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UNIT -1

RANDOM EVENTS AND RANDOM VARIABLES

1. Random Events

1.1.1. Preliminary
Probability theory is a part of mathematics which is useful in discovering and
investigating the regular features of random events. The following examples show what is

ordinarily understood by the term random event.

Example 1

Let us toss a symmetry coin the result may be either a head or a tail. We cannot predict the
result. It depends various causes the initial velocity of the coin, the initial angle of through and

the smoothness of the table on which the coin falls, but we cannot control all these parameters.
The result of a coin tossing head or tail is a random event.

If we perform a long series of tossing, the no.of times heads occur is approximately

equal to the no.of times tails appear.
Let n denote the no.of all our tosses and m denote the no.of times heads appears.

Frequency of appearance of heads = %

Frequence of appearance of tails = ?

Suppose we tossed a coin 4040 times and obtained heads 2048 times.

2048

The ratio of heads = — = 0.50693
4040

Suppose we tossed 24000 times and obtained heads 12012.

12012
24000

Ratio of heads = = 0.5005
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Clearly frequency oscillate about the number 0.5.

Example 2.

Let us consider the number of births of boys and girls in Poland in the year 1927 to

1932
‘ Total no.of .
Year in No.of Birth ) Frequency of Birth
Birth
Birth
Boys m Girls f m+ f Boys P; Girls P,
1927 496,544 462,189 958,733 0.518 0.482
1928 513,654 477,339 990,993 0.518 0.482
1929 514,765 479,336 994,101 0.518 0.482
1930 528,072 494,739 1,022,811 0.516 0.484
1931 496,986 467,587 964,573 0.516 0.484
1932 482,431 452,232 934,663 0.516 0.484
Total 3,032,452 2,833,422 | 5,865,874 | 0.517 0.483

In this table m and f denote respectively the no.of birth of boys and girls in particular

years.

m
Pl - m+f

-
P2 - m+f

The values of P; oscillate about the no. 0.517 and the values of P, oscillate about the

no. 0.483.

Example 3.

We throw a dice. As a result of a throw one of the faces 1,2

The appearance of any particular face is a random event.

,6 appears.

Clearly, the frequency of this event will oscillate about the number %.
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1.1.2. Random events and operations performed on them

We now construct the mathematical definition of a random event.
Example 1.
Suppose that when throwing a die we observe the frequency of the event, an even face.
Let elementary event E = {e;/i = 1 to 6}
The random event an even face will appear in e,, e4, ¢
~ A ={ey ey €6}
Find the random event which not contain face = 1(i.e., e,)

The random event A = {e,, e3, e4, €5, €5} which contains 5 elements.

Definition.

Every element of the Borel field Z of subsets of the set E of elementary events is called

a Random event.

Definition.

The event containing all the elements of the set E of the elementary events is called the

sure event.

Definition.

The event which contains no elements of the set E of elementary events is called the

Impossible event.

The impossible event is denoted by (0).
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Definition.

We say that Event A is contained in event B if every

E

elementary event belonging to A belongs to B.

We write A € B. 5 @

In figure 1.2.1., where square E represents the set of elementary
events and circles A & B denote subsets of E. Clearly A c B.

Figure 1.2.1

Definition.

Two events A & B are equal if A is contained in B & B is contained in A.
We write A = B.
Properties of Borel field (Z)
Property 1.The set Z of random events contains as an element the whole set E.
Property 2.The set Z of random events contains as an element the empty set (0)

1.e., Z contains sure event and impossible event.

Definition.
Two events A and B are exclusive if they do not have any common element of the set E.
Definition.

Let A1, A5, A5, ... ... be a finite or denumerable sequence of random event. The event A
which contains elementary events, which belongs to atleast one of the events A, A4, ..... A is

called the alternative (or sum or union) of the events A, A,, As, .....
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We write,

(or)
A=A +A4, + ...
(or)
A=A
Example 2.
E E

On this figure, square E represents the set of elementary events and circles

A4, A,, ...denote three events; he shaded area represented alternative A; + A, + As.

Property 1.2.3

If a finite or denumerable no. of events A;, A, and so on belonging to Z, then their

alternative also belongs to Z.

Definition.

The random event A containing those and only those elementary events which

belonging to A; but do not belong to A, is called the difference of the events A; and A,.

We erte A == Al - Az
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Property 1.2.4.
If events A; and A, belong to Z, then their difference also belongs to Z.
Example 3.

Suppose we consider the no.of children in a group of families. Let E =
{eo, €1, won on. ,en}. Consider the event A that a family chosen at random has only one child and

the event B that the family has atleast one child.
i.e., A = {family with one child}
B = {family with atleast one child}
Clearly, A € B and
Alternative A+ B = B

~ E has n + 1 elements

Then A = {e;} & B ={ey, €5, ... ... ,en}
A—B =0
B—A=/{eye;3.... ,en}

i.e., B — A is the event that the family has more than one child.

Definition.

The event A contains elements which belong to all the events A4, 4,, ..... is called the

product (on intersection) of these events. We write

A= A1 N A2 n..... (Or) A= AlAl [T (OT)A = l_[iAl"

Property 1.2.5.

If a finite (or) denumerable no. of events A4, A4,, ... ... belong to Z, then their product

also belongs to Z.
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Example 4.

Consider the random event A that a form chosen at random has atleast one horse & one
plow, with the additional condition that the maximum no. of plows as were as the maximum
no. of horses are two. Consider also the event B that on the form these is exactly one horse and

at most one plow. Find the product of events A and B.
Solution.

E = {eoo, €01, €02, €10, €11, €12, €20, €21, 822} where the ISt index denoting the no. of

horses and the 2™ the no. of plows.
A = {e11, €12 €21, €22}
B ={ey1, €10}
The product AN B = {e;1}

The event A N B occurs iff on the chosen form there is exactly one horse and exactly

one plow.

Definition

The difference of events E = A is called the complement of the event A and is denoted

by A.

Example S.

Suppose we have a no. of electric light bulbs. We fix a certain value to such that if the
burns out in a time shorter than to, we consider it to be defective. Find the random event that

we select a good bulbs.
Solution.

Consider E as all the electric light bulbs. Consider the random events A = defective

bulb
i.e., AS = {bulb burns out in a time shorter than to}

A=E-A

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



={bulbs that glows for a time no shorter than to}
i.e. A is a not defective

i.e., A is the random event to select good bulb.

Definition.

A set Z of subsets of the set E of elementary events with properties 1 to 5 is called a

Borel field of events and its elements are called random events.
i.e. () E, (0) belongs to Z
(i)A,+A,+...€EZ

(i) Ay N Ay N oo NE Z

Definition.
The sequence {4,,} (n = 1,2, .....) of events is called non-increasing if for every n we

have A,, D Ap41.

Definition.

The product of a non-increasing sequence of events {A,} is called the limit of this

sequence.

Write A = [[;514,, = lim A,,.

n—-oo

Definition.

The sequence {A,}(n = 1,2, .....) of events is called non-decreasing if for every n we
have

Api1 2 Ap
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The sum of a non-decreasing sequence {4, } is called the limit of this sequence.
We write,

A=Yne14n = rlli_r)goAn

1.1.3. The system of axioms of the theory of probability

Axiom I: To every random event A there corresponds a certain number P(A) called the

probability of A, which satisfies the inequality 0 < P(A4) < 1.

Example 1.

Suppose there are only black balls in an urn. Let the random experiment consist in

drawing a ball from urn. Drawing the black ball out of the urn is a sure event.

Axiom II: The probability of sure event equals one.

ie.,P(E) =1.

Example 2.
Find the frequency of face 6 and face 2 in a dice.
Solution.
Let A = getting face
B = getting face 2

~ P(A) = % and P(B) = g

Probability of getting either face 6 or face 2 = P(4) + P(B)

Il
[N N
+
[N
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=~ The frequence of getting either face 6 or face 2 = %

Example 3.

If a card is selected from a deck of 52 cards many times over. Find the frequency of

(i) Appearance of ace
(i) Appearance of spade

(iii) Appearance of ace or spade
Solution.

Let A be the event of getting ace

Let B be the event of getting spade

() Let P(A) = probability of getting ace
4
T 52

(i) Let P(B) = probabilit of getting spade
_13
T 52

(iii) Let P(AU B) = probability of getting ace or spade

~P(ANB) =5—12

~P(AUB) = P(A) + P(B) —P(ANB)

4 13 1
J— + —_—
52 52 52

_ 4+13-1

T 52
16 8
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Axiom III: The probability of the alternative of a finite or denumerable no. of pairwise

exclusive events equals the sum of the probabilities of these events.

Thus, if We have a finite or countable sequence of pairwise exclusive events {A;}, k =

1,2,3...... , then axiom 3 the following formula holds:

PXrAy) = Xk P(4p).

In particular, if the random event contains a finite or countable number of elementary events

(9% and e, € Z(k = 1,2, )

1. Axiom 3 is called the countable (or complete) additivity of probability.

2. P issaid to be probability if it satisfying axiom 1, axiom 2, axiom 3.

3. P(A) satisfying Axiom 1,2,3 is normal, non-negative and countably additive measure
on the Boret field Z of subsets of E

Theorem 1.1.

Let A and B be two arbitrary random events, exclusive or not. Then P(AU B) =

P(A)+P(B) =P(ANB)
Proof.

The set AU B and B can be written AUB =AU (B—AB) - (1) and B = AB U
(B—AB) - (2)

Here, in (1) & (2)
A and (B — AB), B and (B — AB) are exclusive.
=~ By Axiom (3)

(1) > P(AUB) = P(A) + P(B— AB) > (3)
P(B) = P(AB) + P(B — AB)
P(B — AB) = P(B) — P(4B) - (4)

Sub (4) in (3),
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P(AuB)=P(A) + P(B) — P(4B)
Remark.

Let A4, Ay, ....., A, where n > 3, be arbitrary random events

P(Z’];lzlAK) = Z‘]’{lzlp(AK) - Z;{ll,k2=1P(Ak1 n Akz) +Z£1,k2,k3=1P(Ak1 N Akz N Ak3) -

e (DM P (A Ay e e Ap)

Theorem 1.2.

If the events A4, 45, ... ... exhaust the set of elementary events E, P(Z k=14 K) =1
Example 4.

Let the set of all non-negative integers form the set of elementary events. Let (e,,) be

the event of obtaining the number n where n = 0,1,2, ..... suppose that (e,,) = % , where C is

a constant. Prove that C = e~ 1.

Solution.
LetE = Zt u {0}

Z ={ey, eq,eq ... ... } where (e;) be the event of obtaining the number i where i =

Given P(e,) = %
P(Xn=o0en) = Xn=oP(en)
= Z?f:o%
=C Z%’:o%
We know that,
PQr-oen) =1 & z;;;oi —e

P(Tioen) = C Yo
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Theorem 1.3.
The probability of the impossible event is zero.
Proof.
For every random event A, we have
AUE =E
If A is the impossible event A = (0)
Then, A and E are exclusive
From axiom (3)
P(AUE) =P(A) + P(E)
P(E) = P(4) + P(E)

P(A) =P(E)—P(E)

P(4A) =0
Theorem 1.4.
Let {4, };n=123,.... be a non-increasing sequence of events and let A be their

product. Then P(4) = Tll”?o P(A,).

Proof.
If the sequence {A,} is non- increasing,then for every n we have

Ay = Zl?:n AgAg1 +A
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sWe know that,
P(AuB) =P(A)+P(B)—P(ANB)
P(4,) = P(Xp AxAx+1) + P(A) — P((E7, AxAk+1)A)
P(A) = PRy AkAk+1) + P(A) — P(ER_, AxAg i1 A) — (1)
By axiom (III),
P(XR,AAgAk+1) =0 (= Vk the event AAg Ay, is the impossible event)

(1) = P(4p) = P(Eizn Ak Ak+1) + P(4)
P(4) = Xien P(AkAk+1) + P(A)

Taking limit n — oo on both sides.

%1_1}(}0 P(Ay) = %%(Z?:nP(AKAK+1) + P(A))

The series ),p—q P(AxAg4+1) is convergent being a sum of non-negative terms whose partial

sums are bounded by one.

- lim P(Ay) = P(4)

Theorem 1.5.

Let{A,},n =123, ...... be a non-decreasing sequence of the events and let A be the

alternative, then we have P(A) = lim P(A,,)
n—00

Proof.
Consider, the sequence of the events {4,,} which are the complements of the event 4,,.
By our assumption thtat {A,,} is non-decreasing
= {A,,} is non-increasing sequence
Let A be the product of events A, Vn
Then by the theorem 1.3.4,

P(A) = lim P(4,) - ()
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Thus, P(4) = 1 — P(A)
=1- Tllllgo P(A,) (From (1))

=1—limP(1-A4,)

n-—-oo

=1— lim[P(1) — P(4,) ]
n—->0o
=1—1+ lim P(4,)
n—>0o

+ P(A) = lim P(Ay)

Theorem 1.6.

If the events A and B satisfy the condition A € B then P(A) < P(B).
Proof.
Given, A Cc B

B=A+(B-4)
Events A & B — A are exclusive

P(B) =P(A+ (B - A4))
=P(A)+ P(B—A) (byaxiom3)

Since P(B — A) = 0 we have P(B) = P(4).

1.1.4. Application of combinatorial formulas for computing probabilities

In some problems we can compute probabilities by applying combinatorial formulas. we

illustrate this by some examples.
Example 1.

Suppose we have 5 balls of different colors in an urn. Assume that the probabilities of

drawing any particular ball is the same for any ball and equal p.
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Here E consists of 5 elements and by hypothesis each has the same probability.

Hence by theorem 1.3.1, we have 5p = 1,0rp = %

Example 2.

Suppose we have in the urn 9 slips of papers with the numbers 1 to 9 written on them,
and suppose there are no two slips marked with the same number. Then E has 9 elementary
events. Denote by A the event that on the slip of paper selected at random an even number will

appear. What is the probabilities of this event?
Solution.

Suppose that the probability of selecting any particular slip is the same for any slip, and hence
equals it. We shall obtain a slip with an even number if we draw one of the slips marked with

2,4,6or 8.

According to axiom III, the required probability equals

P(A)==+-+

O

ba=
5=

O =
O =
O| =

If we compute the probability of selecting a slip with an odd number, we may notice that this

random event is the complement of A (we denote it by A) and, by theorem 1.3.2, we have

5

P(A)=1- P(A)=§.
Example 3.

Let us toss a coin three times. What is the probability that heads appear twice?

Solution.

The number of all possible combinations which may occur as a result of three successive tosses

equals 23 = 8. We have the following possible combinations:
HHH,HHT,HTH, THH,HTT,THT,TTH, TTT

Consider each of these combinations as an elementary event and the whole collection of them
as the set E. Suppose that the occurrence of each of them has the same probability. Then We

have that the probability of each particular combination equals % From the table we see that

heads appear twice in three elementary events
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E, ={HHT,HTH,THH}
Hence by axiom III the required probability is P(E;) = g.

Example 4.
If we toss a coin n times. What is the probability that heads appear twice?
Solution.

Here we toss a coin n time. The number of all possible combinations with n tosses equals 2n.
The number of combinations in which heads appear in times equals the number of

combinations of in elements from n elements given by

|
<Trrll) ~m (nn— m)!

If every possible result of n successive tosses of a coin is equally likely, the required probability
is

n!

2'm! (n — m)!
Example 5.

Compute the probability that heads appear at least twice in three successive tosses of a

coin.
Solution.

The random event under consideration will occur if in three tosses heads appear two or three

times.

According to formula in the result, the probability that heads appear three times equals

3! 1

23310 8

and the probability that heads appear twice equals z .

Hence, according to axiom III, the required probability is
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>4
8

®©lw

1
2

Note. In examples 1 to 4 the equiprobability of all elementary events was assumed. This

assumption was obviously satisfied in our examples, but it is not always acceptable.

1.1.5. Conditional Probability

Definition.

Let the probability of the event B be positive. The conditional probability of the event
A provided B has occurred equals the probability of AB divided by the probability of B. Thus

P(A|B) = PP(?BB)),where P(B) >0.....(1)
P(B|A) = P}f(f‘;), where P(A) > 0 ......(2)

From (1) and (2), we obtain,
P(AB) = P(B)P(A|B) = P(A)P(B|A) ... ... 3)

This formula is to be read: The probability of the product AB of two events equals the product
of the probability of B times the conditional probability of A provided B as occur or the product
of the probability of A times the conditional probability of B provided A as occurred.

Let A4, A;, A3 denoted three events from the same field Z.

The probability of A; provided the product A; A, has occurred equals

P(A3A145)

P(A3]A14;) = P(A14,)

where P(A14;) > 0 ... ... 4

From (1) and (4) we obtain the for the probability of the product of three events the relations
P(A;14,4;) = P(A1A3)P(45]A,4,)
= P(Al)P(A2|A1)P(A3|A1A2)

This formula is to be read: The probability of the product of three events equals the probability

of the first event times the conditional proba-bility of the second event provided the first event
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has occurred times the probability of the third event provided the product of the first two events

has occurred.

Let A, Ay, .. .. A, Dbe random events. Consider the conditional probabilities

P(A, Ak, - A, A _kyriq ... Ay,) of the product of some subgroup consisting of  events (1 <

r < n — 1) provided the product of the remaining n — r events has occurred. Then we obtain
P(AA; ... ... An) = P(A))P(A,]A1)P(A5|A14,) ... ... P(A,|A1A; ... . Ap_q).

Remark. We shall show that the conditional probability satisfies axioms I to III.
We know that P(AB) < P(B)
Event Bmay occur either when event A occurs or when event A does not occur. hence
B = AB U AB,
where A is complement of A. Thus
AB c ABU AB P(AB) = P(B)P(A|B)
Since P(AB) = 0, P(B) > 0 we obtain
0<P(A|B) <1
Which is the property expressed by axiom 1.
Now, let A|B be the sure event in Z'. That is let AB = B. Then
P(AB) = P(B)
And hence

P(AB) _

P(A|B) = o5

1

This is the property expressed by axiom IL
Consider the alternative ),;(4; |B) of pairwise exclusive events. We can write
2i(4;|B) = (X;4)|B,

And hence
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P[Xi(A;|1B)] = P[(X;A)|B ]

According to (1) and the axiom III we have

P[XiADB]
PR IB)] = — 50—

__ P(X;A;{B)
~ P(B)

P(A;B)
=2

P(B)
=2 P(4;|B)
= P[Ei(AiB)] = X;P(A;|B) s
This formula expresses the countable additivity of the conditional probability.

Since the axioms are satisfied for the conditional probabilities, the theorems derived from these

axioms hold for the conditional probabilities.

1.1.6. Bayes Theorem

Let us consider the following examples.
Example 1.

We have 2 urns. There are 3 white and 2 black balls in the 15 urn and 1 white & 4 black
balls in the second urn. From an urn chosen at random we select one ball at random. What is

the probability of obtaining a white ball if the probability of selecting each of the urns equals
0.5?

Solution.

Let A; & A, be the events of selecting the 1% or 2™ urn respectively
Given the probability of selecting each of urns equals 0.5
i.e.,P(A;) =05&P(A,) =0.5

let B be the event of selecting the white ball.

The probability of selecting white ball from A; is % = 0.6
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i.e., P(B|A1) = 0.6
The probability of selecting white ball from A, isé =0.2
i.e., P(B|\4;) = 0.2
Since B is the event of selecting white balls.
B =AB+ A,B
Since events A, B and A, B are exclusive.
P(B) = P(A4B) + P(A,B)
We know that, P(AB) = P(A)P(B|A)
~ P(B) = P(A1)P(B|A1) + P(A;)P(B|A)
= (0.5)(0.6) + (0.5)(0.2)
= 0.30 + 0.10
= 0.40

=~ The probability of obtaining white balls = 0.4.

Theorem 1.7.(Theorem of absolute probability)

If the random events A, 4,, ... re pairwise exclusive and exhaust the set E of elementary

events and if P(4;) > 0 for i = 1,2,3, ....Then for any random event B we have
P(B) = P(A))P(B\A;) + P(A,)P(B\A;) + -+ ...
Proof.
Let B be any random event.
Since A4, 4,, ... are pairwise exclusive.
~ B may together with one and only one of events A;. Then we have
B =A,B+A;B + -

P(B) = P(A,B) + P(A,B) + -
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We know that P(AB) = P(A)P(B|A)
- We have,
P(B) = P(A,)P(B\A,) + P(A,)P(B\A,) + - ...

Hence the proof.

Theorem 1.8. (Bayes theorem)

If the random events A4, A,, ... ... are pairwise exclusive and exhaust the set E of

elementary events and if P(4;) > 0 fori = 1,2,3, ... we have

' _ P(A)P(B|4;)
P(4;|B) = P(A)P(B|A1)+P(A2)P(B|AR)+
Proof.
We know that P(A|B) = PP(?;)

Substitute A by A4;,

P(A;B) _ P(A))P(B\4;)

PUANB) =200 = =)
_ P(A;)P(B|A;)
P(A|B) = P(A1)P(B|A1)+P(A3)P(B|Ag)+..
Example 2.

Guns I and 2 are shooting at the same target. It has been found that gun 1 shoots on the
average nine shots during the same time gun 2 shoots ten shots. The precision of these two
guns is not the same; on the average, out of ten shots from gun 1 eight hit the target, and from
gun 2, only seven. During the shooting the target has been hit by a bullet, but it is not known
which gun shot this bullet. What is the probability that the target was hit by gun 2?

Solution.

Denote by Al and A2 the events that a bullet is shot by gun 1 and gun 2, respectively. Taking
into consideration the ratio of the average number of shots made by gun 1 to the average

number of shots made by gun 2, we can put P(4;) = 0.9P(4,).
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Denote by B the event that the target is hit by the bullet. According to the data about the

precision of the guns we have
P(B|A;) = 0.8and P(B|A,) = 0.7
According to Bayes formula

P(A2)P(B|A)

P(A,|B) = P(A,)P(B|A,) + P(A,)P(B|A,)

_ 0.7 P(4,)
" 0.9P(A4,) 0.8+ 0.7 P(A,)

= 0.493

Exercise.

1. A deck of cards contains 52 cards. Player G has been dealt 13 of them. Compute the
probability that player G has

(a) Exactly 3 aces

(b) At least 3 aces

(c) Any 3 face cards of the same face value

(d) Any 3 cards of the same face value from the 5 highest denominations
(e) Any 3 cards of the same face value from the eight lowest denominations
() Any 3 cards of the same value,

(9) Three successive spades

(h) At least three successive of any suit

(i) Three successive cards of any suit

(J) At least three successive cards of any suit

1.1.7. Independent Events

In general, the conditional probability P(A|B) differs from P(A).
Suppose P(A|B) = P(A)
We know that P(AB) = P(B)P(A|B)

= P(AB) = P(B)P(A)

Suppose P(B|A) = P(B)
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~ P(AB) = P(A)P(B|A)

= P(AB) = P(A)P(B), Where P(A) > 0 and P(B) > 0.

Definition.

Two events A and B are called independent if P(AB) = P(A)P(B), where P(A) >
0&P(B) > 0.

1.e., If the probability of the product AB is equal to the product of the probabilities A and B.

Definition.

Events Ay, A,, ... ,A, are independent if for all integers indices kq,ky, ..., ks

satisfying the conditions

1<K, <K,<-..<K;<n

P(Ax, Ar, - - Ax,) = P(Ax,)P(Ay,) .. ... P(Ay,)

i.e., If the probability of the product of every combination Ay, Ag,, ... .... Ay, of events equals

the product of the probabilities of these events.
Example 1.

There are 4 slips of paper of identical size in an urn. Each slip is marked with one of
the numbers 110, 101, 011, 000 and there are no two slips marked with the same number.
Consider event A, that on the slip selected the number — 1 appears in the first place, event A,
that one appears in the second place and A5 that one appears in the third place. Verify A4, 4,, A3

are independent.
Solution.
Let A; = {110,101}
2 1
P(A1) =7=3

Let A, = {110,011}
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P(Az) =%
Let A; = {101,011}
P(43) =3
A1A2A3 = {Q)}
P(A1A2A3) =0
111 1

~ P(A1A,A3) # P(A1)P(A;)P(453)
~ A1 A, A5 are not independent
A1A2 = {110}

1
P(A1A2) = 2
A2A3 == {011}

1
P(A2A3) = 2
A1A3 = {101}

1
P(A1A3) = 2
P(A)) =5 P(4)) = 5; P(43) =

11 1

P(A1)P(A2) = PP = " = P(A1A2)
P(Az)P(A3) = % = P(A2A3)

P(A1)P(A3) = % = P(A1A3)

~ A4, Ay, A3 are independent.

Definition.

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



Events A4, A,, ... are independent if for every n = 2,3 ... ... events Ay, Ay, ... ... , A, are

independent.

Example 2.

Pairwise independent does not imply mutual independence. Suppose we twice spin a
fair spinner with the numbers 1,2,3 & 4. Let A; be the event that sum of the numbers spun is
5. Let A, be the event that the first number spun is a one. Let A5 be the event the second number
spun is a four. Prove that A;,A,,A; are pairwise independent but not that mutually

independent.

Solution.

P(a) =3[ =1]

16 4

P(Az) = i
P(43) =+
P(A4,) = 116 = ~.2= P(A)P(4y)

P(A1A3) = % = %-% = P(A1)P(A3)
P(A243) = — = P(A2)P(A3)

~ A4, Ay, A3 are pairwise independent.
A1AxAz = {(1,4)}

P(A14;43) = 1—16

P(AP(A2)P(As) = ;X 3 X7

1

64

=~ P(A1A,A3) # P(A1)P(A,)P(453)

= A4, A,, A3 are not mutually independent.

Exercise.
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1. Prove that if the events A and B are independent, the same is true for the events A and B.

1.2. Random variables

1.2.1. The concept of random variable

We can assign a number to every elementary event from a set E of elementary events.
In the coin-tossing example we assigned the number 1 to the appearance of heads and the
number 0 to the appearance of tails. Then the probability of obtaining the number 1 as a result
of an experiment will be the same as the probability of obtaining a head, and the probability of

obtaining the number 0 will be the same as the probability of obtaining a tail.
Definition.

Let X(e) be a single-valued seat function defined on the set E of elementary events.
The set A of all elementary events to which the function X (e) assigns values in a given set S

of real number is called the inverse image of the set S.

Clearly the inverse image of the set R of all real numbers is the whole set E.

Definition.

A single-valued real function X (e) defined on the set E of elementary events is called
a random variable if the inverse image of every interval I in the real axis of the form (—oo, x)

1s a random event.

Note.
1. We can write X instead of X(e)
2. Random variables are usually denoted by capital letters X,Y and so on and their
values by corresponding small letters x, y, ... ...
Definition.
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The function P®(S) giving the probability that a random variable X takes on a value
belonging to S, where S is an arbitrary borel set on the real axis, is called the probability

function of X
We write,

PW(§) = PW(X €S)
Remark.

