes the linear operator a(x,y),b(x,y),c(x,y) & f(x,y) are differentiable functions in

some domain D*.

Let v(x,y) be a term having continuous second-order partial derivatives.

Let (vux)y(uvy)x = Vllyy + Uy ¥y — [uvyx + vyux].
= Vlyy + Uypby, — UV, — V) U,.
= (vuy), — (u- UJ’)x = Vlyy — Ulyy, — (2)
Let (vau, — u(av), = vau, + av,u + a,ub — uab, —ua,v.
= VauU,.
= (vau), —u(av), = vau,. ......... 3)
u, = (vbu), — u(abv), = vbu,

Now consider vL[u] — uM[v] = vuy, + vau, + vbu, + vcu
N——
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—UVyy + u(av), + u(bv), — ucv.
= VUy,, + vau, + vbu, + bcu — (vvxy)
= (Vuy)y — (uvy)x + (vau), — u(dv), + (vbu), —u(abv),
veu + u(av), + u(bv), — bcv
~ullu]l —umlv] = uy +uy ... (4)
where M is the operator represented by.
M[v] = vy, — (av)x — (bV)y, +cv ........... (5)

And u = auv —uvy, v = buv + vu,

[uL [u] —uM|v] = (vau - uvy)x +
(vbu + vuy), |-
The operator M is called the adjoint operator of L.
Note: If M = L, then the operator L is said to be. self -adjoint.
Now applying Greens theorem,

I, (v +w)dxdy =¢ (udy —vdx) ......... (7)
where c is the closed curve bounding the region of integration D which is in D*.
Let A be a smooth initial curve. We assume that the tangent to A is nowhere parallel to x or y
axes. Let p(a, B) be a point at which the solution to the Cauchy problem is sought.. Line PQ
parallel to x-axis intersect y the initial curve A at Q and the line PR parallel to the y-ali
intersects the curve A a R. Let e be closed contour PQRP bound.
since dy = 0 on PQ, and dx = 0 on PR. combine (4) & (7).
I, WLW) —uM[v])dxdy = [[, (Uy+ vy)dxdy.

=¢ udy—vdx (8)

= f; udy—vdx+f; udy—fPQ vdx

consider fPQ vdx = fPQ bvudx + fPQ vu,dx.

[u =,
du = v,.dx, v = u,dx.

Q Q Q
f vdx = f bvudx + [uv]g - f uv,dx.
P P P

Q

= [uv]g +f u(bv — v, )dx - (uv).

P

sub (8) in (7)
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II, @+ @) —uM(u))dxdy = f udy — vdx + f udy — (uv)y +
(uv)p — fP u(bv — v, )dx.
= (uv)p = {(uv)Q - f: u(av — v, )dy + fPQ u(bv — v, )dx
— f; vdy — vdx + [[, (v+ (u) — uM(v))dxdy
Suppose we can choose the fun v(x, y; a, ) be the son of the adjoint equation
M@)=0 ... (10)
satisfying theorem,
v, = bvwheny = f.
v, = avwhenx = a.
vv=1whenx=candy =} ......... (11)
The function v(x, y, a, B) is called the Riemann function. since a[u] = f

Equation (9) reduces,

[ul, = [uv], f (auv — uv, )dy — (buv + vu,)dx

ﬂ vfdxdy
R

=[uv], — L uv(ady — bdx) + j;z uvydy + vu,dx +

:f fdxdy ........(12)
D

This gives us the value of u at the point p when u and u, are prescribed along the curve A.

when uf u,, are prescribed, the identity.

R
[uv]g — [uv]y = f [(uv)xdx + (uv,,)ydy].
Q

[uv]y = [uvlz f (uv)dx + (Uv)ydy ... ..... (13).
sab (13) in (9).
[u]p = [uv]z — fQ ’ (ux) dx + (uv),dy — fQ ’ uv(ady — bdx).
+ fo ’ Vi dx + uv,dy + f fD vfdxdy ... (14)

Add equation (12) and (14),
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R

2[u]p = [uv]g + [uv]g — Zf uv(ady — bdx) + 2 ff vfdxdy

Q

R R
—j u[vydx — vy dy| + f v[u,dx —uydy|
Q Q

1 R
[u] 2[[uv]Q [uv] ] fQ uv(ady X) ffD vfdxdy

1 (" 1 ("
—EL u[vydx — vy dy| + EL v[udx — u,dy]

where

G(xt, 1) ={—2Vketf ()], [VAKkI(T — 07 — 27|} /T = 0)2 = c2¢?
+e g (VAR — )7 — c22]

If we set k = 0, we arrive at the d'Alembert formula for the wave equation

1 x+ct
u(x,t) = E[f(x +ct)+ f(x—ct)] + Z_C,[_ g(t)dr

2.9 Goursat Problem:

The Goursat problem is that of finding the solution of a linear hyperbolic equation

Uyy = a1(X, Y)Uy + az(x, Y)uy + az(x, y)u + h(x,y) ......... (1)
satisfying the prescribed conditions u(x,y) = f(x) ............ (2)
on a characteristic, say, y = 0, and u(x,y) = g(x) ............ 3)

on a monotonic increasing curve y = y(x) which, for simplicity, is assumed to intersect the
characteristic at the origin.
The solution in the region between the x-axis and the monotonic curve in the first quadrant can

be determined by the method of successive approximations.

Example 1:

Determine the solution of the Goursat problem

Upe = C2Uyy R )
u(C,t)=fx)onx—ct=0 ........(5
u(x,t) =glx) on t =t(x) ... (6)

where £(0) = g(0).
The general solution of the wave equation is
u(x,t) = ¢(x +ct) +P(x —ct)
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e
Applying the prescribed conditions, we obtai

fx) = ¢p(2x) + y(0) R ¢
g(x) = p(x + ct(x)) + ¥(x — ct(x)) e evv v (8)
It is evident that

f(0) = ¢(0) +(0) = g(0)

Now, if s = x — ct(x), the inverse of it is x = a(s). Thus, Eq. (4.9.8) may be written as

g(a(s)) = p(x + ct(x)) + P(s) e e ere e e (9)
Replacing x by (x + ct(x))/2 in Equation (7), we obtain
£(FS2) = g+ et () +Y(0) oo (10)
Thus, using (10), (9) becomes

¥(s) = ga() — f (T2 |y o)

Replacing s by x — ct, we have

a(x —ct) + ct(a(x — ct))
j )+ w(0)

Pix - ) = g(ae— ) — £
Hence, the solution is given by

ux,t) = f (%) - f ((E=EEED 4 glax =) e (11)

Let us consider a special case when the curve t = t(x) is a straight line represented by t —

kx = 0 with a constant k > 0. Then s = x — ckx and hence x = s/(1 — ck). Using these

values in (4.9.11), we obtain
_ x+ct) (1+ck)(x—ct) x—ct
uCet) = £ (2%) - £ ( s )+ (E5) (12)

When the values of u are prescribed on both the characteristics, the problem of finding u of a

linear hyperbolic equation is called a characteristic initial value problem. This is the degenerate
case of the Goursat problem.

Consider the characteristic initial value problem

Upy =h(X,Y) i, (13)
u(x,0) =f(x) .oeiiiinin (14)
u(0,y) =g(y) .ooiiiinnnnn (15)

where f and g are continuously differentiable and f(0) = g(0).

Integrating Equation (13), we obtain

71

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



uCe,y) = [ [ h(Em)dndé + ¢(x) + () o (16)
where ¢ and Y are arbitrary  functions.  Applying the
conditions (14) and (15), we have

u(x,0)=dx)+yYP0)=f(x) .ceoevennen. (17)

u(0,y) =) +yY@)=9g(y) ceeeeennn.. (18)

Thus ¢(x) + Y () = f(x) + g(») — $(0) = P(0) .evee...... (19)
But from (17), we have ¢(0) + ¥ (0) = f(0) ............. (20)

Hence, from (16), (19), and (20), we obtain

u(n,y) = fO) + g - fO) + [T [ hEmdndE ............ 21)
Example 2:

Determine the solution of the characteristic initial value problem

U = Czuxx
u(x,t) =f(x) onx+ct=0
u(x,t) =g(x)on x —ct=0

where f(0) = g(0).

prescribed

Here it is not necessary to reduce the given equation into canonical form. The general solution

of the wave equation is

u(x,t) = ¢(x+ct) +P(x —ct)
The characteristics are

x+ct=0

x—ct=0
Applying the prescribed conditions, we have
ulx,t)=¢2x)+yY0)=f(x) on x+ct=0 ........(22)
ulx,t)=¢p0)+yY(2x)=gx) on x—ct=0 ........(23)

We observe that these equations are compatible, since f(0) = g(0).

Now, replacing x by (x+ct)/2 in Equation(22) and replacing x by (x —ct)/2 in

Equation(23), we have
+ ct

Bx+ct) = £ () = ()

x —ct

b —ct) = g (F5—) - 6

Hence the solution is given by

uCet) = £ (Z5) + g (55) = £0) v (24)
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We note that this solution can be obtained by substituting k = —1/c into (12)
Example 3:
Find the solution of the characteristic initial value problem

V30U = YUyy +uy, =0 (25)

2
u(x,y) = f(x) onx+y7=4for2<x<4

2
u(x,y)=g(x)onx—y7=0f0r0<x<2

with £(2) = g(2).
Since the equation is hyperbolic except for y = 0, we reduce it to the canonical form

Ugy =0

where § = x + y2/2 and n = x — y?/2. Thus, the general solution is
u@y) = ¢ (x+2) +p(x=%) oo (26)

Applying the prescribed conditions, we have

f) =) +yY2x—4) . (27)

gx) = ¢p2x) +Y(0) ...............(28)

Now, if we replace (2x — 4) by (x — y?2/2) in (27) and (2x) by (x + y?/2) in (28), we obtain
2

2
w(x—y;)=f<§—y¢+2>—¢(4)

2 2
¢(x+y7)=g<§+y¢)—w(0)

Thus

2

x y? Xy
u(x,y) =f<§—j+2> +g<§+z> —¢4) —¥(0)
But from (27) and (28), we see that
f(2)=¢(4)+9(0) =g(2)

Hence

u(x,y)=f<;—y7+2>+g<g+yz>—f(2)
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2.10. Spherical Wave Equation:

In spherical polar coordinates (r, 8, ¢), the wave equation form

L2 oL (singd) 4 Tt Lon L (1)

r2or ar r2sin 0 90 r2sin? 0 d¢? c2 at?

Solutions of this equation are called spherical symmetric waves if u depends on r and t. Thus

the solution u = u(r,t) which satisfies the wave equation with spherical symmetry in three

i i g L9 2a_u) _ 10%
dimensional space is —— (r ) =g e 2)

Introducing a new dependent variable U = ru(r, t), this equation reduces to a simple form

This is identical with the one dimensional wave equation (4.3.1) and has the general solution
inthe form U(r,t) = ¢p(r + ct) + Y(r —ct) ..o ... (4)

O ur,t) =~ [¢0r +ct) + P —ct)] v v e ()

This solution consists of two progressive spherical waves traveling with constant velocity c.
The terms involving ¢ and ¥ represent the incoming waves to the origin and the outgoing

waves from the origin respectively.

Physically, the solution for only outgoing waves generated by a source is of most interest, and

has the form u(r,t) = %l/)(T‘ —Ct) i (6)

where the explicit form of v is to be determined from the properties of the source.

In the context of fluid flows, u represents the velocity potential so that the limiting total flux
through a sphere of center at the origin and radius r is

Q(t) = ¥i_r)ré4nr2ur = —4mp(—ct) ............ @)

In physical terms, we say that there is a simple (or monopole) point source of strength Q(t)

located at the origin. Thus the solution (6) can be expressed in terms of Q as

ur,t) =——0Q(t=%) ... (8)

4ntr

This represents the velocity potential of the point source, and u, is called the radial velocity.

In fluid flows, the difference between the pressure at any time t and the equilibrium value is

given by p — p, = pu, = —#Q (t — E) BN (°)'
where p is the density of the fluid. u(r,0) = f(r), u,(r,0) = g(r), r >0 ...... ... .... (10)

where f and g are continuously differentiable, is given by
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r+ct

u(r,t) = % (r+ct)f(r+ct)+ (r—ct)f(r—ct) + Ef Tg(r)drl e (11)

r—ct
provided r > ct. However, when r < ct this solution fails because f and g are not defined for
r < 0. This initial data at t = 0,7 > 0 determine the solution u(r,t) only up to the
characteristic r = ct inthe r — t plane. To find u for r < ct, we require u to be finiteatr = 0
forall t > 0, thatis, U = 0 at r = 0. Thus the solution for U is

r+ct
U(r,t) = % (r+ct)f(r+ct)+ (r—ct)f(r—ct) + %j Tg(r)drl v e e e (12)
r—ct
provided r > ct > 0,and U(r,t) == [¢(ct +T) +P(ct —=P)], ct > 7> 0 ......... (13)

where ¢(ct) + Y(ct) =0forct >0 .............. (14)
In view of the fact that U, + % U, is constant on each characteristic r + ct = constant, it turns

out that
d'(ct+r)=O+ct)f'(r+ct) + f(r+ct) +%(r +ct)g(r + ct)

Or ¢'(ct) = ctf'(ct) + f(ct) + tg(ct)
Integration gives
t

1
60 = tf )+ | 9@z +$(0)

0
so that 1(t) = —tf () — 1 J, Tg(r)dr — $(0)

Substituting these values into (13) and using U (r, t) = ru(r, t), we obtain, for ct > r,

u(r,t) = % I(ct +7r)f(ct+7r)—(ct—r)f(ct—71) + ZJ.C ' Tg(r)drl R & 1)

2.11. Cylindrical Wave Equation:

In cylindrical polar coordinates (R, 8, z), the wave equation
1 1 1

Upp T - UR + 5 Uge T Uzz = Ut wovennnn (1)

If u depends only on R and ¢, this equation becomes ugp + %uR = Cizutt ............. (2)

Solutions of (2) are called cylindrical waves.
We assume that sources of constant strength Q (t) per unit length are distributed uniformly on
the z-axis. The solution for the cylindrical waves produced by the line source is given by the

total disturbance
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.(3)

where R is the distance from the z-axis so that R? = (r — z2).

