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UNIT -1

TOPOLOGICAL SPACES

1.1.Topological spaces

The concept of Topological spaces is through out of grew out of the satisfy of
the real line and Euclidean space and the study of continuous functions on these spaces.
In this section unit we define a topological space and we study a number of spaces of
constructing a topology on a set so as to make it into a topological space. We also
consider some of the elementary concepts associated with topological spaces. Open and
closed sets, limit points and continuous functions are introduced as natural

generalisations of the corresponding ideas of real line and Euclidean space.

Definition.

A topology on a set X is a collection T of subsets of X having the following

properties.

(i) ® and X arein T
(i) The union of the elements of any sub collection of T isin T

(iii)  The intersection of elements of any finite subcollection of T is in T.

A set X function which a topology 7" has been specified is called a topological

space.

Note. A topological space is an ordered pair (X, T ) consisting of a set X and a topology

T on X but we often omit specific mention of 7.

Remark.

If X is a topological space with topology 7', we say that a subset U of X is an

open set of X if U belongs to the collection 7. Using this terminology, we can say that
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a topological space is a set X together with a collection of subsets of X, called open set,
such that @ and X are both open and such that arbitrary unions and finite intersections

of open sets are open.

Example 1.

Let X = {a, b,c}. There are many possible topologies on X. Consider the

@
@
@ €

Figure 1.1

following topologies in the Figure 1.1.

Q“

The diagram in the upper right-hand corner indicates the topology in which the
open sets are X, ¢,{a, b},{b}, and {b, c}. The topology in the upper left-hand corner
contains only X and ¢, while the topology in the lower right-hand corner contains

every subset of X. We can get other topologies on X by permuting a, b and c.

Note. From the above example, we can see that even a three-element set has many
different topologies. But not every collection of subsets of X is a topology on X. For

instance, neither of the collections indicated in the Figure 1.2 is a topology.

Figure 1.2
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Example 2.

If X is any set, the collection of all subsets of X is a topology on X, then it is
called the discrete topology. The collection consisting of X and @ only is also a topology
on X, then it is called the indiscrete topology or the trivial topology.

Example 3.

Let X be set. Let J; be the collection of all subsets U of X such that X~U either

is finite (or) is all of X. Then Ty is a topology on X, is called the finite complement
topology.
For, since X — X = @ is finite (or) X~@ = X, either is finite or is all of X.
- Both X and @ are in J%.
Let {U,} be an indexed family of non-empty elements of 5
To show that Ugye; Uy € Tf
Now, X —U U, =n (X~U,)
Since each X~U,, is finite, N (X~U,) is finite
s X~ U U, is finite
VU, €Ty
IfU,U,, ... U, are non-empty elements of J¢
To show that N;_, U; € T;
Now, X — NL, U; = UL, (X = U)
Since each (X — U;) is finite
UL (X — U;) is finite
X~Niz1 Us
=1 U €T}

Thus T is a topology on X and it is called finite complement topology.
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Example 4.

Let X be a set. T be the collection of all subsets of X. Such that X~U is either
countable (or) is all of X. Then T is a topology on X, is called countable complement

topology on X.
For, since 7z = {U < X/X~ U is countable (or) X~U = X}

i.e, the countable complement topology on X is the collection of subset = {X} U {U <

X/UC is countable}
clearly, X € J;
since, ¢ = X~@ = X which is a countable set.
~QET;
Let {U,} be any arbitrary collection of subsets of X from T¢.
Then U{ is countable for each a € I
Now, (Uge1Ua)® = Naer Ug
The intersection of countable collection of sets is countable N e; US is countable.
o (UgerUg)C is countable.
= UgerUq € Tt
Let Uy, Uy, ... ... ... U,, be a finite collection of subsets for X from T.
Then Ul-c 1s countable foreachi € 1,2, ... ... n
(Nf=; U = UL, Uf
Since the finite union of a countable collection of sets is countable, U™, U countable.
~ (N, Uf) is countable
= (Ni=1 U) € T¢

Thus J¢ is topology on X, is called countable complement topology on X
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Definition.

Suppose that T and T’ are two topologies on a given set X. If 7' 2 T, we say
that T’ is finer then T (or) T is coarser then T'. If T' D T, we say that T' is strictly
finer then T (or) T is strictly coarser finer then T' We say T is comparable with T’
ofeither 7' DT (or) T D T

1.2. Basis for a Topology

Definition.

If X is a set, a basis for a topology on X is a collection B of subsets of X (called

basis elements) such that

Q) For each x € X, there is at least one basis element B containing x
(i) If x belongs to the intersection of two basis elements B; and B,, then there

is a basis element B; containing x such that B; € B; N B,.