1. The probability P®)(I) that the random variable X (e) takes on the values in the interval
| equals to the probabilityP(A) of the inverse image A of I

2. If arandom event A is the inverse image of a point x, the probability that the random
variable X takes on the value x equals the probability of the event A
i.e., POX =x) =P(4)

3. Since any interval I of the form [a, b) where a < b, is the difference of the intervals
(=%,b) = (=,a)

1.2.2. The distribution function

It is convenient to characterize the probability distribution by means of the distribution

function which is now defined.
Example 1.

Consider tossings of a die. To every elementary event, that is, to every result of a throw,
we can assign one of the numbers 1,2,3,...... ,6, the number of dots which appear on the

resultant face. Find
1) P(X<1)
i) PX<x)ifl<x<2
iii) PX<x)if2<x<3
iv) P(X<x) if5<x<6
V) PX<x) ifx>6

Solution.

Let X be the random variable it takes six values. x; = i(i = 1,2,3,4,5,6)
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Clearly,
P(X=x) =<, fori=1to6

(i) PX<1)=0
(i) fl<x<2
PX<x)=P(X<2)

=P(X=0)+PX=1)
1

=0+-==
6 6

(i) 1f2<x<3

PX<3)=PX=0)+PX=1+PX=2)

=044+
6 6

2
6

w R

(iv) If5<x<6
PX<x)=PX<6)
= 21'5=1P(X = i)

1 1 1 1 1 5
=4 -4 to=2
6 6 6 6 6 6

(V) Ifx>6
PX<x)=P(X <6)
=Y, P(X=1)
=4tz to=2=1
Remark.

We obtain the step function for the above example x increases the value of P(X < x)

is increasing by a constant number P(X = x;).

Definition.

The function F(x) is defined as F(x) = P(X < x) is called the distribution function

of the random variable X.
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Theorem 1.9.

The single-valued function F(x) is a distribution function iff it is non-decreasing,

continuous at least from the left and satisfies the condition F(—o0) = 0, F() = 1
Proof.
Suppose the single-valued function F(x) is a distribution.
Clearly F(—o) = 0,F(+w) =1
Claim:F (x) is the non — decreasing function
Let x; & x, where x; < x, be two point on the real axis.
Since (—o0, x,) contains the interval (—oo, x;)
ie, (—o,x;) < (—o0,x;)
P(X<xy) <P(X<xy)
F (x1) <F (xz)
~ F(x) is a non-decreasing.
Claim: Every distribution function is continuous at least from left.
Let x; < x, < ---... < x be an arbitrary increasing sequence converge to x.

Let Ay be the event that the random variable X takes on a value from the half open interval

[k, %)
If k4 < k3, from the occurrence of the event Ay, follows the occurrence of the event Ay,
=~ {A} is the non-increasing sequence of the events.
The limit of the sequence {x;.} is the point x, does not belong to any of the intervals.
ie., x € [x,x)
= The product A = [[;72; Ak is the impossible
= A is impossible event.
= P(4) = 0.

By theorem 1.3.4,
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lim P(4) = P(4)
i.e., lim P(Ax) = P(4)
;éll?o P(A,) =0
]li_r)lgoP(xk <X<x)=0
lim [F () — F(x0)] = 0
Jim F(xi) = F(x)

=~ F(x) is the continuous function from the left.

Conversely, Suppose F(x) is a non-decreasing and continuous from the left & F(—) =

0,F(+00) =1.

Claim: F(x) is a distribution function.

Take the interval [0,1] as the set of elementary events.

The field of all Borel subsets of this interval as the field of random events.

Take as a probability measure the Lebesgue measure [i.e., P(4) = m(4)].

Then the probability of a Borel set from the interval [0,1] is equal to its Lebesgue measure.
i.e,A€[0,1] = P(4) =m(4)

In particular, the probability of the interval [0, e] where 0 < e < 1 equals the length e

of this interval
(i.e.,P([0,e]) = 1([0,e] = 2))

Now we define the random variable X (e) in the following way:

ie., X(e) = F(i}gfzey(o <e<1)

Thus, for a given value e, the random variable X (e) equal to L.u.b of the set of all y such that

F(y) =e.

Since P(Xle)<Z =P (inf y < x)
F(y)=e
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=F(x) (o< x < o)
~P(X(e) <x)=F(x)
Thus, the distribution function of X (e) is the function F.
Hence proved.
Remark.

The set of points of dis continuity is at most countable. The set of points at which the

distribution function F(x) has a jump not smaller than % is denoted by H,,.

ThenH = H{ + H, + -

For every n the set H,, is finite, hence the set H is at most countable.

1.2.3. Random Variable of The Discrete Type and The Continuous Type

Definition.

A random variable is said to be of the discrete type if it takes on, with a probability 1,
values belonging is a set S which is at most countable and every value in the set S has the

positive probability.
These values are called jump points and their probabilities jumps.
Example 1.
A stock of fruits contains good & defective items.
Here, two elementary events
i.e., good item (or) defective item
Let the probability of drawing good item denoted by P
Suppose, 0 < P <1
Let the drawing of a good item is denoted by 1 and defective item the number 0.

~ We get the random variable of discrete type which has only two values with positive

probability 1 & 0 with the probabilities P and 1 — P respectively.
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Remark.

Let a random variable X of the discrete type take on the values x;(i = 1,2,3 ...... ) with

probabilities P;.
By the definition,
Y1 P; = 1 if the no. of jump points x; is finite.
21 P; = 1 if no. of jump points x; is countable.

The above definition formulated as follows:

Definition.

Let x;(i = 1,2,3, ...) be an arbitrary jump point of a random variable X of the discrete
type. The probability that the random variable X takes on the values x; is called the probability

function of the discrete-type random variable X and we write
ie,PX=x;) =P,
where the numbers P;(i = 1,2 ... ... ) satisfy either 7= P; = 1 (or) Xj2, P; = 1.
The distributive function F(x) as the form
F(x) = Xy<xPis
where the summation is extended over all the points x; for which x; < x.

Suppose a random variable X which has no jump points. The distribution function of such a

random variable is a continuous function.

Definition.

A random variable X is said to be of the continuous type if there exists a non-negative

function f (x) such that for every real number x the following relation holds:
FGo = [ f(x)dx,

where F (x) is the distribution function of X. The function f (x) is called probability density of

the random variable X.
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Note. “Probability density” is also called as “density function” (or) “density”.

Properties of a distribution function.

1. Every density function f(x) satisfies the relation F(4+o) = ffooof(x)dx =1
2. For every real a and b, where a < b, we have
Pla<X<b)=PX<b)—-PX<a)
= F(b) — F(a)

= [° Fodx - [° f()dx
= f:f(X)dx
~P@<X<b)= [ f(x)dx

3. Clearly for every Borel set S, we have P(S) = fs f(x)dx

4. If the function f(x) is continuous at some point x,
F'(x) = f(x)

Thus the continuity points of the function f(x) we have

3. Flx+Ax)-F(x)
fl) = Alalczlo Ax

P(X<x+Ax)—P(X<x)

= lim

Ax—0 Ax

. P(xsX<x+Ax)

Fx) = lim DGsX<x+an
Ax—0 Ax

=~ Every real function f(x) which is non-negative integrable over the whole real axis and
satisfies the condition f_oooo f(x)dx = 1 is the probability density of a random variable X of the

continuous type.

Clearly, we have the function F (x) defined by the formula

FGo = [ f(x)dx

Has all the properties of a distribution function.

Example 2.

On the set of all real numbers, define the density function f(x) in the following way:
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0 forx<oO
flx) = %x for0<x<?2
0 forx>2

Find the distribution function F(x).

Solution.
We haveF (x) = f_xoo f(x)dx.
Forx <0,

F(x)=0

For0 < x < 2,

FG) = [° f@)dx + [ fx)dx

_ (0 21 _x*
= J_,0dx + [y Sxdx =7

Forx > 2,
FG) = 7, f)dx + [ f)dx + [ f(x)dx

=0+ [, 2dx+0

0 forx <O
2
~F(x) = x: for0<x <2
1 forx>2

Remark.

1. If for arandom variable X of a continuous type, the probability of a certain event equals
0. It does not follow that this event is impossible. It should be considered only as an
event which is very unlikely is occur

2. If for a random variable X of the its type, the probability of a certain event equals 1 it

should be considered only as event which is very like to occur.
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1.2.4. Functions of random variable

Let us consider an example.
Example 1.

Suppose that random varialbe X may take on two values x; = 5 and x, = 10 with the
probabilities P(X = 5) =§ and P(X = 10) = 2 Find the distribution function of Y where

Y = 2X.

Solution.

Given x; = 5 & x, = 10, then the random variable Y can also take two values,
yi=2x%x=10 & y, =2x, =20

Where,

1
)

P(Y=Y1)=P(2X=1O)=P(X=5)=3

P(Y =y,) =P(2X =20)=P(X =10) = §

Thus Y takes on values y; = 2x;(i = 1,2) with the same probabilities as X takes on the values

x;.The distribution function of X is,
F(x) = Xy<x Pi
Ifx <5,
F(x) = Yx<s Pi
= Yx<s P(X = x;)
=PX=1)+PX=2)+PX=3)+PX=4)
F(x)=0ifx<5
If5 <x <10,
For x = 6:
F(x) = Yx<6 Pi

=P1+P2+P3+P4+P5
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W=

Forx =7:

F(x) = Yyc7Pi = P+ Py + - .. +Pg =§

For x = 8:
1
F(x) =Yy<gPi =P +Py+ - ...+P; = 3

For x = 9:

F(x) = YxcoPy = PL+ ot Py ==
For x = 10:

F(x) :in<10Pi =P+ ..+ P :%
.-.F(x)=§ if5<x<10
Ifx > 10,
x =11:

F(x):in<11Pi:P1+P2+"‘....+P10:§+§:1

“F(x)=1ifx>10

0 ifx<5
Hence F(x) ={; if 5<x <10
1 ifx>10

Let the distribution function of Y be F; (y). Then we have
) =P <y)

=PR2X<y)
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-p(r<)

i.e., F,(») =F (%)

0if><5
“F() =43 if5<¥<10

|1 if >>10

0 ify<10
F(y) = {3 if 10 <y <20

1 ify>?20
Remark.

IfY = g(X) is a single — valued and continuous transformation of a random variable X.
Then Y i1s also a random variable whose distribution function is obtained from the distribution

function of X.

Theorem 1.10.

Let F(x) be a distribution function of a random variable X. Find the distribution

function of Y = —X
Proof.
Let F(x) be a distribution function of a random variable X.
Consider the transformation Y = —X
Let the distribution function of Y be F; (y). We have
F1(y) =P <y)
=P(-X<y)
=PX >-y)
=1-PX<y) ..(1)

If the random variable X is of the continuous type, F(x) = f_xoo f(x)dx
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D=>FK=1-PX<-y)
=1-F(~y)
S F) =1- [ f(x)dx
The density of Y is denoted by f;(y)
Then, F;(y) =1 - F(—y)
F{(y) =0-F(-y)(-1)
Fy)=F(-y)=f(=y)
F(y)=f(-y)
A = f(=y)
Suppose X is of the discrete type and —y is its jump point,
DW=>FK=1-PX <-y)
=1-[pX <-y)+PX =-y)]
=1-PX<-y)-PX=-y)
Fi(y) =1-F(=y) - P(X = —y).
Theorem 1.11.

Find the distribution of general linear transformation Y = aX + b, where X is a random

variable.
Proof.
LetY =aX + b where Xisar.v
Let F; (y) be distribution function of Y
Case (i): If a > 0, then
F,(y) =P(Y <y)
=PaX+b<y)

=P(aX <y-b)
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-p(x <)

o) =F(Z2) .

Suppose f; (y) is the density function,

A =FHO») =F (22 ()

a a
1., (y=b
L) =2F ()
1. (y=-b
M =2f(32) @
r 1 y—-b\ . . . .
Fl(y) = -f (T) is valid for discrete as well as continuous.

Case (i1): If a < 0, then

Fi(y) =P <y)
=P@X+b<y)

=P(aX <y-b)

=P(X>y7‘b) (+ a<0)

—b
mw=pm@g%gm@)
If the random variable X is of the continuous type, then
_ y-b
F(y) =1-F (%)
Let f; (y) be the density function of Y,

i) =F )
=0-F(32)(3)

M =2f(%) -®

From (2) & (4),

1
la|

i) = (?) if X is its type.
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If the r.v X is discrete type

3)=>F()=1- [P (X < ya;b) —P(X y‘b)]
=1-P(x<X2)-p(x=22),
if the point ya;b is a jump point of X.

At the remaining points P (X = y—_b) = 0.

a
Theorem 1.13.
Find the distribution function of Y = X2, swhere X is a random variable.
Proof.
Let X be a r.v with distribution function F(x)
Given Y = X?
= Y does not take on positive value
Let F; (y) be distribution function of Y
Then,

0 fory <0

F(y) = {P(Y <y) fory>0

0 fory<0
F(y) = {PX?<y)=P(X <t y)=P(-\Jy<X<.y) fory>0

_ 0 fory <0
“hO) = {P(—\/;<X<\/;) fory >0

If the random variable X is of its type,

fory<0

0
A0 = {Fw&) “F(=J) fory>0

If the random variable X has density f(x),

i) =F/(y)
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0 fory <0

= 1 _ _l
{F’(ﬁ)% y_5+F’(\/§)71y 2 fory >0
0 fory <0

A= {M
o fory >0
If random variable is of discrete type,

fory<0

A = {P(X<[) P(X < —fy) for y>0

fory<0

0
F(y) = {p(x<ﬁ—[P(X< -/y)+P(X=-Jy)] fory>o0

fory <0

A = {P(X<\/_) P(X<—/y)-P(X=—[y) fory>0
If the point —,/y is not a jump point of X then P(X = —\/;) =0
Exercise.

1. IfXisar.vis|X|isarandom variable too?

—Agr
2. The probability function of the r.v X is of the form P(X — 1) = £ r"l (r=012....).

find the probability function of random variable (@) Y = —-X (b)Y =aX+b ()Y =
X2 (d)Y =vVX (&)Y = X' (Lis an integer)

Remark.

Let x4, x5, ... ... be the jump points of the r.v X and y;,y,, ... ... be the points

corresponding to them according to the relation y; = x?
#P(Y =y) =P(X* =y) = P(X = —Jy;) + P(X = [3})
Example 2.
Suppose that the random variable X take an only two valuesx; = —1 & x, = 1, where
P(=-1)=P(x=1)= % Find the distribution function of Y = X?2.
Solution.

LetY = X?
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Sincey; = (-1)2 =1;y, = (1)? = 1.

=~ the random variable Y taken an only one value y = 1.
~P(Y=1)=PX?*=1)

=P(X=%1)

=PX=+1)+PX=-1)

2

N |

=1
Note: Let X be a random variable of the continuous type with density f(x).

Consider a one-one transformation defined by a function y = g(x) which has an

everywhere continuous derivative g(x).

Let (x4, x,) be an interval such that g(x) # 0 for x; < x < x;.
Lety; = g(x1) &y, = g(x3)

Let x = h(y) be the function inverse to the function g(x).

By our assumption, h(y) is finite and continuous valued and its derivative h'(y) is finite and

continuous in (y4, y,).

Plx; <x<xp) = fxxlzf(x)dx

Y2
_ f FRO Gy . (1)
Y1

Case(i): If h'(y) > 0, then y; < y,.
(D= P <X <x;) = [;7 f(R()R' B)dy

=P(y; < x <y,), where Y = g(X).
Case(ii): Ifh'(y) < 0, then y, < y;.

(D= Py <X <x5) = [ f(R))' 3)dy
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Y1
- - f F(RO))' () dy
Y2

= a random variable y = g(x) has the density function g(x) = f[h(y)]|R' (¥)|.

1.2.5. Multidimensional Random Variable

The following example illustrates the notion of a multidimensional random variable.

Example 1.The following table contains the data concerning the distribution of the population

Poland according to sex and age from the census of 1931.

Age Group Men Women

0-4 2020 1962
5-9 2005 1962
10-14 1405 1372
15-19 1474 1562
20-29 2931 3213
30-39 1999 2255
40-49 1391 1596
50-59 1052 1201
60-69 753 875
70 or more 386 474
Total 15,416 16,472

The element of investigation is an inhabitant Poland in the year 1931. Every inhabitant
of Poland is categorised in the table by two categories sex and age. We can assign values to
this characteristic. To analyse the result of census, IBM cards are prepared for every person
included in the census. To every characteristic and the consideration, a number is assigned on
this card. To every man the number 1 is usually assigned and to every women the number 0.

Similarly to every age group a certain number is assigned.

Consider the random event that a card chosen at random correspond to a person

belonging to a given and age group.
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=~ To every elementary event there correspond a pair of numbers.

Definition.

The collection of n real single-valued function X = (X;, X5, ..., X,;) defined on E is
called n — dimensional random variable if the inverse image A of every generalized n-

dimensional interval I of the form (—o0, —0o, ..., —, a,, a,, ..., @, ) is random event.

Definition.

The function F(x,y) is defined by F(x,y) =P(X <x,Y <y) is called the

distribution function the random variable (X,Y).

Remark.
1) Px<X<x, 71 SY<y,) =PX <x,,Y<y,)— Y
(x1,¥2) (x2.%2)
P(X <x,Y<y;))—PX<x,Y<y,)+PX<
xl)Y < yZ)

(x1,51) (x2,¥1)

= F(x5,¥,) — F(xp,y1) — F(x2,y,) + F(x1,y1)

2) The function F(x,y) be the distribution function of a two-dimension random variable,
it is not difficult that this function be continuous from the left non-decreasing with
respect to each of the variables and satisfies the inequalities F (o0, 00) = 1, F(—o0,y) =
0,F(x,—o0) = 0.

If F(x,y) is a distribution function then for all values x,, x; (x, > x1)& y2, V1 (Y2 >

y,) the relation F (x5, y,) — F (x5, v,) — F(x1,y2) + F(xq,y;) = 0 must be satisfied.

Example 2.

0ifx+y<0

Let F be a function of two variables X and Y defined by F(x,y) = {1 ifx+y>0

Verify that F is a distribution function or not.
Solution.
Clearly this function is non-decreasing continuous from the left with respect to x and y.

F(_Oo;}’) = F(xl —OO) = O‘F(-l—OO, -|—OO) =1.
P(-1<X<3,-1<Y<3)=F@33)—F(+3,-1) —-F(-1,3)+ F(-1,-1)
[“ P(xy S x <xp,¥1 Y <y;) = F(x3,¥2) — F(xp,y1) — F(x1,y2) + F(x,¥,)]
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=1-1-140
=—120

The inequality is not true for this value.

~ Fj is not a distribution function.

Theorem 1.13.

A real-valued function F(x, y) is a distribution function of a certain two dimensional
random variable iff F(x,y) is non-decreasing and continuous atleast from left with respect to
both x and y, satisfies the inequality F(—o0,y) = F(x,—) = 0, F(c,0) =1 and the
inequality  F(xy,v,) — F(xp,y1) — F(xq,y,) + F(x;,y,) =0  holds  for  every
(x1,¥1) & (x3,¥2), where x; < x; & y; < 5.

Definition.

The two-dimensional random variable (X,Y) is said to be discrete type if, with
probability 1, it takes on pairs of values belonging to a set S of pair that is at most countable
and every pair (x4, yi) is taken with positive probability p;;. These pairs of values jump points

and, their probability, jumps
ie, XXk Py =1
The distribution function F(x, y) has the form

F(x, y) = in<x Pik
Yr<y

where the summation is extended over all points (x;, y,) for which the inequalities x; < x and

Vi, <y are satisfied.
Definition.

Let (x;,y,) where i = 1,2, ...... and k = 1,2, ... ... be an arbitrary jump point of the
random variable (X,Y) of the discrete type. The probability that the random variable (X,Y)
will take on the pair of values (x;, y;) is called the probability function of (X,Y). We write

P(X=xi,Y=yk)=Pik
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Definition.

The two-dimensional random variable (X,Y) is called as the continuous type, if there
exists a non-negative function f(x,y) such that for every pair (x,y) of real numbers the

following relation is satisfied:

FGoy) = [* [/, f G, y)dyldx

where F(x, y) is the distribution function of (X,Y) the function f(x,y) is called the density

function.

Definition.

The density function F(+00,+00) = [* [ f(x,y)dx dy = 1.

Definition.

92F(x,y)
dxdy

= f(x,y).

If the density function f(x, y) is continuous at the point (x, y),

Remark.

If the function f (x, y) is continuous of (x, y) we have,

f(x y) — lim F(x+Ax,y+Ay)—F(x,y)

Ax—0 AxAy
Ay—0

— lim P(x<x+Ax,Y<y+Ay)—-P(X<x,Y<y)

Ax—0 AxAy
Ay—0

. P(x<X<x+Ax,y<Y<y+Ay)
= lim Yy y+ay

Ax—0 AxAy
Ay—0

Result.

A function F(xq, X5, ..... x,) is the joint distribution function of some n dimensional
random variable iff F is non decreasing & continuous from the left with respect to all the

arguments X4, Xp, ... ... X, and satisfies the following conditions

i) F(—,x5, ... ... Xp) = F(x;, —0,x3, ... ... Xp) = o= F(xq, xg, o .. — ) =

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



F(+00,+0,.......+0) =1
i) For all (x4, x5, ... ..., x,,) € Ry and forall h; > 0 (i = 1,2, ....,n) the iuequality
P(x; <Xi <x;+hy,..... JXn S Xp < xp+hy) = F(xy + hy, oo .. Xn + hy)
Y F(y 4+ Ay, Xi—1 +hi_1, X%, Xip1 + Rigq, X + hy) + Yij=1 F(xg +
1<j
hi, e ... Xiy eonven ene + Xj, Xy + ) + (DF (X, e Xp) =0

Remark. Difference between thee one dimensional & multi-dimensional distribution function:

If one dimensional random variable X does not have jump points then its distribution

function F(x) is continuous everywhere.

But the distribution function, F (x4, x5, ... ... X,) can have discontinuity points even if
the random variable (X3, X5, ... .... X;;) does not have jump points.

This is possible if X;, = a,, X, = ay, .. ... Xj =a,,wherel <r <nanda,,ay,...a,
are constants such that P(Xj1 = ay,Xj, = Ay e s Xj = ar) > 0.
Example 3.

Let us consider the random vector (X, Y) with distribution function F (x, y) of the form

F(x,y)
(0 inthe domains (-0 < x < 0,—00 <y < +0and (0 < x < +00,—0 <y <0

1
xy inthe domain (OSxSI,OSySE)

1
inthe domain (0 < x < 1'§Sy<oo

x
2
y inthedomain (1<x <o,0<y<1)
1 inthedomain (x > 1,y > 1)

\

The random vector (X, Y) takes on with probability %, appoint in (x = 1,% <y< 1)

Clearly, every point with coordinates (1,y) where %S y < oo is a discontinuity point of

distribution function F (x, y), although the random vector (X,Y) has no jump points.
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Definition.

If all the vertices of the generalized interval, given by x; < X; < x; + hy,x, <X, <
X+ hy, e, xy < X, <x, +h, are continuity points of the distribution function

F(x1, X5, eur .. Xy, for the surface S of the interval we have

Pl(xy, x5, o ... ,xp) €SI =0 ...(1)

Definition. An interval, generalized or in the usual sense, for which the relation (1) is called a

continuity interval.

In the above example the rectangle with vertices (1,2),(1,3),(2,2) and (2,3) is a

continuity interval by the above definition

But the vertices (1,2) and (1,3) are discontinuity points of distribution function

F(x,y).

1.2.6. Marginal distribution

Let (X,Y) be a two-dimensional random variable of the discrete type which can take

on the values (x;, ;). Then we have
PX =x,Y =yi) = Py

Define,
Py =XiPy, P =2 Py . (1)
We have
Pj = Xi Py

=PX=x,Y=y)+PX =x,,Y =y;) + -
Hence, P, = P(Y = y;) when X takes on any of the possible values.

Furthermore, it is obvious that,

YiPr=2k2iPx=1
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The collection of numbers P, is then a set of jumps of a probability function, the distribution

determined by these jumps is called marginal distribution of random variable Y.
(i.e., P =P =y))

The collection of numbers P; is then a set of jumps of a probability function. The

distribution determined by these jumps is called Marginal distribution of random variable Y.
(i.e., P, = P(X = xy)).
Example 1.

Suppose that we have 21 slips of paper. An each slip one of the number 1,2, ... ... 211is
written and there are no two slips marked with the same number. Find the marginal distribution

of divisibility by 3 & 2.
Solution.

Let us assign to the appearance of a even number the number 1 and to the appearance

of an odd number the number 0.
Let the random variable X takes on two values x; = 1 & x, =0

Let the random variable Y takes on the value y; = 1 when a number divisible by 3 is chosen

and the value y, = 0 otherwise

Among the 21 numbers, we have the following types of numbers:

Number divisible Number divisible
Total
by 2 x; by 2 x,
No. divisible by 3 3 4 7
No. indivisible by 3 7 7 14
Total 10 11 21

Probability of divisible by 2 & 3
3
PL=PX=1Y=1) =57
Probability of divisible by 2 not divisible by 3

Pry=P(X=1Y=0)=—
3

Probability of not divisible by 2 and not divisible by 3
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Ppy=P(X =0,¥ =0) =
S 3

Marginal distribution of divisible by 3

P.1:P11+P21:i+i:l
21 21 21
Marginal distribution of divisible by 2
Py =P+ Py, =i+l=9
21 21 21
The marginal distribution of not divisible by 3
7 7 14
Py =Py + Py :ﬁ*‘ﬁ:ﬁ

Marginal distribution of not divisible by 2

Pr=Pu+Pp=rtl=2
Definition.

Let F(x,y) be the distribution function of a 2-dimensional random variable
(X,Y). The distribution function of the marginal distribution of X has the form

F(x,0) =P(X <x,Y < o)
If (X,Y) is a random variable of a discrete type takes a form
F(x, o) = 2 Zpik
x<x Kk

where the summation is extended over all the values of k, and those values of i for
which x; < x

If (X,Y) is a random variable of the continuous type,

F(x,0) = [* [[= fCx,y)dy]dx

The density of the marginal distribution of the random variable X has the form
@)= | ey

Similarly, F(0,y) = [*_[[ f(x,y)dx] dy

The density of the marginal distribution of the random variable Y has the form

fi) = f £, y)dx
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Remark.
Let F(xq, X3, o.. o , X,) be the D.F of random vector X1, X5, ... ... , X, where n > 2. Then
we can obtain (Z) k-dimensional marginal distribution for k = 1,2, ... ... n—1.