Substitution of z = Rsinh £ and r = Rcosh ¢ in (3) gives
uR,t) =—=J" Q (t —Zcosh E) dE oo, (4)

This is usually considered as the cylindrical wave function due to a source of strength Q(t) at
R = 0. It follows from (4) that

Uy = —%fooo Q" (t—gcoshf) dé .......... (5)

up = costh'(t—fcoshf) dE oo, (6)

Upr = —2;2 fooo cosh? Q" (t—écoshf) dé .............. (7)

which give

5 1 1 ®djc R )

c (uRR +EuR>_utt=Ef d_f EQ (t—zcoshf)smhf] dé

0

= lim |~ (t R cosh ) inh ]—0
—El_)rg 7R Ccos ¢ |sinhé| =

provided the differentiation under the sign of integration is justified and the above limit is zero.

This means that u(R, t) satisfies the cylindrical wave equation (2).

c(t=9)

In order to find the asymptotic behavior of the solution as R — 0, we substitute cosh & = -

into (4) and (6) to obtain

T IR )

|e-02-5]°

t=R/c (t=¢ Q' (9)ag
up =L [ (L )—_ ........... ©
|e-02-5;

which, in the limit R — 0, give ug ~ —f_oo Q'(Qd¢ = LRQ(t) .............. (10)
This leads to the result IlzirréZnRuR =Q(t) ..covvnnnnnn. (11)
oru(R, t) ~ = Q(t)10gR as R...............(12)

We next investigate the nature of the cylindrical wave solution near the wave front (R = ct)

and in the far field (R — o0). We assume Q(t) =0 for t < 0 so that the lower limit of
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integration in (8) may be taken to be zero, and the solution is non-zero fort =t — § > 0 where

T is the time passed after the arrival of the wave front. Consequently, (8) becomes

u(R,t) = —— 7 e (13)
=) (e=¢+%7)]

N|-

Since 0< (< r,% > § >71>1—{>0, so that the second factor under the radical is

approximately equal to % when R > ct, and hence

1 1

1 ez (7 QDS € \z
uR~-—(5z) | ——x=-(35) 1®

) [ %=

_ 1 T QQdg
Where q(7) = Jo e (15)
Evidently, the amplitude involved in the solution (14) decays like R‘% for large
R(R — ).
Example 1:

Determine the asymptotic form of the solution (4) for a harmonically oscillating source of
frequency w.

We take the source in the form Q(t) = qoexp[—i(w + ig)t] where ¢ is positive and small so
that Q(t) » 0 as t » —oo. The small imaginary part € of w will make insignificant

contributions to the solution at finite times as € — 0. Thus the solution (4) becomes

o —iwt ” lwR
u(R,t) = 5 exp Tcoshf dé
0

where Hél) (z) is the Hankel function given by
HY(2) = = [,” exp(izcosh §)dé ............ (17)

In view of the asymptotic expansion of Hgl) (2) in the form

1
(1) 2\2 , s
Hy’(z) ~ (E) exp [l (z — Z)]' Z—> 0 .. (18)
the asymptotic solution for w(R, t) in the limit “’—CR — o0 IS

1

iqo [ 2Cc \2 ) wR m
u(R't)~_T<—an> exp[‘l{“’f‘T‘z}]

This represents the cylindrical wave propagating with constant velocity c. The amplitude of

1
the wave decays like R 2 as R — oo.
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Example 2:
For a supersonic flow (M > 1) past a solid body of revolution, the perturbation potential ¢

satisfies the cylindrical wave equation @z, + %CDR = N2®,,, N> =M*-1

where R is the distance from the path of the moving body and x is the distance from the nose
of the body.
D,y + D, = N2O,,

This represents a two-dimensional wave equation with x & t and N? & clz For a body of

revolution with (y, z) < (R, 9),% = 0, the above equation becomes

1
CDRR + ECDR = Nzcbxx
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UNIT 111

Method of separation of variables: Separation of variable- Vibrating string problem —

Existence and uniqueness of solution of vibrating string problem - Heat conduction problem —

Existence and uniqueness of solution of heat conduction problem — Laplace and beam

equations

Chapter 3: Sections 3.1 to 3.6

Method of Separation of variables

3.1. Separation of variables:

consider the second - order homogeneous equation.

A" Uyryr + D Uyryr + Uy + d U + €Uy + ffu = 0.

where a*, b*, c*,d*,e* and f* are functions of x*&y".

We know that the transformation.

x =x(x*y*)
y=y&5Y") i (2)
. a(x,y)
Jacoblan =———# 0
a(x*,y*)

So we can transform (1) in to canonical form.

a(x, YUy + (X, Y)Uyy + d(x, y)u, + e(x, y)u, +
fO,yY )u=0. ... (3)

mere B = 0,—4ac = 0.

i) a = —c is hyperbolic.

i) a = 0 or ¢ = 0 is parabolic.

iii) a = c is elliptic:

we assume the solution in the form.
ulx,y) =x(@X)yy) #0 oo .. (4

Where x & y are functions of x and y and are twice continuous differentiable.

sub (4) in (3),

ax"y+cxy”" +dx'x +exy+ fxy=0. ... &)
Let the function p(x, y)

we divide equation (5) by p(x,y)

= a;(x)x"y + by (¥)xy" + a;(x)x"y + b, (y)xy’
+as(x) + bs(M)]xy =0 .. e e e (6)
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(6) + by xy

S N NS A 7
alx azx az| = 1 2+ bs N (7))

Integrating w.r.to x,

d xll xl

a a17+ a2;+ a3 == 0(8)

Integrating al% +a, x; +a3=2 e .. (9)

sub in equation (9) in (7).

144 !

y y
by=—+b,—+b;=—2 .cceoe.e. (10
1 T4 bs (10)

So, (9) & (10) becomes.
And a;x" + a,x" + (a; —x)x =0

biy" +by'+(bs+D)y=0 ... (11)

Thus u(x, y) is a solution of (3) if x(x)&y(y) are the solutions of the ordinary diff equation

(11) & (12) respectively.

Case (i):

If the coefficients of (1) are constants.
consider the second order equation,

Alyy + Buyy + Cuyy + Duy + Euy + Fu=0 .......... (1)

where A,B, C, D, E & F are constants which are not all zero.

Assume a sold of the form

u(x,y) = x(x)y(y) # 0.
sub this in (1),

Ax"y +Bx'y' + Cxy" + Dx'y + Exy' + Fxy=0-0
(= Axy)

X Bx'y' Cy" Dx' Ey' Fx
x4 Y + y y + y
x Ax(y) Ay Ax' Ay’ A

=0,A#0. .oun..(3)

! N L7

Diff w.r.to x, (x?”) +§(x—) L+ % (x—’), =0 oo (4)

x/) y x

xu’+D xl’_ B y/ ’yl
X A\x)  A\x) vy
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D _ 5
T ST e (5)

This equation is separated, so that both sides must be equal to a constant, 1. y' + 1y =0

(i) % T (6)
sub equation (6) in (5),

x" '+D_+ B (x"\'

X B xA X

x" '+(D A)B x' '_

X B A\x)
Integrating (7) w - r - to x,

(x?) n (% _ ,1)2(%) =B (8)

where S is a constant.

x" Bx'/—A C /-1y’ D x'
@5 +7: ()i (Tr)+ 75

o

(D)

Ax\ vy A\ =y’ A
E/ -2y F
7()+a=0
:>x”+ al A+ (/12)+D a £ F—O
x tax@ A ATAT
:x i ( B D>+C(/12 AE_I_F/A)
X At a) 1A C/A
:,x”+xB( /1+D/A>+C(,12 PR c)—o 9
. 72 5/a) T2 c /Cl=0. ... ....(9)
x”+xB< /1+D>— C(AZ AE F) 10
o 5)="2 i A @ (1))
combine (8) and (10),
= ()12 E)t + F) ¢
b= c” ClA
3.2. The Vibrating String Problem:
consider u, — c?uy,, =0 0<x<Lt>0 ........(])
ux,0)=fx) 0<x=<1!l .. (2)
Uu(x,0)=gkx) 0=x<1l ............(3)
u(0,t) =0 t=0 R €
u(l,t) =0 t>0 SN )

where f and g are the initial displacement and initial velocity. respect.
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:
By the method of separation of variables, we assume a solution in the form

ulx,t) =x()TE)#0 ............. (6)
(1) > x1"”" =—=c*x"T
x_” = iT—” v (7) - (X T #0).
x c*T
u=xT
U = xT".
Uy = x''T.
Here L.H.S depend only X and R.H.S depend only t.
x" 1T"
ey TarT ot

where A is a separation constant.

X
>—=1
X
=>x"—Ax=0 ........(8)
1 TII B
c2 T
"= A?’T=0 ........(9

sub equation (4) in (6)

u(0,t) =x(0)T(t) =0. (~ T(t) # 0)
= x(0)=0- (10.

sub equation (5) in (6),

u(l,t) =x(DT() =0
=>x0)=0CT@)+0)-> (11).

Now to find the value of x(x) we have to solve

x"—Ax=0
x(1)=0

we investigate the three cases.
A>0,1=0,1<0.

case (i) ;-1 > 0.

The differential equation is x” — Ax = 0.
The characteristic equations m? — 1 = 0

=>m? = A
=>m= 4V
The general solution is of the form
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x(x) = Ae™Vx 4 peVix,
where A and B are arbitrary constants.
Apply boundary and.
x(0)=0=>A4+B=0
x()=0 = Ae VM 4+ BeVil = 0

Hence the general solution x(x) = 0.

} e (13).

= The solution is trivial.

case (i) : 4 = 0.

s x"=0.

The characteristic equation is m? = 0.
m=0m=0.

=~ The general solution x(x) = A + B(x).
Applying boundary conditions:
x(0)=0=>A4=0

x(D)=0=2A+Bl =0...........(14).
Bl =0(~A=0).

=>B =0(1#0)

Hence A =B = 0.

=~ The solution is trivial.

Case (iii) 1 < 0.

The general solution assumes the form

x(x) = AcosV—Ax + BsinvV—2Ax ............... (15)
x(0)=A+0=0.

~A=0

x(l) = 0 = Acos V=2l 4+ BsinV=2Al = 0

For BsinvV—2l =0 (+ A = 0)

For nontrivial sol, B # 0 (B = 0, then the sinvV—-A¢ =0 .......... (16)
=>+Vv-Al=nnforn=1,273...

Ny 2
— —/171 = (T)
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.
For this infinite set of discrete values of 4, the problem has a non-brivial solution. These values

of A,, are called the reign values of the problem.

Sub in equation (16), sin (%) x,n =123, ..

nmx

Hence the solution is x,,(x) = B,sin (T)

For A = A, the general solution of (9) is.

nmc nml¢

T,,(t) = C,cos (T) t + D,sin (T) [ (17)
where C,, D,, are arbitrary constants.
Hence u, (x, t) = x,(x) T, (t).

= (anin (?)) (cncos (?) t + Dysin (?) t) :

= (ancos (?) t + b, sin (?) t) sin (?) .

where a,, = B,,C,, and b, = B, D,,.

the infinite series,

u(x,t) = Yoy (ancos (?) t + b,sin (?) t) ......... (18)
is converges and twice continuously differentiable.
Now w.r.to x and t.

Now to find a,, and b,,.
Applying boundary conditions, u(x,0) = f(x) = Y=, a,sin (#) =f(x) .oooennn.. (19)

Differentiation equation (18) w.r.to 't

[ee)

Uy = Z (—ansin (mllc) tp X mlrc + b, cos (?) t
n=1
X (—mch) sin (_mlrx)

[ee)

= Z ? (—ansin (?) t + bycos (?) t)

n=1

sin (?)

_ - b si Tnx\ (MmIcy
U (x,0)=gx) = z nSin (T) (T) = g(x).
n=1
f(x) and g(x) represented as Fourier sine series.

= The coefficients are gi by,
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2 (!  nmx
=—f f(x)sin——dx.
L), !

l

b = _ nnxd
n = . g(x)sin 7 dx.

= The solution of the vibrating string is

0]

nmx

B nrmc bsi nmc N |
u(x,t) = Z (ancosTt + "SmT t) smT

n=1
where a,, = 2 [ £ (x)sin ™™ dx and.
b= 2 [ ki
n=— g(x)sm 7 dx.

Example:1 (The plucked string)

consider a stretched string fixed at both sides suppose the string is raised to a high h at x = a,

and then released.
The string oscillated freely The initial conditions are written as
h_x ,0<x <a.
u(x,0) = f) =1,% 3

[—a
us(x,0)=g(x) =0.
To find solution u(x, t).

a<x<l.

- nrmc nmwc \ . Nux
W-k-T,u(x,t) =Z ancos—t+b sin— ] t)smT

where a,, = Ef lf(x)sinmdx.

TlTI.'C

f g(x)sm — dx

Since g(x) = 0= b, = 0.

Now
f hx h(l - x)) X 4
a, l - sin X.
“hx = nmx f h(l —x)
=— —sm— dx + dx.
L), a l—a l
consider,
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2 (“hx  nnx 2h (¢ nnx
—| —sin—dx = —f xsin — dx.
L), a [ la J, [

[letu =x,du=dx

dv = sinnmx.

nnx 1
V= —C0S—— X —
l nm
2h nmx [ \* ¢ nmx |
= — x[—cos— —) +f cos— - —dx
la I nn/y J, [
_lh( al nna_l_ l(_ nnx)al>
"~ la mTCOS l nmw st Il /onm
2h[ al nma 1>  nma
=—|——cos + sin
la| nm l nim? l
_lh[ Il  ,nma a nma
= nZnZSm l nncos |
consider,
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Zflh(l—x) X 2h j‘l : T
1) T-a sin ] x_l(l—a) a( x)sin ] X
I\

— %([(l - x) (—cos? - E)L + fal cos# : nl—n(—dx)>

2h (l(l —a) (Cos nna)] _ (Sinﬁ)l

“ll-ol\"nr l I /g
2h  [I(l - a) /cosnma o1 12 _nma 12
- Il - a)( nm ( l ) B Smnznzl ‘m2n? + s n2n2>
2n ~nma 1> I(l—a) nma
= l(l—a)(sm R R >
2hl  nma 2h nma 2hl . nma 2h nma
a, = T2 sin i —Ecos i + (= anen? sin ; +ECOST
2hl  nma/1 1
n?m? SmT(E [ — a)
2hl nma/l—a+a
BT TR (a(l—a)>'
2h1?  nma 1
T = a2 ST a(l—a)’
) = 2hl? 1 sinnma cosumnc . nmx
..u(x,t)=; nza(l—a)ﬁ ] ; +t)smT.
2hl? > 1 mma nmx  @nc
:—nza(l _a)n_l 7 Sin——sin——cos— t.