If B satisfies these two conditions, then we define the topology T generated by
B as follows: A subset U of X is said to open in X (i.e to be an element of T') if for each

x € U, there is a basis element B € B suchthat x € Band B c U

Note that each basis element is itself an element of T'.

Example 1.

Let B be the collection of all circular
region (interior of circles) in the plane. Then B is

a basis for the topology on X.

For, since B satisfies both conditions for a basis.

The second condition is illustrated in figure 1.2.1.

In the topology generated by B, a subset U of the

plane is open if every x in U lies in some circular region Figure 1.2.1

contained in U.
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Example 2.

Let B' be the collection of all rectangular regions (ie, the interior of the
rectangular) in the plane, where the rectangular have sides parallel to the coordinate

axes. Then B' is a basis for the topology on X.

For, since B’ satisfies both conditions for a basis. The

second condition is illustrated in figure 1.2.2. In this case,

x e

the condition is trivial, because the intersection of any two

basis elements us itself a basis element (or empty). B B

In the topology generated by B’', a subset U of the

plane is open if every x in U lies in some rectangular region

contained in U.

Example 3.

If X is any set, then the collection T of all one-point subsets of X is a basis for
a discrete topology on X and the collection T generated by the basis B is a topology
on X.

Solution.

If U = @ then clearly U is open
~U=0€T

If for each x € X, there exist a basis element B containing x and B € X
~XeT

Let us take the indexed family {U,}4¢; of the elements of T
Show that U = Uge; Uy €T

Given x € U, there is an index «a such that x € U,.

Since U, is open, there is a basis element B such that x € B € U,,.
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Thenx € Band B c U.

=~ By definition, U is open

~U=UgeUg €T

Next, we show that N\}., U; € T

Now, let us take two elements U; and U, of T and show that U; N U, € T

Given, x € U; N U,, choose a basis of element B; containing x such that x € B; € U;

and also choose a basis element B, containing such that x € B, c U,.

Then, by definition, we have to choose a basis element B; containing x such that x €

B; € B; N B,.
Then x € B3 and B; € U; N U,
oo U1 n Uz € T (1)

Finally, we show by induction that any finite intersection

This fact is trivial whenn = 1

Suppose it is true for n — 1 and prove it for n

Now, Uy nNU, N ... ... .. NU,=WU;NnU,N ....... NU,_1) NU,
By induction hypothesis Uy N U, N ... ... ... N U,_1 € T and by result (1)
U;nU,N......... NU,_y)NU, €T
e, UynU,N....... nNU,eT

~ The result is true for n

Thus, the collection of open sets generated by a basis B is a topology.

Lemma 1.2.1.

Let X be a set. Let B be the basis for a topology T on X. Then T equals the

collection of all unions of elements of B.
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Proof.

Let X be a set and B be the basis for the topology 7" on X.

Given a collection of elements of B, they are also an element of T
Since T is a topology, then their union is in T

Conversely, given, U € T

For each x € U, choose an element B, of B such that x € B, c U.
Then U = Uyey By

Hence U equals a union of elements of B.

Lemma 1.2.2.

Let X be a topological space. Suppose that C is a collection of open sets of X
such that for each open set U of X and each x in U, there is an element C of C such that

x € C c U. Then C is a basis for the topology of x.
Proof.
We show that C is a basis

Given x € X. Since X itself an open. Then by hypothesis there is an element C of
C such that x € C C X.

Letx € C; N C,, where C;,C, € C

Since C; and C, are open, C; N C, is open.

By hypothesis, there exist an element C5 of C such that x € C3 € C; N C,
=~ C is a basis.

Let T be the collection of open sets of X.

We show that, the topology T generated by C equals the topology T'.

First note that, if U € T and x € U, then by the hypothesis, there is an element
Cof Csuchthatxe C c U
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~U eT’

Conversely, if W € T', then by lemma 1.2.1 W equals a union of elements of C .
Since, each element of C belongs to 7" and T is a topology.

~WEeT.

Thus T =T

Hence, C is a basis for the topology of X.

Lemma 1.2.3.

Let B and B’ to the bases for the topologies T and T’ respectively on X. Then the

following are equivalent.

)] T is finite than T
i) For each x € X and each basis element B € B containing x, there is a basis

element B’ € ®B'. Such that x € B’ c B.
Proof.
@)=
Given an element U € T
We show that U € T’
Letx €U
Since B generates T, there is an element B € B such that x € B c U
By (2), there exist basis element B’ € B’ such that x € B’ € B
Thenx € B' c U
So, by definition, U € T’
~ T is finer than T
@) = (@)

Givenx € X and B € B withx € B
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Then by definition B € T and T’ 2 T, by (i)
~BEeT’

Since, T’ is the topology generated by B’, there is an element B’ € B’ such that x €
B'cB

Definition.