For example, the distribution function of random vector (X;, X,) has the form

F(xq1,%5,, ... ... ,0) = P(X; < x,X; <xp,X3 <0, X, < 00)

1.2.7. Conditional distribution

Let (X,Y) be a two dimensional random vector of the discrete type, where X can take

on the values x;(i = 1,2 ... ... )& Y can take on the values y; (k = 1,2, .......).
LetP(X = xi,Y = yk) = Pik

Then the marginal distributions are
PX=x)=P; =Zpik & P(Y =y) = Py =Zpik
K i

Let us define for every i and k the probabilities

P(X = x|V = y;) = ’;— (1)

PIY =yilX =x) =3¢ . (2)

L

when y, is fixed and x; varies over all possible jump points, (1) is the probability functions of

the random vector X of the discrete type under the condition Y = y;

When x; is fixed and y, varies over all possible jump points, (2) is the probability

functions of the random vector Y of the discrete type under the condition X = x;.

R.H.S of (1) and (2) are non-negative numbers and bounded by 1

Since, Y; P(X = x;|Y = yy) :—Z;,Pik =2k — q
k

P
2P =ylX =x) = —Z’;,I;ik = i—i' =1
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Definition. (Conditional distribution function of Y)
Consider the interval [x, x + h) and the event x < X < x + h. Suppose that

Px<X<x+h)>0

For every value y and every interval [x, x + h) we define the conditional probability

P(Y<yx<X<x+h)

PY<ylx<X<x+h)= P Ceex=r i)

M Fy)dy) dx
[ 1% £ Goy)dy)ax

Suppose that the density function f(x,y) is everywhere continuous and the marginal

density f;(x) = fjooo f(x,y)dy is a cts function of x.

@ =

lim 77, £ G y)dy]dx
IimP(Y <ylx <X <x+h) =lim—=———
h—0 h—0 fx [f_oof(x, y)dy|dx

P fy)dy

F ()/\X) - f1 )

For a fixed value of X equation (2) is called conditional distribution function of random

variable Y.

If g(y|x) is the density function of random variable Y

_ fxy)
gyl =225

From (2),
AEFGI) = [2, f(x,y)dy

2 1) FQylxdx = [2 (2., f Ge, y)dy)dx
=F )

e, F,(y) = [ fiG)F(ylx)dx
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Remark. Let us consider the 3-dimensional random vector (X;, X,, X3) of the continuous with

the density f(x;, x5, x3) which is everywhere continuous and with all the marginal densities

continuous.
F (x3| ) f—xso f(xlrxz; xg)dx3
X3|X1, X ==
T f—oof(xlrxz, X3)dx3
F(xs,x,|%;) = f—xjo(f_xjof(xl,xz,x3)dx3)dx2
3, 42141 f_oooo f_oooof(xl,xz' x3)dx3 dx2
Example 1.

Suppose that we have 21 slips of papers. An each, slip one of the numbers 1,2, ... ... 21
is written, and there are no two slips marked with the same number. What is the probability

that a no. chosen at random will be divisible by 3 given that it is even.
Solution.

Let us assign to the appearance of a even number the number 1 and to the appearance

of an odd number the number 0.
Let the random variable X takes on two values x; =1 & x, =0

Let the random variable Y takes on the values, when a number divisible by 3 is chosen

and the value y, = 0 otherwise.

Among the 21 numbers, we have

Number divisible Number divisible
Total
by 2 x; by 2 x,

No. divisible by 3

3 4 7
B4t
No. indivisible by 3

7 7 14
Y2
Total 10 11 21

Probability of a no. chosen at random is divisible by 3 given that it is even.
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P(Y=1,X=1

P(Y = 11X = 1) = 22
Py 3
T

Probability of a number chosen at random is not divisible by 3 given that it is even.

P(Y=0,X=1 7
P(Y=O|X=1)=P(T1))=1_O

Conditional distribution of odd number into those divisible and not divisible by 3.

P(Y = 1|X = 0) = 20ELX=0 _ 4

P(X=0) 11
P(Y=0|X=0 7
P(Y =0x = 0) = ZCZE=0) — T,
Definition.

Let X be a random variable and S is a Borel set on the x —axis such that 0 <
P(X € S) < 1. The conditional distribution defined for any real Z by the expression P(X <

x|X € S) is called the truncated distribution of X.

If X is of the discrete type with jump points x; and jumps P;, the probability function of the
truncated distribution of X is of the form

P(X=x,X€S)

PX =x]|X€S) = PO e

P; .
if x; €S
S = inESPj f '

If X is of continuous type with the density f(x), then

PX<x,X€ES)

PX<x|X€S) = PXES)

_ Jcoomns f(dx
Js f()ax

The density g(x) of this distribution takes the form

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



f(x) ;
gx) = fs f(x)dx
0 ifx &S

XES

Example 2.

Consider the random variable X with density

1 0<x<1
f(x)_{O x>0,x>1

LetS = [O, %), then we have

i1
p(Xes)=f dx = =
O 2

The density g(x) of the truncated distribution of X is of the form

2 0<x<
g(x) =
0 x<0,x>

N[ =N -

1.2.8. Independent random variables

Let F(x,y),F;(x) and F,(y) denote respectively the two-dimensional
distribution function of the random variable (X,Y) and the marginal distribution

function of the random variables X and Y.
Definition.

The random variable X and Y are said to be independent proof for every

pair (x,y) of real numbers the equality

F(x,y) = F()F©) ... .. (1)

1s satisfied.
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Remark.

Let (a, b) and (c,d), where a < c and b < d be two arbitrary point in the
plane (x,y). We have

P(a<X <c)=F(c)—F(a)

P(b <Y <d)=F,(d)—F,(©)
Multiplying the RHS and LHS of these relation and applying (1) gives,
Pla<X<cP(b<Y<d)

= [F1(c) — Fi(@)][F,(d) — F,(b)]

= F1(0)F,(d) — Fi(0)F,(b) — Fi(@)F,(d) + F1(a)F,(b)

= F(c,d) — F(c,b) — F(a,d) + F(a,b)
We know that,

P(x; X <x3,y1 <Y <y,)
= F(x1,¥2) — F(x2,¥1) — F(x1,y,) + F(x1, 1)

We obtain,
Pa<X<oPb<X<d)=P@a<s<X<c¢b<sY<d).... (2)
Remark.

Let us consider a tow dimensional random variable (X, Y) of discrete type

with jump points (x;, ¥x) and jumps P;;. Suppose that X and Y are independent.

Then in the special case of (2) for which the rectangles (a < X < c¢,b <Y < d)

and reduced to the points (X = a,Y = b), we obtain the equality
Pik = P(X = Xi,Y :yk)

=PX =x)PY = y)
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for every pair (x;, yi). The equality (3) is satisfied if for every pair (x;, yi), (1)

1s also satisfied.

We have to shown that if (X,Y) is a random variable of the discrete type,
equality (3) holding for every pair (x;, V) is a necessary and sufficient condition

for the independence of the random variable X and Y .

For every pair of numbers (i, k), we obtain

P(X=xiY=y})

PX =Y =yi) =—3555

= P'ﬁji' = P.k = P(Y = yk) ...... (4b)

From (4a) and (4b) it follows that, if the random variable X and Y are independent

the distribution of X is same for all values of the random variable Y

Thus no value obtained for the variable Y gives any information about the
distribution of the variable X and conversely, the condition distribution of the

random variable Y is identically for all values of X.

Theorem 1.14.

If (X,Y) is a random variable of the continuous type with density function

f(x,y) is every where continuous, the validity of
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0%F(x,y)

e = 1Y) =FF0) = AE0)

for arbitrary point (x,y) is a necessary and sufficient condition for the

independent of random variable X and Y.
Proof.

If the random variable (X,Y) is of the continuous type differentiation of

expression

F(x,y) = Fi(x)F,(y)
with respect to x, y, with the possible exception of the set of points at which the
density function f (x, y) is not continuous, gives

0%F(x,y)

e =[G = HOHO) = AL0)

0%F(x,y)
Conversely, let axgyy = 1) fa(y).

Then F(x,y) = [~ [, f(x, y)dydx

=[* [J7 f0Of()dy] dx
= [ fidx [ f,()dy

i.e.,F(x,y) = F;(x)F,(y)

~ If (X,Y) is a random variable of the continuous type whose density function

f(x,y) is everywhere continuous.
Example 1.

Consider the two consecutive tosses of a coin. The random variable X takes

on the value 0 or 1 according to whether heads or tails appear as a result of the
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first toss. The random variable Y takes on the value 0 or 1 according to whether

heads or tails appear as a result of the second toss.

» The two-dimensional random variable (X,Y) may take on the values

(1,1),(1,0), (0,1), (0,0).

The probability of each of these events is the same and hence equals i.

sBoth Xand Y take on the values 0 and 1 with probability % Thus we have,

P(X=1,Y=1)=i=

N | =

~=P(X=1P(¥ =1)
P(X=1Y=0)=-=PX=1P{ =0)
P(X=0Y=1=-=PX=0)PY=1)
P(X=0,Y =0)=+=P(X =0)P(Y =0)

~ X and Y are independent

Remark.

Let X; and X, be two independent random variables. Consider two single-
valued functions Y; = g;(x;) and Y, = g,(x,). ¥; and Y, are also random

variable. Show that ¥; and Y, are independent.
Proof

Let h;(—o0, y;) and h,(—0, y,) be the Borel sets into which the functions

inverse to g, and g, map the intervals (—o0, y;) and (—o, y,).
~P(Yy <y, Y2 <y2) = Plg1(X1) < y1,9.(X3) < ,]
= P[X; € hy(=,y,),X; € hy(—,y,)]

= P[X; € hy(—0,y1)]P[X; € hy(—00,y,)]
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= P(Y; < y)P(Y; < y,).
Definition

The random variable X;,X,,.....,X,, are called independent it for n

arbitrary real numbers (x, X5, ....., X;,) the following relation is satisfied:

F(xqy, X0, e, X0) = Fi(x)F,(x5) ... ... E, (x,),

where F(x1,X5,.....,X,) is the distribution function of the random variable
(X, X5, ..., X)) and Fy(x7), ... ... E,(x,) are the marginal distribution function
of X1, X5, oo, Xy

Example.

If the random variable X, X5, ....., X,, are independent then for every s <

n the random variable Xy , Xy, ..., X, where 1 < k; <k, <--..<ks;<n

For simplicity is notation assume that k; = 1,k, =2, .....ks = s
F(xq1, %5, e ... , Xg + 004, e oo +00)

= lim F(x1,X0, wuv) Xg, Xs41)

= lim [F(xq) F(x3) .o Fy(xg)Fopq(Xg41) won By ()]

X5 417001, Xig =00
= F1(x)F5(x2) .. ... Fs(x5) F41(+00) Fy(40)

= F1(x)F(x2) .. ... F; (xs).

We now give the definition of independent of a countable no. of random variables.

Definition.

The random variable X;, X5, ....., X, are called independent if for ever n =

2,3 ... the random variable X;, X,, ....., X, are independent.

Definition.
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The random vectors X = (X1, X5,.....,X;) and ¥ = (¥}, Y, .....,Y,) are
independent if for every j + v real numbers. X1, X, ..., Xj, V1, V2) oeee) Y WE

have

F(xy, %2, e, Xjs V1, V2s eoe o) V) = G(xq, %5, wee., xj)H( V1is Yoy eeeeer Vi)

where F,G and H are the distribution function of the random vectors
(X1, X2 oo X, Y0, Yy o, V), (X0, Xgy o, X)) and Y,Y, ..., V)

respectively.

1.2.9. Functions of Multidimensional Random Variables
Here we give the formula for the two-dimensional probability density of a function of

a random variable (X, Y) of the continuous type. Let

Up = g1(X,Y), Uz =g(X,Y)....(1)
be a continuous one-to-one mapping of the random variable (X, Y) with densityf(x,y).
Suppose that the functions g; and g, have continuous partial derivatives with respect to x
and y, and let (a <X < b,c <Y <d) be a rectangle on which the Jacobian of the

transformation (1) is different from zero.

Denote by x = hy(uy,u,) and y = h,(uy,u,) the inverse transformation. By our
assumptions, the functions h; and h, are also one-to-one and have continuous partial

derivatives with respect to u; and u,. Denote by J the Jacobian of the inverse transformation

Oox 0Ox
]_a_ma_uz
dy Oy
ou, Ou,

By our assumptions, this Jacobian is finite and continuous in the domain S of the plane
(uy,uy), where S is the image of the rectangle (a < X < b,c < Y < ¢) given by

transformation (1). We have

by rd
P(aSX<b,cSY<d)=f [f f(x,y)dyldx
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= ff(g)f[hl (ul) UZ), h, (ul, uz)] |]|du1du2 ceen(2).

It follows from (2) that the two-dimensional density of the random variable (U, U,) has the

form

r(ug, up) = flhy (ug, uz), hy (ug, ud ] oo oo 3)
We now investigate the distribution of the sum, difference, product, and ratio of two random
variables. They are given here as examples of continuous functions of multidimensional
random variables, but at the same time the formulas involved are very important in probability

theory and its applications.

Example 1.
Consider again two consecutive throws of a die. Let the random variable X correspond to

the result of the first throw and Y to the result of the second throw. The random variables X
and Y are independent. Both X and Y take on the values 1, ... ... ,6 each with probability %.

Hence the two dimensional random variable (X, Y) can take on the pairs of values (i, k), where
i and k run over all integers from 1 to 6. Let us form the value of the sum i + k for every
possible pair (i, k). All possible values of the sum i + k form the set of possible values of a
new random variable which will be called the sum of the random variables X and Y. This sum
is again a one-dimensional random variable and takes on the following values:
2,34, ... ... ,11,12.

Let Z = X + Y. We shall compute the probability function of Z. Because of the

independence of X and Y we have

PZ=2)=PX=1DP¥ =1) =—

36’

P(Z=3) =P(X=1Y=2) +P(X=2Y=1) =,

P(Z=4-)=P(X=1,Y=3)+P(X=2,Y=2)+P(X=3,Y=1)=%,

P(Z=12)=P(X=6Y =6) =
Then
P(Z=2)+P(Z=3)+...4P(Z=12) =1
In the example of the double throw of a die we could also have considered the random

variable V.= X — Y. The set of all possible values of this random variable consists of all
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possible values of the difference of the numbers i and k. The random variable V then takes on

the values

For example
PV=0)=PX=1,Y=1)+PX=2Y=2)+PX=3Y=3)
+P(X=4,Y=4)+P(X=5,y=5)+p(x=6,y=6)=%,

P(V=-5))=P(X=1Y=6)=—

36’
Then
S s PV =k)=1

Similarly, we could have considered the probability function of the random variable T = XY

and of S = Y|X

We can see from this example what is understood by the sum, difference, product, and ratio
of two random variables. Thus, the random variable X + Y is a function of the two-
dimensional random variable (X,Y). The set of possible values of X + Y is formed from all
possible values of the sum x + y , where X is a possible value of X and y is a possible value of

Y. Similarly, the sum of any finite number of random variables can be defined.

The set of possible values of the random variable X — Y consists of all values x — y, where
x is a possible value of X and y is a possible value of Y. The product and ratio of two random

variables are defined in an analogous way.

C Suppose we are given the distribution of the two-dimensional random variable (X,Y). We

shall find the distributions of the random variables obtained as a result of four arithmetic

2 AY operations performed on X and Y.
va
S, We shall find the distribution function of the sum
Z=X+Y....4)

of two random variables or, in other words, the

function

¥ F(z) = PX+ Y < z).
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Fig. 2.9.1

If for a given value of z we draw on the plane (%,y) the line x +y = z (see
Fig. 2.9. 1), then F(z) will be the probability that the point with coordinates X,y lies below

this line.

If (X,Y) is a random variable of the discrete type and takes on values (x;, V)
F(2) = Sy acPX = 3,Y =) ... (5),

where the summation is extended over all the values (x;, y,) for which the inequality under

the summation sign is satisfied.

Let (X,Y) be a random variable of the continuous type and let f(x,y), f; (x), f>(y) denote

respectively the densities of the random variables
(X,Y),X and Y. Let us write equality (4) in the form

X=XZ=X+YorX=XY=2—X...(6)

where the identity X = X is added in order to reduce this problem to a special case of

transformation (1) considered at the beginning of this section. We have
_|1 0]_
I=1 1| =1
From (3) it follows that the density of (X, Z) is
f(x,z —x)....(7)

The density y(z) of Z is obtained as a marginal density of the two-dimensional random

variable (X, Z) by integrating (2.9.7) with respect x to from —oo to + oo,

Y(z) = f:: flx,z—x)dx....(8)
Finally we obtain

F(z) = f_Zoo[f_Jr;o f(x,z — x)dx|dz.....(9)
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If the random variables X and Y are independent, according to (5), we have

fGx,y) = () f(¥)

Hence

V@) = ["7 i) fo(z — x)dx ....(8")

and

F@2) = [*[["7 i) falz — x)dx]dz...9")

Because of the symmetry of the sum, we can replace in formulas (8), (8'), (9), and (9"), x by

z—yandz —xbyy.

Example 2. Consider the random variable X with the density

x2
f(x) = \/%8_7....(10)

2
X x2

Instead of the expression e 2 we often write exp (— ?). Then

1 +0o %2
— e 2dx=1
V2m J_oo
Expression (10) is the density of the Gauss distribution, which is also called the normal

distribution. This distribution will be treated more extensively later.

Let the random variable Y have the density

fy) = —— e
= e
>

Suppose that X and Y are independent. Thus the density of the joint random variable (X,Y) is

ﬁ 1 _ﬁ 1 _(x2+y2)

1 _
fxy)=7=e 2 =e"z =5-e" 2z ..(»I)

Consider the random variable Z = X + Y. By (8') we have for the density of Z

2

b = 12 s () o (-2
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1 (4o 2x2-2zx+z>2
=— exp (—————)dx
2T Y — 2

since

2x% —2zx + 2% = (x\/f)z — 2(xx/§)%+ (\/%)2 + § = (x\/f - %)2 +2

we have

1 1 z\2 Zz°?
——(2x% -2 2 =——<V2——J -Z
2(X zx + z%) >\ X 7

and hence

Ve =5 el (V7 - ) e (-5 e

—\/;_exp( )\/_f xp[ x\/_—— ]dx

Introducing the substitution u = xV2 — Z|\/§ into the last integral we obtain
— exp |[—=xV2 —— X = — exp| —— | du =
\/E -0 P 2 \/E V21 J_o P 2
and finally
1 z?
(z) = —ex (— —)
W = e (g

Thus the distribution function F(z) is given by the formula

F(Z)‘J—f T dz

We leave it to the reader as an exercise to derive the formulas for the distribution function

and the density of the difference of two random variables.

Let us now consider the product of two random variables X and Y with the two-dimensional

density f(x,y) and the marginal densities f; (x) and f, (y) respectively. Let

7 =XY....(12)

This equality may be written as a system of equalities
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We have

0 1
]:1 A
X

X2
and hence |J| = 1|x/|. It follows from (3) that the two-dimensional density of the random
variable (Z, X) has the form

()0

The density y(z) of Z can be obtained by integrating expression (2.9.13) from—oo to + oo.
We have

U(z) = f_+;°f(x,5)|71|dx....(14)

X

The distribution function of Z has the form
Fz) = 7, [ /776 (x) ﬁ] dz....(15)

If the random variables X and Y are independent, equalities (14) and (15) can be written as

+oo 1

W@ = [ = A0S () dx....(14)

® x|

and

F) = [, |70 = AGf (B) dx| dz...(5)

we can replace in (14), (14"), (5), and (15'), x by z/y,z/x by y, and |x| by |y|

For the ratio of two random variables,

we obtain the following formulas:

V@ = [ fzlyldy....(16)

and

F) = [7_[[77 tyz y)lyldy]dz....(17)
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If the random variables X and Y are independent,

¢@=LIN@EMM®

F@z) = [*_[[776,(v2) () lyldy]dz.
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UNIT 11

PARAMETERS OF THE DISTRIBUTION OF A RANDOM
VARIABLE

2.1. Expected values
With every distribution of a random variable there are associated certain

numbers called the parameters of the distribution, which play an important role
in mathematical statistics. The parameters of a distribution are the moments and

functions of them and also the order parameters.

Let X be a random variable. Consider a single-valued function g(X) of X.

Definition.

Let X be a random variable of a discrete type with jump points x;, and

jumps py. The series

is called the expected value of the random variable g(X) if the following

inequality is satisfied:

z prlgle )l <o ... 2)
k

Definition.

Let X be a random variable of the continuous type with density function

f(x). Let g(x) be the Riemann integral. The integral
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E[g(X)] = f GEOfC)dx o (3)

is called the expected value of the random variable g(X) if the following
inequality is satisfied:

(0]

f 90O If () dx < o . (4)

Remark.

1. When the R.H.S of (1) is exists but (2) is not satisfied then the expected
value of the random variable g(X) does not exists.

2. Similarly, when the R.H.S of 3 is exists but (4) is not satisfied then the
expected value of the random variable g(X) does not exists.

3. If Y = g(X), the expected value E[g(x)] equals the expected value E(Y)

computed directly from the distribution of the random variable Y.

Suppose X is a random variable of a discrete type. Let X have jump points x;, and

jumps py and let ¥ have jump points y; and jumps q;.

Notice that q;(j = 1,2, ....) Equals the sum of the probabilities pj, for those k
for which the equality g(x;) = y; holds.

Since by the assumption about the existence of expectation. E[g(X)], the

series Y Prg(xi) is absolutely convergent.

~EWY) =2;q;y; = Xk g () = E[g(X)].

Example 1.

Suppose that the random variable X can take on two values x; = —1 with

probability P, = 0.1 and x, = 1 with probability p, = 0.9. find the E (x)

Solution.
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E(X) = Xk Prxx
= 212<=1 PrXk
= p1X1 + D2X;

= (0.1)(—-1) + (0.9)(1)

=—-0.14+09
= 0.8
Clearly, k=1Prlg ()| < oo [since Y prlg(xi)| = Pilxy| + Py x5 =

01Xx1+0=1<oo]

Example 2.

Find the expectation value of Poisson Distribution (or) Let the random

k
variable X takes on the value K = 0,1,2, ... ... and Let P(X = k) = % e * where

A > 0 is a positive constant. Compute expected value of X.

Solution.
(o) Ak -1
E(X) = Zk=0k Ee

k/lk_l

=0+de Yy, R

=le *¥®, i—r (putr =k—1)

-2 A A
= Ae (1+1!+2!+ )
= le et

EX)=2

Clearly, Y=o pic| K| < co.
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Example 3.

The random variable X takes on the values r =0,1,2, ...... n with
P(X =7) = - P"(1 = P)""". Find E(X).
Solution.

E(X) = Xk Xk Dk
E(X) = X —o7Dr

=Y r——pT(1—p)""

ri(n—r)!

n(n-1)!

J— n N~
=0+2r,7 r(r-1)!(n—-r)!

pp" T (1 —p)™"

_ n (n—1)! r—=1(1 _ . \n-r
=np 27":1 (r=D!(n-r)! p (1 p)

n-1__ (n-1)! k(1 _ . \n—(k+1)
= np Li=o k!(n—(k+1))!P (1-p)

=np[l-p+pl"t=np[1]" ' =np

Clearly 27— o pilr| < oo.

Example 4.

sA random variable X is of the continuous type with density function

2
1 X
f(x) = E e 2. Fde(X).
Solution.
x2
EX)=[" x\/%_ne 2 dx
1 (oo x?
= Ef_oox e zdx

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



= =", e77 (—xdx)
1 [e¢] -z
L[ eTrdE)

E(X) =0,

Example 5.

Let the random variable X take on the values x;, = ,(k =

1,23 .....),pi = 7 Find E(X)
Solution.

E(X) = X Drxk

1(1)K2
= Xk=13% =y,

1 _1\2 _1\3
:(1>+(1>+(1)+
1 2 3

E(X) = —log?2

1)"’

But 2, pil ()| < By o [C2

1
— c
= 00

~ E(X) does not exists.

Example 6.

Consider the random variable Y defined by Y = [X| where X has

distribution is given in above example compute E (V).
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Solution.
Given Y = |X]|
E(Y) = ZK Pk Y
1 |(—1)K2K
ZZKPk |X| =ZK2_K| K |

1

=~ E(Y) does not exist.

2.2. Moments

Definition.
The expected value of the function g(X) = XX
ie., mg = E(XX)
is called the moment of order k of the random variable X.
Definition.

If the random variable X is of the discrete type with jump points x; and
jumps p;.
The moment of order k is my; = E(XX) = Y, xfP,

Definition.

If the random variable X is of the continuous type with density function

f (x), the moment of order k is given by

my, = E(X¥) = [°_ x*f(x)dx.
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Note.

1. The moment my to exists, it is necessary that ¥, x[P, (or) [ x*f (x)dx

be absolutely convergent.
2. If the moment of order k exists all the moment of order smaller than k also

exists.
3. If the moment of order k of random variable X exists then

lim a*P(|X| > a) = 0 wherea >0
a— oo

Proof.

If X is a random variable of continuous type with density f(x),

lim a*P(|X| > a) < lim lx|*f(x)dx =0
a— oo a—

|x|>a

ie, P(JX| >a) =0 (aik)

Theorem 2.1.

Let g, (X) and g,(X) be two single-valued functions of a random variable
X and Let the expected values E[g,(X)] and E[g,(X)] exists. Show that
E[(X) + g.(X)] = E[9:(X)] + E[g.(X)]

Proof.

Let X be the continuous type.

Since E[g,(X)] and E[g,(X)] exists,
= [2 19101 f(x)dx < o and [ | g, (X f(x)dx < o

= [Z 1g Ol fF)dx + [ g (0)| £ () dx < oo
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= [P g GOl + g, f(dx < 00 ... (1)

We know that |g; (x) + g, ()| < 1g1 ()| + 1g, ()],

o}

f |g1(x) + g, 00| fx)dx < J [1g,(x) + g, ()] f(x)dx < o0

— 00

2 19100) + g2 ()| f()dx < oo
= 21100 + g2 (0 f () dx < oo
El[g,(X) + g,(X)] is exists.
Consider E[g;(X) + g, (X)] = [ (9:(x) + g2(x)) f (x)dx
=7 g1(0) fFC)dx + [ g2 (x) fF(x)dx

= E(91(X)) + E(gz(X))

Note.

Suppose g, (X), g, (X), ... ... gn(X) are single valued functions of random

variable X and E[g,(X)],E[g,(X)], ... ..... E[g,(X)] are exists. Then

Elg:(X) + g,(X) + -+ g,(X)] = E[g1(X)] + -+ + E[g,(X)]

Theorem 2.2.
Show that E[(aX)*] = as*E[X*] where a is constant.
Proof.
Let X be the random variable of continuous type.
Suppose, E[X*] is exists.

Consider, E[(aX)*] = [ (@X)k f(x)dx
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= [_ a*X* f(x)dx
=a® [7) X* f(x)dx
= a®E(X%)

~ E((aX)*) = a*E(X*)

To prove: [ (aX)* f(x)dx < oo

[Z (@X)* f(x)dx = a* [ X* f(x)dx < o

~ E[(aX)¥] is exists.