Example 2:(The stuck string)
Consider the string with no initial displacement. Let the string be struck at x = a. so the initial

velocity is in by,
1%
zox, 0<x<a.
u+(x, O) = (l _ x)
Vg I —q a<x

Since the string with no initial displacement, u(x, 0) = 0.

() f(x) = 0.

= a, =0.
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Now b,, = ﬁfolg(x)singdx.

2 javo sin”nxd +f’ (I—x) sinn,x
nmel)y @ 1 7). T=a " ldd,
consider,
j v, sinnmx vy (¢ sin nmx
—x x=—1] x-— X.
0o a [ aJ, [
Vo nmx 1 1° @ nmx |
=— [—xcos—-— + | cos——-—dx
a I nmly J, I nm
Vo nrwa Il 1l nnx
= (—acos—-—+— — sm—] )
a Il nm nm nn [ 1
Wil . nma nra
= —— |—sin—— — acos—|.
anm Inm l l
consider,
l-x) | nmx . nmx
.[ VoSin ——dx = — x)sin——dx
. l—a l l
l l
- [— l—x)cosﬁ-i] +f _cosnnx.i(_x)
[—a ( I nml, J, [ nm
v nra | nx 12 ]
:l—a (l—a)cos—l p—— sm—l gy
nra 1 1? _ nma [?
— a)cos— o sinnmt —— 2.7 + sin a2
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B [ I na+ - nma 1

—( a)nn (Il — a)cos l sin |
2 [vel r 1 . nma nra

Wb, =— —(—sm—— acos—) +
nrc lanm \nn l l

1Y/ (l nna_l_ . nma l)]
= a)mt( a)cos l sin o

2vl T I nma nma cosnma | nna l
= [ sin — COS + + sin .
anm l l l Il (l—anm

_ 2yl ( ) nna)(l_l_ 1 )

~nemzenm T a l—a

_ 2wppl% (nna) (l —a+ a)

~ nemec T (l—a)a)’

2v513 1 nmwa
0 2 sin ( )

n2m2c

[

Hence the displacement of the struck string is
= 20013 1 nmwa\ _ (mNc

u(x,t) =Z —_ sm( l )sm (—t)

n3ca(l — a) n3 l
n=1

m3ca(l — a)n3

. nmx
sin—.
l
3 oo
2v,l 1 nma nnx nnc
=— — sin sin sin t
m3ca(l — a) n3 l l l
n=1

3.3. Existence and uniqueness of solution of the vibrating string problem:

nmnx

We know that, u(x,t) = Yy (ancos t+b sm—t) sin——.

To show that u(x, t) is a solution of the vibrating String problem.

Let u (x, t) = Yoo 1ancos—tsm ™% with g(x)

_ nmc  sinnmx
Uy (x,t) = z b, sin ] + ] (%),
n=1

Now to show u, & u, are solution of the problem

To Prove: u, is a solution of u,, = c?uy,..
) u(x,0) = f(x).

i) u:(x,0) = g(x).
iiu(0,t) =0.
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iv) u(l,t) = 0.
we assume that f(x) and f'(x) are continuous on [0, 1] and f(0) = f(1) = 0.

= The series of the fo Y.7i_; a,sin == convergences, absolutely & uniformly on the interval

[0,1]
c nrmc nmx
u(x, t) = Z ancosTtsinT
n=1
_i [l_nn t+1_nn+t]
= anzsml(x ct) 2sml(x ct)
n=1
1w . nm 1w . nm
=EZ ansmT(x—ct)+§z ansmT(x+ct) AVRRR & §)
n=1 n=1

nmx

Define F(x) = Z,‘ileansinT and F(x) is the periodic extension of f(x).

le)Fx)=f(x)0<x <L
F(—x) = —-F(x) © xVx.
F(x+2)=F(x)

(D)= w6 ) =S [FGx—ct) + Fx +ct)] oo (2)
To prove (i): u,(x,0) = f(x)
Applying x = xand t = 0 in (2).

Uy (x,0) = 5 [F(x) + F(x)].

NN -

= EF(x) = F(x)
=f(x)0<x<1
(F is periodic extension of f(x) )
To prove: (ii) % (x,0)=g(x)=0

differentiating (2) w - r.to 't .

au1a(tx:t) — % [F’(x —ct)(—c) + F'(x + ct) - C] ............ (3)
Now 240 — 2 [£/(x) (~¢) + ¢F'(x)]
_F® _
=— (—c+c)=0.

T.P:- (iii) u,(0,t) =0.
put x = 0,t = t in equation (2).
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1, (0,8) = = [F(—ct) + F(ct)].

[—F(ct) + F(ct)] = 0.

N|—_RDN]| -

To prove (iv): u,(l,t) = 0.
putx = [, t = t in equation (2).

w(Lt)==[F(l—ct) + F(L + ct)].

[F(=1—ct) + F(l + ct)] [+ F(x + 21) = F(x)

[-F(l+ct)+ F(l+ct)] 2 F(—ct)=F(l —ct)
=0. =F(=l—ct).

N RN RN -

=~ The boundary conditions and initial ends are satisfied.

_ .2 62111

Now To prove: 2%
P T oat? ax2’

Let f" be continuous on [0,1] and let f"(0) = f" (1) = 0. Then F" exists and is continuous

everywhere. therefore, we differentiation equation (3) w.r.to ' t'.

0%u; 1
— " _ 2 17 2
52 2[F (x —ct)c? + F"(x + ct)c?].
2

c
= [F'(x—ct) + F'"(x +ct)] e ee e v o (4)

Now differentiation w.r.to x,
ou;, 1
ox 2
again diff w - r - to x,

O L i — ety 4 F" et €] oo (5.
dx* 2

sub in eqn (5) in (4).

=

[F'(x — ct) + F'(x + ct)].

0%u; 22 0%u,
at? 0x?
~ u, satisfies the wave en.

2.) To prove: u, is the solution of the wave ign.

where @, (x,t) = Y.o-1 bysin % tsin ? .......... (6)

with f(x) =0
Let g and g’ be continuous on [0,!] and let g(0) = g(l) = 0. Then the function
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[0e]

u(x,0)=g(x) = z b, (#) sin?.

n=1
converges absolutely and uniformly in [0,1]

nrmc

Letc, = (T) b,,.

[
= b= () e

Sub equation (6) in, u,(x,t) = N2, (L) c,;in%tM.

nmc l

! - ¢, Sinnmc  sinnmx
" me n l l
n=1
Diffw-r.to't ",
du, * i Cn cosnnc_l_ - nmx erk
—_—= — sin— | X —
Jdt mc n l l k
n=1
cosnmc . nmx
= Z T + SIN—— e v (7)
n=1
ou? 12 _ ( nnct_l_sinnnx)_l_ _ nnct+ _ nnx)
— == cpsin [ — cpsin | —t + sin—
at 2 " l l " l l
n=1
1 v . 1 v .
= EZn:l cnsmnl—n (x —ct) + EZn:l cnsmnl—n (x+ct) oovininn. (8)

The series are absolutely and uniformly convergent because of the assumption G.

Hence (7) & (8) are converge absolutely and uniformly on [0, c].
Let G(x) = Y-, Cysin #
be the odd periodic extension of the function f(x).
i) Gx)=gx)0<x<1
G(—x) = —G(x) Vx.
G(x+2t) = G(x)

6u2

Equation (8) = -

=2[G(x—ct) +G(x+ct)] oo, (9)

Integrating, w.r.to.'t""
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''''''

-
U, = Ef (G(x —ct)+G(x + ct’))dt’ - (%).
1 Ot 1 t
= —j G(x —ct')dt' + —f G(x + ct')dt'.
2 ), 2J,

1 G(x+ct’)lt
¢ 0

G(x—ct) ‘ +1
2 —C o 2

= i[—G(x —ct)+G(x)+G(x +ct) —G(x)].

2c
1
= —[G(x +ct) — G(x — cv)].
2c
1 px+ct
=) G@dTr (10)

i) To prove: u,(x,0)=0:

subx =x,t =0in

U, (x,0) = Zicfx G(t)dt

= 0.
(ii)
To prove: u;(x,0) = g(x).
du, 1
2 0 =7[6(x) + ()]
From (9), _ ZGZ(x) — 6w
=9g(x%)

(iii) To prove: u,(0,t) =0
From (), U»(0,6) =2 [ G(—ct") + G(ct"at'.

t

1 t
= —f G(—ct')dt' + 1/2f G(ct)dt
2 0 0

t

1 t
= ——f G(ct')dt' + 1/2f G(ct')dt.
2 0 0

= 0.

(iv) To prove: U,(c,t) =0
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t
G(l—ct')dt' + 1/2f G(l + ct")dt'.
0

1
©=>wto=5]

0

t t
= 1/2] G(—l —ct)dt' + 1/2f G(l+ ct")dt’
0 0

t t

= —1/2] G(l+ct)dt' + 1/2f G(l+ ct))dt'.
0 0

=0.

6 u2 _ .2 62u2
- ox2’

Finally to prove:-

Since g’ is continuous on [0,1], G exists so that, by equation (9),

u, 1 )
%2 =3 [G'(x — ct)(—c) + G'(x + ct)(+0)].

Now differentiating u, w.r.to ' x '

oo
Ju,(x,t) 1 ¢, . nmc nmwx nm
—_— —sin——+ cos—— - —.
0x nc n l l l
n=1
oo

1 Z _ nmct nix
= — C,Sin coOS——.
c n l l

n=1

13 o 5 ) ()

1< ct+x
—Z Cn sm( >—+sm(ct—x)—

2c [
n=1
_12 [ tnrr/l_l__ +tnn]
=5 Cn | —sin(x — ct) ; sin(x + ct) |-
n=1
1
:Z[ G(x — ct) + G(x + ct)] by def of G (x).
Differentiating, w-r - to ‘x'
v t—l[G’ t) + G'(x + ct)]
55z %t =52 (x —ct) + G'(x + ct)
202 = —G'(x— )+ Gi(x+ ) o (12)

sub eqn (12) in (11)

2 2
d°u; ¢ _ 0°u,

otz 2 axz
s 0%u, _ 2 62u2.
ot? O0x?
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Theorem 1: (uniqueness theorem)
There exists almost one solution of the wave equation u,; = c?u,,,0 <x < 1,t > 0.

u(x,0) =f(x),0<x<L
U (x,0) =gkx), 0<x<L
u(0,t) =0,t = 0.
u(l,t)=0,t=>0.

satisfying the initial condition,

and the boundary ends,

where u(x, t) is a twice continuously differentiable fo w.r. to both x and ¢t.
Proof:

suppose there are two solutions u,; and u,.

Letv =uy — u,.

= v(x,t) is the sol of the problem

Ve = vy, 0<x <Lt >0.
v(0,t) = u.(0,t) — u,(0,¢t)
=0—-0=0, t=0
v(Lt) =u (L t) —uy(L,t)
=0-0=0, t=0

U(X, 0) =UuU (.X', 0) — Uz (.X', 0)
=f)-f(x)=00<x<!
0) = ou, 0 du, 0
vt(x' ) - ot (.X', ) - ot (X, )
=g(x)—gx)=0.0<x L.
To prove: V(x,t) =0
Consider the fn,I(t) = %fol(czvxz + V; Hdx
represent the total energy of vibrating string at time. the total energy of vibrating string at

time y since the function V (x, t) is twice continuously differentiable.

We differentiate I(t) w.r.to ‘t’
dx 1

!
pri E_]; (20, v, + 20,04 ) dx.

!
=f (v, vy + Vv )dx.
0

. ! !
Consider [ c?v, vy dx = [c* v, v, ] — [, c*vev,,dx

!
= —f v, dx
0
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. dI_

! !
—f v v,, dx +f Ve Ve dx
dt 0 0

!
=j v (ver — ¢y )dx
0

=0 (" vy —c?vy) =0
~ I(t) = constant = C
Since v(x,0) = 0 = v,(x,0) = 0 and v,(x,0) = 0.

~ I(t) = 0, whenever v, = 0& v, = 0fort > 0.
~ V(x,t) = constant .
since v(x,0) =0 = v(x,t) = 0.

~u(x,t) —uy(x,t) =0.
= u(x,t) = uy(x, t).

=~ The solution is unique.
3.4.

3.4. The Heat conduction problem:

We consider a homogeneous rod of length . The rod is thin so the heat is distributed equally

over the cross section at time t. The surface of the rod is insulated, there is no heat loss through

the boundary.

U =k, 0<x <L t>0.......(0).
u(0,t) =0, t=0.
u(x,t) =0, t=0.

Assume the solution,

u, = xT'

,t) = ,T(t 0.

u ) =x@ IO #0. [ ]
xT' = kx"T
(1) = x// B T/
x KT

differentiation w.r.to ' x
a xll B O
ox\ x|
Integrating, x? = —a?, ..o .. (2)a is a + ve constant.
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T = —a?=>T'+a?KT =0
KT

From the boundary conditions,
u(0,t) = 0 = u(0,t) = x(0) + (t) = 0.
= x(0) = 0,T(t) # 0.
u(l,t) = 0 = u(l, t) =x(DT() = 0.
= x(l) = 0;T(t) # 0.
Equation (2) = x” + a?x = 0.
The characteristic equation D? + a? = 0.
D? = —qa?
D = tai’
The solution of x(x) is
x(x) = Acos ax + Bsin ax.
x(0)=0=>x(0)=A4=0
=>A=0
x(1) =0=x(1) = Acosal + Bsinal = 0.

=0+ Bsinal = 0.
= Bsindl = 0.

If B = 0, the solution is trivial,
For nontrivial solution, sin al = 0.
al = nm.

nm
azT.,n =12,...