If B is the collection of open intervals in the real line, (a, b) = {x/a < X < b},

the topology generated by B is called the S on the real line.

If B’ is the collection of all half-open intervals of the form [a, b) = {x/a < x <
b}, where a < b, the topology generated by B' is called the lower limit topology. When

R is given the lower limit topology, we denote it by R;.

Let K denote the set of all numbers of the form % for n € Z and let B'’ be the

collection of all open intervals (a, b), along with all lets of the form (a,b) — K. The
topology generated by B" is called the K —topology on R. When R is given this
topology, we denote it by Rg.

Lemma 1.2.4.

The topologies of R; and Ry are strictly finer than the standard topology on R,

but are not comparable with one another.
Proof.
Let 7,7 and T" be the topologies of R, R;, and Ry respectively.

Given a basis element (a, b) for T and a point x € (a, b) the basis element [x, b) for
T' contains x and lies in (a, b). On the other hand, given the basis element [x, d) for

T', there is no open interval (a, b) that contains x and lies on [a, d).
Thus T’ is strictly finer than T".

A similar argument applies to R.
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Given a basis element (a, b) for T and a point x € (a, b), this same interval is a basis
element for T"' that contains x. On the other hand, given the basis element B =
(—1,1) — K and the point 0 of B, there is no open interval that contains 0 and lies in

B.
sThus T is strictly finer than 7.

By definition of R, R; and Ry topologies we have that R; and Ry are strictly finer
than R.

But we cannot arrive that T' < T" and T" < T'

Hence R; and Ry are not comparable.

Definition.

A subbasis S for a topology on X is a collection of subsets of X whose union

equals X. The topology generated by the subbasis S is defined to be the collection T of

all unions of finite intersection of elements of §.

1.3.The order Topology

Definition.

If X is a simply ordered set, there is a standard topology for X, defined using

the order relation. It is called the order topology.

Suppose that X is a set having a simple order relation <. Given elements a and
b of X such that a < b, there are four subsets of X that are called the intervals

determined by a and b. They are the following:
(a,b) = {x]a < x < b},
(a,b] = {x|la < x < b},

[a, b)

{x|la < x < b},

[a,b] = {x]a < x < b}.
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A set of the first type is called an open interval in X, a set of the last type is called a
closed interval in X, and sets of the second and third types are called half-open

intervals.

Definition.

Let X be a set with a simple order relation; assume X has more than one

element. Let B be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [a,, b), where a, is the smallest element (if any) of X.
(3) All intervals of the form (a, by], where by is the largest element (if any) of X.
The collection B is a basis for a topology on X, which is called the order topology.

If X has no smallest element, there are no sets of type (2), and if X has no largest

element, there are no sets of type (3).

Example 1.

The standard topology on R is the order topology derived from the usual order

on R.

Example 2.

Consider the set R X R in the dictionary order; we shall denote the general
element of
RXR by J’
x X y.The axb
set RXR

axd

has neither

a largest ox d axb

nor a T

smallest Figure 1.3.1
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element, so the order topology on R X R has as basis the collection of all open intervals
of the form (a X b, ¢ X d) for a < ¢, and for a = ¢ and b < d. These two types of
intervals are indicated in Figure 1.3.1. The subcollection consisting of only intervals of

the second type is also a basis for the order topology on R X R.

Example3.

The positive integers Z, form an ordered set with a smallest element. The order
topology on Z, is the discrete topology, for every one-point set is open: If n > 1, then
the one-point set {n} = (n — 1,n + 1) is a basis element; and if n = 1, the one-

point set {1} = [1, 2) is a basis element.

Example 4.

The set X = {1,2} X Z, in the dictionary order is another example of an
ordered set with a smallest element. Denoting 1 X n by a,, and 2 X n by b,, we can

represent X by
a ,ap,...; blleF"'

The order topology on X is not the discrete topology. Most one-point sets are open, but
there is an exception—the one-point set {b; }. Any open set containing b; must contain a
basis element about b, (by definition), and any basis element containing b; contains

points of the a; sequence.

Definition.
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If X is an ordered set, and a is an element of X, there are four subsets of X that

are called the rays determined by a. They are the following:
(a,+20) = {x|x > a},
(—%a) = {x|x < a},
[a,+20) = {x|x = a},
(=o%a] = {x|x < a}.

Sets of the first two types are called open rays, and sets of the last two types are called

closed rays.

1.4.The Product Topology on X X Y

If X and Y are topological spaces, there is a standard way of defining a
topology on
the cartesian product X x Y.

Definition.