Theorem 2.3.
Prove that E[aX + b] = aE(X) + b where a, b are constant and E(b) = b
Proof.
Consider E[aX + b] = E[aX] + E[b]
=aE[X]+ b

~ ElaX + b] = aE[X] + b.

Example 1.

The random variable X can take on two values 2 and 4 where P(X = 2) =

0.2 and P(X = 4) = 0.8. Find E[X?]
Solution
myg = E[XX] =Y, xKXP,

E[X?] = X, x}P,
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= (2)’P(X =2)+4°P(X =2)
= 4(0.2) + 16(0.8)
=08+ 12.8=13.6

Example 2.

The random variable X has the normal distribution with density f(x) =

2
1 X 2
N 2. Find E(X*).

Solution.

my = EQX®) = [ xX f(x)dx

2

00 1 X
m, =E(X?) = [ x*=e 7 dx

2
1 1) X
=—\/2_fooxze 2 dx
=J_

x2

u=-—-x,dv=—xe z2dx

x2

du=—dx,v=e 2

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



m, = E(XZ) = 1

Definition.

E[(X — ¢)*] where cis an arbitrary constant is called the moment of order

k with respect to the point c.

Definition.

Moments with respect to the expected value, that is, with respect to the

point ¢ = my; = E(X) are called central moments.
We denoted it by pux = E [(X — E(X))K].
Moment with respect to the point ¢ = 0 are called ordinary moments.
Moment about mean
ug = E((X — ECO)
u=E(X —EX))

= E(X —my)

=EX)-my=m —my
py =0
uy = E((Xx - ECO)")

= E((X —my)?)

= E(X?-m? - 2mX)

= E(X?) +m? — 2mE(X)
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=m, + m? — 2m?
Uy = my —mj
s =E((X - ECO)")
= E((X —my)®)
= E[X3 —m3 — 3X?m, + 3Xm?]
=EX3) —m3 - 3E(X*»)m, + 3E(X)m?
=ms —m} — 3m,m; + 3m3 = m3 + 2m3 — 2m;m,
Note
When k = 2,

The moment E[(X — ¢)?] is called the mean quadratic deviation of the random

variable X from the point C.

Definition.

The central moment of the second order u, = m, —m? is called the

variance.

It is denoted by D?(X) or o2.

Definition.

Square root of the variation is called the standard deviation

i.e.,S.D =\/O'_=O'
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Example S.

Compute mean and variation of Binomial distribution. The random

variable X takes on the valuesr = 0,1,2, .....,nwith P(X = 1) = (?) pPrgq™T

Solution.

n

GivenP(X =r) = (r

)P —p)n

EX) =2 x"p"

n -
EQO =Xror (1) Pr—p)"
n —
Sior(T)Pra—pn

n!

—yn . =D e o yner
- z:r=0r7”(7”—1)!(71—1")! PP (1-p)

(n-1)!

(n-1-(r-1))! P11 —p)(n—l—(r—l))

= npzr O(T !

=np Ni= 07”( I; 1) P¥(1 —p)rtK

—nP(P+(1P)"
=nP(P +1— P)n1
E(X) = nP

EX?)=Y"(r*’PX=r1)

= Yrort o (1 - )T

ri(n-r)!

=Yrolrt—r+r} p"(1—p)*"

r'(n r)'

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



= Xieolr r = D + 1} 0" (L= p)" 7

n(n-1) (n-2)!

_\n _ r(1 _ \N-T
= Lr=o(r(r 1)+r)r(r—1)(r—2)!(n—2—(r—2)!p (1-p)

n(n-1) (n-2)!
r(r—-1) (r—2)!((n—2)—(r—2))!

n n(n-1) (n—2)! r
r=0" T o (-2 -—2) 4

= Lr=o” (r=1) Prq™™" +

n—-r

-2 _ ) (r—
=n(n-1)Y", (7:—2)pr 2+2q(n 2)-(r-2) 4

(n-1)—-(r-1)
r=0 " G i)~ (r—1)! d

-2 _ —2)—(r—
=n(n— Dp* X1, (f_z)pr 2qn=2-(r=2) 4

np¥pe, (P 1)prigh-ey
=n(n—-Dp*(p+"*+nP (p+ """
=nn—-Dp?(p+1-P)"2+np(P+1—-P)*1?
EX?) =n(n—-1Dp?+np
Variance 62 = u, = m, — ms
D?(X) = n(n — Dp* + np — (np)?
— n2p2 _ npz + np — n2p2
= np — np?

=np(1 —p) = npq

Example 6. Find p, and m,.

Supposen = 2,p = %
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Then E(X) = np = 2 X%zl
2 _ — i _1
a—npq—szx(l 2)

1
2

E(X) = 1,052 =§.

Example 7.

Letn=3,p=§

E(X)=np=3><§=1
2 _ _ 1 _1
o —npq—3><3><(1 3)

2
3
Property of the variance

1. Forevery ¢ # my,D*(X) < E[(X — X)?].
Proof.
E[(X — c)?] = E[([X — my] + [my — c])?]
= E[(X =my)* + (my — ¢)* + 2(X —my)(my — ¢)]
= E[(X = my)?] + (my — ©)* + 2(m; — )E[(X —my)]
=D*(X) + (my — c)* + 2(my — )(E(X) — my)
= D*(X) + (my — ¢)?
~ E[(X —¢)?] = D?(X) + (m; — ¢)?
D*(X) < E [(X — ¢)?]
2. Find the variance of the liner function of the random variable Y = X + C

where c¢ is constant.
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Proof.
LetY = X + C where C is constant
p*(Y) =E (Y - EM)’]
=E|(x+C-EX+X)]
= E[(X +C—EX) - €)?]
= E|(x - E(0)*| = p2(0)
~ D*(Y) = D*(X)

3. Find the variance of the random variable Y = aX + b where a and b are
constant.
Proof.
LetY =aX+b

D3(Y) = E(r?) - (E(V))°
= E((aX + b)?) — (E(aX + b))”
= E(a®X?+ b? + 2abX) — (aE(X) + b)?
= a2E(X?) + b? + 2abE(X) — (a?E(X))” + b? + 2abE(X))
= a2E(X?) + b? + 2abE(X) — a?(E(X))" — b? — 2abE(X)
=a?|[Ex?) - (E))’|
= a*D*(X)
-~ D2(Y) = a?D2(X) .
Definition

A random variable X for which E(X) = 0,D?(X) =1 is called the

standardized random variable.
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Problem 2.1.

If X is the random variable with E(X) = m, & standard deviation o, the
random variable Y defined as Y = % Prove that Y is a standardized random
variable.

Solution.

X—m1

LetY =

b = £ (52
=~ E(X —my) = Z[E(X) —my] = 0

D3(Y) = 0% =m, —m?

= E[Y?] - [EQV)]? = E [(X‘Gml)z] =0

E[X?+m2-2Xm,]

o2

1
== [E(X?) + mi — 2mE(X)]
_ 1 2 211 2
—;[mz +mi — 2m{] —;[mz — mf]

1
=—2XO'2
o

D3(Y) =1
~E(X)=0and D*(Y) =1
= Y is the standardized random variable.
Remark.

The standard deviation, the mean deviation can serve as a measure of

dispersssion.
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) If the variable X is of the discrete type with jumps points x;
Z—oo<x1<oo Pi |xi - mll

ii)  If X isthe random variable of the continuous type f |x —my| f(x)dx.

Definition.

The ratio of the standard deviation to the expected value is called the

coefficient of variation. This ratio is denoted by v = mi
1

IfE(X)=my=1thenv=0
1.e., coefficient of variation = standard deviation

1.e., the coefficient of variation is a measure of dispersion if the expected

value 1s the unit of measurement.

Example.

Find the co-efficient of variation in Binomial distribution.

Solution
E(X) =npando = ,/np
V= L «/np q
np
Definition.

The random variable X has a symmetric distribution if there exists a point

a such that for every x the distribution F (x) of X satisfy the equation.

Fla—x)=1—-F(a+x)—PX=a+x)
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The point a is called the center of symmetry.
In particular, Ifa = 0Vx,F(x) =1—F(x) — P(X = x).
Definition.

If a random variable with symmetric distribution is of the continuous type,
its density function f(x) satisfies the equation (excluding the discontinuity

points).
Definition.

If X is of discrete type, its jump points and their probabilities are placed

symmetrically with respect to the center of symmetry.
Note

1. If the random variable has a symmetric distribution and its expected value
exists, this expected value equals the center of symmetry.

2. For a symmetric distribution the central moments of r orders (if they exists)
are equal to zero.

3. Since, in a symmetric distribution all the central limits of odd order equals
zero, the value of every moments of odd order as a measure of asymmetric
of the distribution

For the measure of asymmetry we use the expression.

This is called the co-efficient of skewness.

Theorem 2.3

Suppose that the moments m; (k = 1,2 ... ... ) of arandom variable X exists

and the series )y % r¥ is absolutely convergent for some r > 0, then the set

of moments {m,} uniquely determines the distribution function F(x) of X.
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Note

1. If for some of constant p, |m,| < u* (K =1,2,....) the distribution
function F(x) is uniquely convergent.
If the set of all possible values of a random variable X is bounded from

both sides, the set {m, } determines F(x) uniquely.

Examples.

k
1. Letthe random variable X takes on the values x; = i—z (K=1,2.....) with

probability is p, = —

2K’

o w 2F1 o 1
E(X) = Xi=1 XkPr = Zk=1733% = Lke17z < ©

E(X) exists.

% o (1w 2
E(X?) =¥i1xi P = Zk=172_k = Zk=1g =®

2. Letarandom variable Y take on zero with probability % and the values y;, =

2k+1
k2

with probabilities P, = ——

2k+1
E(Y) = Xp=1 Yk Pr

_ . 2k+1 1 _ . 1 _
= Zkzlvm = Zk:1k—2 = EX)

(2k+1)2 1

E(Yz) = Z;;ozl yl% PIL = Z;;ozl k4- S 2k+1

. 2k+1
= E:k=]»_EZ_ —T00)

~ The random variable X and Y have the same moments of the first order does

not have moments of any order > 1.

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli m



2.3. The Chebyshev Inequality

Theorem 2.4.

If a random variable Y can take on only non negative values and has

expected value E (Y), then for an arbitrary positive number ks, P(Y = k) < %

Proof.
Suppose Y is of continuous type.

P(Y>K)=1-P(Y <K)
= [7 fOdx - [* fO)dy
= J fONdy
Consider E(Y) = [, yf(y)dy
= [ yf)dy
> [y f)dy

>K [, f()dy
= KP(Y > K)

~EY)=KP(Y =K)

E(Y)

ﬁP(YZK)ST

Corollary.
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Let the random variable X have a distribution of probability about which

we assume only that there is a finite variane o2 then for every K >0,
1

P(IX —m,| = Ko<=

Proof.

Suppose the random variable X has the expected value E(X) = m, and a standard

deviation o
Consider the random variable Y = (X — m;)?
Clearly Y = 0
EY)=E((X —my)?) = EXX?* +m? — 2m;X)
= EX?) +m? - 2mE(X)
=my, +mé —2mé =m, —m?
E(Y) =m, —m? = ¢?

~ E(Y) is exists.

By the above theorem,

P(Y > k) <=2
Put E(Y) = o2

And K = K202 is a constant.
0-2
2

_ 2 2,2
P((X —my) ZKU)SKU

2
P((X —my)? = K%02) < %

1
P(|X —m,| = Ko) S5 e (1)

Note.
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Equation (1) is valid for arbitrary random variables whose variance exists

(second order moment exists)

Put K = 3 in equation (1),

P(IX —my| = 30) <

O | =

If follows that in the class of random variables whose second order moment

exists one can’t obtain the better inequality than the Chebyshev’s inequality.
Example 1.

The random variable X has the probability function

P(X=-K)=PX=K)=-=,P(X=0)=1-—

where K is some positive constants.

We have E(X) = Ygxgf(x)
=0PX=0)+KPX=K)+ (—K)P(X = —K)

1 1
=K (52) K (53) = 0
E(X?) =Y x Px

_p2( L 2 (L
=K (21{2) +k (21(2)

=2K? () =1

2K?2
1
We know that = P(|X — my| = ko) <
LHS m1 = 0,0'= 1

P(IX —my| = Ko) = P(IX| — K)
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=PX=-K)+P(X=K) = 1 + 1 _ 2 _1
B B 7 T 2K?2 U 2K?2  2K?2 K2

P(X=—K)=P(X=K)=2—11<2,P(X=0)=1—%.

2.4. Absolute Moment

Definition.

The expression E(|X|¥) is called the Absolute Moment of order k. The

absolute moment are denoted by .

If X is a random variable of the discrete type with jump points x;,
Br = E(1X|* = X;lx|*P,

If X is a random variable of continuous type with density f(x),
B = E(XI) = [ IxI*f (x)dx

Remark.

1. The absolute moment of an even order equals the moment of the same

order.
Theorem 2.5.(Lapunov inequality)

If for a random variable X the absolutely moment of order n exists, for
arbitrary k (k = 1,2, ... ... ,n — 1) the following inequality is then true.

1 1
Kk k+1
B = By

Proof.
Suppose that the random variable is of the continuous type is exists.

Let u and v be to arbitrary real numbers.
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Consider the non-negative expression

o ket kt1]2 @O 2. 1k-1 20 1k+1
S (ulxlZ +vlxl 2| flo)dx = [0 [u?lx[* + v2 x|+t +

2uv|x|?f(x)dx

(0]

_ J_o:ou2|x|k‘1f(x)dx + f

— 00

w?|x|**t1f(x)dx + jOOZulelkf(x)dx

= U?By_1 + V*Brs1 + 2uvfy
= U1 + V? P41 + 2uvfy = 0
ie, uU2By_q + 2uvPy + V2L =0
we know that, the condition for the expression ax? + 2hxy + by? to be non-

negative V values of x and y is that |Z Z| = 0.

Br-1 P
B Br+

Br-1Br+1— B =0

= BE < Br-1Bi+1 wor o (1)

>0

Rising both the sides of equation (1) , to power k
BR* < (Br-1Br+1)"
0 < BK-1Prra o (2)
Putk=12,...n—1 in(2)
Bt < BoPB-
Bz < BiB3
ps < B3B3
BY < B3Ps
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0 < BIBE

IBZ(n 2) < B

Bty ¥ < BR3B!

Where By = [7 |xI°f(x)dx = [7 f(x)dx = 1

Multiplying the k successive inequalities and B, = 1, we get, (B, < 2™ 1)

In general, B, < Br+1 Vk =1,2,....,—1 - (3)

Raising both side of (3) to power k(k+1)

(B < (B 1)

(B < (B

1
k+1
ﬁk < B

2.5. Order Parameters

Definition.

The value x satisfying the inequalities

P(X < x) 2§,P(X > x) z% ...... (1)
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is called the median and is denoted by x: one is equivalent to the double
2

inequality.

%—P(sz)SF(X)S% - (2)

IfP(X=x)=0
In particular,
If the random variable X is of the continuous type the median is the number x
satisfying the equivality F(x) = % - (3)

If many value of x satisfying inequalities (1) or (2) then each of them is
called the median.

Example.

1. Suppose that the random variable X can take on the values 0 and 1,

PX=0)= %,P(X =1)= %- Then find the median.

Solution.
Letx =0
PX20)=PX=0)+P(X=1)=-+-=1>~
P(XSO)=P(X=0)=§>§
=~ 0 is not a median point.
Letx =1
P(X21)=P(X=1)=§>%

PX<1)=PX=0)+P(X=1)=-+-=1>-

~ 1 is a median point.
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2. The random variable X is of the continuous type with density defined as

0 forx<O0

f(x) = {cosx forOSxSE

2
0 forx>§

Solution.

We know that, if the random variable X is of the continuous type,
the median is the number x: satisfying the inequality F (9@) = %
2 2

1

e, [z f(x)dx =2

2

1

f,?lf(x)dx + fox%f(x)dx + ijf(x)dx _1

2

X1 1
[ Zcosxdx ==
0 2

xl 1
. 2 -
(sinx),* = -

. 1
sinx1 =
2 2

T

X1 =~

> 6

% is a median point
3. Suppose that the random variable X can take on 3 values x; = —1,x, =
0,x; =1 with P(X=—-1) =P(X =0) =§ PX=1)= % Find the
median.
Solution.
Letx =—1
PX=2-1)=PX=-1)+PX=0)+PX=1)
=THs+o=1>2

PX<-1)=PX=-1)=-»

I
N R

. —1 is not a median point.
PX=0)=PX=0)+PX=1)
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iy
) B

_1,1_.3.1

4 2 4 2
P(X<0)=PX = 1)+P(X—0)—1+1—1>1
= T T T a4 272

=~ 0 is a median point.

PX>1)=PX=1) =

> 1
2

N =

PX<1)=PX=-1)+PX=0)+PX =1)

=1> !
B 2
~ 1 is a median point.

Here each value x from the interval (0,1) is the median.
Definition.

The median is a special case of the class of parameters called quantiles.
Definition.

The value x satisfy the inequalities
PX<x)ZzpPX=2x)=21-p(0<p<1)
is called the quantile of order p and is denoted by x,,.

(1)is equivalent to the double inequality

p—PX=x)<Fx)<p .... (2)

If P(X = xp) = 0. In particular, if the random variable X is of the continuous

type.
2)=p<FX)<p

~F(x)=p

The quantile of order p is the number satisfy the equation F(x) = p - (3)
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If many numbers x satisfy one or two each of them is then called the quantile of

order p.

Definition
Quantiles and functions of them are called order parameters.
Example.

1. Suppose that the random variable X has the normal distribution with

x2
density £(x) = J% e~ 2. Find the point x for which F(x) = 0.1.
Solution.
x1 =128
10
Remark

1. Some simple functions of the quantiles may also serve as measure of

dispersion.

2. The semi-inter quartile range defined as % (Xg — xz)

2 4

3. If the set of all possible values of a random variable is bounded from both
sides, there exists finite upper and lower bounds of the values taken by this
random variables.

4. If a and b are the lower and upper bounds of the values taken on by the

random variable the range is defined by d = b — a

In example -2, the range equals g in example — 3 it equals 2.

2.6. Moments of Random Vector
Let ordered pair of (X, Y) be a two-dimensional random variable. Consider

the single valued functions g(X,Y) of (X,Y).
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Definition.

Let order pair of (X,Y) be a 2-dimensional random variable of the discrete

type with jump points (x;, Vx) and jumps P.

The series

E[g0 V] = ) Pueg i, i)
i,k

is called the expected value of if the following inequality is satisfied:
ik Puclg(xi, yi)| < oo
Definition.

Let (X,Y) be a random variable of the continuous type with density

f(x,y). Let g(x, y) be Riemann Integrable.

Elgx ) = [ [ genreydrdy <o

Exercise

1. Express the central moment u, as the function of the ordinary moments
mq, My, M3, My.

2. Express the ordinary moment m, as the function of the central moments

Ui, U2, U3, Ua
3. Show that if X; and X, are independent and have same distribution, Y =

X; — X, has a symmetric distribution.

Definition.
The expected value of the function g(X,Y) = XY™

ie.,my, = E(XLY™
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where [ and n are non-negative integer, is called the moment of order 1 + n of

the random variable (X, Y).

Thus, if (X,Y) is random variable of the discrete type with jump points (x;, Vi)

and jumps Py,
— lL.n
My = Xik Pix X[ Vi,

If (X,Y) is a random variable of the continuous type with density function

fQ,y),
mp = [ [ o x'y"f (G, y)dx dy
Remark

1. Two moments of the first order exist
my = E(X1Y?)
= EX)
mo; = E(X°Y1)
=E(Y)
WMy = E(X) and my; = E(Y)
2. Three moments of the second order exists.
My = E(X2Y°) = E(X?)
Mo, = E(X°Y?) = E(Y?)
my, = E(XY)
“Myg = E(X?),mgy = E(Y?),myy = E(XY) .

Definition.

The central moment is denoted by y;,

i = E[(X — m1o)l(y —mg1)"]

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



Central moment of order 1:
o = E[(X —myo) (Y —me,)°]
= E[(X —myo)]
=E[X - EX)]
=FEX)—-EX)=0
fio =0
Similarly,
tor = E[(Y —my)] =0
Central moment of order 2:
Hzo = E[(X —my0)?]
= E[X? + m}, — 2myoX]
= E(X?) + m{y — 2myE(X)
= E(X?) + m{, — 2mf, = E(X?) —m{,
Hao = Myo — Mg = 0f
Similarly, g, = Mo, — mi; = 0%

Where o; and o, are the standard deviation of the random variables X and Y

respectively.

Ui, = E[(X —myo)(Y —my,)] is called co-variance and is denoted by

cov(X,Y) = E[(X —myo) (Y —mgq)].
Relation between the ordinary and centre moments

Let (X,Y) be the random variables and the expected values of X and Y

exists. Then,
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Hao = Mo — Mig
Hoz = Moz — MG,
Hi1 = My — MyoMoq
Proof.
a0 = E[(X —my)?]
= E[X? + m%y — 2m X ]
= E(X?) + m%;, — 2myE(X)
= E(X?) + m?, — 2m#, = E(X?) — m?,
“ Hag = Myg — Miy = 0f
Hox = E[(Y — m01)2]
= E[Y? + m3; — 2Ymy,]
=E(Y?) +m§, —2m§, = E(Y?) —m{;
“ Uoz = Moy — MGy = 05
11 = E[(X —myo)(Y — mgq)]
= E[XY — myoY — mg X + mygmo,]
= E(XY) —myoE(Y) — mg,E(X) + myomoy
= E(XY) — mygmgy — Mgymyg + myomo;
H11 = M1 — Mo1Myo
~cov(X,Y) =my; —myymy

cov(X,Y) = E(XY) — E(X)E(Y).
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Theorem 2.6.

The expected value of the sum of an arbitrary finite number of random

variable, whose expected value exists, equals the sum of the expected values.
Proof.

We prove this theorem by induction to an arbitrary finite number of random

variables.
Let the expected value E(X) and E(Y) are exists.

Let (X,Y) be a random variable of the discrete type with jump points (x;, yy)

and jumps Pg.
LetZ=X+Y
E(Z)=EX+Y)
= 2ik P (xi, ¥x)
= ik (Pixxi, PikYk)
= Yix Pixxi + Xix Pik Y
= XiPix; + Xik Pk x¢
=EX)+EY)
“EX+Y)=EX) +EX)
Yik Pilxi, yi|< Zik Pic(lxil, lykl)
= 2ix Piglxi| + Xix Pix |ykl
= 2i Pi|x; |+ Xk Pxlykl
<o [vEX)and E(Y) < o

~E(X +7Y) is exists.
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Suppose the random variable (X, Y) is of continuous type with density f(x, y)
Since E(X) and E(Y) exists.

& E(X 4+7Y) is exists.
EX+V)= [T [ (x+y)fCx,y)dx dy
=7 % (x FGoy) + yf (. y))dx dy
= [ I xf Coyddx dy + 2 7 yf(x,y)dx dy
=[x, f O ydyldx + [2 y[J~, f (e, y)dx 1dy
= 7 xfitdx + [7y f,()dy
EX+Y)=EX)+E(Y)

~ The result is true for two random variable.

Assume that X, X, ... ... X,_1 be a random variable and the expected values
E(X,),E(X;),.....E(X,,_;) exist. Such that E(X{,X,,.... X,_1) =
E(Xl)) E(XZ)r LR E(Xn—l)

Let X1, X5, ... ... X,, be random variable such that E(X;), E(X5,), ..... E(X,,) exists

To prove:

= E(X)) + E(X,) + - .. E(X,)
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~ The result is true for n number of random variable.

=~ By induction hypothesis, the result is true for arbitrary finite number of random

variables.
Theorem 2.7.

The expected value of the product of the arbitrary finite number of
independent random variable, whose expected values exists equals the product of

the expected values of these variables.
Proof.

We prove this theorem by induction to an arbitrary finite number of

independent random variables.

Let (X,Y) be a random variable of the discrete type such that X and Y are

independent variables.
And E(X) and E(Y) exist.
E(X,Y) = X Pixi) Y
= 2k P PrXi Vi
= 2i Pix; Xk Pr Y
= EX)E(Y)
~EXY) =EMX)E()
ik Pl xi, ye| = Zix P Plxill yk| = XiPi 1% | 2k P [yk| < o0
~ E(XY) is exists.

If (X,Y) is of continuous type

EXY)=["_ " xyf(x,y)dxdy
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= fjooo f_oooo xy f1(x) f,(y)dx dy [+ x andy are independent]

= [ xi(dx [Ty () dy
= EX)E(Y)
~EXY) =EX)E(Y)
= The result is true for two independent random variable.

Suppose X, X5, ... ... X,—1 are independent random variables such that

E(Xl)r E(XZ)I T E(Xn—l)

Let X1, X5, ... ... X,, are independent random variable.

=EX1),E(X2), ... E(X,—1)E(Xy,)
= The result is true for n-independent random variable.

Hence result is true for an arbitrary finite number of independent random variable.

Corollary.
The covariance of two independent random variable equals to 0.
Proof.
Since X and Y are independent.
By above theorem, E(XY) = E(X)E(Y)

~cov (X;Y)=EXY)—-EX)E() =0.
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Problem 1.

Let X and Y are two random variable with variance D?(X) and D?(Y). Let
Z = X + Y. Find the variance of Z.

Solution
LetZ=X+Y

D2(Z) = D*(X +7Y)
=E[(X +Y)?] - [E(X + Y)]?
= E[X?>+Y? +2XY] — [E(X) + E()]?

— E(X2) + E(Y?) + 2E(XY) — [(E(X))2 +(EM)* + ZE(X)E(Y)]

=EX?) - [EX)]*+EX?) - [E(Y)]* + 2E(XY) — 2E(X)E(Y)
D%(X +Y) = D3(X) + D2(Y) + 2E(XY) — 2E(X)E(Y)
If X and Y are independent random variable.
E(X,Y) = EX)E(Y)
~ D2(X +Y) = D?(X) + D%(Y)
Theorem 2.8.

The variance of the sum of an arbitrary finite number of independent

random variable choose variance exist, equals the sum of the variance.
Proof. as in theorem 2.6.2

Conditional Expected value

Definition.

Let (X,Y) be a random variable of the discrete type with jump points
(x;,vx) and jumps P;;. Then the conditional expected value of the random

variable Y! under the condition X = x; is
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EIV'|x = x] = ) yh 2
- bi-

Similarly, the conditional expected value of X! given Y = y, is

EX'Y =y ] = Exilpi
- Pk

Definition.

Let (X,Y) be two dimensional random variable of the continuous type with

density function f (x,y) and conditional density f; (x) and f, (y) exist, we obtain

stk w0=[ 2

rocty = = [ e lg e

Remark.