= The solution x,,(x) = B,sin (nl—”) x;Here A =0
Now (3) = T! + a?kT =0
The characteristic equation is D + a2k = 0.
D = —a?k. (only one root)
T(t) = ce™ ke,
ni

sub « =

2
= T,(t) = cne_(nl_n) K

= U, (x,t) = x,(x)Tn(t)
= B,;sin (?) xcne_(z_n)zkt.
=a, e_(nl_n)zktsing
where a,, = B,,C,, is an arbitrary constant. we formally form a series.
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u(x,t) = z ane_(T) e sin?... e (4)
n=1

Now, from initial condition = u(x, 0) = f(x)

[ee]

ntx
From equation (4) = n(x,0) = Z ansinT = f(x)

n=1

This is true if f(x) can be represented by a Fourier sine series with Fourier coefficients.
2 (!  nmx
a, == f(x)sin—dx.
L), l
Q ! nmt (n”)zkt
Hence u(xt)=2nq [7 Jy f(@)sin— dr] e \T) Kt

is the formal solution of the heat conduction problem.
Example 1:
suppose the initial temperature distribution is f(x) = x(l — x). Find the solution

> [2 . nut _(M)Zkt . nmx
u(x,t) = Z T,I- f(r)sder e \1 sin——.
n=1 0

= [2 nmt _(M)Zkt nmx
= Z T,f (o - T)SianT e \1 sinT.
n=1 0

consider,

nmnt
—dr.

! nmnt !
f 7(l — 7)sin—dt = f (It — 72)sin
0 l 0 l

Letu =Ilt—1%,dv = sin?dt.

COSNTT l
)%
l nm

d.

du = (I-2n)dt, v=—(

I (!cosnmt

! . nmt l nt1t
s f T(l = 1)sin——drt = [—— (It — t%)cos n—] + (Il -27)dr
0 nm [ 1o

l nm), I
1 lcosnm'l 01d
=, ] ( 7)dT.

nnt
u=I1—-2tdv = cosT
l . NIT
du = —-2dt v=—"-sin—
nm l
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nmt nmt

!
_E[(_l Zr)—sm—] f—sm—Zdr

3 203 [ nrty!
=3 cos ik
203
=33 [—cosnm + 1]
4[3
= F' where n = 1,3,5, ....
412 _Ezkt | nmx
U(X t) = Z T X 27_[3 ) Sll’lT

2 (o]

8l 1 (nﬂ)zkt . nmx

B S L g

T n l
n=1,3,...

b) Suppose the temperature at one end of the rod is held constant (e) u(l,t) = u,, t = 0.

u(0,t) =0
=~ The problem becomes u; = ku,,,0 < x <t,t >0 u(l,t) = u,.
u(x,0)=f(x),0<x <l

Letu(x,t) = v(x,t) + %

SV =kuy, 0<x<l ,t>0
v(0,t) = 0.

l
v(,t) =u(l,t) - Uo7
=Upg —Up

= 0.
UpX
v(x,0) = u(x,0) — e
UpX
:f(X)—T,O<X<l
(nﬂ)zkt nmx

ff(r)sm—drle g sinT

uof . nnt nm? o NmX  UgX
Zl f sm—drle (l) sin— +—

w-k-T,u(x,t)=

l l l

3.5. Existence and uniqueness of solution of the heat conduction problem.

- _(nm\2 nmwx
W-k-T,u(xt) = z a,e (l ) Kt gin—— ... ... e (D)

l
n=1

where a,, = %folf(x)sing dx is the solution of the heat conduction problem.
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w"é
To prove: The solution is satisfied if f(x) is continuous on [0,[] and f(0) = f(l) = 0 and

f' (@) is piecewise continuous on (0, 1)

since f(x) is bounded.

2| rt  nmx
Ian|=7 j f(x)sdex
0

2 l
< 7 j |f (x)|dx < c where c is positive constant.
0

Hence for any t, > 0.

2 2
ane_(nl_n) ktsin? < ce_(nl_n) o \whent > to.

2
By ratio test, the series of the constant term exp [— ("l—”) kto] converges.

Here by Weistrass M-test, the series.

2
Yn=1 ane_("_l”) i

Differentiation equation (1) w.r.to 't

o)

2 2
ou Z ane_(nl_n) kL (E) kesin —— .

sin? is converges uniformly w.r.to x & t whenever t > t, f0 < x < I.

ot z l
n=1
2 nm\2
=—-Yr_ an (nl—n) ke (7) xtsinnlﬂ ............ 2)
Similarly,

2 2 2 2
|_an (?) ke_(nl_n) ktsing <C (n_lrr) ke_(nl_n) o \whent > to

nm

2 2
=~ The series of the constant term ¢ (nl—”) k exp [— (T) kt,

converges by ratio test.
Hence (2) converges uniformly.
=~ Similarly, we can differentiation equation (1) w.r.to ‘x’

(00}
2
L
Uy =7 a,e cos ——.
n=1

again differentiation,

[ee]

2 2
Uyy = —Z a, (?) e_(nl_n) kt sin? R < )

n=1
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From equation (2) and (3),

U = k.

Hence (1) is a solution of the one-dimensional heat equation in the region 0 < x < [;t > 0
Now to prove, i) u(0,t) = 0,t > 0.

i)u(l,t) =0,t =>0.

i) u(x,0)=f(x),0<x <1

Equation (1) representing the function u(x, t) converges uniform, in the region
0<x<Lt>0.

A function represented by a uniformly convergent series of continuous function is continuous.
~u(x, t) iscontinuousat x =0 & x = L.

= u(0,t) = 0.
D wwo=o.

= (i) & (ii) are satisfied.
iii) To prove: u(x,0) = f(x).

Now assume that f(x) = Zleansing is uniformly and absolutely convergent.

By Abel's test, the series formed by the product of the terms of uniformly convergent series

nm 2
and the member of a uniformly bounded monotone sequence e"(T) t

o . MIX
Zn:lanSHlT

convergent uniformly w.r.t

Hence u(x, t) converges uniformly.

[ee)

nmwx
~u(x,0) = Z ansinT.

n=1
=f(x), 0<x <L

Theorem 1: (uniqueness theorem)

Let u(x,t) be a continuously differentiable function. If u(x,t) satisfies the differential
equation

U = kuy,, 0<x<[t>0.

u(x,0)=f(x), 0<x<lL
u(0,t) =0, t=>0.

u(l,t) = 0,t = 0 then it is unique.
Proof:

suppose there are two solution u, (x, t), u,(x, t)
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Let v(x,t) = u (x,t) — uy(x,t)
Then

Ve =kuy, 0<x<[t>0 ........(0).
v(0,t) =0 t=0

v(,t) =0 t=0.

v(x,0)=0 0<x<L

consider the function,

1 l
— 2
gt = ijo vedx.

Differentiation w.rto ' t ',

1 l
J'(t) = ﬁfo 2vv.dx.

1 1 (e
= E.fo v dx = ﬁfo VU, dx Letu = v,dv = v, dx.
(by (1))
l
= f VU dX. du =v,, v = ,.
0

l
= [va]é _.f Uy Uy dx
0

!
=v(l, v, (I, t) — v(0,t)v,(0,t) — f vZdx.
0
!
- —f V2dx <0 (= V(,t) =0& V(,t) = 0).
0

since v(x,0) = 0;J(0) = = [ v2dx = 0&J'(t) < 0
= J(t) is decreasing for of t.

Thus J(t) < 0.

But by the definition J(t)

~J(t) =0Vt = 0.

since v(x, t) is continuous, J(t) = 0

=2>v(xt)=0mn0<x<<Lt=0
S U (x, t) = uy(x, t).

=~ The solution is unique:
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3.6. The Laplace and Bean Equation:

Example 1:

Solve, V2u=0,0<x <0, 0<y<h.
u(x,0)=f(x), 0<x<0.

u(x,b) = 0.
u,(0,y) = 0.
uy(a,y) =0.
Solution:
Letu(x,y) = x(xX)y(y) v vee cev e oo (D).

sub the Laplace equation u,, + u,, = 0

wx"()y ) + x(x)y"(y) =0
x"()y) = —x(x)y" ().
") _ y'O)
x(x) oy
differentiationw - r.t0o ' x ',

d (x"(x)\ _
a< x(x) ) =0

Integrating w-r-t, "' x ',

xll(x) B
x(x)
=>x"(x)—Ax(x) =0 RN 23|
Y
y
=>-y"—y=0
S Y A =0 o (3)
Let A = —a?,

2) =2x"+a*’x=0

The characteristic equation is m? + a2 = 0.

m? = —a?.
m= *ia.
~ x(x) = Acos ax + Bsin ax.

Applying boundary and,
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U (x,y) = x"()y(y)
Ux(0,y) = 0= u,(0;y) = x(0)y(y) =0
ux(a,y) =0=x"(a)y(y) =0
~x'(0)=0
= x'(a) = 0.
Now
x'(0) =0 = x'(x) = Aasin ax + Bacos ax
x'(0) = Ba cos(0) = 0.

Ba=0
B =0sina > 0.

Now x'(a) = 0 = x'(a) = —A asinaa = 0.
if A = 0 we get a trivial solution,
~ sinaa = 0.

aa = nm

nm
Hence x,(x),a =—,n=1,2, ...
a

Hence x,,(x) = Ancosnaﬂ - (4).
Now to solve equation (3),

The characteristic equation ism? —a? =0

m?=a? =>m=+a
~y(y) =ae®” + be™.
= a(cosh ay + sinh ay) + b(cosh ay — sinh ay).
= (a + b)coshay + (a — b)sinh ay.
= ccosh ay + Dsinh ay.

[ C D
—.Jpz _ ¢z I
Y(y)=+D*-C | Tz Tz sinh, y]

C/D
=D? — (C? écoshay+
/1= C2/D?

: ) C/D
=4/ D? — C?|cosh asinhsinh™! | ——— | +
| J1—C/D?
]

1
sinh a ycosh cosh™ | —— i

coshay +

CZ
1=p2

= /D? — c?[cosh aysinh(tan~1(c/D)) +
sinh xycosh(tan=1(C/D))].

1 .
Tz/l)z Slnha yl .
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Lot E =vD? —C?and G = tan"1(C/D).

= E(sinh aycosh G + cosh aysinh G)
= Esin(ay + G).
= Esina(y + G/a).

G
y(y) = Esina(y + F) where F = o e (5

Apply boundary conditions in 6,
u(x,b) = 0= x(x)y(b) =0.
y(b) =0=y(b) =y() =0(:x(x) #0).
=>sina(b+ F) = 0.
b+F=0.
b=—-F.,E #0.

for nontrivial solution, hence we have

b—
u(x,y) = ( y) ao — 4+ Z ancosﬁsinﬂ(y b).

u(x,0) = f(x)= —+ z ancos@smh( nnb) = f(x).
Fourier series,
2 a
ap = —f f(x)dx.

a, = ——— f f(x)cos—dxn 1,2,3,.
asm
The formal solution is,

L hma
where a —afo f(x)cos—dx.

Forexample:- f(x) =xin0<x <mb<y<m, (Note:-a=rm).
a():ﬂ:

7mz[( Dr—1l,n=1.2,...

Hence u(x,y) = %(T[ —y)+ 2o iz [(—D™ —1] SIb A=Y cosh x.

mn sinh nm
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Example 2:

Solve U + AP Uspry = 0,0 <x < Lt >0
u(x,0)=fx)0<x<l...
U(x,0)=gx)0<x <L
u(0,t) =u(l,t) =0,t > 0.
Uyx(0,8) = uyx (L, £) = 0.
Solution:
Assume a nontrivial solution in the form,
Now u(x,t) = x(x)T(¢t).

U + azuxxxx =0
xT" + xIT =0

xT" = —a?xT,
17" x()
2T x

Differentiating % (T?) - 0.

Integrating, we get, Pl a
_T 4
= (1v)
a?T @ X = a4_
= —T" = a*a®T [ * ]

= x@ = q*x

" 4 27 __
=>T"+a*a*T =0,a >0 = x12) _ g4x = 0.

The equation of x(x) has the given solution,
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= +tai

e = cosh ax + sinh ax.
e % = cosh ax — sinh ax
D = ccos ax + Dsin ax.

= a(cosh ax + sinh ax) +

b(cosh ax — sinh ax)

= acosh ax + asinh ax +
bcosh ax — bsinh ax
= (a + b)cosh ax + (a — b)sinh ax

= Acosh ax + Bsinhax where A=a+b,B=a—b»b
The given solution of x(x) is given by.
x(x) = Acosh ax + Bsinh ax + Ccos ax + Dsin ax.
boundary and require that.
The boundary and require that;
u(0,t) =x(0)T(t) = 0.
u(l,t) =x(d)T(t) =0.
= x(0) =x() =0 and
Uy (0,8) = x"(0)T(t) = 0.
U (L) =x"(DT(#) =0
=x"(0)=x"()=0[~T(t) # 0].

Differentiation ' x ' twice w.r.to ' x ',

x(x) = Acosh ax + Bsinh ax + Ccos ax + Dsin ax.
x'(x) = Aasinh ax + Bacosh ax — Casin ax + Dacos ax)
x" (x) = Aa*cosh ax + Ba?sinh ax — Ca®cos ax — Da?sin ax

Now applying the boundary condition,

107

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



x(0) = x""(0) = 0 yields.

x(0)=A+C=0

x"(0) = Aa? —ca? =0

> a?(A<C)=0.

=>A-C=0.

2A=c=0("a>0).
Now, x(1) = x" () = 0 yields.

x(l) = Bsinhal + Dsinal = 0
x" () = Ba?sinhal — Da?sinal =0 (~ A= C = 0)

These equations are satisfied if B sinh al = 0, D sinal = 0. since sinhal #0,B =0= B

must vanish for trivial solution, sin al = 0 then D # 0.
al =nm
nm

a=— (- sinnm = 0)

Hence a = ?; n=12,...
we obtain,

. nm
x,(x) = Dnsme [+A=B=c =0and

« =)

The given solution for T'(t) is,

T+ a?a*T =0

~ T(t) = Ecos aa?t + fsin aa’t.