Let X and Y be topological spaces. The product topology on X X Y is the
topology having as basis the collection B of all sets of the form U X V, where U is

an open subset of X and V is an open subset of Y.

Note. The collection B of all sets of the form U X V, where U is an open subset of X

and V'is an open subset of Y. Then B is a basis for X X Y but nota topologyonX X Y.

For, the first condition is trivial, since X X Y is itself a basis element.
LetU; xV;,U, XV, € B.
Then

Uy x V1) N (Uz X V) = (U nUz) x (V1 N V),
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Since U; and U, are openin X, U; N U, isopenin X.

Similarly, V; n V, isopeninY.

Therefore, (U; N U,) x (V; N V,) is a basis
element 1

vy

= (U, x V1) n (U, x V,)isabasis element.

ra rd N
A < rd

- the second condition for a basis is satisfied. y

— U
Thus B is a basis for X x Y. See Figure 1.4.1.

A

Y,

Figure 1.4.1

Note that the collection 8B is not a topology on X X Y. The union of the two
rectangles pictured in Figure 1.4.1, for instance, is not a product of two sets, so it

cannot belong to B; however, it is openin X X Y,

Theorem 1.4.1.

If B is a basis for the topology of X and C is a basis for the topology of Y, then
the collection D = {B X C|B € B and C € C } is a basis for the topology of X X Y.

Proof.
We apply Lemma 1.2.1,
Given an open set W of X X Y and a pointx X y of W

Then by definition of the product topology, there is a basis element U X ¥V such that

xXy€eEU XV cW.

Because B and C are bases for X and Y, respectively, we can choose an element B of B
such that x € B c U, and an element C of C suchthaty € Cc V. Thenx X y€B X C
cw.

Thus, the collection D meets the criterion of Lemma 13.2, so D is a basis for X X Y.

Example 1.

We have a standard topology on R: the order topology. The product of this
topology with itself is called the standard topology on R x R = R?. It has as basis the

collection of all products of open sets of R, but the theorem 1.4.1 tells us that the much
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smaller collection of all products (a, b) X (c,d) of open intervals in R will also serve
as a basis for the topology of R?. Each such set can be pictured as the interior of a

rectangle in R2.

Definition.

Let m; : X X Y — X be defined by the equation m;(x,y) = x; let m, :
X X Y — Y bedefined by the equation ,(x,y) = y. The maps m; and 7, are called

the projections of X X Y onto its first and second factors, respectively.

Remark.

If U is an open subset of X, then the set %" W)
n;(U) = U XY ,whichisopeninX X Y. Similarly,

CILEE, ,.,2‘1 v)

if V'is open in Y, then m; (V) = X X V, which is {
v

alsoopenin X X Y . The intersection of these two sets

isthe set U X V, as indicated in Figure 1.4.2.

Figure 1.4.2

Theorem 1.4.2.

The collection § = {7 (U) | U openinX} U {n;*(V)|V openinY }is a
subbasis for the product topology on X X Y.

Proof.
Let T denote the product topology on X X Y ;
Let 7' be the topology generated by §.

Because every element of S belongs to T, so do arbitrary unions of finite intersections

of elements of S.

Thus 7' c T .
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On the other hand, every basis element U X V for the topology T is a finite intersection

of elements of S, since U X V = w1 (U) n w; 1(V).

Therefore, U X V € T,sothatT c T as well.

1.5. The Subspace Topology

Definition.

Let X'be a topological space with topology T . If Yis a subset of X, the collection
Ty ={YnU|U €T} is a topology on Y, called the subspace topology. With this
topology, Y is called a subspace of X; its open sets consist of all intersections of open

sets of X with Y.

Lemma 1.5.1.
If B is a basis for the topology of X then the collection
By ={BNY|B € B}
is a basis for the subspace topology on Y.
Proof.
Consider U is open in X.
Given B is a basis for the topology of X.
We can choose an element B of B such thaty € B c U.
Theny € BNY cUNY ,since By ={BNY|B € B}.
It follows from Lemma 1.2.2 that By is a basis for the subspace topology on Y.
Definition.

IfY is a subspace of X, we say that a set U is open in Y (or open relative to Y)
if it belongs to the topology of Y; this implies in particular that it is a subset of Y. We
say that U is open in X if it belongs to the topology of X.
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Lemma 1.5.2.

Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open
in X.

Proof.

Given U is open in Y and Y is open in X.

Since U is open in Y and Y is a subspace of X then U =Y NV where V is open
in X.

Since Y and V are both open in X, Y NV is open in X.

Therefore, U is open in X.

Theorem 1.5.3.

If A is a subspace of X and B is a subspace of Y, then the product topology on

A X B is the same as the topology A X B inherits as a subspace of X X Y.
Proof.