1. For every subset S of the set of jJump points x; of X,

EY'+Xe€S) =Zy,gp(y=yk|X65)

_ l YxesDik
Zkyk YxesPi
Z y;( Pik
erspl ZxESpl ZXES(Z pl) E(yk:x)

EY'+XeS) =E[EQYX =x)|X €S] ... (D
E(Y) =X Yk Vi P

=Yipi ECYX =x)
EYY =E[EQYX)] ... (2)

Similarly,
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For a random variable (X, Y) of the continuous type for ever Borel set S on

the real axis for which P(X € S) > 0,

E(Y'IX€S) _f j P]E)((x y;) xdy

i) o fxy)
=Js poew oY Fieo @

E(V'X€S) =] P]Eﬁ;) E(YYX = x)dx ....(3)

Put § = (—o0, 00) we obtain,
E(YD) = [, [,y f (e, y)dx dy

= [0, LGOE'IX = x)dx

= E[E(Y!|x)]
E(YY) =E[EYYx)] ... (4)
Formulas (1)And (3) may be written as,
E(YYXeS) =E[ECYYXx =x)|X e€S] ... (5)
(2) and (4) may be written as,

E(YH) =E[E(Y!x)] ... (6)

2. Consider a random variable (X;,X,, ... ... X,,) of the continuous type and
suppose that the density functions f (x4, x5, ... ... X,) IS everywhere continuous

and the density of the marginal distribution

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli 110



Conditional moments of order [(l = 1,2, .....) is
l . i o (X, Xy)
E(Xlle — xZ, ...... xm — xm) — f—oo x1 - - < dxl.

Definition.

The formula for the coefficient of correlation is the following:

p = E[(X—m10)(Y—mo1) _ M
VE[(X-m10)2JE[(Y-m(1)2 0107

Theorem 2.9.
The co-efficient of correlation satisfies the double inequality —1 < p < 1.
Proof.
For arbitrary real numbers t and u, consider the non-negative expression
E{[t(X —myo) + u(Y —mgy,)]%}

= E{t?(X —my0)* + u*(Y —mg1)? + 2tu(X — my) (Y — mg)}

= E[t?(X? + m3, — 2Xm;)] + E[u?(Y?2 + m3; — 2Ymy,)] +
E[ZtU(XY —_ m01X —_ m10Y + m10m01)]

= t?[E(X?) + m2, — 2moEX)] + v?[E(Y?) + my, — 2m E(Y)] +
ZtUE(XY) —_ mOlE(X) —_ mloE(Y) + m10m01

= t?[myo + mZy — 2mygmyo] + u?[mg, + md; — 2myme,] + 2tu[my, —

my1Myg — MygMpq + m10m01]

_ .2 2 2 2 2 2
= t*[myo — miy] + u®[my, — mg,] + 2tu[my, — mi, — mygme, + mio]l
= t?2 o + u?0f + 2tu uy4

w E{[t(X —myo) + u(Y —mgy)]%}
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= t?20f + u?0s + 2tu pyq ... ... (1)

L.H.S of (1), is always non-negative, we must have

2
01 H11

2| =0
U1 Oy

C 2 2,2 .la h
s uf, —ofoy <0 [~ |h b|20

2 2 2
$0'10'2 —,Ll1120
2 2 2

= U1 < 0{0;
= W1 < 10,0,

= —0,0y < Hi1 < 010>

Note.

1. If the random variable X and Y are independent cov(X,Y) = ;1 =0
“p=0
If the random variable X and Y are independent, then p = 0

2. But the converse is not true

If p = 0 we say that X and Y are uncorrelation.

Theorem 2.10

The equality p? = 1 is the necessary and sufficient condition for the

relation P(Y = aX + b) = 1 to hold.
Proof.
Suppose that P(Y =aX + b) =1

ie, PY#aX+b)=0
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We know that,

myy = E(Y)

=P(Y =aX+DEXY|Y =aX+b)+PY #aX+Db)E(Y|Y # aX + b)
=EY|Y =aX+b)+0

=E(aX + b)

=aEX)+b

oj = E[(Y —mg1)?]

= P[Y = aX + b]E[(Y — my1)?|Y = aX + b]
+ P(Y # aX + D)E[(Y — my1)?|Y # aX + b]

= E[(Y — m1)?|Y = aX + b]
= E[(aX + b —mgy)?]
= E[(aX + b — amyy — b)?]
= E[a®(X —my0)?] = a’E[(X — my0)?]
i.e., 02 =a’d? - (2)
11 = E[(X —myo) (Y —myy)] = E[(X —myo)(aX + b —my,)]
= E[(X — myy)(@X + b — amyo — b)] using (1)
= E[a(X —my)?]
a1 = aE[(X —myo)?]
11 = aof

2
K11 aoj

p:—:—:l

010>, 01404
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p2 =1

Conversely, Suppose that p? = 1

.u%l =1

2 2
0103

uiy = ofoz
ofof —ui; =0 - (2)
Hootoz — Hi1 =0
For arbitrary real number t and u consider the non-negative expression
E{[t(X —myo) + u(Y —mo;)]?}
= E{t?(X —my)? + u(Y —mg1)? + 2tu(X — myo) (Y — moq)}

= E{t?[X* + m{y — 2Xmy,]} + E{u?[Y? + m§; — 2Ymy ]} +
E{Ztu[XY - Xm01 - leo + m10m01]}

= {t*[E(X?) + mfy — 2myoE(X)] + u?[E(Y?) + m§; — 2m E(Y)] +

2tu[E(XY) — mo1 E(X) — myoE(Y) + myomoq]}

= t*[myo + mZy — 2myomyo] + u?[mgy, + mg; — 2myyme,] +

2tu[myy — moymyg — myeMmoy + MygMo;]
= t?[myo — myo]® + u?[mo, — mg,] + 2tu[myy — moymy]
= t2c? + u?of + 2tuyy; - (4)

Since LHS of (4) is always non-negative.

ofof — i 2 0

i.e, Upotoz — Hi1 = 0

but (3) = Upotor — Hi1 =0
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Then the quadratic form equation (4) takes on the value zero for some pair of

values t = t; and u = u, where atleast one of the value t; and u, is not zero.
For these values t, and u, we have
E{[t(X —myo) + u(Y —my1)]?} =0
This equation is satisfy only when we have the equation
P[to(X —myg) + uo(Y —mpy) =0] =1

Suppose that uy # 0

toX tom Upm
[0 _ LMo 001_0]_1
Up Ug Up
—t Mmo1Ug + Myl
P[Y= 0 5 o Mo1tto 100]_
Up Up
i, P[Y = aX + b] = 1, where a = —2 and b = LertetMiolo
Ug Ug
Definition.
Consider the n-dimensional random variables (Xq, X5, ... ... ,X,,). Suppose
that the variance al-z, (i =1,2,.....,n) of the random variable X; exists and are

positive. Then the covariance of all pairs of these random variables are also exist.

Let A;; and P;;, be the co-variance and the co-efficient of correaltion of X;

and Xj, respectively.

The symmetric matrix

Al 1 Alz ------ A—ln
_ AZ 1 Az 2 ------ AZn
s 2o Al
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is called the matrix of second order moments. The determinant of the matrix M

is denoted by |M|.

Theorem 2.11.

The probability that the random variable X;, X5, .....X,, whose variation

exists, satisfy atleast one linear relation equals 1 iff |[M| = 0
Proof.

By the previous theorem, If p? = 1 is a necessary and sufficient condition for the

relation P(Y = aX + b) = 1 to hold.
IfE {[Z?=1 t; (Xi — E(Xi))]z} = Dik=1 ik titk = 0

There are linear relation among X;, X5, ....., X, and by the definition we get

M| =0

Conversely, if |[M| = 0 then the whose mass of probability is concentrate

on a hyper plane of dimension less than n.
ie,P(Y=aX+b)=1

= There exist a linear relation Xy, X5, ....., X,, among themselves.
Definition

If the components X;, X5, ... ... , X,, of the random vector (X, X5, .....X;,)
satisfy atleast one linear relation with probability 1, then the distribution

(X1, X5, con o X,,) is degenerate.

If the determinant |M| # 0, the distribution of (X3, X5, ..., X;,) is nondegenerate.

Definition.
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The determinant |M| is called the generalized variance.

Definition

The expression +/ |R| is called the scattered coefficient, the R is the matrix

of the correlation coefficient Py, taking p;; = 1;

1 pigeeee Pin
&~ R = P21 1...... Pan
Pn1 Pn2 - - Pnn
Remark.
We know that, p;, = ;‘;‘
i%k
Clearly |[M| = 6207 ... ... a2|R|

The matrix R is also symmetric and its determinant satisfies the relation |R| < 1.

2.7. Regression of First type
Let (X,Y) be a two-dimensional random variable of the discrete type with

jump point (x;, yi), and jumps p;;, and let P;. and P denote the probabilities in

the marginal distribution of X and Y respectively.

Consider the conditional expectations of X and Y denoted by m, (y,) and
m, (x;) respectively. Thus

P;

X: —
" Py,
l

my(yx) = EX|Y = y,) = - (1)

P;
my(x) = EYIX = x) = )yt > (@)
k L.

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



We obtain two collection of points in the plane (x,y) from (1) consist of points

with co-ordinate x = m; (yy), ¥y = Vi
From (2), consist of points with co-ordinates x = x;, y = m,(x;).
Definition.

Let (X,Y) be a two-dimensional random variable of the continuous type
with density f(x,y) and marginal densities f;(x) and f,(y). The conditional

expectations m, (y) and m,(x) are

*® flx,y)

mO) = EXIY =y) = | x5%dx > (@)
mw) = =0 = [ Y2224 @

Again we obtain two collection of points in the plane (x,y) with the respective

coordinates
From (3), [ = my(y),y
From (4)9 X, y = mZ (x)

x = x;,y = my(x;).

Example 1.

The random variable X and Y have the joint density given by the formula
2_ 2
flx,y) = %exp (— %) Find the correlation coefficient (or) Find the

correlation coefficient of two-dimensional normal distribution.
Solution.

_ 1 _xZ—ny+2y2
fey) = gpexp (- =5)
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This 1s a density function, since it is non-negative

xZ—2xy+2y>

And [7 7 fGeydxdy = [ [ L) e ay

— 21
1 oo _y_z 1 00 _M
= e (e )y
1 o0 ¥
:ﬁf_we 2 (1)dy [-.-t=x—ydt=
1 oo _M 1 co _tz
dx \/Z__Rf— e 2 x—\/z—_nf_ooe Zdt]

Clearly, X~n(0,1) &Y~ n (0,1)

myo = EX'Y?) = [ [ xf(x,y)dx dy

_,,2_2 (L ffooo X e_(@) dx ) dy

Vam

1 co
A

y?

1 oo —
=5=J ye zdy

m10=0

2

1 -
EXY) =mg = J_ ve™

—2xy+2y>2

-1 e T Dy

X

2 x 2
=1y 7 ye (50D ay ax

x2 x 2
== [ e_T<f_°°ooye_(y_5> dy)dx

_Zn —00
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=mq

=—f f xye(z) (_y)zdxdy

2m -
O % (x-9)?
=\/%f_ooye (2>(\/%f_ooxe 3 dx)dy
e
= =), ve (2)(y)dy
2
= [ y2e T dy
=E(Y?)
pip =1
Hpo = MpeMi,
2 (x )2
:Ef— [ x2e 7 e ydxdy

_(x=y)?

1 00 _ﬁ 1 00 w=y)-
=ﬁf_me Z[ﬁf_mxze 2 dx]dy

t2
:—f '_[_f (t2 +y% + 2ty)e 2 dt]
_y? 1
= e ZI:__’EI— dt+_f ye 2dt+

\/% J_ 2tye 2 dt]

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli 120



:—f e 2 [\/%xg+y2+0]dy

1 o} _Y
= ﬁf_wyze 2 dy

1 o0 =
==2f, y’eTz dy

2 \/271_

=="=1
Ho2 om 2
_ H11
p_O'O'
192

Moo = 0f = 2, = 0f =1

0-1 = 1

0-1 = \/E
-1

p = Nel

Definition.
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The set of points of the plane (x,y) with coordinates given by x =
my (yx),y = yi (or) x = m;(y), y is called the regression curve of the random

variable X on the random variable Y .

The set of points of the plane (x, y) with coordinates given by x = x;,y =
m,(x;) (or)x,y = m,(x;) is called the regression curve of the random variable

Y on the random variable X .
Remark:

1. If all the points of the regression curve lie on a straight line, then there is a
linear regression.
2. If X &Y are independent
m,(x) =EY|X=x)=E()
my(y) = EXIY =y) = E(X)

Here,

m,(x) is independent of x then the regression curve of Y on X lies

on a line parallel to the x-axis.
Similarly,
The regression curve of X on Y lies on a line parallel to the y-axis.

These, two lines intersect at the point with coordinates (m,, m,).

Example 2.

Find the regression curves for the two-dimensional normal distribution

given in example 1.

Solution.

—2xy+2y>

fi) = 2, fe,y)dy = f_‘toie‘(—z )ay
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LG)=F=eF

f,00 = [° fx,y)dx

_y? (x=y)?

© 1
=[ —e"z2e 2 dx
-2

1
fz(x)—ﬁe 2

We know that
fxy) f(xy)
fOl) =222 & fxly) = £22
N —2x2y+2y>
fylx) == =
1 4
ﬁe
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FOlx) == e 03)

Flaly) =222

(x=y)?

flxly) = =e”

my(x) = [° y L% qy = [ 3 f(ylx0)dy

f1(x)
x2
—f_ooy\/_ —(y—;) dy
x2
= L(7 ye D) ay t=y—3
==/ (t+3) e at dt = dy
1 e t? —t2 — x
). dt+\/_2 dt y=t+3
1 X (o
=O+ﬁ25f0 dt
1 4
= —X.—
T 2

0 1 (x=)? p
_OOXEQ 2 X
1 oo (x=3)?
= \/T_ch—oo xe 2z dx
1 2
:\/T_nfoo(t-l_y)e 2 dt

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli 124



s my(x) = g &my(y) =y

The regression curves are straight lines.

Example 4.

The random variable (X,Y) can take on the pairs of values (xy, y;)(k,[ =

1,2,3,4,5), where x; =1,x, =2,x3 =3,x, =4,xs =5y, =1y, =2,y; =

3,vs = 4,y: = 5. The probabilities Py; for the particular pairs (x,y;) are given

in below table.

Probabilities Py;
Xk Marginal
distribution
Vi of the
random
variable Y
1 1/12 1/24 0 1/24 1/30 1/5
2 1/24 1/24 1/24 1/24 1/30 1/5
3 1/12 1/24 1/24 0 1/30 1/5
4 1/12 0 1/24 1/24 1/30 1/5
5 1/24 1/24 1/24 1/24 1/30 1/5
Marginal 1/3 1/6 1/6 1/6 1/6 1
distribution
of the
random
variable Y

Conditional distribution of Y under the condition X = x;, where k = 1,2,3,4,5 are

the given in the below table.
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Xx X
y |1 2 [3 T[4 |5 y |1 2 3 [4 s
1 %W | % | 0 | % |1/5]1 5 |5 0[5 |1/6
/12 | /24 /24

2 1/8| v | | w [1/5]2 |5 |5 |5 |5 |1/6
/24 | /24 | /24 | /24

3 % | % | % | o0 |1/5]3 |5 |5 |5 0 |1/6
/12 | /24 | /24

4 % | 0| %| %|15]4 |5 0[5 |5 |1/6
/12 /24 | /24

5 1/8| % | % | % |1/5|/5 |5 |5 [5 |5 [2/6
/24 | J24 | [24 | /24

Total | 1 1 1 1 1

Find the conditional expected value of one random variable under the condition

that the second take on a given condition.
ie, FiIndE(Y|X =x,) k=12,....,5
EX|Y=y)1l=12,....,5

(or)
Find the regression curve of Y on X and the regression curve of X on Y
ﬂﬂx=1)=i1+§2+i3+i4+§5
= zg
E(Y|X =2) =22

E(Y|X=3) = 3%

E(Y|X=4)=3
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E(Y|X=5)=3

Similarly,

EX|)Y=2)==1+=>.2+>.34+>.4+~.1
24 24 24 24 6

ﬂmy=n=z§

E(X|Y =3) =2~

24
17
E(X|Y =4) = Z'Z
11
E(X|Y =5) = 2.5

1. Consists of the points with coordinates x = x;,,y = E(Y|X = x) (k =
1,2,...,5)

The points of (1) from the regression curve of Y on X

2. Consists of the points with coordinates y =y;, x = EX|Y =y;) (I =
12,..,5)

The points of (2) from the regression curve of X on Y.

Remark.

1. The regression curve of the random variable Y on the random variable X
satisfies the relation E{[Y — m,(X)]?} = minimum
I.e., the mean quadratic deviation of Y form a function
u(X) gets its minimum when u(X) gets its minimum when u(X) equals
m, (X) with probability 1.
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2. Suppose (X,Y) is a two-dimensional random variable of the cts type with
density f(x,y)
E{[Y —u()]% = [ iGIY —u()]? f(ylx)dy} dx - (1)
R.H.S of (1) takes its minimal value when u(x) = m,(x).

3. Let f(xqy, %2, .o ,X,) be the density function of the random variable
(X1, X5, eon o , X,,). Suppose that the conditional moment for [ = 1 exist.

 f O, X0, e, X))
1
g (X2, X3, e X))

E(X{lXZ = xz,X3 = X3, Xm = xm) = J X dx1

(0]
J_ o xa f (g, %, e, ) dxy

f_oooof(xl,XZ, - .,xn)dxl

ml(xZ, s .,xn) =

Definition.

The set of points of the n-dimensional space (x,X5, .....,X,) with the

coordinates
X1 =m1(x2,X3, .....,xn), X2, X3, een wus Xn

1s called the regression surface of the 1*' type of the random variable X, on the

random variables X,, X3, ... ... X

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli

128



UNIT - 111

CHARACTEREISTICS FUNCTIONS

3.1. Properties of characteristics functions.
Let X be a random variable and let F(x) be its distributive function.
Definition. The function

o(t) = E(e™™¥)

Where t is a real numbers and i is the imaginary unit is called the characteristics function of a

random variable X or of the distribution function F(x).

Definition. If X is of random variable of the discrete type with jump points x; (k = 1,2, ...)

and P(X = x;) = py, the characteristic function of X has the form

d(t) = E(elt¥) = Z peeit (1)
k

Since |eit"k| =1 and Y, p;, = 1, the series on the right hand side of (1) is absolutely and
uniform convergent. Thus, the characteristics function ¢(t), as the sum of uniformly

convergent series of continuous function, is continuous for every real value of t.
Thus ¢(t) is continuous for every t.

Problem 1. The random variable X can take on the value x; = —1 and x, =1 with
probabilities P(X = —1) = P(X = +1) = 0.5. Find the characteristic function of this random

variable.

Solution.

(1) = Ty e’

=P(X = —1De'™1 + P(X = 1)e't™2

=0.5e7% +0.5¢%

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli

129



= 0.5[cost —sint + cost + sint |
= 0.5(2cost)
= cost

i.e.,¢(t) =cost.

Definition. If X is a random variable of the continuous type with density function f(x), its

characteristic function is given by

$(t) = E(ei™¥) = f Feitdx ... (1)

Since [ f(0)|el™*| dx = [*_ f(x)dx = 1.
= the integral in equation (1) is absolutely and uniformly convergent.
Hence ¢(t) is a continuous function for every t.
Problem 2. The density function f (x) defined as
0 if x<0
fx) =41 if0<x<1
0 ifx>1
This distribution function is called uniform or rectangular. Find its characteristic function.

Solution.
o) = [° f(x)ei*dx

1 .
= [, e¥dx
eltx 1
- ( it )0
it
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Properties of characteristic functions

1) $(0) = 1.

For,
¢(t) — E(eitx)
$(0) =EE°)=E1)=1.

2) I < 1.
For,
(0] = |E(e™) |
= | pre™™|
< i Dic|e |
= E([e’x])
=E(1)
=1
o) < 1.
3) ¢(—1) = p(O.
Proof.
LHS:

d(—t) = E(etX)

=E(costX —isint X)

= E(cost X) —i E(sintX) .....(1)
RHS:

(1) = E(e'X)

=E(costX +i1sintX)

=E(cost X) +1E(sintX) ..... (2)

Using (1) and (2),

$(-t) = $(©)

Where ¢(t) denotes the complex number conjugate to ¢ (t).
Remark:

Every characteristic function satisfies the properties of the characteristic functions. But

converse need not be true.
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i.e., every function ¢(t) satisfying a properties is need not be a characteristic function of some

random variable.

Theorem 3.1. Let the function ¢(t) defined for —co < t < oo such that ¢(0) = 1. The

function ¢ (t) is the characteristic function of some distribution function iff

(i) ¢ (t) is continuous.

(i) Forn = 1,2, ...and every real t,, t,, ...., t, and complex a4, a,, ..., a, such that

o1 (i — ) @ @ = 0
Proof.
Let $(0) = 1 and |[ei®*k | =1 and T} py = 1.
=~ ¢(t) is continuous.
Forn = 1,2, ...and every real t4, t,, ...., t,, and complex a4, a,, ..., a,.
Then, 2% =1 $(t; — te)a; @ = 0.
= ¢@(t) is defined for —oo < t < o and ¢(0) = 1.
-~ ¢ 1is a characteristic function.

Hence proved.

3.2. Characteristic Function and Moments

D0

it

Theorem 3.2. If the [** moment m; of a random variable exists, it is expressed as m; =

where ¢)l(0) is the [t"derivative of the characteristic function of this random variable at t = 0.
Proof.
Consider the random variable X and suppose that its [** moment m; = E(X*) exists.

Suppose X is the random variable of the discrete type with jump points x;,.

The characteristic function of X is ¢ (t) = X, pre’™ ....(1)
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Differentiate (1) with respect to ‘t’ for [ times we get,
@' (t) = 2, pre™x(it)

@' (t) = T, prett¥(it)?

¢! (t) = Ty pre' ™ (it) .

2ot = E(i'Xe™™ ) ... (2) (+ E(g(0) = 2 prg (1))
Since m; = E(X?) is exists.

| peitxie™Xk| = Zi|ppxi| < oo

~ RHS of (2) exists.

~ @p(t) is exists.

Suppose f(x) is the density function of the random variable X of the continuous type.

Differentiate (3) ‘I’ times with respect to t we get,

dL(t) =f fOitcte™dx

— E(ilxleitX)
Since [_|itx'f (e |dx = [ |x'f (x) |dx = B,
By assumption, the absolute moment S is finite, ¢; is exists.
d)(l)(t) — E(ilxleitX)
Putt =0,
$'(0) = E(i'x'e®) = EG'XY = i'E(XYitm,

»®(0)

il

1 =

Hence Proved.
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Example 1. Suppose that the random variable X has a Poisson distribution. i.e., it can taken
on the values x;, = k;, where k is any non-negative integer, and the probability function is

given by the formula

k

A
PX =k) = Fe—%

where A is the positive constant. Find the characteristic function of X and moments.

Solution.
(6) = Zyprett

e AKT
:ZIio:O [eltk Zle A

1

ap () =ere-1)

ok
_2 (Ae‘t )
e "Irso I "

— e Aphpit

¢' () = e~*ete” (ielt)

S p'(t) = dieiteA(e-1)

P (t) = Aieit (e 1) 4 pjeit (Aieitel(eit"l) )
= —Aeite}‘(eit‘l)(leit +1)

O]
We know that , m; = ¢ (DEO)

. _9'©
A RNGY

_ Aie%e?-D
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_ _1e0eM1-1)(Ae0+1)

-1

_ —A(A+1)
)

i.e.,my=1A1+1)
Central moment p; = 0.
The central moment of the second order is

ol=u=my—-mi=1A+1)?2-2 =2+21-22=1

Example 2. Find the characteristic function and moment of the normal distribution.

Solution.

xZ
Let X be the normal distribution and the density function be f(x) = \/%_n e z.

() = [ el f(x)dx

oo 1 x?
itx =
= e —e 2dx
f—oo Nz

2
1 [o'e] P X
= \/T_nf_ooe“xe 2 dx
(x—it)? t2
1 o 2
= \/T_nf_ooe 2 e 2dx
t2 (x—it)?
_ 1 (o] Sl
=e 2 (ﬁf_me 2 dx)
t2
Pp(t) =e2
e
¢'® = —te2

0
We know that m; = 2 (i)go)
_¢'©@ _
™ ="t =
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_ 9" _e%0-1) _ -1 _
M2 ="0z =~ _—1_1

Clearly all odd order moments are zero and that the even order moments are expressed by the

formula
my = 1.35...(21—1)
Characteristic function of linear transformation

1. If the random variable is translated by a constant n, then characteristic function is
multiplied factor e%?. Let Y = X + b, where X is random variable and characteristic
function is ¢ (t).

Let ¢, (t) be the characteristic function of Y.
¢1(t) = E(e™ )
— E(eit(x+b))
= E(eit¥eith)
— eith(eitX)
= 1 (t) = e p(0).
2. The characteristic function of a random variable aX equals the characteristic function

of the random variable X at the point at.
Let Y = aX, where X is a random variable and the characteristic function is ¢ (t).
$1(t) = E(e’™) = E(e't*X) = ¢(at)
= () = ¢p(at)
In particular, if a = —1, we obtain
P, (t) = p(—t) = ¢(t)
N AGEXI0]
3. Find the characteristic function of the random variable X and Y by ¢(t) and ¢, (¢t)
respectively, we obtain
$1(t) = E(eit7) = E(elt(@X+D) = [(itXeith) = ¢itbp(qat)
= ¢1(6) = e p(at)

Note:

X—m1

Suppose Y =

Where m,; and ¢ denote the expected value and standard deviation of X.
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-my

1
Here,a ==,b =
o o

1) = e'Pp(at)

itmq

=e 7 ¢()

3.3.Semi-Invariants

Definition. Let 1(t) = log ¢ (t), where ¢(t) is the characteristic function of the random

variable under consideration.

Let us expand the function ¢ (t) in a power series function in a neighbourhood of t = 0,
m
p(t) =1+, S—f(it)s ...... (1)
Let z denote the series of RHS of (1),

Y(t) =logp(t) = log(1l + 2)
Let us expand the function ¥ (t) into a power series,

2 3

z z° z
¢(t)=1—7+?—“'

ks .
= 2?;1 ; (it)s
ks .
log p(t) =22, E(lt)s ...... (2)
From (1) and (2),

o) kS i+)S
1432, 22 (i) = e[z 53]
S

ke 1 ks 1 1[ee ks, 1
() =1+22, S—?(lt)s + 5[2_2‘;1 S—T(lt)s] +§[ZS=1 S—?(zt)s] +
(%)
Definition. Let 1(t) = 1 + 22, “2(it)° ... .. (1)

The coefficient kg in (1) are called semi-invariants.
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Result. Derive the semi-invariants in terms of the moments (or) the moments in terms of the

semi-invariants.

Proof.