Inserting the values of a,

T, (t) = E,cosa (?)2 t + E;sina (?)2 t

Thus, the given solution of the equation for the transverse vibration of a beam is,

Dnsing [Encos a (E)Z t + F,sina (E)z t].

u(x,t) = j-°° ; ]

n=1
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. nmx N2 . nmx nm
= DnEnsmT cosa (T) t+ DnFnsmT sina (—)
nmx NIy 2 nmx nmy 2
sina (—) t.

= ansinTcos a (T) t+ bnsinT l

= i [ancos a (nTn)Z t + b,sina (nTn)Z t] sin?.
n=1

where a,, = D,E,;; b, = D,,F,

To satisfy the initial condition, u(x,0) = f(x). we must have.

u(x,0) = f(x) = Z; ,sin ?

2 (! . nmx
a, = Tf f(x)smT dx.
0

Now, the application of 2™ initial condition gives

nmx

u(x, t) = i [ancos a (?)2 t+ b,sina (n_ln)z t] sinT.

us(x, t) = Z [ nT a,sina (nln) t+ ba (?)2 cosa G

[ee]
2 nmwx

Ur(x,0)=g(x) = z — sinT

2 :
--bn—a E j;g(x)sdex.

Thus, the solution of initial boundary value problem, is given by.

u(x,t) = z [ancos a (nln) t + bysina (nln) t] sin nlﬂ

n_

a, = Tj- f(x)sinT dx and.
0

b_Z[l]ZJ‘l _nnxd
n=—7l— Og(x)sml X.
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Exercises:
1.Solving the following initial-boundary value problems:

Upp = CPUyp, 0 <x <1, >0
ux,0)=x(1-x),0<x<1
u(x,0) =0,

u(0,t) =u(l,t) =0

2.Determine the solutions of the following initial-boundary value problems:

Uy — C2Uy =0, 0<x<mt>0
u(x,0)=0
() u.(x,0) =8sin’x,0 <x <.
u(0,t) = u(m,t) =0,t > 0.

Uy — CPUye =0, 0<x<1,t>0
u(x,0)=0
(i) u.(x,0) =xsinx,0<x <m.
u(0,t) =u(1,t) =0,t > 0.
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Unit IV

Boundary Value Problems: Boundary value problems — Maximum and minimum principles
— Uniqueness and continuity theorem — Dirichlet Problem for a circle, a circular annulus, a
rectangle — Dirichlet problem involving Poisson equation — Neumann problem for a circle and
a rectangle.

Chapter 4: Sections 4.1 t0 4.9

4.1. Boundary-Value Problems:
In this chapter, we shall be concerned with boundary-value problems. Mathematically, a
boundary-value problem is finding a function which satisfies a given partial differential
equation and particular boundary conditions. Physically speaking, the problem is independent
of time, involving only space coordinates. Just as initial value problems are associated with
hyperbolic partial differential equations, boundary-value problems are associated with partial
differential equations of elliptic type. In marked contrast to initial-value problems, boundary-
value problems are considerably more difficult to solve. This is due to the physical requirement
that solutions must attain in the large unlike the case of initial-value problems, where solutions
in the small, say over a short interval of time, may still be of physical interest.
The second-order partial differential equation of the elliptic type in n independent variables
X1, X5, ., X 18 OF the fOrm V2u = F (g, Xg, o) Xy Uy Uy ooy Uy ) oveeee (1)
Some well-known elliptic equations include
A. Laplace equation: VZu =0 ...... ()
B. Poisson equation: V2u = g(x) ......... (3)
ViU = Y Uy, Where g(x) = g(xq, X5, ..., Xp)

C. Helmholtz equation: V2u + Au =0 ......... 4)

where A is a positive constant.
D. Schrodinger equation (time independent)

Viu4+[A—q@)]u=0 ............ ®)
Let us first define a harmonic function. A function is said to be harmonic in a domain D if it
satisfies the Laplace equation and if it and its first two derivatives are continuous in D.
Since the Laplace equation is linear and homogeneous, a linear combination of harmonic

functions is harmonic.
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1. The First Boundary-Value Problem

(The Dirichlet Problem): Find a function u(x, y), harmonic in D, which satisfies

u=f(s) onB .......... (6)

where f(s) is a prescribed continuous function on the boundary B of the domain D. D is the
interior of a simple closed piecewise smooth curve B.

We may physically interpret the solution u of the Dirichlet problem as the steady-state
temperature distribution in a body containing no sources or sinks of heat, with the temperature
prescribed at all points on the boundary.

2. The Second Boundary-Value Problem
(The Neumann Problem): Find a function u(x, y), harmonic in D, which satisfies

Z—Z =f(s) onB ......... (7)

With fB f(s)ds=0 .......... (8)

The symbol oJu/dn denotes the directional derivative of wu along the
outward normal to the boundary B. The last condition (8) is known as the compatibility
condition, since it is a consequence of (7) and the equation V2u = 0. Here the solution u may
be interpreted as the steady-state temperature distribution in a body containing no heat sources
or heat sinks when the heat flux across the boundary is prescribed.

The compatibility condition, in this case, may be interpreted physically as the heat requirement

that the net heat flux across the boundary be zero.

3. The Third Boundary-Value Problem
Find a function u(x, y) harmonic in D which satisfies Z—Z +h(s)u=f(s) onB ......... 9)
where h and f are given continuous functions. In this problem, the solution u may be

interpreted as the steady-state temperature distribution in a body, from the boundary of which

the heat radiates freely into the surrounding medium of prescribed temperature.

4. The Fourth Boundary-Value Problem

(The Robin Problem): Find a function u(x, y), harmonic in D, which satisfies boundary
conditions of different types on different portions of the boundary B. An example involving
such boundary conditions is u = f;(s) on B; where B = B; + B,.
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F wﬁk"fn

Problems 1 through (4) are called interior boundarwy-value problems. These differ from exterior
boundary-value problems in two respects:

I. For problems of the latter variety, part of the boundary is at infinity.

ii. Solutions of exterior problems must satisfy an additional requirement, namely, that of
boundedness at infinity.

4.2. Maximum and Minimum Principles:

Theorem 1: (The Maximum Principle)

Suppose that u(x, y) is harmonic in a bounded domain D and continuous in D = D + B. Then
u attains its maximum on the boundary B of D.

Physically, we may interpret this as meaning that the temperature of a body which has neither
a source nor a sink of heat acquires its largest (and smallest) values on the surface of the body,
and the electrostatic potential in a region which does not contain any free charge attains its
maximum (and minimum) values on the boundary of the region.

Proof:

Let the maximum of u on B be M. Let us now suppose that the maximum of w in D is not
attained at any point of B. Then it must be attained at some point Py(x,,v,) in D. If M, =

u(xg, yo) denotes the maximum of u in D, then M, must also be the maximum of u in D.
Mo—M

o [x = x0)? + 7 = yo)?] o)

where the point P(x,y) is in D and where R is the radius of a circle containing D. Note that

Consider the function v(x,y) = u(x,y) +

v(xg,Y0) = ulxo,yo) = My
We have v(x,y) < M+ (M, — M)/2 = %(M + M,) < M, on B. Thus, v(x,y) like u(x,y)

must attain its maximum at a point in D. It follows from the definition of v that

(Mo—M) _ (Mp—M)
Uyx + Vyy = Uyy + Uy + ;2 = ;2 >0 ...l ()

But for v to be a maximum in D,
Vyx < 0, 1y, <O
Thus, vy, + vy, <0
which contradicts Eq. (2). Hence the maximum of u must be attained on B.
Theorem 2 (The Minimum Principle):
If u(x, y) is harmonic in a bounded domain D and continuous in D = D + B, then u attains its

minimum on the boundary B of D.
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Proof:

The proof follows directly by applying the preceding theorem to the harmonic function
—u(x,y).

As a result of the above theorems, we see that u = -constant which is

evidently harmonic attains the same value in the domain D as on the boundary B.

4.3. Uniqueness and Continuity Theorems:

Theorem 1: (Uniqueness Theorem)

The solution of the Dirichlet problem, if it exists, is unique.

Proof:

Let u,(x, y) and u,(x, y) be two solutions of the Dirichlet problem. Then u, and u, satisfy
Viu; =0, V2u, =0 in D
u;=f,u,=f onB

Since u; and u, are harmonic in D, u; — u, is also harmonic in D. But

u;—u, =0 onB

By the maximum-minimum principles u; —u, = 0

at all interior points of D. Thus, we have u; = u,

Therefore, the solution is unique.

Theorem 2: (Continuity Theorem)

The solution of the Dirichlet problem depends continuously on the boundary data.

Proof:
2, — .
Let u; and u, be the solutions of Viu =0 n D
u1 = fl on B
2 _ .
Ang V22 =0 inD
uz = fZ on B

If v = u; — u,, then v satisfies
Vv =0 inD
v=fi—f2 on B
By the maximum and minimum principles, f; — f; attains the maximum and minimum of v on
B. Thus, if |f; — f2] < €, then

—& < Vnin < Vmax < € on B
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Therefore |v| < e in D. Hence |u; —u,| < ¢

Theorem 3:

Let {u,} be a sequence of functions harmonic in D and continuous in D. Let f; be the values
of u; on B. If {u,} converges uniformly on B, then it converges uniformly in.

Proof: D

By hypothesis {f;,,} converges uniformly on B. Thus, for € > 0, there exists an integer N such
that everywhere on B

lfy — finl <eform,m >N

It follows from the continuity theorem that for all n,m > N

|u, — u,,| < €in D, and hence the theorem is proved.

4.4. Dirichlet Problem for a Circle:

1. Interior Problem

We shall now establish the existence of the solution of the Dirichlet problem for a circle.

The Dirichlet problem is V2u = u,, + %ur + rizugg =0,0<r<a...... (1)
u(a,8) =f(@0) ........... 2)

By the method of separation of variables, we seek a solution in the form
u(r,0) =R(r)OH) ............. 3)

Substitution of this in Equation (1) yields

2 R yl
Tr R +T'R )
Hence T'ZR” +T'R’ —AR =0 (4)
0 1L 10=0 T

Because of the periodicity conditions ©(0) = ©(2m) and ©'(0) = ©'(2m) which ensure that
the function @ is single-valued, the case 2 < 0 does not yield an acceptable solution. When

A =0, we have u(r,8) = (A + Blogr)(C6 + D)

Since logr - —o asr — 0 + (note that = 0 is a singular point of Eq. (1)), B must vanish in
order for u to be finite at » = 0. C must also vanish in order for u to be periodic with period

2m. Hence the solution for A = 0 is u = constant. When A > 0, the solution of Equation (4) is

@(6) = Acos+10 + BsinV/26
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The periodicity conditions imply VA = n forn = 1,2,3, ...

Equation (3) is the Euler equation and therefore the general solution is

R(r) = CrV* 4+ pr—VA

Since r~V4 - oo as — 0, D must vanish for u to be continuous at = 0. Thus, the solution is
u(r,8) = CrY*(Acos VA6 + BsinV20) for V1 =1,2, ...

Hence the general solution of Eq. (8.4.1) may be written in the form

u(r,0) = % + Yy (g)n (apcosnd + b,sinnf) ........... (5)

where the constant term a,/2 represents the solution for A = 0, and where a,, and b,, are
constants. Letting p = r/a, we have

u(p,0) = % + Y p"(ay,cosnb + b,sinnh) ........... (6)

Our next task is to show that u(r, 8) is harmonic in 0 < r < a and continuous in 0 < r < a.

We must also show that u satisfies the boundary condition (2).

We first assume that a,, and b,, are the Fourier coefficients of f(8), that is,

a, = 1f02n f(B)cosnBds n=0,1,2,3,..

T
by==f" f(®)sinnfdd n=123,..
Thus, from their very definitions, a,, and b,, are bounded, that is, there exists some number
M > 0 suchthat |ay| < M, |a,| <M, |b,| <M, n=1,2,3,...
Thus, if we consider the sequence of functions {u, } defined by
U, (p,0) = p™(a,cosnb + b,sinnb) ........... (8)
we see that
lun| < 2pgM, 0 < p<py <1
Hence in any closed circular region, series (8.4.6) converges uniformly.
Next, differentiate u,, with respect to r. Thenfor 0 < p < py, < 1
du,
or
Thus, the series obtained by differentiating series (6) term by term with respect to r converges

N o1 : N1
=|Ep (aycosnd + b,sinnf) <25p0 M

uniformly. In a similar manner, we can prove that the series obtained by twice differentiating

series (6) term by term with respect to  and 6 converge uniformly. Consequently,
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V2u=up +=u, + S u
LUt SRS 606

X n-2

= Z % (a,cosnf + b,sinnf)[n(n— 1) + n — n?]
n=1

=0,0<p<p <1
Since each term of series (6) is a harmonic function, and since the series converges uniformly,
u(r, 8) is harmonic at any interior point of the region 0 < p < 1. It now remains to show that
u satisfies the boundary data f(9).
Substitution of the Fourier coefficients a,, and b,, into Eq. (8.4.6) yields

1 21 1 ® 21
u(p,6) =5 | FO) 8+ o jo @)

X [cosntcosnb + sin ntsinnf]dt

The interchange of summation and integration is permitted due to the uniform convergence of

the series. For 0 < p < 1

142 z [p"cosn(f —1)] =1+ Z [pre (@) 4 pre~in(6-7)]

.. pei(6=1) N pe~i6-1)
= 1— pel®@0 " 1— pe-i6-D
1— pel®—0 — pe-i6-) § p2
_ 1-p°
~ 1—2pcos(0 — 1) + p?
1 r2m
Hence u(p, ) = Efo — chos(e ‘L')+p2'f(T)dT .............. (10)

The integral on the right side of (10) is called the Poisson integral formula for a circle.

Now if f(8) = 1, then according to series (9), u(r,0) = 1 for 0 < p < 1. Thus, Equation (10)

gives

1 21 1-— 2

= P dr

2m ), 1-2pcos(f — 1) + p?

Hence,
1 21 1— p2
AC :%j; 1—2pcos(@ —1)+p 2 /(0)dn, 0<p <1
2

Therefore u(p, 6) — f(6) = = 27 L2 WOTOL g (11)

1-2pcos(-1)+p?
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:
Since f(6) is uniformly continuous on [0,27], for given € > 0, there exists a positive number

d(e)suchthat |0 — 7| < §implies| f(0) — f(7) I< €. If |8 — 7| > § sothat & — T # 2nm for
n=0,1,2,.., then

. 1-p?

lim

p-1-1 — 2pcos(6 — 1) + p? =0

In other words, there exists p, such that if |6 — 7| > &, then
1—p?
1 —2pcos(8 — 1) + p?