The set U X V is the general basis element for X X Y, where U is open in X and V is

open in Y.

Then (U X V) N (A X B) is the general basis element for the subspace topology on
A X B. Now

(UxV)N(AxXB)=UnA) x{nB).

Since U N A and V N B are the general open sets for the subspace topologies on A and
B respectively, the set (U N 4A) X (V N B) is the general basis element for the product
on A X B.

The bases for the subspace topology on A X B and for the product topology on A X B

are the same.

Hence the topologies are the same.
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Remark.

Now let X be an ordered set in the order topology, and let Y be a subset of X.
The order relation on X, when restricted to Y, makes Y into an ordered set. However,
the resulting order topology on Y need not be the same as the topology that Y inherits
as a subspace of X. We give one example where the subspace and order topologies on

Y agree, and two examples where they do not.

Example 1.
Consider the subset Y = [0,1] of the real line R, in the subspace topology.

The subspace topology has as basis all sets of the form (a, b) NY, where (a, b) is an

open interval in R. Such a set is of one of the following types:

(a,b) if aand b are inY,
_ [0,b) if onlybisinY,
(@b)ny = (a,1] if onlyaisiny,
Yor@ if neitheranorbisinY

By definition, each of these sets is open in Y. But sets of the second and third types are

not open in the larger space R.

Note that these sets form a basis for the order topology on Y. Thus, we see that in the
case of the set ¥ = [0, 1], its subspace topology (as a subspace of R) and its order

topology are the same.
Example 2.

Let Y be the subset [0,1) U {2} of R. In the subspace topology on Y the one-

5) with Y. But in

. . . . . 3
point set {2} is open, because it is the intersection of the open set (E’ 5

the order topology on Y, the set {2} is not open. Any basis element for the order topology

on Y that contains 2 is of the form
{x|x € Yanda < x < 2}

for some a € Y; such a set necessarily contains points of Y less than 2.
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Example 3.

Let 7=[0,1]. The dictionary order on I X I is just the restriction to I X I of the

dictionary order on the plane R X R.

However, the dictionary order topology on [ X I is not the same as the subspace

topology on I X I obtained from the dictionary order topology on R X R!.

For example, the set {1/2} X (1/2,1] is open in I X I in the subspace topology, but not
in the order topology. See Figure 1.5.1.

M
2 ¢
™
Subspace Order

Figure 1.5.1

The set /X1 in the dictionary order topology will be called the ordered square,

and denoted by I3.

Definition.

Given an ordered set X, let us say that a subset ¥ of X is convex in X if for
each pair of points a < b of Y, the entire interval (a, b) of points of X lies in ¥ . Note

that intervals and rays in X are convex in X.
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Theorem 1.5.4.

Let X be an ordered set in the order topology; let Y be a subset of X that is
convex in X. Then the order topology on Y is the same as the topology Y inherits as a

subspace of X.
Proof.
Consider the ray (a, + <) in X.

Ifa €Y, then(a,+9) NY = {x|x € Y and x > a}; this is an open ray of the

ordered set Y.

Ifa € Y, then a is either a lower bound on Y or an upper bound on Y, since Y is

convex.
Ifa€eY , theset(a,+°)NY equalsallof Y. If a € Y, it is empty.

Similarly the intersection of the ray (—©9,a) N'Y is either an open ray of Y, or Y itself

or empty.

Since the sets (a,+°) NY and (—22,a) N Y form a subbasis for the subspace

topology on Y and since each is open in the order topology, the order topology

contains the subspace topology.
Conversely, Y equals the intersection of X with Y, thatis X NY =Y.

So, it is open in the subspace topology on Y. The order topology is
contained in the subspace topology. Therefore, the order topology and

subspace topology are same.

1.6. Closed Sets and Limit Points

Definition.

A subset A of a topological space X is said to be closed if the set
X — A is open.
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Example 1.

(1)The subset [a, b] of R is closed because its complement

R —[a,b] = (—=22,a) U (b, + ©0), is open.

(i1)Similarly, [a, + <°) is closed, because its complement (—°°, @) is open.

(iii)The subset [a, b) of R is neither open nor closed.

Example 2.

In the plane R?, the set {x X y|x = Oandy = 0}is closed,
because its complement is the union of the two sets (—°9,0) X R and
R X (—29,0), each of which is a product of open sets of R and is, therefore,

open in R?,

Example 3.

In the finite complement topology on a set X, the closed sets consist

of X itself and all finite subsets of X.

Example 4.

In the discrete topology on the set X, every set is open,; it follows that

every set is closed as well.