We know that, ¢(t) = 1+ 22, %(it)s ...... (1)

, ke 1 ke 17 1 ke 1
e, §(0) = 1432, )’ +Z[25°=1 S—j(w)s] +§[z;°;1 ﬁ(‘t)s] +(2)

Compare the (it)* for particular values of s in equation (2) we obtain,

kl ES m1 \
k, = m, + m? = g2
k3 =ms — 3m1m2 + Zmi’ """ (3)

k, = my —3m3 — 4m;m3 + 12m?m, — 6m‘1*)

and

m1 = k1
mz = k2 + k%
ms = k3 + 3k1k2 + Zk]?_’ """ (4)

The semi-invariants can also be in terms of the central moments.

ki =my
ky =l = o?
ks =
ks = pha — 303

Note.

1. From (3) and (4), if the moments of the [ order exists, all the semi-invariants of order

not greater than [ also exist.
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2. Let Y=X+b. Let ¢(t) and ¢,(t) be the characteristic function of the random
variables X and Y respectively, we have

log ¢,(t) = bit + log ¢ (t)
Thus the translation changes only the coefficient of the terms with it to the first power

in the expansion (*).Hence it changes only the semi-invariant of the first order.
Example 1. Compute the semi-invariants of the Poisson distribution and moments.
Solution.
The characteristic function of the Poisson distribution is

Aeit-1)

) =e
Y(t) = log¢p(t)
Aeit-1)

= loge

=A(eft—1)

=/1(z,‘;°=0%—1)

=a(1+3, “I?k— 1)

. o (i)k
i.e.,yp(t) = AZ,(ZIOT

We know that ¢ (t) = ;‘;1%(&)5
fke=Ak=12.) ...()

Using the formulas for the relations between semi-invariants and moments we can obtain from

formula (1) the moments of arbitrary order of the Poisson distribution are:
my = k1 = A
my=k,+k?=21+22=2(1+2)

m3=k3+3k1k2+ki’=l+312+13
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3.4. The Characteristic function of the sum of independent random
variables

Let X and Y be two independent random variable. We have e‘*X and e%" are independent.

Theorem 3.4. The characteristic function of the sum of an arbitrary finite number of

independent random variables equals the product of their characteristic functions.
Proof.
We shall find the characteristic function of the sum Z = X + Y.

Let ¢(t), p,(t) and ¢, (t) be denote the characteristic function of the random variables Z, X
and Y. We have,

qb(t) — E(eitz) — E(eit(X+Y)) — E(eitX_eitY)
= E(eitX)-E(eitY) = 1 ()P, (1)

Corollary. The characteristic function of the sum of n independent random variables equals

the product of their characteristic functions.

Proof.

We prove the result the induction on number of random variables.
Letn =2

Let X; and X, be the two independent random variables, then by the above the theorem we

have

d(t) = d1 ()1 (t)

Assume that X;,X,, ..., X,_; are the independent random variables for which characteristic

functions ¢, (t), ¢, (t), ..., Pp_1(L).
LetZ = X; + X, + -+ + X,,_1 and ¢(t) be the characteristic function of Z.

Assume that ¢(t) = ¢p1(t)p,(t) ... P, (t)

Let Z=X;+X,+--+X, and ¢(t), p,(t), p,(t), ..., p—1(t) denote the characteristic
function of Z, X4, X5, ..., X,.
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b(t) = E(elt?) = E(eit0a+kat +X)) = f(eith oithe _ oitkn)

e, () = ¢d1(t) + () + - P (2).

Example 1. Suppose two independent random variables X;and X, have Poisson distribution
P(X,=r1)= %e"ll,P(X2 =r)= %e‘lz (r =0,1,2,...). Consider the random variable Z =

X1 — X,.Determine the characteristic function and semi-invariants of Z.
Solution.
Let X;and X, be the two independent random variables having Poisson distribution.

The characteristic function of X;and X, are

¢,(t) = et(e"=1) and P, (t) = eha(e-1)

The characteristic function of —X, is

Br(—t) = eale™=D)
Since X; and —X, are independent, we obtain the characteristic function of Z

d(t) = Pp1() P (=)

— pM(e=1) 25 (e7H~1)

— e)ll(eit—l)+)lz(e‘it—1)

3 8/11(1 UGN (lt) 1)+/12( _a, (i)? _“_1)

11 2! 1! 21

_J (4 402, -) +Az(—(i—f)+@—-~-)

o - ,12)(“)+(,11+,12)(“) +(Ay— ,12)(“)

. 473
o B(6) = oWt 1 G -2

2 3
Y(t) =logp(t) = (A; — Az)( ) + 4+ ) —— G t) + (4 - /12)( )
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All the semi-invariants of odd order of Z equal A; — 4, and all the semi-invariants of even

order equal A; + 24,
ie., ki =4 — A ks =24, — 1y, ...
The expected value and the variance of Z are
my=ki =21, —25,02 =k, =1 + 1,
Note. The converse of the above theorem is not true.

i.e., the characteristic function of the sum of dependent random variables may equal the product

of their characteristic functions.

3.5.Determination of the distribution function by the characteristic
function

Theorem 3.5.

Let F(x) and ¢(t) denote respectively the distribution function and the characteristic
function of the random variable X. If a + h and a — h(h > 0) are continuity points of the

distribution function F(x) ,

sin ht

Fla+h)~F(a—h) = lim f et (£)dt .

Proof.

Let X be a random variable of the continuous type with the density function f(x)
Let) == [1 e g (t)de ... .. (1)
From the definition of the characteristic function we obtain

] = %f_i%e“‘m[fj;o e f (x)dx|dt

=2 [T [T R pmitapitep () x| at

=2 (1|10 R it £ ()| dt

s co t
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We notice that we can interchange the order of integration since the limits of integration with

respect to t are finite and the integral is absolutely convergent with respect to x. Thus
[

We obtain

sin ht sin ht

t

eit(x—a)

fx)dx = f

| F)dx < h f FO)dx =

=1y [T, SR gitCa £ (x)dt| dx

T sinht

= %ffooo [f_ {cos(x —a)t +isin(x —a )t}f(x)dt]

— %f_oooo [fOT Sintht cos(x — a)tf(x)dt] dx

By the formula

sinA cos B = =[sin(4 + B) + sin(4 — B)]

N =

And the substitution 4 = ht, B = xt — at, we obtain

o [1 (T sin(x—a+h)t 1T( h)t
]=f_oo|:;f0 smxta dt — fsmxa ]f(x)dx

nO

=7 g, Tf(x) dx ... (2)

J-T sin(x—a+h)t

1 fT sin(x—a—h)t
t

dt —=

w0 t

Where g(x,T) = dt

It is know from mathematical analysis that the integral [ OT (sin g) dx is bounded for all T > 0

and converges to g as T — +oo. It follows that the expression |g(x,T)|is bounded and

% fora >0

T
lim —f sinat g¢ = 1
T—+oo T t —=fora<0
2

Here the convergence is uniform with respect to a where |a| = |[x —a+ h| > § > 0.

From this fact we obtain
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(0 forx <a—h,
%forxza—h,
Tl_i)rpoog(x,T) =3 11f0ra—h<x<a+h,
5forx=a+h,
\0 forx >a+h

Taking limit on both sides of (2) we obtain
Tlingoj = f_oooo Tlinolog(x, T)f(x) dx

= [ f(0)dx
=F(a+h)—F(a—h)....(4)

From (1) and (4),

Fla+h)—F(a—h) = Tli_l)rrc}o% [ e p(tadt.

Hence proved.

Remark. If the characteristic function ¢(t) is absolutely over the interval (—co, o), then the
corresponding density function f(x) can be determined by ¢ (t). In fact, from the absolutely

inerrability of the function ¢(t) it follows that the improper integral in Theorem 3.5.1 exists.

Dividing both sides of equation in Theorem 3.5.1 by 2h, we have

F(x+h)—F(x—h)_ 1 (®

_ —itx
h = o _we p(t)dt.

Since the RHS of this equation I a continuous function of x, we obtain
Fi) = f(x) = — f " et ()dt
2w )_,

From the absolute and uniform convergence of the last integral it follows that the density F'(x)

exists and is ¢ continuous function.

Example 1. The characteristic function of the random variable X is given by the formula
t.Z
¢(t) = e z. Find the density function of this random variable.
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Solution.

We have f(x) = if_oooo e P (t)dt

2
1 ,0 _t
=— [ e eT2dt
2wV —®©

1 ~o0 _(t+ix)?  (ix)?
=— e 2z e 2 dt

_(t+ix)?

=—e2 — [ e 2 dt

e, f(x) =\/%_ne 2.

Example. The joint distribution of the random variable (X, Y)is given by the density function

flx,y) = {
Solution.
fi0) = [, G y) dy

= [ (1 +xy(x? — y?) dy

1

= i :()’)11 + (%yz)il + (’%’4);]

o+ (2 2

:1)(22l

4 2
. 1
l.e.,fl(x)zz

f(0) = [, fGey) dy

[ ~1 1 1
=2{1% dy + [T, xPydy + [ xy3dy]

i(l +xy(x? —y?) for |x| <1 for|x| < 1land |y| < 1
0 for all other points
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= f_lli (1+x3y +xy?)dx

1
1 x* x?
=—[x+—y+—y]
4 4 2 14

Discrete Type.

If the random variable X is of the discrete type, then its probability function obtained

from the characteristic function p;, = i f_nn e "t p(t)dt.

Example. Find the density function of the random variable whose characteristic function is

_(1=1tl forltI<1
$:1(6) = { 0 forlt]>1

Solution.
fG) =[5 e g (t)dt
= [l e (1 - |edt

= [f_ol e (1 + t)dt + f e7*(1 - t)dt] ...... )
Now,

e—th
X

—i -1 —ix

0 —itx
[fea+ode = [+ ] - [0 St

_itx O
=[F+ol+ (),
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fy e @ —tyde = [(

= [ a-0]- 5 (5,

1 1 —i
=LtarE™ -1 ...

Substitute equations (2) and (3) in equation (1),
f(x) = i [_i - (Lx)2 (1 - elx) + + (lx)2 ( - 1)]
~[50-e) -5 )

= [1—e™* —e * +1]

2mx2

[2 — (e + e“x)]

21Tx2

_ L[1 B (eix_l_ze—ix)]

1
= —[1—cosx]

aflx) = [1 — cos x]

3.6. Characteristic function of multi-dimensional random vectors

Let (X,Y) be a two-dimensional random vectors and let F(x,y) be its distribution function.
Let t and a be two arbitrary real numbers. The characteristics function of the random variable

(X,Y) or of the distribution function F(x, y) is defined by the formula ¢ (t,u) = E [e’ (tX+uY) ]

Example 1. The two-dimensional random variable can take on four pairs of values:

(1,1),(1,-1),(—=1,1) and (—1,—1) with the probabilities
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1 1
PX=1Y=1)=2PE=1Y=-1)=3

1 1
PX=-1Y=1)=-PX=-1Y=-1)=c

Find the characteristic function.

Solution.

Clearly X and Y are independent.

The characteristic function of the random variable (X,Y) is

Cb(t, u) — E[ei(tx+uy)]
= ellt+w) p 4 pilt-w), Pi-1y + ei(_t+”).P(_1)1 + ei(_t_”).P(_l)(_l)
— ei(t+u)_§+ ei(t—u)% + ei(—t+u)_%+ ei(—t—u)_l

1 . 1 . 1 _: . 1 _: .
=§eltelu_|_§elte lu+ge ltelu_l_ge Lte wu

zéeit(eiu_i_e—iu)+%e—it(eiu+e—iu)
_ (eiu n e—iu) eeit +%e—it)

Zeit+e_it)

= (cosu + isinu + cosu — isinu) ( .

1 .. ..
=X 2 cosu (2 cost + 2isint + cost — isint)

¢(t) = icos u(3cost t) + isint .

Properties of characteristic functions of multi-dimensional random variables:

1. ¢(0,0) = E(eieX+0")) = 1,
2 |¢(t, u)| — |E(ei(tX+tY))| < E(|ei(tx+uy)|) =1

~letw] <1
3. ¢p(—t,—u) = ¢p(t,u).
For,
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Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli



(],')(—t, _u) — E(e—i(tX+uY)) — ¢(t, u)

Note. If all the moments of order k of a multi-dimensional random variable, then the

k
9 (p(tw)) for

Srk—ig] 1=0,1,2,...,k exist and can be obtained from the formula

derivatives

W) _ iE(xklyleix+un) (1)

atk—1gu!

Remark. The moment m;_;; is obtained from the formula my_;; = E(X*'Y)) =

1 ak(«p(t,u))]
ikl atk-1oul t=0,u=0'

For the moments of the first and second order we obtain the expressions

1[ap(tw) 1[o¢(tu)
m10=—,[¢ ] ,m01=—,[¢

i ot  lt=o,u=0 i ou  le=ou=0

1 [3%¢(tu) 1 [9%¢(tu) 1 [8%2¢(tuw)
m20=3[ ¢2 ,m11=3—¢ »mozzi[ ¢2

i ot t=0,u=0 i otou lg=ou=0 i ou t=0,u=0

We obtain the characteristic functions of the marginal distributions of the random variables X

and Y from the formula ¢ (t,u) = E[e/®**¥) | by putting t = 0 or u = 0 respectively. Thus
@(t,0) = E(e™) = ¢,(t)
d(0,w) = E(e'®') = ¢, ()

i.e., the marginal distribution of X is ¢, (t) and the marginal distribution of Y is ¢, (u).

Theorem 3.6. Let ¢p(t) be the characteristic function of the random variable (X,Y). If the

rectangle (a —h <X <a+h,b—g <Y < b + g) is continuity rectangle, then

(a—h<PX<a+hb—g<Y<b+yg)

1 (T (7 sin htsinsu .
= lim — f f e~Hat+bw) ¢ ) dtdu .... (1)
T=—0m* J_ o J)_r L u

Thus, if we know ¢ (¢, u), (1) allows us to determine the probability P(x; S X < x,,y <Y <

y,) for an arbitrary continuity rectangle.
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Theorem 3.7. Let F(x,y), F,(x), F,(y),¢(t,u),p,(t) and ¢,(u) denote the distribution
functions and the characteristic function of the random variable (X,Y), X and Y respectively.
The random variable X and Y are independent iff the equation ¢ (t,u) = ¢, (t)¢p,(u) holds

for all real # and u.
Proof.
Suppose that X and Y are independent.
From the theorem , for any real t and u,
¢( t,u) = E(ei(tX+uY))
= E(e!tX oY)
= E(e!™)E(e™)
= 1 ()P (W) .
Conversely, Suppose ¢(t,u) = ¢,(t)P,(w)
If the rectangle (a —h < X <a+ h,b — g <Y < b + g) is a continuity rectangle, then

Pla—h<X<a+hb—-g<Y<b+yg)

. T T sinht si —i
= Jim o o [ PR e 0w dedu

= (fim 5 5 o7 9 (de) + (Jim 5 [ 57 o7 gy @)
=[Fla+h) —Fla—-mW][Fb+g)-Fb-g)]l

We know that, for every arbitrary points a; and a, we have,

Fi(x;) = F(x1) = P(x; £ X < x3)

Pty <X <%,y <Y <y,) =Px; X< x,)P(y; <Y < y,) ....2)
Which is valid for arbitrary continuity rectangle.

From (2) we get,

F(x,y) = Fi(x)F,(Y)

~ X and 'Y are independent.
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Theorem 3.8. (Cramer-Wold Theorem)

The distribution function F(x,y) of a two two-dimensional random variable (X,Y) is
uniquely determined by the class of all one-dimensional distribution function of tX + uY where

¢t and u run over all possible real value.
Proof.
Let Z = tX + uY for all real ¢ and w.
Let ¢, (v) be the characteristic function of Z.
¢Z (v) — E(eiv(tX+uY) )
— E(ei(th+vuY) )
Put v = 1in (1), then
¢,(1) = E(e' ) = ¢(t,u)
. ¢,(1) is the characteristic function of the distribution function F(x,y).
According to the theorem 3.6.1, the function ¢ (t, u) is uniquely determines F (x, y).
Hence the theorem is proved.
Note. Let us write

P(tX+uY <z)=PXcosa+Ysina <w)

Where
t ) u z 0 < a<21)
cos¢ = ——,sina = ————, wW=—— <a<2m
Vit? +u? Vit2 + u? Vit + u?

The Cramer-Wold theorem can now be formulated in the following way:

The distribution function F(x,y) is uniquely determined by the distribution functions of the

projections of (X,Y) on all straight lines passing through the origin.

3.7.Probabillity Generating functions
Let X be a random variable and let p, = P(X = k)(k = 0,1, ...), where £, p, = 1.
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Definition.
The function defined by the formula
Y(S) = X prs® . where—1<s<1.... (1)
is called the probability generality function of X.

Clearly, (1) = Xppi = 1

Hence, the series of RHS of (1) is absolutely and uniformly convergent in the

interval |s| < 1.

=~ The generating function is continuous.

Example 1.

The random variable X has a binomial distribution

n -
P = (1) P = p)"*, (k = 01,2, ..n).
Find the probability generality function.

Solution.

W(s) = Xk prs”
= Tioo (1) PHC = )" 8K = B (3 pHC - )

Y(s) = (ps + ™

Example 2.

The random variable X has a Poisson distribution. Find the ¥ (s) or the

generating function.
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Solution.

_A Ak

We know that, p;, = e o

(k=0,12,..)

P(s) =2y Pksk

lk
=32, e "%
k
_ g0 - (1s)
fe=0 k!
As)k
= _Azlio:o( )
k!

P(S) = e7079),

Moments of the random variable X determined by generating function

The moments of the random variable X can be determined by the

derivatives at the point 1 of the generating function.
Moments of first order and second order are

P'(S) = ZikpS*

P (S) = Zik(k — Dp,S<2

my =Y'(1) = Zxkpy = E(X)

my =" (1) = Lk(k — Dpe = EX?) — E(X)

EX?) =¢"(1) +¢'(D.
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UNIT -1V

SOME PROBABILITY DISTRIBUTION

4.1.0ne-Point and Two-Point Distributions

Definition.

The random variable X has a one-point distribution if there exists a point

Xo such that

(1) gives us the probability function.
The distribution function of this probability distribution is given by the formula

0 forx<x,
1 forx>x,

Fx) = {

The characteristic function of one-point distribution is obtained from the formula
(D(t) = eltXo
Theorem 4.1.

The random variable X has a one-point distribution iff the variance of a

random variable X equals zero.

Proof.

Let X be a random variable and has a one-point distribution.
ie,PX=x,) =1

The characteristic function is @(t) = e't¥o,
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0'(t) = e™o(ixy); 0" (t) = e't¥o(ix,y)?

9'(0) = ixg ; 07(0) = (ixo)?

_ixg (ixg)? 2
1= X0 2 2 X0

. 2

mi = Xp y My = Xp

D!X)=my,—-m?2=x3—x2=0

c=D*X)=0

Conversely, let the variance of a random variable X equals zero

ie,D?(X) =0

ie, E(( X —EMX)]*») =0 - (1)

Since expression (X —EX ))2 1s non-negative, equation (1) is satisfied only if
PIX—-EX)=0]=1
> PX=EX)]=1

i.e., P[X = xq] = 1 where x, = E(X)

~ X has a one-point distribution.

Definition.

The random variable X has a two-point distribution if there exist two

values x; and x, such that

PX=x)=pPX=x,)=1-p,(0<p<1) ... (1)
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Put x; = 1 and x, = 0 in (1), then we have,
PX=1)=p;, PX=0)=1—-p,(0<p<1)

This distribution is called the zero-one distribution.

The characteristic function of zero-one distribution

Let X be the random variable and has a zero-one distribution. Find

characteristic function of X, central moments and y.
Proof.
Given X has a zero-one distribution
ie,PX=1)=p,PX=0)=1-p,(0<p<1)
The characteristic function @(t) = E (eitX )
= pe'™ + (1 —p)e'™ = pe' + (1 —p)
() =1+p(ett—1)

l
We know that m; = @

o) =1+p(e* —1)
Q' (t) = ipe®t

B"(t) = (1)?pe'

=~ (b)) = i'pe™
8'(0) = i'p

m =p vk

Variance, D*(X) =m, —m? =p —p? =p(1 —p)
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D*(X) =p(1-p).
Since 3 = ms — 3mym, + 2m3
=p—3p*+3p’
=p(1-p)A-2p)

Then we obtain,

_ u3 _ p(1-p)(1-2p)
Yy = M;/z - p3/2(1-p)3/2

If p = 0.5, then ¥y = 0 since here X has a symmetric distribution.

4.2. The Bernoulli Scheme. The Binomial Distribution.

Relation between zero-one distribution and binomial distribution (or)

Bernoulli scheme.
Consider n random experiments.

Let the event A be success with probability (or) failure with probability
q=1-p
The results of the ‘n’ experiments are independent.

From the ‘n’ random experiments, event A may occurs ‘k’ times

Let the number of occurrence of 4 is a random variable X that can take on
the values kK =0,1,.....,n, where the equality x = k means that in ‘n’

experiments the event A has occurred ‘k’ times.

. X has the binomial probability function

P =1k) = (})p*—p
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The distribution function of binomial distribution is

F(x)=PX<x) = Z (Z) pk(1 — p)rk

k<x

Where the summation extends over all non-negative integers less than x.
Put n = 1. Then, event A occurs ‘k’ times where k = 0,1
“PX=1)=p,PX=0))=1—-p

=~ X has zero-one distribution.

Claim: For n = 2, the binomial distribution obtained from the zero-one

distribution.

Let X, (r = 1,2, .....,n) be independent random variable with the same zero-one

distribution.
The probability function of ever X, has the form
PX, =D =p,PX,=0)=1-p
LetX =X+ X, +- ...+ X,
The random variable X can take values k = 0,1, ....,n.

The event X = k occurs iff k of the n random variable X, take on the value one

and n — k of them take on the value zero.
. ny ..
For k, it may happen ( k) different ways.
By the independence of the random variable X,., we get

P& =1) = () p*@ —p)"~*

~ X has the binomial distribution.
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Theorem 4.2

Let X=X, +X, +--...+X, where each X; are zero-one distribution
with characteristic function @,(t), @,(t),

function of X, moment, central moment and y of X.

Proof.

Let @(t) be the characteristic function of X

Given X4, X5, ... ... , X, be the zero-one distribution.

The characteristic function

0;(t) = [1+p(e® —1)] wherei = 1ton.

LetX = X]_ +X2 + .- +Xn

(Z)(t) — E(eitX) — E(eit(X1+X2+~«...+Xn))

[By theorem: The characteristic function of the sum of an arbitrary finite number

of independent random variables equals the product of their characteristic

functions].
ie., @(t) = @,(t) ,(t) ... ... 0y (¢)
B(t) = [1 +p(e’t — 1)]n

ot(0)
M=o

o(t) = [1 + p(eit — 1)]n
@' (t) = n[l + p(eit — 1)]n_1(ip)

9'(0) = n[1+ p(0)]"~*(ip) = nip

_0'© _ npi _
Yot T i

,@,(t). Find the characteristic
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mqy =np

" (t) = n(n — D(p)2[1 +p(e’t — 1)]" " (eit)” + n(ip)iet[1 + p(e't —
1)]11—1

_0""(0) _ [np+n(n-1)p2](i)?
27 2 T ()2

=np +n(n — Dp?

p =0

U, = my, —mi = np +n(n — 1)p? —n’p?
— np + n2p? — np? — n2p>

u? =np(l-p)

Uz = ms — 3mym, + 2m3

pz =np(1 —p)(1 - 2p)

y = Bz _ np(1-p)(1-2p) _ np(1-p)(1-2p)
Mg/z [np(l—p)]3/2 n3/2 p%(l—p)3/2

3 3 3
=n'"2p" 2 (1 -p)'"2 (1 - 2p)

11 _1
=n 2p 2(1—p) 2(1—2p)

1-2p

~ Jnp(-p)

Theorem 4.3(Addition theorem for the Binomial distribution)

Let X and Y be two independent random variable with binomial

distribution. Let Z = X + Y. Find the characteristic function of Z.

Proof
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Let @(t),0,(t),?d,(t) be the characteristic function of Z,X and Y

respectively.
®1(t) = [1 + p(eit — 1)]111

0,(t) = [1+p(e’t —1)]™

[By theorem: The characteristic function of sum of an arbitrary finite number of
independent random variables equality to the product of their characteristic

function]

ie., () = 0,()D,(t)
= [1+p(e’t - 1)]n1. [1+p(e - 1)]n2
B(t) = [1+p(e - 1)

-~ Z has the binomial distribution with n = n; + n,.

Problem. Find the characteristic function moments and central moment of the
random variable Y = %, where X is the random variable and has the binomial

distribution.

Solution.
LetY = % where X is random variable and has the binomial distribution.

The random variable Y can take on the values

Since the probability that Y = % is equals to the probability that X = k

The probability function of Y is
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P (Y = S) =PX=k)= (Z) pk(1 —p)rk

The characteristic function ¢y (t) of a random variable Y is given by:

oy () = E[ei] = E[e'n].

Since X is binomially distributed, the characteristic function of X, denoted ¢y (t),
1s:

px(D) = E[e™] = (1~ p) + pe't)”

X ) : _y .
ForY = 7" , We substitute % into the characteristic function of X:

or(t) = E[e"] = gy ().

Thus, the characteristic function of Y is:

oy (8) = ((1 —p) +pei%> .

Moments of Y obtained as follows:

The moments of Y can be derived from its expected values. The k-th moment of

Y is E[Y*]. Using the fact that Y = %=n, we can express this as:

E[Y¥] = E[G)k] = L E[x¥].

n

We know the moments of a binomial random variable X, which are related to the

parameters n and p.

The first moment is:

The second moment is:
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E[X?] = np(1 —p) + (np)*.

For higher moments, we can use the binomial expansion and properties of
binomial random variables, but the key point is that E[Y*] will be the

corresponding binomial moments scaled by n™%.

In particular,

m; =D,
p  n-1
m, =2+ 2= p?,
n n

p , n-1 p(1-p)
fy =My —mf =—+—p*—p* = :

5.4. The Polya and Hyper geometric distribution.

Polya distribution.
Consider an urn with ‘b’ white and ‘c’ black balls. Let b + ¢ = N.

We draw one ball at random and before drawing the next ball we replace the one

we have drawn and add s balls of the same colour. Repeat the procedure ‘n’ times.

Let X be random variable which takes on the values k(k = 0,1, .....,n) ifas a

result of ‘n” drawings. We draw a white balls ‘k’ times.
We shall find the probability function of X.

The probability of the successive drawing of k white balls is

b(b+s)......[b+ (k—1)S]
N(N+S)......[N+ (k—1)S]

Similarly, The probability of drawing k white balls in turn and then n — k black
balls is
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b(b +s) ... [b+ (k—1)s]c(c +5s) ... [c+ (n—k —1)s]

NN +8) .....[N + (n — 1)S] (1)

The expression (1) is the probability of drawing k white and n — k black balls in
any order. The order of drawing affects only the order of the terms in the

numerator of (1).