<&

for 0 < p < py < 1. Hence Equation (10) yields

1 (- p)If6) - f)
|lu(r,8) — £(6)| <E -fle—fl>5 1 —2pcos(0 — 1) + p? ar
LT =A@ - Ol

+_
21 Jig_g1<s 1 — 2pcos(8 — 1) + p?

1 £
< 2me [20$2§n| f(0)|] +o—2m

<e [1 + 2( max |f(9)|)]

0<o6<L2n

which implies that
lim u(r,0) = f(60)
po1-

uniformly in 6. Therefore, we state the following theorem.
Theorem 1:
There exists one and only one harmonic function u(r, 8) which satisfies the continuous

boundary data f(6). This function is either given by

1 p2m a?-r?
u(r,0) = Efo a2—2arcos(0—r)+r2f(f)df ............ (12)
(or) u(r,0) = % + X Z—: (apcosnb + b,sinnf) ......... (13)

where a,, and b,, are the Fourier coefficients of £(6).

For p = 0, the Poisson integral formula (10) becomes
2

u(0,0) =u(0) = —[;" f(Ddr ... (14)

Theorem 2: (Mean Value Theorem):

If u is harmonic in a circle, then the value of u at the center is equal to the mean value of u on

the boundary of the circle.
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Several comments are in order. First, the Continuity Theorem 2 for the Dirichlet problem for

the Laplace equation is a special example of the general result that the Dirichlet problems for

all elliptic equations are well-posed. Second, the formula (12) represents a unique continuous

solution of the Laplace equation in 0 < r < a even when £(8) is discontinuous. This means

that for Laplace's equation, discontinuities in boundary conditions are smoothed out in the

interior of the domain. This is a remarkable contrast to the linear hyperbolic equations where

any discontinuity in the data propagates along the characteristics. Third, the integral solution

(12) can be written as

u(r,0) = jn P(r,t—0)f(v)dr

where P(r,7 — 6) is called the Poisson kernel given by

1 (a? —12)

P(r,t—6) = —
(T =9) 2m [a? — 2arcos(t — 0) + r?]

Clearly, P(a,T —8) = O exceptat T = 6. Also
This implies that

f(0) = rl_i)rcrll_u(r, 0) = fﬂ rl_i)rél_P(r,T —0)f(r)dr
rl_igl_P(r,T —0)=6(t—06)

where §(x) is the Dirac delta function.

As in the preceding section, the exterior Dirichlet problem for a circle can readily be solved.

For the exterior problem u must be bounded as r — oo. The general solution, therefore, is

u(r,0) = % + (2%:) (a,cosnb + b,sinnB) ........... (15)

Applying the boundary condition u(a, 8) = f(6), we obtain

a
f() = 70 + Z (a,cosnb + b,sinnh)
n=1

a, = 1f02n f()cosntdr, n=0,1,2,..
Hence, we find T oo
b, = ;fo f(Dsinntdr, n=123,..

Substitution of a,, and b,, into Equation (15) yields

1 21
u(r,0) = ﬁf
0

142 i (;)n cosn( — r)] F(D)dr
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s
Comparing with Equation (9), we see that the only difference between the exterior and interior

problem is that p™ is replaced by p~". Therefore, the final result takes the form

u(p,6) = =" Pl £0)dT e (18) for p > 1.

1-2pcos(6—-1)+p

4.5. Dirichlet Problem for a Circular Annulus:
The natural extension of the Dirichlet problem for a circle is the Dirichlet problem for a circular

annulus, that is

Viu =0, <r<ry .ceennnn. (1)
u(r;,0) =£(60) .......... )
u(ry,0) =g@@) ............. 3)

In addition u(r, 8) must satisfy the periodicity condition. Accordingly, f(8) and g(6) must
also be periodic with period 2.

Proceeding as in the case of the Dirichlet problem for a circle, we obtain for A = 0

u(r,8) = (A + Blogr)(C6 + D)

The periodicity condition on u requires that C = 0. Then u(r, 8) becomes

ap by
u(r,0) = > + 7logr

where a, = 2AD and b, = 2BD.

The solution for the case A > 0 is

u(r,0) = (Crﬁ + Dr‘ﬁ) (Acos VA6 + Bsin ﬁ@)

for VA = n = 1,2,3, ... Thus, the general solution is

u(r,0) = %(a0 + bologr) + Yoy [(apr™ + b,r~™)cosnb
+(c,r™ + d,r~™)sinnb]

where a,,, b, c,, and d,, are constants.

Applying the boundary conditions (2) and (3), we find that the coefficients are given by

1 21
ag + bologr, = Ef f(r)dr
0

2n
apri* + b,y = = f(r)cosntdr
0

1 21
cprit +dpry "t = gf f(7)sinntdr
0

and
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1 21
ag + bylogr, = Ef g(r)dr
0

21
a,ry + byt = g] g(t)cosntdr
0

21
Caly +dpry " = gj g(t)sinntdt
0

The constants ay, by, a,,, by, c,, d, forn = 1,2,3, ... can then be determined. Hence the solution

of the Dirichlet problem,

4.6. Dirichlet Problem for a Rectangle:
Let us first consider the problem

VAU = Uy, +uy, =0, 0<x<a0<y<b ....(1)
u(x,0) = f(x), 0<x<Ka e ee e (2)
u(x,b) =0 NN )
u0,y) =0 ... (d)

u(a,y) =0 I )

We seek a solution in the form

u(x,y) =X(x)Y()
Substituting u(x, y) in the Laplace equation, we obtain

Y'"+AY =0 ............. 0

where A is a separation constant. Since the boundary conditions are homogeneous on x = 0
and x = a, we choose A = —a? with a > 0 in order to obtain nontrivial solutions of the
eigenvalue problem

X" +a?X =0
X(0) = X(a) =0

It is easily found that the eigenvalues are a = %” n=123,..

and the corresponding Eigen functions are sin nmx/a. Hence

nmx
Xp(x) = aninT

The solution of Eq. (8.7.7) is Y (y) = Ccosh ay + Dsinh ay, which may also be written in the
formY(y) = Esinha(y + F)

1
where E = (D? — (C?)z and F = 1/atanh~1(C/D). Applying the remaining homogeneous

boundary condition u(x,b) = X(x)Y(b) =0
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we obtain Y(b) = Esinha(b+ F) =0
and hence F = —b, E# 0

for a nontrivial solution u(x, y). Thus, we have Y, (y) = Ensinh% (y—»b)
Because of linearity, the solution is u(x,y) = ¥, ansin"aﬂsinh% (y — b)

where a,, = B, E,,. Now, we apply the nonhomogeneous boundary condition to obtain

o)

u(x,0) = f() = ) aysinh (";”b) T

a

n=1

This is a Fourier sine series and hence0Q

a, = Wf f(x)sm—dx
asinh (

) o inh™(p—
Thus, the formal solution is given by u(x,y) = ¥%_, a, sm‘;—(y) sin"aﬂ .......... (8)
Sin

n=1 nmh
a

L2 e P
Where an—afo f(x)sin—d

To prove the existence of solution (8.7.8), we first note that

sinhﬂ (b—-y) 1 — e~ (@nm/a)(b-y)
— e—mry/a Ty
— —Znmnov/a
sinh nTﬂb 1-e

< Cle—mry/a

where C, is a constant. Since f(x) is bounded, we have

2 a
sl < f|f(x>|dx—cz

Thus, the series for u(x, y) is dominated by the series

Z Me "Tyaaa for y > Yo > 0' M = constant

n=1

and hence u(x,y) converges uniformly in x and y whenever 0 < x < a, y >y, > 0.
Consequently, u(x,y) is continuous in this region and satisfies the boundary values u(0,y) =
u(a,y) =u(x,b) =0.

Now differentiating u twice with respect to x, we obtain

[ee]

, (N zsmh (b y) nmwx
U (X, ) = Z _an( ) nh sin

a . a
n=1 sth
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B K

and differentiating u twice with respect to y, we obtain

oo

. N
, mm\2Sinh—=(b —y)  npux
u)’y(x' y) = Z an (_) nih sin

a . a
n=1 sinh 0

It is evident that the series for u,, and u,,, are both dominated by

[ee]
Z M*nze—nnyo/a
n=1

and hence converge uniformly for any 0 <y, < b. It follows that u,, and u,,, exist, and u
satisfies the Laplace equation.

It now remains to be shown that u(x,0) = f(x). Let f(x) be a continuous function and let
f'(x) be piecewise continuous on [0, a]. If, in addition, f(0) = f(a) = 0, then the Fourier

series for f(x) converges uniformly. Putting y = 0 in the series for u(x, y), we obtain

o)

, . nmx
u(x,0) = Z Gpsin——

n=1
Since u(x, 0) converges uniformly to f(x), we write for e > 0

|sm(x,0) —s,(x,0)| < e form,n> N,

Where s, (x,y) = Xy a,’;sin%

We know that s,, (x,y) — s, (x,y) satisfies the Laplace equation and the boundary conditions
onx = 0,x = a and y = b. Then by the maximum principle,

|Sm (%, y) — s,(x,y)| < € form,n > N,

in the region 0 < x < a,0 < y < b. Thus, the series for u(x, y) converges uniformly, and as

a consequence, u(x, y) is continuous in the region 0 < x < a,0 < y < b. Hence, we obtain

- nmx
u(x,0) = Z a,sin— = f(x)
n=1 a
Thus the solution (8) is established.
The general Dirichlet problem
V2u=0,0<x<a, 0<y<b
u(x,0) = fi(x)
u(x,a) = f(x)
u(0,y) = fz(y)
u(b,y) = fo(y)
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can be solved by separating it into four proble

boundary condition and the rest zero. Thus, determining each solution as in the preceding
problem and then adding the four solutions, the solution of the Dirichlet problem for a rectangle
is obtained.

4.7. Dirichlet Problem Involving Poisson Equation:

The solution of the Dirichlet problem involving the Poisson equation can be obtained for simple
regions when the solution of the corresponding Dirichlet problem for the Laplace equation is
known.

Consider the Poisson equation V2u = uy, + uy, = f(x,y) in D

with the condition u = g(x,y) on B

Assume that the solution can be written in the formu = v +w

where v is a particular solution of the Poisson equation and w is the solution of the associated

2., —
homogeneous equation, that is, Viv =71
Viw =0
As soon as v is ascertained, the solution of the Dirichlet problem
Viw =0 in D
w=-v+g(x,y) on B

can be determined. The usual method of finding a particular solution for the case in which
f(x,y) is a polynomial of degree n is to seek a solution in the form of a polynomial of degree
(n + 2) with undetermined coefficients.

As an example, consider the torsion problem

Viu=-2,0<x<a 0<y<bh

u(0,y)=0
u(a,y)=0
u(x,0)=0
u(x,b) =0

We let u = v + w. Now assume v to be of the form
v(x,y) = A+ Bx + Cy + Dx? + Exy + Fy?
Substituting this in the Poisson equation, we obtain

2D + 2F = -2

The simplest way of satisfying this equation is to choose

D=-1and F=0
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The remaining coefficients are arbitrary. Thus we take
v(x,y) = ax — x?
so that v reduces to zero on the sides x = 0 and x = a. Next, we find w from

Viw=0,0<x<a, 0<y<b
w(0,y) =—-v(0,y) =0
w(a,y)=-v(ay) =0
w(x,0) = —v(x,0) = —(ax — x?)
w(x, b) = —v(x,b) = —(ax — x?)

As in the Dirichlet problem the solution is found to be

o)

_ nty YN gin
w(x,y) = Z (ancosh m + b, sinh » )sm 7
n=

Application of the nonhomogeneous boundary conditions yield

[ee)

nmwx
w(x,0) = —(ax —x?) = Z ansinT

n=1

c nrb nwx
w(x, b) = —(ax — x? z (ancosh + b, sinh T) sinT

from which we find

nmx
f (x? — ax)sm —dx
0 if n is even
—8a*>
3.3 if n is odd

and
nmh ~_nmb 2 (¢ . nmx
(ancosh— + b, sinh —) = —f (x? — ax)sin—dx
a a al, a
Thus, we have

(1 — cosh nTnb) a,

nnh
sinh —
a

b, =

Hence the solution of the Dirichlet problem for the Poisson equation is given by
u(x,y) =(a—x)x
[smh(Zn 1H)——== n(b Y) 4 smh(Zn — 1)— sin(2n — 1)72_’5
Z (2n—1)3

sinh(2n — 1) —
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4.8. Neumann Problem for a Circle:
Let u be a solution of the Neumann problem
Vi2u=0 inD
ou
E = f onB
It is evident that u+ constant is also a solution. Thus, we see that the solution of the Neumann

problem is not unique, and it differs from another by a constant.

Consider the interior Neumann problem

VZu=0 r<R ... (1)
ou _ du _ _
E—ar—f(e),T—R ......... (2)

Before we determine a solution of the Neumann problem, a necessary condition for the
existence of a solution will be established.

In Green’s second formula

j(vVZu—uVZU)ds=f (va—Z—ua—v>ds v ver e e (3)

D B

We put v=1, so that Vv = 0 in D and Z—Z = 0 on B. Then, the result is

[f, Vuds=[, Stds ... (4)

Substituting of (1) and (2) into equation (4) yields

f, fds=0 ... (5)

Which may also be written in the form

RITFO)AO=0 .ccovnn (6)

As in the case of the interior Dirichlet problem for a circle, the solutions of the Laplace equation
isu(r,6) = %Z,‘f:l r®(a, coskB + b, sinkf) ..............(7)

Differentiating this with respect to r and applying the boundary condition (2), we obtain
22 (R,0) = Xy kR*™(axcos k + bysinkd) = f(6) ........... (8)

Hence the coefficients are given by
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= f f()coskrdr, k=1,2,3,.