Example 5.
Consider the following subset of the real line:

Y = [0,1] U (2,3),
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in the subspace topology. In this space, the set [0,1] is open, since it is the
intersection of the open set (—%,g) of R with Y. Similarly, (2, 3) is open

as a subset of ¥; it is even open as a subset of R. Since [0,1] and (2,3) are
complements in Y of each other, we conclude that both [0,1] and (2,3) are

closed as subsets of Y.

Theorem 1.6.1.
Let X be a topological space. Then the following conditions hold:
(1) @ and X are closed.
(2) Arbitrary intersections of closed sets are closed.
(3) Finite unions of closed sets are closed.
Proof.

(1) @ and X are closed because they are the complements of the open set X

and @ respectively.

(2) Consider a collection of closed sets {Ay}qe; , We apply De Morgan’s

x=[N4e = Jor-40

a€g]j ae]

law,

Since the sets X — A, are open. By definition of closed sets, the right side

of this equation represents an arbitrary union of open sets and is thus open.

Therefore, Ngej Ag 1s closed.

(3) Similarly, if 4; is closed fori = 1,2,- - -, n. Consider the equation
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’:@

n n
i=1 i=1

The set on the right side of this equation is a finite intersection of open

sets and is therefore open. Hence UL, 4; is closed.

Definition.

If Y is a subspace of X, we say that a set A 1s closed in Y if A is a
subset of Y and if A is closed in the subspace topology of Y (that is, if ¥ —
AisopeninY).

Theorem 1.6.2.

Let Y be a subspace of X. Then a set Ais closed in Y if and only if it equals

the intersection of a closed set of X with Y.

Proof.

Assume that A = C NY , where C is closed in X. See Figure 1.6.1.
Then X — C isopenin X, so that (X —C) NY isopenin Y.

By the definition of the subspace topology, but (X — C) NnY =Y — A.

Hence Y — A is open inY, so that A is closed in Y.

Conversely, assume that Ais closedin Y. See [r y

Figure 1.6.1 ¢

ThenY — Aisopenin.
By definition, it equals the intersection of an open set U of X with Y.

Theset X —Uisclosedin Xand A =Y N (X — U).
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Hence A equals the intersection of a closed set of X with Y.

Theorem 1.6.3.

Let Y be a subspace of X. If A is closed in Y and Y is closed in X,
then A is closed in X.

Proof.

Given Ais closed in Y and Y s closed in X.

Since A is closed in Y and Y is a subspace of X.

Let A=Y N (X — B) where X — B is open in X. Then B is closed in X.

Since Y and B are both closed in X. Then Y N (X — B) is closed in X.

Therefore, A 1s closed in X.

Closure and Interior of a Set
Definition.

Given a subset A of a topological space X, the interior of A is
defined as the union of all open sets contained in A, and the closure of A

is defined as the intersection of all closed sets containing A.

The interior of A is denoted by Int A and the closure of A is
denoted by Cl A or by A. Obviously Int A is an open set and A is a closed

set; furthermore,
IntA c A c A.

If A is open, A = Int A; while if A is closed, A = A.
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Theorem 1.6.4.

Let Y be a subspace of X; let 4 be a subset of Y; let A denote the
closure of 4 in X. Then the closure of 4in Yequals A N Y.

Proof.

Let B denote the closure of A in Y. The set A is closed in X, so AN Y is

closed in Y.
By Theorem 1.6.4, since A N'Y contains A and since B is closed.

By definition B equals the intersection of all closed subsets of Y

containing A, we must have B N (A NY).

On the other hand, we know that B is closed in Y. By Theorem 1.6.4, B =

C NY for some set C closed in X.

Then C is a closed set of X containing A; because A is the intersection of

all such closed sets, we conclude that A € C. Then

(AnY)c (CNY) = B.Therefore, B=ANY.

Note. We shall say that a set 4 intersects a set B if the intersection 4 (1 B

is not empty.

Theorem 1.6.5.
Let 4 be a subset of the topological space X.
(a) Then x€A if and only if every open set U containing x intersects A.

(b) Supposing the topology of X is given by a basis, then x € A if and only

if every basis element B containing x intersects A.
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Proof. (a)We prove this theorem by contrapositive method.
If x is not in A, since A is closed, A = A. The set U =X — A is an open set

containing x that does not intersect A.

Conversely, if there exists an open set U containing x which does not

intersect

A. Then X — U i1s a closed set containing A.
By definition of the closure A, the set X — U must contain A, since x € U.

Therefore, x cannot be in A.

(b) Write the definition of topology generated by basis,if every open set x

intersects
A, so does every basis element B containing x, because B is an open set.

Conversely, if every basis element containing x intersects A, so does every

open

set U containing X, because U contains a basis element that contains X.

Definition.