Since k white and n — k black balls can be drawn in (Z) different ways, we have

~ P(X = ik)

_m b(b+s) ... [b+ (k — 1)s]c(c +s) ... ... [c+ (n—k —1)s]
B (k) N(N +5) ...... [N + (n — 1)s]

Definition.

The random variable X with the probability distribution

P(X _ k) _ (7]:) b(b+s).....[b+(k—1)s]c(c+S).....[c+(n—k—-1)s] (2)

has a Polya distribution.

Denote Np = b, Nq = ¢, Na = s, where p and q are probabilities of drawing a

white and a black ball respectively, on the 1 drawing.
Equation (2) =

P(X =k)

B (n)p(p+a) ...... [p+ (k—Dalq(q + a) ... ... [+ (n—k —1)a]
- \k 11+ a) ... [1+ (n— 1a]

Clearly, 7o P(X =K) =1

. N\ p(p+a)....[p+(k-Dalq(g+a).....[q+(n—k-1)a]
ie., 7’3=0(k) =1
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Find 1! and 2" moments of X.
=E(X)

k=0 kP(X = k)

Z” k(n)p(p+a) ...... [p+ (k — Dalq(q + a) ... ... [q+ (n—k—1)a]
k=0 \k 11+ a).... [1+ (- 1Da]

_z” n(n—1)! p(p+a) ... [p+ (k—Dalg(qg + a) ... ... g+ (n—k—-1)a]
C Lug—o k(k—1)!(n—k)! 1(1+a) ... [1+ (n—-1)a]
. n n— 1\ (p+a)...[p+k-Dalq(@+a).....[q+(n-k-1a]
= pn Xi=o (k — 1) (1+@)....[1+(n-1)a]
Putl=k-1
E(X)

1o 1\N@F ) . p+lalq(q+ @) .. [qg+ (n— 1= 2)a]
=my ("7

~EX) =pn
E(X2) =Y"_ K2P(X = k)

_Z" 2 nn—1)! p(p+a) ... [p+ (k—1Dalqlg+ a) ..... [+ (n—k—1)a]
C Lag=o k(k—D!(k—1)! 14+ a)....[1+0n-1Da]

=npzn k(n—l)(’p+a) ...... [p+ (k—Dalqlg + a) ......[g + (n — k — Da]
k=1 M=l 1+ a@)...[1+n-1a]

Putl=k-1

n-1 —1p+a).... [p + lalqg(q + @) ... ... l[q+ (n—1-2)a]
:npzl arn(*yh)

_ Zn—ll n—l) p+a).... [p + lalq(g + @) ... ... [q+ (n—1-2)a]
A 1+ a)....[1+ 7 —Da]

+z”1n_1 p+a).... [p + lalq(q + @) ... ... l[q+ (n—1-2)a]
1+ a).... [1+ (n—1a]

=np(A + B)

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli 165



. z”ln_l p+a)(P+2a).... [p + lalq ... ... [q+n—1-2]a
1+a).... [14+ (n—-1Da]

_Z”‘l I(n—1)(n-2) (p+a)p+2a).... (p+la)q.... [g+n—-1-2]a
S Lo l(I-D'(n—=1+ 1)! 1+ a)...[1+1n-1Da]

_(pta)n-1) ”‘1(n_2)(p+2a) ...... (p+la)q.... l[q+n—1-2]a
B 1+a -1 [14+(n—-1Da]

[“r=1l-1l=r+1-1l=—-r—1]

A= (P+a)(n— 1)2 (n - 2) (p+2a)....[p+(r+1Dalq.....[q+(n-r-3)al
1+a l—1 (1+2a)...[1+(n-1)a]

A= (p+a)(n—1)X

1+«

Clearly,

E(X?) = np [(p+a)(n—1)+1]_np[np—p+na—a+1+a]

1+« 1+a

np+na+1—p]
=n [—
p 1+«

sy = [

p =0
Uy = D*(X) = my —m;

np+q+na—-np(1+a)
1+a

np+q+na 2.2

1+a n'p —np[

= np [np+q+na—np—npa] = np [q+na(1—P)]

1+a 1+a
_ qg+naq
=n [ 1+« ]
1
D*(0) = mpq (7).
Remark.

In the Polya scheme ‘s’ may also be negative. Since inequalities
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b+(k—-1)S=1andc+(n—k—-1)S>1

must hold, k must then satisfy the double inequality.

max(O,n— 1+CS;1) <k< min(n,%+ 1).

Theorem 4.4

If for N =1,2,..... equality p = % = constant is satisfied and Allim a=0.

Then the probability fucniton of the random variable X with Polya distribution

tends to the probability function at the binomial distribution.
Proof.
Let N, b and c tends to infinity so that

b

pP=y =constant

Clearly, ¢ = 1 — p = constant
Suppose that, Al]im a=0
We know that Na = S

S ) . S . S
:a=;=>llma= lim==0= lim =

N—-oo N—ooo N N—-ooo N

= S is constant

lim P(X = k) = (n) pkgnFk

N->oo k

This is the probability distribution of binomial distribution.
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Hyper geometric distribution

Hyper geometric distribution is obtained from Polya distribution by putting

s=-1,s

P(X =k) = (n) b(b+s).....[b+(k—1)s]c(c+s).....[c+(n—k—1)s]

k

(i) (1)
o

P(X =k) =

This is the probability function of Hyper geometric distribution.

m; =EX) =np

1+na

We know that D?(X) = npq ——

Na=S >Na=1

1
S>a=—-—
N

11

D*(X) = npqg —&

Iy

N_
D?(X) = nqu—_rll.

4.5. The Poisson distribution

Definition.

A random variable X with probability function is
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T

A
PX=r)= — e tr=012,..

where A is a positive constant is called the Poisson distribution.

Derive characteristic function and moments and central moments of Poisson

distribution

The characteristic function @y (t) of a random variable X is defined as:

ox(t) = E[e¥].

For the Poisson distribution, we can calculate this as follows. Using the definition
of the expected value and the PMF of the Poisson distribution:

: S e L
<,0X(t) = E[eltX] — Z eltkp(X — k) — Z eltk :'

k=0 k=0

We can factor out e ~* since it does not depend on k:

N 4
; - (2e™)
ox(t) = E[e™] = e X3, Kl
The sum is now the Taylor series expansion of e*¢i¢:

P (t) = e tplte't — pA(e't-1)

Thus, the characteristic function of a Poisson random variable X with parameter

Ais:

px (1) = e,

B(t) = pAlett~1)

Then we obtain the moments as
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my =4 my=AA+1); u, =1

Theorem 4.5.

Let the random variable X;, have a binomial distribution defined by formula

PX,=r1)= Pr(1-p)~ T

r)'

Where r takes on the values 0,1,2, .....,n. If forn = 1,2, ..... the relation p = jl

holds, where A > 0 is a constant, then

r

A
lim P(X, =7r)=— e
n—co r!

Proof.
P(X,=1)= r)' (1—p)n
PutP =2
Pl =1 = s () (1-9)
_ n(n—l)...r..!.(n —r+1) :1: (1 B ;) (1 ~ %)—r
_ % (1 ~ %)n n(n—l)...r.:'.(n—r+1) - j&)r
P(A,=71) = ’1_' ( %)n 1(1_2_%()1;71)
o == g 1) (L°2)

~limPX, =71) = L e
n—-oo r!
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Since, 111_1)130 (1 — %)n =

~slimPX,=r)==—c¢e
n—oo r!

Hence the proof.

Remark.

In figure 1, there are two graphs, one of binomial distribution with n = 0.5

and p = 0.3,4 = 1.5 and one of the poisson distribution with same 4 = 1.5.In

figure 2 represents two such graphs forn = 10 and p = 0.15, then A = 1.5.

~ For larger values of n, the binomial and Poisson distribution will almost

coincide.

U px=r

03
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o
Slw @
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9 10
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Figure 2
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Addition theorem for independent random variable with Poisson

distribution

Let the independent random variable X; and X, have Poisson distribution.

Let X = X; + X,. Then X has a Poisson distribution.
Proof.

Let the independent random variable X; and X, have Poisson distribution.

P(Xl =T') =i_::e_l; P(XZ =T') =i_£e_)~,('r = 0,1’2, )

The characteristic function of X; and X, are
0, (6) = (1] and g, (1) = elt2(e-1)
LetX = X; + X,.
Let @(t) be the characteristic @ function of X.
Since X; and X, are independent random variable.
2 () = B, ()0, (t) = elta(e*-Dg[ra(e™-1)]
ie.,0(t) = eh+i(e-1)

which is a characteristic function of the random variable with Poisson

distribution having the expected value 4, + A4,.

Hence the proof.

4.6. The Uniform Distribution

Definition.
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The random variable X has a uniform or rectangular distribution if its

density function f(x) is given by the formula

Fx) = {ﬁ fora—h <x <a+h, whereaand h > 0 are constants.

0 otherwise

The distribution function F (x) of this random variable is given by the formula

0 for x <a—nh
1r* x—(a—nh)
F(x) = E.L_hdx_T fora—h<x<a+h
1 forx >a+h

The characteristic function of X is

o(t) = [eXdx

1 ~a+h itx g 1 (eitx)a+h 1 eit(a+h)_pit(a—h)
=— e'™dx = — ==

2h’a-h 2h\ it Jq—p 2h it
1 eltafelth_e=Uth] 1 ita[costh+isinth—costh+isinth]
"~ 2h it "~ 2n it

elta 2isinth

2h it
eltasinth
0(1) = =
Moment:
my = E(X%)
= [x* f(x)dx
= L[ kdy
2h’a—-h

1 (xK+1)a+h
1 (a+h)k+1—(a—h)K+1
2h k+1
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. i(a+h)2—(a—h)2
17 2p 2

__ 1 a’+h?+2ha—a’-h%+2ah
" 2h 2

_ 14ah_
T 2n 2

l.e.,my = a

1 (a+h)3—(a—h)3
27 on 3

_ é [a3 + h3 + 3a?" + 3ah? — (a® — h® — 3a®h + 3ah?)]
= L [a® + h* + 3ah + 3ah? — a* + h* + 3a2h — 3ah?]
_ 1 3 2 -1 2 2
= —[2h® + 6a?h] = — x 2h[h? + 3a?]
i.e, m, = %(hz +3a?)

py =0

U, =m, —m? =§(hz+3a2)—a2 =§h2

. 1,5
i.e., Uy =§h :

4.7. The Normal Distribution

Definition.

The random variable X has a normal distribution if its density function is

-(x-m)?

flx) = m/%ne 202 where o > 0.

174
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Problem 1.
1 —(x-m)?
. 2
Prove that f(x) = € %
characteristic function.
Proof.
1 —(x-m)?
—_ 2
f(X) o 0\/2718 29
0 1 0 ~(x-m)?
(x)dx = e 202 dx
=00 oV2mJ—w
Puty = X2
o
dx
dy = ?
1 o0 —(x—rzn)z 1 00 __2
0'\/21Tf°° e 2 dx_\/ﬁf—ooe
=1

2 [T fodx =1

Hence, f(x) is a density function.

Let the characteristic function of Y be @(t)

t2

o) =e 2

Then, the characteristic function of X is

. 1
0,(t) = elm—EO'th
Clearly,
m; =m;m, = c? +m?

Uy = 07

is a density function and derive
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where m is the expected value of X and o is the standard deviation.

Remark.

1.

The shape of the curve of the density of the normal distribution depends on
the parameter o; this curve is called normal curve. It is illustrated in figure,
representing three normal distributions with the same expected value m =
0 and different standard deviations: ¢ = 1,6 = 0.5 and ¢ = 0.25.

The normal distribution with expected value m and standard deviation o is
denoted by N(m, o).

By the symmetry of the normal curve with respect to the expected value m

all the central moments of odd order vanish
Hok+1 =0 VEk.

Uy = 1.3 ... ... 2k — 1)o?*  (we already proved)

2

P(X —m| > 2,) = T dy

2 [o'e] —
= oe

|X —m|

P(|X—m|>/10)=P< >/1>=P(|Y|>/1)

where Y = x-m
(o2
yZ
% dy

P(X>m+/10)=P(Y>/1)=\/%_nf;°e
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f(x)
16,

T

Figure 4.7.1

Problem 2.

The random variable X has the distribution N(1,2). Find the probability

that x 1s greater than 3 in absolute value.
Solution.

To find P(|x| > 3)

We have the random variable Y = X_Tm

Since X~N(1,2), the random variable becomes Y = %

Then

P(X|>3)=P(2Y + 1| > 3)
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3 1 3 1
=p(r<-3-3)+r(r>3-3)
e, P(1X|>3)=P(Y<-2)+P(Y>1) - (1)

By the definition of Y, we have

P(Y>1) = \/%L e 2dt=0.159 - (2) (fromnormal table)

P(Y <=2)=1-P(Y >2)

=1 —\/% fzooe_gdt
=1-0.977250 (from normal table)
= 0.02275

P(Y <2)=0.023 - (3)

From (2) & (3)

)= P(|X| > 3) = 0.023 + 0.159
P(lX| > 3) = 0.182.
Remark.

1. From the normal table for the above problem
P(|X —m| > 0o = 0.3173
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P(IX = m| > 20 = 0.0455
P(|X —m| > 30) = 0.0027

The normal distribution is highly concentration around its expected value. The
probability the value of X differs from the expected value by more than 30 is

smaller than 0.01.

This is called 3-sigma rule (or) three-sigma rule.

Theorem 4.7. (Addition theorem for normal distribution).

If X and Y are two independent random variables and

X~N(m, o) andY~N(m,,0,). Then Z = X 4+ Y also has a normal distribution.
Proof.
Given, X~N(m, g;) and Y~N(m, g,)
The characteristic function of X and Y are
0, (t) = emlit—%tzaf’ 0,(t) = emzit—§t20§
Let @(t) be the characteristic function of Z.Then
o(t) = 0,(t)D,(t) (+ X,&X, are independent)

. 1 2 2 . 1 2 2
— emllt St Gl.emzlt Stog

i.e.,0(t) = o (M1+my)it—t? (o7 +03)

This the characteristic function of the normal distribution N (m1 +

My, 02 + 022)
~ X~N (m1 + my, /o2 + 022)
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4.8. The Gamma Distribution

Gamma distribution defined for p > 0

I'(p) = fooo xP~le *dx ...(1)

(1) is uniformly converges with respect to p and I'(p) is continuous function.

Integrating (1) by parts, we obtain
Fp+1) = fooo xPe™ dx
= (—xPe™)§ + [, pe™*xP' dx
=0+pIp
F'(p+1) =plp ...(2)
If p = n, where n is an integer, we obtain from (2)
'n+1) =nl'n

TmM)=n-1DIr(n-1)

) = 1)
Since (1) = [, e ™ dx =—[e™*]7 =1
“Tm)=nn-1).....1.

n+1) =n!

Remark.

Substitute y = g, (a>0) in(1)

I'(p) = J, (ya)P~L e~ (ady)
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=af [ yP Tt e dy
D= [Pyrledy - (3)

aP

Equation (2) is also valid when a is complex number a = b + ic where b > 0.

Definition.
The random variable X has a gamma distribution if its density function is

0 for x <0

fe) = % xP~te=P*  forx >0 - @

where b > 0and p > 0

0 © D p ©
j f)dx = j b7 xP~le DX gy = b7 xP~le=bx
% o ') rp) J

and f(x) is non-negative function.

The characteristic function of gamma distribution:

We have @(t) = [ e'™*f(x)dx

ltx P 1,-bx
—f r( s xP e dx

p 0]
i.e.,®(t) =%p)j xPle=(0-ix gy (1)
0

We know that, (p) foo yP~1 e~ dy is valid when a = b + ic where b > 0,

®© _ p-1_,-(b-it)x — I'(p)
J, xP7 e dx = o =55
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r(p) " b-it)yp ~ (b-it)? (1_%)11

P T@® _ _bP 1

1)=0@) =

0"(®) = (-p)(-p + D) (1 -5 (<L)

" ()?p(p+1)
0" (1) = =5
p?(1-7)

p(p+1).... p+(k-1))ik
0 (6) = el
b(1-%)

_ ik
Q)k(O) _ p(p+1).......£1}:+(k 1))1

_ gk _ p+1D).....(p+(k-1))ik
k= ik — pkik

_ p(p+1)...... (p+(k—1))
k — pk .

In particular, we have
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Example.

The random variable X has the gamma distribution with the density given

by the formula

0 forx<0
2e7% forx >0

F(x) = {

What is the probability that X is not smaller than two?

Solution.

P(X>2) = [, f(x)dx

= fzoo 2e X dx=e (e:zx):o

=(-0+e*) =0.0183

Definition.

The random variable with density f(x), defined by

0 forx <0
Ae™** for x >0

Fo ={

where, A > 0, has an exponential distribution.

Theorem 4.8. (Addition theorem for random variable with gamma

distribution)

Let X = X; + X,, where X;, X, are independent variables with gamma

distribution then X is also has the gamma distribution.
Proof.

Let X; & X, be two independent random variables with gamma distribution.
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Let @, (t), @,(t) are the characteristic function X; and X, respectively.

1e., Qy(t) =—70 t) = ilt D2
(- (1-5)

Let @(t) be the characteristic function of X

1
it

B(t) = 0,(£)D, ()

= ﬁ( 5 (~ X, & X, are independent)

~ X has the gamma distribution.

Theorem 4.9.

Let the independent random variables X and Y with non-independent
distributions take on only positive values. Then X and Y have the gamma

distribution with the same parameter b iff the random variables U and V, where

U=X+Y;V = é are independent.

4.9. The Beta distribution

sNote that,
1. B(p,q) = fol xP~1(1—x)9"1dx wherep >0,q <0

r(p)r(q)
2. B(p,q) =%

Definition.

The random variable X has a beta distribution if its density is
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1

f(x) = {B(P,Q)
0

xP711-x)Tforo0<x<1

forx <0andx > 1

where, p > 0,q < 0.

Theorem 4.10.
Find the moments of the beta distribution
Proof.

my = [ x®f(x)dx

1
B(.q)

my = fol xk xP71(1 —x)7 1dx

1 1 _ _
:B(pq)ffl xP H(1-x) dx

r(p+q)

- r(p)r(q) xBlp+k q)

_ Ip+q) | Ip+k)Ir(q)
r(pr(@  r(p+k+q)

_ I'p+q) r(p+k)
r(p) r(p+q+k)

_ r(p+q) p (p+1)(p+2)......... (p+k—-1)r(p)
r(p)(p+q+k-1)........ (p+q+2)(p+q+1)(p+q)r(p+q)

_ P(p+1)......(p+k—1)
T (p+q)(p+q+1) ... (p+q+k-1)

my

In particular,

p(p+1)
m=—:m, =—————
L7 p41” 72 7 (p+q)(p+q+1)
_ .2
Uy = My — My
p(p+1) p?

- (p+q)(p+q+1) B (p+q)?
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_ p(p+1)(p+q)-p?(p+q+1)
(r+q@)?(p+q+1)

_ (p*+p)(p+q@)—-p3-p?q-p?
r+q@)?(p+q+1)

_ p3+p2q+p*+pq-p3-piq-p?
(p+a)?(p+q+1)

Remark.

The density of the beta distribution with p = g = 2 represent as follow as

in note 1 given above.

Example.

The random variable X has the beta distribution with p = q = 2; hence its
density f(x) is

0 forx<0x=>1
—x(1 — 0<x<1
F(Z)F(Z)x( x) for X
_ 0 forx<0x=>1 , . ,
ie., f(x) = { 6x(1—x) for0<x<1 .What is the probability that X is not
greater than 0.2?
Solution.

p(x <0.2) = foo.z f(x)dx

= foo.z 6x(1 — x)dx

0.2

=6 [5-%],
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_6[ﬂ_w]

P(X <0.2) = 0.104.

4.10. The Cauchy and Laplace distributions

Definition.

The random variable X has a Cauchy distribution if its density is

i
flx) = ﬂ/12+(x 7 Where 1> 0

The function f(x) is non-negative.
S x—u .
By substituting y = — > we obtain

0 1 (oo dx
Lot dx =)o

_ 11w dx
_AZT[ _001+(u)2

A
= /112 . _Oooo (fj;z) (sincey = %
dy = d;{_x
= dx = Ady)
- [ -Oo°° (1+y2)
= [tan™" y]3
-2+
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Xm=1

S

j_c:f(x)dx =1

The characteristic function of Y

Y has the density function

The characteristic function of Y 1s

o) = [ e f(y)dy

B(t) == [ e ——dy...(I)

1+y2

Consider the first density function f; (y)

Find the characteristic function for this density function is

0,(t) = fjoooeityﬁ()ody

_ 1o ity —lyl
—Ef_ooe Ye~lYldy

= %f_oooo(costy + isinty)e ¥l dy
?,.(t) = % X 2 fooo costy e™¥dy (= even function)

=[—e™]T — tfooo sinty e™ dy

=1- tfooo sinty e Vdy

=1—t{[-esintyly +t fooo e Y costydy }

=1—t2[" e Ycostydy

0

e Yl 5 (1)
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?,(t) = fooo e Ycostydy =1 — t2 fooo e Ycostydy

=2 [

, e Ycostydy + [~ e Ycostydy =1

= (1+t2) fooo e Ycostydy =1

= fooo e Ycostydy =

1+t2

= 0,(t) =

1+t2

The density is

AO) = f5, €™ 8, (Ddt

(o] e_ity

Q) = —n —oo 132 dt - (2)

From (1) & (2),
—Iyl — ey
2 21 f—oo 1+t2
“lyl = L e
e V==] ~dt
T © 1+t

Changing e Y into e‘®Y under the integral sign (this doesnot affect the value of

the integral) and changing the roles of t and y, we obtain

—ity

—|t| _ J-oo e

T~ —00 142

dy -3
The R.H.S of (I) and (3) are same.

= () = e

Since X is a linear transformation of Y, for the characteristic function @, (t) of X

we obtain the formula

@2 (t) — eiut—lltl

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli 189



s

Theorem 4.11. (Addition theorem for the Cauchy distribution).

Let X; and X, be two independent random variables with Cauchy

distribution then X = X; + X, also has Cauchy distribution.
Proof.

Let X; and X, be two independent random variables with densities.

Az
9:(0) = 7 (A1, 2z > 0)

_1__ A _f
gl(x) - TL’A% +(x—u2)2

B+ Go—p)?’
The characteristic function of X; and X, are
Y1 (£) = et~ ltl ), (¢) = eltat=221t]

respectively.
Consider the random variable X = X; + X,
Let 1 (t) be the characteristic function of X. Then

Y(t) =yP,(t) Y,(t) (since,X; & X, are independent)

= pitat=Ailt] pipst—Aylt|

Py (t) — ei(ﬂ1+ﬂz)t—(/11+/12) |t]

which is also characteristic function of Cauchy distribution.

Remark.

X has a Laplace distribution if X = AY + u, where Y has the density function
fiy) =5e

=~ The density function of X is

f ==L a0

22
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The characteristic function of X is

e iut

o) =

1+A2t2

Random variable with a Laplace distribution has moments of any order.
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UNIT-V

LIMITS THEOREMS

5.1. Stochastic Convergence

Example 1

. 2 - :
The random variable Y,, can take on the value 0, g ....,nTl, 1 and its

S|k

probability function is given by the formula

P(Ya=1)= (’;)Zin r=01,....,n)

n

Consider the random variable X,, defined by the formula
1
Xp =Y =2

Thus X, can take on the values

1 2—-n 4—-n n-4 n-2 1
2’2n " 2n "7 2

The probability function of X,, is given by the formula

(=250 - ()

Let n = 2. The random variable can take on the values

—0.5,0,0.5

with respective probabilities

N

11
4’2’

Let € be a positive number, say € = 0.3
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P(IX,] > 03 = P(X2 =) +P(X2 =2)=05

Let n = 5. The random variable X5 can take on the values
-0.5,-0.3,-0.1,0.1,0.3,0.5
with respective probabilities

1 5 1010 5 1

32’32’32°32°32°32
Hence

P(1Xs]) > 0.3 = 0.0625

Let n = 10. The random variable X;, can take on the values
-0.5,-0.4,-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3,0.4,0.5

with respective probabilities

1 10 45 120 210 252 120 45 10 1
1024’ 1024’ 1024’ 1024’ 1024’ 1024’ 1024’ 1024’ 1024 1024

P(|X10] > 0.3 = 0.02 .

Forn = 10, the probability that X;, will exceed € = 0.3 /n absolute value is very

small.

Definition.

The sequence {X,,} of random variable is called stochastically convergent

to zero if for every € > 0 the relation

lim P(|X,| >e=0
n—-oo

1s satisfied.
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Theorem 5.1.

Let E,(x)(n =1,2,3,....) be the distribution function of the random
variable X,. The sequence {X,} is stochastically convergent to zero iff the

sequence {F, (x)} satisfies the relation

: (0 forx<0
1111—r>1;>10Fn(x)_{1 forx >0

Proof.
Suppose that the sequence {X,,} is stochastically convergent to zero.
Tlli_r>£10P(|Xn| >e=0 - (1) Ve>0
For every € > 0,
1111&10 PX,<e)=0
lim F(-e) =0~ ()
7]Li_r)r()10P(Xn >¢e) =1-PX,<e)—PX, =¢)
PX,>e)=1-PX,<¢e)—PX,, =¢)
P(X,>¢e)=1—-E,(e) —P(X,,=¢) — (2)

Since, for every € > 0, we can find an g;such that 0 < &; < ¢
From (1), for an arbitrary € > 0, we have
rlli_r)r(}oP(Xn =¢e) =0 - (3)
Substitute (3) in (2) we get

lim P(X, > &= lim(1—F,(e) —P(X, =¢)) =0 = lim(1 — F,(¢))
n—oo n—oo

n—->0o

= lim E,(¢) =0 - (B)
n—>0o
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Replace € by —x in (A) & € by x in (B) where x > 0, We get
lim F,(+x) = 0 and lim E,(x) =1
n—oo n—-oo

. (0 forx<0
"rgl—t?an(x)_{l forx >0

Conversely,

. (0 forx<0
Suppose, Tlll_fgo F,(x) = {1 forx >0

Then for arbitrary € > 0 we have
1112{,10 P(X, < —¢) = rlll_‘)n}o E,(—¢) =0
rlll_'leo P(X,<-¢) =0
= 7ggr(}oP(—Xn >e)=0
1111—1;{}0 P(X, >¢) < 7%1_{130 P(X, = ¢)
= lim [1 - F,(2)]
=1— lim E,(¢)
n-oo
=1-1
=0
751,_7)’210 P(X,>¢e)=0
= 7ggztoP(|Xn| >¢e)=0
Hence the proof.