A = kﬂRk 1
f f(r)sinkrdr, k=12,3,..

k= kan 1

Note that the expansion of £(8) in a series of the form (8.6.8) is possible only by virtue of the
compatibility condition (8.6.6) since

21T

a, =% f(tydt =0

0
Inserting a; and b, in Equation (7), we obtain

u(rH)——+ fn[ — Cosk(é?—r)]f(r)dr

Using the identity

1 - 1
—Elog[l + p? — 2pcos(8 — 1)) = Z Epkcos k(6 —1)

k=1

with p = r/R we find that

u(r,0) ==— E " log[R? — 2rRcos(6 — 7) + r21f(D)dT ........... (10)

in which a constant factor R? in the argument of the logarithm was eliminated by virtue of
Equation (6).

In a similar manner, for the exterior Neumann problem, we can readily find that

u(r,0) = % + %f:n log[R? — 2rRcos(8 — 1) + r2]f()dT ........... (11)

4.9. The Neumann Problem for a Rectangle:

Consider the Neumann problem

Viu =0,0<x<a, 0<y<b ... (1)

uy(0,y) =f1i(y) «oeenenn 2)

Uy(a,y) =fL,(y) coeeeeennn. 3)

Uy(x,0) =g;(x) ... (4)

Uy (x,b) = g(x) .ooonninn. ®))

The compatibility condition that must be fulfilled in this case is

[ 19100 — g2(0ldx + [} [£) = r0)]ldy =0 ... (©)
We assume a solution in the form u(x, y) = u;(x,y) + u,(x,y) «ovven..n. (7)

where u, (x,y) is a solution of
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V2u1 = O

ou,
o 0,y)=0

Ju, B
3y (x,0) = g,(x)

Ju, B
N (x,b) = g,(x)

and where g, and g, satisfy the compatibility condition

[ 19100 = g2()]ldx =0 ... )

The function u, (x, y) is a solution of
V2u2 = O

du, 0.v) =

7 O =AL0)

U2 4,0y = 0

ay (.X, ) -

U2 (v by =0

ay (.X, ) -

where f; and f, satisfy the compatibility condition

[ 1AO0) = LO00]dy =0 o (11)

u,(x,y) and u,(x,y) can be determined. Conditions (9) and (11) ensure that condition (6) is
fulfilled. Thus the problem is solved.

However, the solution obtained in this manner is rather restrictive. In general, condition (6)
does not imply conditions (9) and (11). Thus, generally speaking, it is not possible to obtain a

solution of the Neumann problem for a rectangle by the method described above.
Assume that, a solution in the form u(x, y) = %(y) + Yy Xn OV () e (12)

where X,,(x) = cosnmx/a is an Eigen function of the eigenvalue problem

X' 4+2X=0
X'(0)=X'(a) =0

corresponding to the eigenvalue A,, = (nm/a)?. Then from Equation (12), we see that

a

2
) == [ X
0
Multiplying both sides of Equation (1) by 2cos(nmx/a) and integrating with respect to x from
0 to a, we obtain Efoa (uyx + uyy)cos% dx =0

2 ra nmx
ory,’ +Zf0 UygxCOS——dx =0
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Integrating the second term by parts and applying the boundary conditions (2) and (3), we

nm

obtain ¥, — (7)2 Y, = E, () eerenn... (14)

where F,(y) = 2[f;(y) — (—=1)"f,(y)]/a. This is an ordinary differential equation whose

solution may be written in the form

Y, (y) = Ancosh% + B,sinh —% + nz—n foy E,(¥)sinh = (y — 0)dT ........... (15)

The coefficients 4,, and B,, are determined from the boundary conditions

a a

a

, 2 nmx
Yn(O) = E Uy (X, O)COS T dx
0

And Yi(b) == [;* g,(x)cos™==dx ............. (17)
For n = 0, Equation (14) takes the form

2
a

Yo' ==[fi(y) — ()]

and hence
2 y
=2 ] 1A - a@ldrC

where C is an integration constant. Employing the condition (16) for n = 0, we find

2 a
Cc =—f g1(x)dx
aly

Thus, we have

2( (" a
6500 = [ 1ho - holar + | g1

Consequently,

2 b a
Ya(b>=5{ | 1h@ - f@lar | gl(x)dx}

Also from Equation (16), we have

2 a
@) =, s0ods

It follows from these two expressions for Y, (b) that
b a
[ 1) - oy + [ 19,00 - golax = 0
0 0
which is the necessary condition for the existence of a solution to the Neumann problem for a

rectangle.
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Exercises:

1.Reduce the Neumann problem to the Dirichlet problem in the two dimensional case.
2.Reduce the wave equation u,, = c?(ty, + Uyy + Uyy)

to the Laplace equation uyy + uyy, + u,, +u,; = 0, by letting T = ict where i = V-1.
Obtain the solution of the wave equation in cylindrical coordinates via the solution of the
Laplace equation. Assume that u(r, 6, z, t) is independent of z.

3.Prove that a function which is harmonic everywhere on a plane and is bounded either above

or below is a constant. This is called the Liouvile theorem.
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Unit V

The Delta function — Green’s function — Method of Green’s function — Dirichlet Problem for
the Laplace and Helmholtz operators — Method of images and Eigen functions — Higher
dimensional problem — Neumann Problem.

Chapter 5: Section 5.1 to 5.9

5.1. The Delta Function:

The Green's function method is applied here to boundary-value problems in partial differential
equations. The method provides solutions in integral form and is applicable to a wide class of
problems in applied mathematics and mathematical physics.

Before developing the method of Green's function, we will first define the Dirac delta

function § (x — &,y — n) in two dimensions by

ad(x—=&y—n=0,x#&y#+En  ...(])
b. ffde(x—f,y—n)dxdy =1L R:(x—8*+(y—n?<e? ... (2)
C. ffRF(x,y)(S(x—E,y—n)dxdy=F(E,n) ........... 3)

for arbitrary continuous function F in the region R.
The delta function is not a function in the ordinary sense. It is a symbolic function, and is often
viewed as the limit of a distribution.

If 6§(x — &) and §(y — n) are one-dimensional delta functions, we have

Iy Fe,»)8(x — Sy —mydxdy = F(§,n) ..o (4)
Since (3) and (4) hold for an arbitrary continuous function F, we conclude that
S(x=&y—m=6x—=886(y—1n) .ccovnvnnnn. (5)

Thus, we may state that the two-dimensional delta function is the product of one-dimensional
delta functions.

Higher dimensional delta functions can be defined in a similar manner.

5.2. Green's Function:

The solution of the Dirichlet problem

L. Viu = h(x,y) inD
is given by w=Flx,y) onB U (1)
u(xy) = ff, 6oy &,mhEmdedy + [, fods ........... )
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.
where G is the Green's function and n denotes the outward normal to the boundary B of the

region D. It is rather obvious then that the solution u(x, y) can be determined as soon as the
Green's function G is ascertained, so the problem in this technique is really to find the Green's
function.

First we shall define the Green's function for the Dirichlet problem involving the Laplace
operator. Then, the Green's function for the Dirichlet problem involving the Helmholtz operator
may be defined in a completely analogous manner.

The Green's function for the Dirichlet problem involving the Laplace operator is the function
which satisfies

. ViG =6(x — &,y —n)t? inD ... ....(3)
S G=0 onB ... ... (4
b. G is symmetric, that is, G(x,y; E,n) = G(E, 1%, Y) ooveneen.... (5)

c. G is continuous in x,y,&,n, but dG/ don has a discontinuity at the point (¢,n) which is
specified by the equation

lim [ Zds=1 .....(6)

g0 "Ce

where n is the outward normal to the circle

Ca(x =+ (y—m?=¢?

The Green's function G may be interpreted as the response of the system at a field point (x, y)
due to a 6 function input at the source point (&,1).G is continuous everywhere in D, and its
first and second derivatives are continuous in D except at (&,n). Thus, property (a) essentially
states that V2G = 0 everywhere except at the source point (&, 7).

We will now prove property (b).

Theorem 1:

The Green's function is symmetric.

Proof:

Applying Green's second formula

If, @V —pv2p)ds = [, (6L —p32)ds ........ (7)
to the functions ¢ = G(x,y; &,n) and Y = G(x, y; €*,n*) we obtain
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ﬂ [G(x,y; EMVAG (x,y; E%,1%)

D

— G(x,y;&5,m)VAG (x, y; &, m)]dxdy

=][G(x ;& )a—G(x ;EN) —G(x,y; & *)a—G(x ;&,m)|ds
5 'y' 'T] aTl ,y, '7] ;y; JTI 6n ;y; ;77

Since G(x,y; &,n) and hence G (x, y; £*,n*) must vanish on B, we have

ﬂD [GCx,y; §,mMVG(x, y;$7m7)
—G(x,y;§,mIVAG (x,y; §,m)]dxdy = 0
But V2G(x,y;¢&,m) = 6(x — &y —1n)
And V2G(x,y; ") = 6(x — &,y — 1)
Since ff, G(x,y;¢,m)8(x — &,y —n")dxdy = G(&*,1";€,n)and

j j GOx,y: €,17)8(x — £y — mdxdy = G(,m; €% 1°)

we obtain G(&,1; &, 1) = G(E*,n*; &)
Theorem 2:

dG/ dn is discontinuous at (&, n) in particular,

[ a6
lim %ds =1, Ca(x—8?+(y—n)?=¢?

£-0 Ce

Proof:

Let R, be the region bounded by C,. Then integrating both sides of Equation (3), we obtain
ff V2Gdxdy = ff S(x—&y—n)dxdy =1
Re R

It therefore follows that

: 2 —

lim fng ViGdxdy =1 ........... (8)

Thus, by the Divergence theorem,
oG

lim| —ds=1

£=0 J¢, on

5.3. Method of Green's Function:
It is often convenient to seek G as the sum of a particular integral of the nonhomogeneous

equation and the solution of the associated homogeneous equation. That is, G may assume the

formG(&,n;x,9) = FEmx,y) +gEmx,Y) e (1)
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-
where F, known as the free-space Green's function, satisfies

VZF=6(—x,n—y)inD ....... ()

and g satisfiess V2g =0 inD .............. (3)

so that by superposition G = F + g . Also G = 0 on B requires that

g=—F onB ............. (4)

Note that F need not satisfy the boundary condition.

Before we determine the solution of a particular problem, let us first find F for the Laplace and
Helmholtz operators.

(1) Laplace Operator
In this case F must satisfy
VZF =8 —x,n—y) inD

Then for r = [(€ — )2 + (7 — y)2]z > 0, that is, for £ # x,7 # v, we have by taking (x,y)

as the center
10/ OF
V2F = ——(r—) =0
since F is independent of 6. The solution, therefore, is

F = A+ Blogr
Applying condition (6), we see that

21

. oF )
lim | =—ds = lim —rdf =11
=0 Jo on 0 J, T

Thus B = 1/2m and A is arbitrary. For simplicity we choose A = 0. Then F takes the form
-1
F = anogr ............. ®))

(2) Helmholtz Operator
Here F is required to satisfy V2F + k?F = §(x — &,y — 1)
Again for r > 0, we find
10/ OF
;EQAW) +Kk?F =0
Orr?E.,. +rE. + k?>r’F =0
This is the Bessel equation of order zero, the solution of which is
F(kr) = AJy(kr) + BYy(kr)
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=1

KKKKK

Since the behavior of J, at r = 0 is not singular, we set A = 0. Thus, we have

F(kr) = BYy(kr)
But for very small r,
Yo(kr) ~ Elogr
s
Applying condition sec 5.2 equation(6), we obtain
lim] a—Fds=lim B%ds=1
£-0 Ce on £-0 Ce or
and hence B = 1/4. Thus F (kr) becomes

F(kr) = Yo(kT) oo (6)

We may point out that, since
(V2 + k?) approaches V2 as k — 0
it should (and does) follow that

1
ZYO(W) - Elogr as k> 0+

5.4. Dirichlet Problem for the Laplace Operator:
We are now in a position to determine the solution of the Dirichlet problem

Viu=nh inD
- S (1)

by the method of Green's function.

By putting ¢(&,1) = G(&,n;x,y) and Y(&,1n) = u(&,n) in Equation(7), we obtain

ou 0G
ffD [G(&,m; x, y)VPu — u(§,n)V2Gldédn = L [G(f,n;x, y)%— u(é, n)% ds

But V2u = h(é,n) and V2G = 6(§ —x,n —y)

in D. Thus, we have
I, 1652, y)R(E, m) — u(E,mEE — x,n — y)]d§dn
= J, [6GEma 2 —uE,m 2 ds

Since G = 0 and u = f on B, and noting that G is symmetric, it follows that

G
u(xy) = [| Geoygmnemdzan+ | f5ras

135

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



which is the solution given in Sec. 5.2.

As a specific example, consider the Dirichlet problem for a unit circle. Then

Vig =gee+ Gyy =0 inD
g=-F onB

But we already have from Eq. (5) that F = (1/2m)logr.