If A is a subset of the topological space X and if x is a point of X, we
say that x is a limit point(or "cluster point” or "point of accumulation”)
of A if every neighborhood of x intersects A in some point other than x
itself. Said differently, x is a limit point of A if it belongs to the closure of

A — {x}. The point x may lie in A or not; for this definition it does not

matter.
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Theorem 1.6.6.

Let A be a subset of the topological space X; let A" be the set of all
limit points of A. Then A=A U A

Proof.

Let A" be the set of all limit points of A.

If x € A’, every neighborhood of x intersects of A in a point different from

x. By

Theorem 1.6.5, x € A. Then A'c A.

By definition of closure, A © A. Therefore, A U A’ c A.
Conversely, letx € A

To show that A c AU A’

If x € A then it is trivially true forx E AU A’

Suppose x & A. Since x € A, by 0.6.8, we know that every neighborhood
U ofx

intersect A, because x € A, the set U must intersect A in a point different

from

x. Thenx €A’ sothatx EAUA’
ThenAc AUA’

Therefore, A=A U A’
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Corollary 1.6.7.

A subset of a topological space is closed if and only if it contains all

its limit points.
Proof.

The set A is closed iff A = A . By Theorem 1.6.7, A’ ¢ A.

Definition.

A topological space X is called a Hausdroff space if for each pair
X1, X, of distinct points of X, there exist neighborhoods U; and U, of x;

and x, respectively, that are disjoint.

Theorem 1.6.8.

Every finite point set in a Hausdorff space X is closed.
Proof.
It is enough to show that every one-point set {x,} is closed.

If x is a point of X different from x,, then x and xyhave disjoint

neighborhoods
U and V respectively.

Since U does not intersect {x, }, the point x cannot belong to the closure of

the
set {xo}.
As a result, the closure of the set {x,} is {x,} itself.

Therefore, {x,} is closed.
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Note: The condition that finite point sets be closed is in fact weaker than
the Hausdroff condition. For example, the real line R in the finite
complement topology is not a Hausdorff space, but it is a space in which
finite point sets are closed. The condition that finite point sets be closed

has been given a name of its own; it is called the T; axiom.

Theorem 1.6.9.

Let X be a space satisfying the T; axiom; let A be a subset of X. Then
the point x is a limit point of A if and only if every neighborhood of x

contains infinitely many points of A.
Proof.

If every neighborhood of x intersects A in infinitely many points, it
certainly intersects A in some point other than x itself, so that x is a limit

point of A.

Conversely, suppose that x is a limit point of A and suppose some

neighborhood U of x intersects A in only finitely many points.
Let {x1,x5," - +, X;n} be the points of U N (A — {x}).

The set X — {x1,x,," - -, x,;n} is an open set of X, since the finite point set

{x1, %2, * +, X;n} 1s closed then

UN X —{x, %2+, x%m})
is a neighborhood of x that does not intersects the set A — {x}.
Since {xq, x5, * -, X, Jbe points of U N (A — {x}).

This contradicts the assumption that x is a limit point of A.
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Theorem 1.6.10.

If X is a Hausdorff space, then a sequence of points of X converges

to at most one point of X.

Proof.

Suppose that x,, is a sequence of points of X that converges to x.

Ify # x,let U and V be disjoint neighborhoods of x and y respectively.

Since U contains x,, for all but finitely many values of n, the set V cannot

contains X,,.
Therefore, x,,cannot converge.

If the sequence x, of points of the Hausdorff space X converges to the point

x of
X, we often write x,, = x.

Therefore, x is the limit of the sequence x,,.

Theorem 1.6.11.

Every simply ordered set is a Hausdorff space in the order topology.
The product of two Hausdorff spaces is a Hausdorff space. A subspace of

a Hausdorff space is a Hausdorff space.
Proof.

Let X and Y be two Hausdorff spaces.
To prove X X Y is Hausdorff.

Let x; X y; and x, X y, be two distinct points of X X Y .
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Then x4, x, are distinct points of X and X is a Hausdorff space, there exists

neighborhood U; and U, of x; and x, suchthat U; N U, = @

Similarly, y,, y, are distinct point of Y and Y i1s a Hausdorff space, there
exists neighborhood V; and V, of y; and y, suchthatV; NV, = @.

Then clearly U; X V; and U, XV, are open sets in X XY containing

X1 X y; and

X, Xy, suchthat (U X V) N (U, xXV,) = Q.
Therefore, X X Y is a Hausdorff space.

Let X be a Hausdorff space and let Y be a subspace.
To prove Y 1s a Hausdorff space.

Let y4, y, be two distinct points of Y and Y containing X. Then y; and y,
are distinct points in X and X is Hausdorff there exists neighborhood U,
and U, of y; and y, suchthat Uy N U, = @. ThenU; NY and U, NY are
distinct neighborhoods of y; and y, in Y .