Remark.
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The random variable X with a one-point distribution such that P(X = 0) = 1 has

0 forx<0
1 forx>0

the distribution function F(x) = {
This distribution function is continuous at every point x # 0.
From above theorem.
For arbitrary € > 0
Since 111_{{)10 P(X, < —¢) = T{Lrglo E,(—¢)
=0

11111210 PX,<—-¢e)=0
rlll_r)rgo P(X,>¢e)=1-— rlli_r)?an(e)

=1-1
rlll_)l’Elo P(X,>¢e)=0
rlll_T)’I(;lo P(|X,|>e)=0
= For every point x # 0 the sequence of distribution function F, (x) converges to

the distribution function F (x).

i.e, The sequence of distribution function F,(x) of random variable convergent
stochastically to zero, converges to the distribution function of the one-point

distribution at every point x # 0.

Since the points x # 0 are continuity points of this distribution function, we can

formulate the preceding result in the following way:

The sequence {X,,} of random variable is stochastically convergent to zero iff the

sequence {E,(x)} of distribution functions of these random variable is convergent
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0 forx<0

1 forx>0 at every

to the distribution function F(x) given by F(x) ={
continuity point of the latter.
Note:

1. The fact that at the point of discontinuity of F(x). That is, at the point x =
0, the sequence {E,(0)} may not converge to F(0).

2. The sequence of random variables{Y, } = {X,, — c} is stochastically
convergent to zero.

3. The sequence of random variables{Z,,} = {X,, — X} is stochastically

convergent to zero.

5.2. Bernoulli’s Law of Large numbers

Theorem 5.2 (Bernoulli law of large numbers)

Let {Y,,} be the sequence of random variable with probability functions

given by
— Z _ (T .r __\n-r
P(a=2)=(})pra-pm"" -
where, 0 < p < 1 and r can take on the values 0,1,2, ... ... n

LetX,=Y,—p - (2)

The sequence of random variable {X,} given by (1) and (2) is stochastically

convergent to 0.

i.e, for every € > 0, lim P(|X,| > ¢) = 0.
n—-oo

Proof.

The Chebyshev inequality is
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P(X —my| = ko < =

Put E(X,) =0 &a, =+D?(X,)

_ [p(1-P)
- n

1
P(|X, —my| = ko) < =z

. P(1-P) 1
1.e,P<|Xn|>k ~ >Sﬁ

where k is an arbitrary positive number.

n
p(p—1)

n P(1-P) p(p-1)
P<|Xn| > ¢ /p(p—l) f ~ )S e

p(p—1)
P(X,| >¢) < ez <=

Letk =¢

1
ne?

= lim P(|X,| >¢€) =0 foreverye >0
n—->0o

5.3. The Convergence of a Sequence of Distribution Functions

Definition.

The sequence {F,(x)} of distribution function of the random variables {X,,}
is called convergent, if there exist, a distribution function F (x) such that, at every

continuity point of F(x) , the relation

rlll—{rolo E,(x) = F(x)

Directorate of Distance & Continuing Education, Manonmaniam Sundaranar University, Tirunelveli 198



is satisfied. The distribution function F(x) is called the limit distribution

function.
Remark.
Consider the example (1), By theorem 6.3.1, the sequence {X,} of random

variable defined by X,, =Y, — % is stochastically convergent to zero.

= The sequence {F, (x)} of their distribution function converges to the distribution

0 forx<0
1 forx>0

function F(x) defined by F(x) = {
This distribution function is discontinuous at x = 0.

i.e., {F,(0)} is not convergent to F(0).

consider the subsequence of the sequence {F,(0)} containing only terms with the

odd indices n = 2k + 1. The random variable X,,, 1 can take on the values

12-Qk+1) 4—Qk+1) 2k+1—-4 2k+1-2 1
2" 2Qk+1) ’ 2Q2k+1) "V 2Qk+1) ' 2Qk+1) 2

For every k, half of these terms are each less than zero, the other half greater than

zero. The probability that X, ; will take on a value less than zero equals 0.5
=~ For every k we have P(X,441 < 0) = Fy,4+1(0) = 0.5

Since, F(0) = 0, we have

lim Fesr (0) = 05 = F(0) ~ (1)

From (1) it follows that, lim E,(0) = F(0) - (1)
n—-oo

From (1) it follows that, lim E,(0) # F(0).
n—-oo
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Example 1.

Let us consider the sequence {X,,} of random variable with the one-point

distributions given by the formula
PX,=n)=1n=1.2,.....)

The distribution function F, (x) of X,, is of the form

(0 forx<n
Fo(x) = {1 forx>n
We have the relation
lim E,(x) =0 (—o0o < x < )
n—oo

= The sequence {F,(x)} convergent to 0

i.e., The sequence {F, (x)} is not convergent to a distribution function FE, (x).

Remark

1. Let the sequence {E,(x)} be convergent to the distribution function F(x).
Let a and b, where a < b, be two arbitrary continuity points of the limit
distribution function F(x). Then we have,

lim P(a <X, <b)=F(b)—F(a)

n—oo

For,
P(a <X, <b)=E,(b) —E,(a)

lim P(a < X, <b) = rllilg[Fn(b) — F,(a)]

n—oo
= lim E,(b) — lim E,(a)
n—oo n—-oo

=F(b) - F(a)
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(Since, a and b are continuity points of distribution F(x) i.e., F,(b) —

F(b) & F,(a) - F(a))

2. Let the sequence {F,(x)} be convergent to the distribution function F (x).
Let B,(S) and P(S) denote the probability function corresponding
respectively to the distribution function F,(x) and F(x). Then we have
T{ggo B,(S) = P(S).

Example 2.

The random variable X,,(n = 1,2,3, ... ... ) has the density f;,(x) given by

AL £ cx< i (=12 )
00 =17 lfn — X - i=12,....,n
0 otherwise

where, 0 < &€ < 1. The distribution function F, (x) of X,, is

(0 ifx<0
i—1 i-1 i £
i <x<———
F(x) = 4 n n n n2"
xX) = i £
’ i—lf”(’“#m) i o
n £ fn 2n X
\ 1 ifx=>1

Thus for every x in the interval [ = [0,1] we have
1

0<x—F,x)<-

n

By considering the values taken by E,(x) outside the interval I, we obtain for

every real x

0 forx<o0
limE,(x) =F(x)=<x for0<x<1
e 1ifx=>1
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Definition.
The sequence of distribution function {F, (x, ... ... , X,,)} of random vector
(Xn D, ST , Xnk) is convergent if there exist a distribution function
F(xy, x5, o , X;.) such that at every one of its continuity points.
lim E,(xq, x5, ... ... X)) = F(xq, %0, v, X3)
n—-oo
Theorem 5.2.
Let {F,(x{, x5, ... ... X))t (=12, .. .. ) be a sequence of distribution
functions of random vectors (an,an, ...... ,Xnk) and let F(x, x5, ....., X3 ) and

P(S) be the distribution function and probability function of a random vector

(X1, X5, con o , X)) respectively.  lim FE,(xq, X5, .., X)) = F(xq, X5, e, Xi)
n—-oo

holds iff for every function 2(xq, ......., X)) continuous on a set S satisfying the

relation P(S) = 1
lim H,(a) = H(a) holds at every continuity point a of H(a) where H,,(a) and
n—-oo

H(ax) are the distribution function of g(an,an, ...... ,Xnk) and

g(x1, x5, ..., X3, ) respectively.

5.4. The De Moivre-Laplace Theorem

Let {X,,} be a sequence of random variables with the binomial distribution.

For ever n the random variable X,, can take on the values 0,1, .......,n and its
probability is
n _
P(Xp =1) = (r) p"q""

where 0 <p<landg=1-p
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Clearly we have, E(X,,) = np; D*(X,,) = npq

Xn—np

Vnpq

Consider the sequence {Y,,} of standardizer random variables Y,, =

Theorem 5.3.(De Moivre-Laplace theorem)

Let {F,(y)} be the sequence of distribution functions of the random

Xn—np

Vvnpq’

variables Y, = where the X, have the binomial distribution given by

P(X,=r1)= (Z) p'q" 7. If 0 < p < 1, then for every y we have the relation

2

2 dy.

: 1y
lim F(y) = =" e
Proof.

: — — n r 4 n—r
Given P(X,, =1) = (r)p q
The characteristic function @, (t) of X,, is

0. () = (q + pe't)"

Xn—np

GivenY, = Nor

The characteristic function @,, (t) of the random variable Y, is

—npit it _\"
@, (t) = evnpa <q + pem>

—pit it

n n
(5 oo

. n
—pit

it
_ qem +pe (1—29)\/?1"1
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—pit pit n

wy(t)==[qeﬁﬁﬁ4-peJﬁﬁ - (1)

Let us expand the function e in the ngd of z = 0 according to the Taylor

formula for k terms with the remainder in the peano form,

. (iz)J
et = Yo +0(z")

We obtain

pit
P — . [pa _at? e
pem—p+1t\/: 2n+0(n) - (2)

—pit
geVri = q — it\/% — g +0 (%) — (3) (~ expalined in the class)

where for every t we have,
2
limy;n0 (5) =0 - (4)

Sub (2) +(3) in (1)

_ n
= lg—it 222 4 o(E it P21 (2
0,(t) = 4 lt\/z — +O(n)+o+1t\/: - +0(n)]

=[p+a- 2o (S)

r 2 2\
6,0 =[1-7+0(3)]
t2 t?
log @, (t) = nlog [1 —-+0 (;)] = nlog(1 + z)
For every fixed t for sufficiently large n, we have |z| < 1
_t2 t2
~log@,(t) = -t no0 (7)

t2

) —t?
[y o0 108 By () = limyy o (22 4+ 0 (£)
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—t2 li 0 t?
=—1Iim no(—
2 n—o (n)

2

limn—mo log Q)y(t) = e% (using (4))

t2
limpe@y () =e 2

~ The sequence of characteristic function (Dy(t) of the standardized random

Xn—m 1ot 1
"npqp convers as n = oo to the characteristic function of a random

variable with a normal distribution whose distribution function is

variables Y,, =

2

1
= S,e77 dy

i B () = <= 2, e 75 dy
Hence proved.
Remark.
Let y; and y, be two arbitrary points with y; < y,.
1 y?
We know that, lim,,_,oF,(y) = = f_yoo e z dy - (1)

From the above relation,

limn—wop(yl <Y< yZ) = limn—wo [Fn(J’z) - Fn(yl)]
= limn—wan(yZ) - limn—wan(yl)
1 v 1 v
=7 [22ez dy — 7= [re7z dy

1y, 2
:EIJ’:e : dy

2
flimy PO <Y <y) == [V ez dy - (2)
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P()’1<Y<YZ):P()’1 \;lwnp )’2)
= P(ylm +np <X, < yzm + np)
o limp o P(y14/npq + np < X, < y24/npq + np) = \/1_ V2 _7 dy
Letx; = yl\/ﬁ +np; x, = yzm +np - (3)
Plx; <X, <x,) = f;lz e_yz_2 dy where y, and y, are determined by (3)
We say that the random variable X,, has a asymptotically normal distribution

N(np; M)

Replacing y; and y, with

and y, — ———respectively we get a better approximation.

V1 + e o
Example 1

We throw a coin n = 100times. We assign the number 1 to the appearance
of heads and the number 0 to the appearance of tails. The probability of each of
these events is equal to p = g = 0.5. what is the probability that heads will appear

more than 50 times and less than 60 times?
Solution.
The random variable X,, take on values from 0 to 100.
Given,n = 100;p = 0.5;q = 0.5
E(X,,) =np =100 x 0.5 = 50; D?(X,,) = npq
=100 x 0.5 x 0.5

= 25
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~ E(X,) = 50 & D%(X,) = 25.

We know that,
1 Y2 e
P(x; < X, < x3) Eﬁfy. ez dt

Where x; = y;4/npq + np & x, = y,/npq + np

Here, x; = 50 and x, = 60

50—50 60—50
Y1 = Y2 = —¢
y1=0 Y =2
1 2 £
P(50<Xn<60)=ﬁfoe 2 dt
_ 1 (19 _ﬁd
:Efo.le 2 t
1 19 _t 1
=— [[jezdt— [ ez dt

IR

®(1.9) — 9(0.1)
= 0.97283 — 0.539828
= 0.431455

P(50 < X, < 60) = 0.4315.

Remark.

1. From de Moivre-Laplace theorem we obtain theorem for the sequence of

random variables

b'¢
Un:f

Where X,, has the binomial distribution given by
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POy =7)=()p g™

Since, E(U,) =p &D*(U,) = %

Xn

7 - U,-P 5P  X,—np
" e pa  , [pa
n n n

Xn—n

=Py,
vnpq
“lpy =Y,

Since, the sequence {E,(y)} of distribution function of Y, satisfies
lim, by =—[ e

= for the sequence {F,(z)} of the distribution function of z,,

22
limy,_oFE,(2) = \/%f_zoo e 2 dz

2. For every pair of constants z; and z, where z; < z,.

2
, n 1 oz 2
lim, P (zl < /5 U, —p) < ZZ) = \/T_nle e 2 dz

Let
u1=Z1\/%+P u2=22\/%+p - (1)

ZZ
Plu; < U, <uy) = \/%_nfzzlz ez dz - (2)

Where z; and z, are determined by (1)

The random variable U, satisfying the relation (2) has an asymptotically

normal distribution N (p; \/p;q).

Example

A box contains a collection of IBM cards corresponding to the workers

from some branch of industry of the workers 20% are minors and 80% adults. We
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select one IBM card in a random way and mark the age given in this card. Before
choosing the next card, we return the first one to the box, so that the probability
of selecting the card corresponding to a minor remains 0.2. we observe ‘n’ cards
in this manner. What value should ‘n’ have in order that the probability will be
0.95 that the frequency of cards corresponding to minor lies between 0.18 and

0.22?
Solution.

Let U, be the frequency of the appearance of the card corresponding to a

minor.
E(Uy) = p and D*(U,) =
Here,p =02 ¢g=1-p=1-02=0.8

E(Uy) =02 D2(Uy) = =2

\/DZ(Un) =2

3

72

Pu, < U, <u,) = \/%fzzlz e 2 dz

Where u; = z; /%+p Uy = Zy /%+p

Here, u; = 0.18 and u, = 0.22

0.18 = z, (%) +02 and 022 =z, (%) +0.2
0.4 Vn
0.18 — 0.2 = z, (ﬁ> 2z, = (0022 — 0.2) <07>
0.16 0.20
04 XVr=n 7 =(57) "
Zl - % n Zz - %\/ﬁ
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Zl = 04\/ﬁ Zz = 05\/5

0.5Vn 2

P(0.18< U, <0.22) = —f e 2 dz - (1)
V21 Jo.ayn

We know that,
n 1 [z 72
. _ 2 —_
lim, P (zl < /E(U" —p) < ZZ> = \/T_nle e 2 dz

-0.02 U,—-02 0.02
04 ~T 04 ~T04
Vi Vn

= p (—0.05vn < 222 /n < 0.05V7n)

0

P(0.18 < U, < 022) =p

= 0.95
~P(018<U,<022) =095 - (2)
From (1) and (2)

1 fO.S\/H

0.aym €

72
NoT 2 dz=095

From normal table,

0.5vn = 1.96

. 196
~ 05

n = 1537.

5.5. The Lindeberg-Levy Theorem
Consider a sequence {X;}(k=1,2,....) of equally distributed,

independent random variables whose moment of the second order exists.
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For every k denote
E(X,) = m; D*(Xy) = o?
Consider the random variable % defined by

Yn=X1 +X2+"'...+Xn

E(Y,) = nm and D?(Y,) = no?

Yn—mn

LetZ, = o~ oen(A).

Theorem 5.4. (Lindeberg — Levy theorem)

If X, X5, ... are independent random variables with the same distribution,
whose standard deviation ¢ # 0 exists, then the sequence {F,(z)} of distribution

functions of the random variables Z,,, given by formulas

7 = Y,—mn
nT o an

and YTL = X1 +X2 + .- ...+Xn,

satisfies, for ever z, the equality

1 z 72
limn_,oan(Z) = Ef e 2 dz

Proof.

Y,—mn

can be written in the form
avn

let z, =

1
Zn = = Lie=1 (X —m)

All the random variable X, —m have the same distribution, hence the

characteristic function @,(t) of Z,, is

0.0 = [0, (#)] S
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Assume that the existence of the first and second moments we have,
EX,—m)=0 andD?*(X, —m) = g2

Expand the function @,(t) in a neighbourhood of the point t = 0 according to

the MacLaurin formula

B,(t) =1 -~ o2t? + 0(t?)

0 (m) = 1=3" 75+ 0 (55)
0 (zm) =1 =35 +0(3) -~ @
Substitute (2) in (1)

0.0=[1-35+ ()] -o

where for every t we have,
. t2
lim,_,0,n0 (7) =0 - (4)
t2 t2
Letu=—2+0(%)
(2)=0,() =[1+u]"

log@,(t) = nlog(1+ u)
=n[-5+0(5)]
log@, (t) = ——+n0 (nz)
limy 00 log @,(t) = limy, e [ -+ 0( )]

t2 , t2
=—-7 + lim,,,,,n0 (?)
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lim, . log@,(t) = —% (using (4))

t2
limy oo @,(8) = €77

t2
e 2 1s the characteristic function of a random variable with the normal

distribution.

[by theorem, if the sequence of characteristic function {@,,(t)} converges at every
point t(—oo < t < 400) to a function @(t) continuous in same interval |t| < c,
then the sequence {F, (x)} of corresponding distribution function converges to the

distribution function F (x) which corresponds to the characteristic function @(t)

ZZ
iy Py (2) = = [ €77 dz
Remark.

Let z; and z, be two arbitrary numbers with z; < z,. By relation in the last

theorem we obtain

limn—moP(Zl < Zn < ZZ) = limn—wo [Fn(ZZ) - Fn(zl)]

2
1 -z
= —mfzzlz e z dz....(5)

From formula (A) we obtain

Yp—
p(z, < Z, < z) =P(Zl < Trzn<zz)

= P(zy0vn + nm <Y, < z,0vn + nm)

Thus, we obtain from formula (5)

ZZ
lim,_oP(z10vVn + nm < Y, < z,0vn + nm) = \/%fzzlz e 2 dz...(6)
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Let

y1 = zzoVn +nm, y, = z,ovn +nm....(7)

Now we can write formula (6) in the asymptotic form

Z2

P(y; <Yy <3’2)—\/— e 2 dz
Z1

where z; and z, are determined by relation (7). Thus, the random variable Y,

defined by formula Y, = X; + X, + -+ ... + X;; has an asymptotically normal
distribution N(nm; ovn).

Example 1.

Suppose that the random variables {X, }(k = 1,2, .....) are independent

and each of them has the same two — point distribution, i.e, for every k we have
PX,=1)=p;PX;; =0)=1—pwhere0<p <1

Consider the random variable Y,, = X; + X, + ---.. +X,,

E(Xy) = p and D?(X,) =

By de Moivre-Laplace limit theorem that Y, has an asymptotically normal

distribution N (np ;A /npq).

Remark.

De Moivre-Laplace limit theorem is a particular case of Lindeberg-Levy

theorem.
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Example 2. The random variable X,,(n = 1,2, ... ... ) are independent and each of
them has the Poisson distribution given by P(X,=71) = Zr—T e %(r =

0,1,2, ......). Find the probability that the sum Yjo0 = X; + Xp + .. +X 0 1S
greater than 190 and less than 210.

Solution.
Y100 = X1 + X2 + -+ X100
The random variable Y;oo has approximately the normal distribution

N(200,10v2). ( Y,~N(mn; ovm))

Since ,each of the random variable X,, has o = v/2 and expected value m = 2.

2

We know that, P(y; <Y, <y,) = \/% fzzlz ez dz

Where, y, = z,0vVn + mn, y, = z0n + nm
Here, y; =190 and y, = 210 and n = 100
Now,

190 = z,0Vn + mn

7. = 190—-mn
17 ovn
_190-200
T \2x10
5, = 10
2 7 2x10
!
=7
z, = —0.707
and
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210 = z,0vn + mn

210 —mn
ovn

210 - 200
T V2x10

10
T V2 x10

Zy =

Zy = —=

V2
z, = 0.707

Y100—200

& P(190 < Yi90 < 210) = P (=0.707 < 2222 o2

< 0. 707)

= 0(0.707) — @(=0.707)

= ©(0.707) — (1 — 9(0.707))
= 2¢(0.707) — 1

=2 x 0.758036 — 1

=1.516 -1

=0.516

Theorem 5.5.

Suppose that the random variable X;, X5, ... ... are independent and the same

distribution with standard deviation o # 0. Let the random variable U,, defined

by
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X1 +X2+"'...+Xn
n = "

Furthermore, let E,(v) be the distribution function of random variable 1,

Defined as
_ Un - E(Un)

VD?(Un)

Then the sequence {F, (v)} satisfies the relation

1 v v2
lim,_E,(v) = Ef e 2 dv

Proof.
2

Here, E(U,)) = m and D?(U,) = %

_ Un_E(Un)

h VD?(Un)

1
EE’]}:le_m
=——F—"1

n
_ Yk=q1 Xg—mn
= See—
= Zn
: Z;cl=1 Xp—mn .
where the random variable z,, = ==——— by theorem Lindeberg-Levy,
n gy Yy g Y.

ZZ
The sequence {F, (z)} satisfies relation lim,,_,o F,(z) = \/% f_Zoo e 2z dz

1]2
= The sequence {F, (v)} satisfies lim,,_, F,(v) = \/% f_voo e 2 dv

Hence the proof.
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Remark.

Let v; and v, be two arbitrary number with v; < v,.

2
, 1 v,
lim,eop(vy <V, <v,) = Efvf e z dv
Let uy =%+m; U, =%+m - (1)

VZ
Plu, < U, <u,) = 2 dv, where v; and v, are determined from (1)

1 U, —
r— e
\V2m fv1

~ The random variable U,, has an asymptotically normal distribution N (m ; %)

Example 3.

The random variables X;, X5, ... ... are independent and have the uniform

distribution defined by

1 for xinthe interval [0,1]
0 for x<0 x>1

f(x)={

: : Xy +Xp+.X
Consider the random variable Y,, = %, for n=

48 compute the probability
than Y,, will be smaller than 0.4.
Solution.

(1 x€[01]
f(x)_{O forx<0x>1

1 1 .
Clearly, m =2, o = Nevi (find using E (X) formula)

o
By theorem 6.8.2, ¥,,~N (m, \/—ﬁ)

Here, n = 48

To find P(Y,, < 0.4)
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576 V576
A
=p< T < —2.4>
24
= @p(-2.4)
= (0.0082

5.6. Poisson’s Chebysheve’s and Khintchin’s Laws of Large Numbers

Consider first a sequence of random variables {X,} (k = 1,2,....); the only

assumption we make is that for every k first two moments exist, that is,

E(Xy) = my, E[(Xy — m)?] = of

Theorem 5.6. (Chebyshev's Theorem)

Let{X;} (k =1,2,.... ) be an arbitrary sequence of random variables with
variances J,f. If the Markov condition limk%oa,f = 0 is satisfied, the sequence

{X; — m;} is stochastically convergent to zero.
Proof.
Chebyshev's inequality, we have or every k and € > 0

ok

PUXi —myl 2 &) < ()
If the Markov condition
limyoeof =0 ... (2)

is satisfied, from formula (1) we obtain

ARY
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limk—mop(le - mkl = 8) = 0.

Thus, the sequence {X;, — m;} is stochastically convergent to zero.

Corollary
Let {X,}(k=1,2,....) be a sequence of random variables pairwise
uncorrelated and let E(X,) =m;, and D?(X,) =o0?. If condition

. 1 L
iMp 00— n_, of = 0is satisfied, then the sequence

my +m2+"‘+m
{Y”_ n n} (n

=12,....)

is stochastically convergent to 0.
Proof.

Suppose that the X, considered in the last theorem are pairwise uncorrelated.

Consider the random variable

X1 +X2 ++Xn
n = n

We have

1
E(Y,) = L.

Since the X, are pairwise uncorrelated, we have
2 1 "o,
D(Y,) = ") Z Oy

k=1

If
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Then by the Chebyshev theorem, it follows that
lim, o P[|Y, —E(Y,)|=¢]=0

Thus, then the sequence

{ m1+m2+"'+mn
n =

} n=12....)

n

is stochastically convergent to 0.

Remark

We considered the Poisson scheme and the generalized binomial
distribution associated with it. In this scheme we consider the sum of n
independent random variables X, (k =1,2,.....,n) with the zero-one
distribution, where P(X;, =0) =1 —py, P(X;, = 1) = pi. Since D?(X;) =
p(1—pp) < %, condition lim,Hoon—l2 "_,of =0 is satisfied. Thus the
corollary of the Chebyshev theorem takes a form which could be called the

Poisson law of large numbers.

Theorem 5.7.

If the random variable Y,, is the arithmetic mean of the random variables

X}, in the Poisson scheme,

_X1 +X2+"'+Xn

n n )

then the sequence

{r, -miPetiPal (n=12,...)]

n

is stochastically convergent to 0.
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Theorem 5.8.( Chebyshev law of large numbers)

Let {X;,} (k =1,2,.... ) be a sequence of pairwise un-correlated random

variables with the same expected value and the same standard deviation, and let

X1+ Xp++Xp

Y, be given by formula Y, = . Then the sequence {Y,} is

stochastically convergent to the common expected value m of the random

variables Xj,.
Proof.

Let us now consider the case where the pairwise uncorrelated random
variables X, (k = 1,2, .....) have the same expected value and the same standard

deviation. Thus, for every k we can write
E(Xk) =m, DZ(Xk) =O'2

If we introduce the random variables Y,, defined by Y,, = X1+X2n;+X" we have

E(Y,) =m, D*(,) =d?%/n
Thus
lim,,,D?(Y,,) =0

According to the corollary of the Chebyshev theorem, the sequence {Y;,, — m} is

stochastically convergent to zero.

Theorem 5.9.( Khintchin’s law of large numbers)

Let {X,} (k = 1,2, .....) be a sequence of independent random variables
with the same distribution and wit expected value E (X}, ) = m. Then the sequence

{Y,.}, where
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_X1 +X2+"‘+Xn
n

is stochastically convergent to m.
Proof.
Let @(t) be the common characteristic function of the random variables Xj.

By the independence of the X}, the characteristic function of Y,, is

[0 (9] .0

Since the expected value m exists, we can expand @(t) in the neighborhood of

t = 0 according to the MacLaurin formula,
@(t) =1+ mit+ o(t)..... (2)

Substituting the expression (2) into (1), we obtain

oG =[50 )

Proceeding as in the proof of the de Moivre-Laplace theorem, we obtain

limy, e [@ (%)]n mit- (3)

The right-hand side of formula (3) is the characteristic function of the random

n

I
®

variable Y with the one-point distribution such that
PY=m)=1

By the Levy-Cramer theorem, the sequence {F,(y)} of distribution functions of

Y,, converges to the distribution function of the random variable Y.

Thus, by theorem 6.2.1, the sequence {Y,,} is stochastically convergent to m.
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