If we introduce the polar coordinates (see Fig. 5.1) p, 8, g, B by means of the equations

x = pcos B, Eocosf
y =psinf, n=osinf

then the solution of Equation (4)
Qo n .
9= + Z o™ (a,cosnp + b,sinnp)
n=1

Where g = —ﬁlog[l + p? — 2pcos(B — )] onB

o ptcosn(B-6)
-2 anl —

By using the relation log[1 + p? — 2pcos(B — 8)] =

and equating the coefficients of sinnf and cos nf to determine a,, and b,,,

=

Figure 5.1

p"
a, = —cosné
2nn

we find

n

_ P
b, = S—Sin né
It therefore follows that

1 — n
9(0.0;0,8)=5- ) (“Z) cosn(f — 6)
n=1

1 2
= ——log[1+ (6p)* — 2(op)cos(f — )]

Hence the Green's function for the problem is
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1
G(p,0;a,B) = Elog[cf2 + p* — 20pcos(B — 6)]

1 2
— 2 logl1+ (9p)* = 20pcos(f — 6)]

from which we find Z—G

= (50, =i
nlon B BRCE o=1 T 2m [1+p2-2pcos(B-6)]

If h = 0, then solution, sec 5.4 equation (3) reduces to the Poisson integral formula similar to

sec 5.4 equation (10) and assumes the form u(p, 8) = ifozn 1+p2_;;f;(ﬁ_9) f(B)dp

5.5. Dirichlet Problem for the Helmholtz Operator:
We will now determine the Green's function solution of the Dirichlet problem involving the
Helmholtz operator, namely,

VZu+k?u=n inD )
w=f onB

where D is a circular domain of unit radius with boundary B. Then the Green's function must
satisfy

VG +k2G=6(¢—x,n—Yy) in D @)
G0 ong T

Again, we seek the solution in the form

GEmxy)=FEmxy)+g9@Emxy)

From Equation (6), we have F = %YO (KT) e (3)

where r = [(§ —x)? + (n — y)z]%. The function g must satisfy
Vig+Kk?ig=0 inD

gz—iYo(Kr) on B
the solution of which can be easily determined by the method of
separation of variables. Thus, the solution in the polar coordinates defined by sec 5. equation
(5) may be written in the form

g(p,0;0,B) =X Jn(ko)[a,cosnp + b,sinnf] ........... (5)
where
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ay = 8n]0(rc)f Y, K\/l + p% — 2pcos(f — 9)] dp
a, = 471] (rc)j Yo K\/l + p? — 2pcos(B — 0)] cosnfdf yn=1,2, ..
b, = 4n] (rc)j Yo K\/l + p? — 2pcos(B — 9)] smnﬁdﬁ

To find the solution of the Dirichlet problem, we multiply both sides of the first equation of

Equation (1) by G and integrate. Thus, we have
|| @+ w6 n v pagan = || w6 nxyagan

D D
We then apply Green's theorem on the left side of the preceding equation and obtain
| mememxyagan - || uwe +x26)agan

D D

=j (Gu,, — uG,)ds
B
But V2G + k2G = §(§ —x,n —y) in D and G = 0 on B. We therefore have
uGey) = || hEmGEmxdedn + [ 16 mGads
D B

where G is given by Egs. Sec 5.5 egn (3) & (5).
5.6. Method of Images:
We shall describe another method of obtaining Green's function. This method, called the
method of images, is based essentially on the construction of Green's function for a finite
domain from that of an infinite domain. The disadvantage of this method is that it can be applied

only to problems with simple boundary geometries.

As an illustration, we consider the same Dirichlet problem solved in Sec. 10.4.

3

el oesitwe oy

Figure 5.2
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:
Let P(&,n) be a point in the unit circle D, and let Q(x,y) be the source point also in D. The

distance between P and Q is r. Let Q' be the image which lies outside of D on the ray from the
origin opposite to the source point Q (as shown in Fig 5.2) such that 0Q/o = a/0Q' where o
is the radius of the circle passing through P centered at the origin.

Since the two triangles OPQ and OPQ' are similar by virtue of the hypothesis (0Q)(0Q") =

g

o2 and by possessing a common angle at 0, we have % =2
where ' = PQ" and p = 0Q.
If o = 1, Equation (1) becomes %% =1

Then we can clearly see that the quantity

ri

1 1 1 , 1 1
;log(—,;) =;logr—;logr +§log; ............. (2)

r

which vanishes on the boundary ¢ = 1, is harmonic in D except at Q,
L L T P S

G —;logr—glogr +2nlogp ............. 3)

Noting that Q" is at (1/p, 8), G in polar coordinates takes the form

G(p,0;0,5) =$108[02 + p? — 2apcos(B — 0)]

The first term represents the potential due to a unit line charge at the source point, whereas the
second term represents the potential due to a negative unit charge at the image point. The third
term represents a uniform potential. The sum of these potentials makes up the potential field.
Example 1:

To illustrate an obvious and simple case, consider the semi-infinite plane n > 0. The problem
is to solve

ViZu=h inn>0
u=fonn=0

The image point should be obvious by inspection. Thus, if we construct

G_ 11 2 2 11 2 2
=1 og[(§ —x) +(n—y)]—E ogl(§ —x)* + (n +y)?]

the condition that G = 0 on n = 0 is clearly satisfied. It is also evident that G is harmonic in
n > 0 except at the source point, and that G satisfies sec(5.2) equation (3).

With G, |5 = [_Gn]n=o’ the sec(5.4) equation(3) is thus given by
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(e f@©de
wxy) ‘%f_oo E— 02 +)?

1 (2 [€E=x*+0—y)?
+E]0 j_m log -2+ (M +y)? h(¢,m)dédn

Example 2:
Another example that illustrates the method of images well is the Robin's problem on the
quarter infinite plane, namely
Viu = h(¢,n) iné >0,
u=f(m oné =0

Uy = g($) onn =0
This is illustrated in Fig. 5.3.
Let (—x,y), (—x,—y), and (x, —y) be the three image points of the source point (x, y). Then,

by inspection, we can immediately construct Green's function

6 =L 1ogl¢ ™ )+ @ =»*IE =% + (0 +y)°]
A I+ )2+ (= »PIIE +x)% + (1 +y)?]

This function satisfies V2G = 0 except at the source point, and G = 0 on ¢ = 0 and G, = 0 on

n =20.

The solution from Equation (2) is thus
,y) = Ghdéd Gu, —uG,)d
u(ey) = || Gnazan + | (Guy—uG,)ds
=| | Gnasan+ | g@6cE 0xna
0 0 0
+ [ ronGe(omx g
0

Veu-‘ﬂ
, 926 =8(¢-x m-y)
(~x, y) === fm— == (x,y)

y = e -I

Figure 5.3
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5.7. Method of Eigen Functions:
We consider the boundary value problem

Viu=nh in D
u=f onB T (1)
For this problem, G must satisfy
VG =6( —xn—y) nD- ?)
G=0 on B
and hence the associated eigenvalue problem is
Vip + Ap =0 in D 3)
$=0 onB

Let ¢,,.,, be the eigenfunctions and A,,,, be the corresponding eigenvalues. We then expand G

and & in terms of the eigenfunctions ¢,,,,. Consequently, we write

GEML =D D amn (o) mn(E1) o e ()
5(E—x,n—y)= z z by (6 V)b (E11) o e (5)
where n

o = 1 || 86 =21 = Y
- %ﬁu’;) . (6)

inwhich llpmnll* = ff,, drndédn
Now substituting Equations (4) and (5) into equation (2) and using the relation from equation
(3) that

V2¢)mn + Ann®mn =0
we obtain

DIPRETHCHIGIEDIP Pun e S0

__Pmn(xy)
Amnlldmnll®

and the Green's function is therefore given by

Gmn (X, V) Pmn ($,1)
Al Pl

Hence a,,(x,y) =

G mxy) ==

m n
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Example 1:
As a particular example, consider the Dirichlet problem in a rectangular domain
Viu=nh inD
u=20 on B
The Eigen functions can be obtained explicitly by the method of separation of variables. We

assume a solution in the form

u(€,n) = XE)Ym
Substitution of this in
Viu+Au=0 in D
u=20 on B

yields, with a? as separation constant,

X"+a?X=0
Y'+(A—a?)Y =0
With the homogeneous boundary conditions X(0) = X(a) =0 and Y(0) =Y(b) = 0,X and
Y are found to be

Xm(§) = Apsin mTT[f

., nmn
Y,(n) = anmT

We then have

m? n? _ mn
Amn:n’ _+b2 with a=7
Thus, we obtain the Eigen functions

mné  nnn
Pmn (§,7) = sin——sin——

Knowing ¢,,,,,, we compute [|¢,,, |l and obtain

, Mg nmn
|I¢)mn|| f f sin? —sm —dfdn

4
We thus obtain from Equation (8) the Green's function

© o . mux . nmy . mné . nmun
4ab sin—_=sin—p=sin—=sin —

142

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



5.8. Higher Dimensional Problem:

The Green's function method can be easily extended for applications in three and more
dimensions. Since most of the problems encountered in the physical sciences are in three
dimensions, we will illustrate some examples suitable for practical application.

First of all, let us extend our definition of Green's function in three dimensions.

The Green's function for the Dirichlet problem involving the Laplace operator is the function
that satisfies

N ViG=68(x—&y—n,z—Q) iNR .ooooee e (1)
- G=0 ons ... (2)
b.G(x,v,2,En, ) =GENGx,v,2) oeeenne... 3)
o@ﬂkg%ﬁzl ............. (4)

where n is the outward unit normal to the surface

Set(x =+ (y-m*+(z-*=¢
Proceeding as in the two-dimensional case, the solution of the Dirichlet problem

V2u=nh in R
w=f S (5)
Isu(x,y,2) = [[f, GhdR + [f; fG,dS ............ (6)

Againwe let G(&E,n, 0 x,y,2) =F(EnGx,y,2) + g€ Gx,y, 2)
Where V2F = §(x — &,y —n,z—{) inR

VZg=0 in R
And g=—-F onS
Example 1:

We consider a spherical domain with radius a. We must have V2F = 0

except at the source point. Forr = [(§ —x)2+ (n —y)* + ({ — z)z]% >0

with (x, y, z) as the origin, we have

V2 = 1 d(ZdF>_O
Cr2dr r dr)

Integration then yields
B
F=A+ = forr >0
Applying the condition (4) we obtain lim JI; GndS = lim JI, BdS=1
£> & E— €

Consequently, B = —1/4m and A is arbitrary. I1f we set A = 0 for convenience, ¢ we have
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We apply the method of images to obtain the Green's function. If we draw a three-dimensional

diagram analogous to Fig. 1, we will have a relation similar to (1), namely,

where r" and p are measured in three-dimensional space. Thus, we seek Green's function

G=—L42L 9)

4mr  4mr!

which is harmonic everywhere in r except at the source point, and is zero on the surface S.
In terms of spherical coordinates

& = tcosysina, x = pcos ¢sinb

n =71sinysina, y = psin ¢sin b

{ =1cosaq, z = pcos 6

G can be written in the form

G = e o+ ! T e, (10)

am(12+p2-21pcosy)?

2,52 2
47t[%+a2—2‘rpcos y]

where y is the angle between r and r’. Now differentiating G, we have

[OG a? — p?
0t T=a - 2 2 3
4ma(a? + p? — 2apcosy)2
Thus, the solution of the Dirichlet problem for h = 0 is

a(a?-p?) 2n . f(aP)sinadady
u(p,6,¢) = L) 2 S (11)
(a%+p2-2apcosy)2

where cosy = cosacos 6 + sin asin cos(yp — ¢). This integral is called the three-

dimensional Poisson integral formula.

For the exterior problem where the outward normal is radially inward towards the origin, the

solution can be simply obtained by replacing (a? — p?) by (p? — a?) in Egn (11).

Example 2:

Another example involving the Helmholtz operator is the three-dimensional radiation problem
Viu+rk?u=0

rli_)rg)r(ur +iku) =10

where i = +/—1; the limit condition is called the radiation condition, and r is the field point

distance.

In this case, the Green's function must satisfy
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VG +Kk’G =60 —xn—y,{—2)

Since the point source solution is dependent only on r, we write the Helmholtz equation
2
GTT+;GT+KZG =0forr>0

Note that the source point is taken as the origin. If we write the above equation in the form
(Gr)yr + K2(GT) =0 forr >0

then the solution can easily be seen to be Gr = Ae™ " + Be ™"

e LKT e —lKT

orgG =4 + B

r

In order for G to satisfy the radiation condition lim (G, + ikG) = 0
T—00

e—lKT

A = 0 and G thus takes the form G = B

r

e—UCT

. . G ;o _ 1. 1, . _
To determine B we have lim ffss o dS = —lim ffsg B (r + uc) as =1

r

e—UCT

from which we obtain B = —1/4m, and consequently, G becomes G = —

Antr

Note that this reduces to —1/4mr when k = 0.

5.9. Neumann Problem:

We have noted in the chapter on boundary-value problems that the Neumann problem requires
more attention than Dirichlet's problem, because an additional condition is necessary for the
existence of a solution of the Neumann problem.

Let us now consider the Neumann problem

V2u+k?u=n inR
ou
%é onS

By the divergence theorem, we have

[ et = [[ 2as

Thus, if we integrate the Helmholtz equation and use the preceding result, we obtain

e [ e = [ nan

In the case of Poisson's equation where k = 0, this relation is satisfied only when

[ a0

145

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



F rik"m

If we consider a heat conduction problem, this condition may be interpreted as the requirement
that the next generation of heat be zero. This is physically reasonable since the boundary is
insulated in such a way that the net flux across it is zero.

If we define Green's function G, in this case, by

VG +Kk*G=6(¢—xn—vy,{—2) in R
aG
%—O onS

Then we must have

[ oan =1

which cannot be satisfied for k = 0. But, we know by physical reasoning that a solution exists

if
[[[ rar =0
R

Hence we will modify the definition of Green's function so that

OG_C S
5, = C on

where C is a constant. When integrating V2G = & over R, we obtain

Cﬂsd5=1

It is not difficult to show that G remains symmetric if

fLGdSzO

Thus, under this condition, if we take C to be the reciprocal of the surface area, the solution of

the Neumann problem for Poisson's equation is
uGoy,2) = ¢+ [[| 60uy.zEm . Odsdnag
R

where C* is a constant.

We should remark here that the method of Green's functions provides the solution in integral
form. This is made possible by replacing a problem involving nonhomogeneous boundary
conditions with a problem of finding Green's function G with homogeneous boundary
conditions.

Regardless of methods employed, the Green's function of a problem with a nonhomogeneous

equation and homogeneous boundary conditions is the same as the Green's function of a
146

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



e
problem with a homogeneous equation and nonﬁomogeneous boundary conditions, since one
problem can be transferred to the other without difficulty. To illustrate, consider the problem
Lu=f in R

u=20 on dR
where dR denotes the boundary of R.

If we let v = w — u, where w satisfies Lw = f in R, then the problem becomes

Lv=20 in R

v=w on OR
Conversely, if we consider the problem
Lu=20 in R

u=g on dR
we can easily transform this problem into
Lv=Lw=w" inR

v=20 on dR

by putting v = w — u and finding w that satisfies w = g on dR.
In fact, if we have

Lu=f in R
u=g on JR

we can transform this problem into either one of the above problems.

Exercises:

1.Prove that the Green’s function for a region, if it exists, is unique.

2. Determine the Green’s function for the exterior Dirichlet problem for a unit circle.
ViZu=0inr>1,u=finr=1

3.Determine the Green’s function for the semi-infinite region & > 0 for

VG +k*G=6( —x,n—y,{—2z)G=00n{ = 0.
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