Therefore, Y 1s a Hausdorff space.
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UNIT -2
CONTINUOUS FUNCTIONS

2.1. Continuous Functions

Continuity of a function.
Definition.

Let X and Y be a topological spaces. A function f:X — Y is said to be

continuous if for each open subset V of Y, the set f~1(V) is an open subset of X.

Note. f~1(V ) is the set of all points x of X for which f(x) € V ; itis empty if V does

not intersect the image set 7(X) of f.

Remark.

If the topology of the range space Y is given by a basis B, then to prove the

continuity of f, it is sufficient to prove that the inverse of every basis element is open:

For, the arbitrary open set V of Y can be written as V = U, B, of basis element

Thenf"l(V) = f_l(Uae] Ba) = Uae]f_l(Ba) is open.

Remark.

If the topology of Y is given by a subbasis S, then to prove the continuity of f,

it is sufficient to prove that the inverse images of each subbasis element is open:

For, the arbitrary basis element B of Y can be written as the finite intersection

of subbasis element.

=B = SDNFTHS) NN fTH(SR)
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~ f71(B) is open if each set f~1(S;), f71(S,) ... ... f71(S,) is open.

Example 1.
Prove that our definition of continuity implies € — § definition
Solution.
Consider f: R = R is a real valued function of a real variables
Let xy€R (domain)
Lete > 0be givenand V = (f(xy) — €, f(xo) + €)
Then V is an open set of the range space R.
By definition of continuity, f ~1(V) is open set in the domain space R.
Since f(x,) € f~1(V)
~ We can choose an open interval (a, b)
Such that x, € (a,b) € f~1(V)
Let § = min{xy, —a, b — xy}
Thend >0
Let [x- xo| < 8§ = x € (a,b)
=x € f (V)
= f(x) eV
= f(x) € (f(x0) —€,f(x0) + €)
= fxg)—€< f(x) < fxp) + €
= —e<f(x)—f(xy) <€
= |f() = flxo)l <€

e, |lx —xol <= |f(x) — f(xg)| <€
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Example 2.

Let R denote the set of real numbers n its usual topology and let R; denote the

same set with lower limit topology.

Let f: R — R; be the identity function.

Such that, f(x) = x, then f is not continuous
For, the inverse image of [a, b)

ie., f7(a,b)] = [a, b) of equals itself.

But this interval is not open in R, on the other hand the identity function g: R; >R is

continuous.

Since, inverse image of [a, b) is itself open in R;.

Theorem 2.1.1.

Let X and Y be the topological spaces. Let f: X — Y be a mapping. Then the

following are equivalent.

Q) f is continuous.

(i)  for every subset A of X one has f(4) c f(A).

(iii)  For every closed set B of Y, the set f~1(B) is closed in X.

(iv)  Foreach x € X and each neighbourhood V of f(x), there is neighbourhood
Uof x suchthat f(U) c V.

If the condition (iv) holds for the point x € X. We say that f is continuous at the

point x.
Proof.
To show that (i) = (ii) = (iii) = (i) and (i) = (iv) = (0).
= ()
Suppose that f is continuous

To prove, f(A) c f(A)
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Let x € 4, then f(x) € f(4)
Claim: f(x) € f(4)

Since f is continuous, f~1(V) is an open set of X containing x, where V be a

neighborhood of f(x).

Now, f~1(V) intersects A in some point y

= V intersect f(A) in the point f(y)

= f(x) € f(4)

~ f(A) S flA).

To prove (ii) = (iii)

Let BbeclosedinY.LetA = f~1(B).

To prove f~1(B) is closed in X

LetA = f~1(B)

i.e., To prove A is closed in X

It is enough to prove A = A

Always, A € A

By elementary set theory, we have f(4) = f(f~*(B)) ¢ B

Ifx € A, then f(x) € f(A) c f(A) c B =B.

Since A C A, therefore, A = A.

To prove, (ii1) = (1)

LetV beanopensetinY. ThesetB =Y — V.

Then f~'(B) = f7'(Y = V) = f7I(¥Y) = f'(V) = X = f7H(V)
Now B is a closed set of Y then f~1(B) is closed in X(By hypothesis).
Then f~1(V) is open in X.

Therefore, f is continuous.
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To prove (i) = (iv)

Let x € X and let V be a neighbourhood of f (x)

Then the set U = f~1(V) is a neighbourhood of x such that f(V) c V
To prove (iv) = (i)

Let V be an open set of Y and Let x € f~1(V)

Then f(x) €V

By our hypothesis there is a neighbourhood U, of x such that f(U,) c V
Then U, c f~1(V)

It follows that £ ~1(V) can be written as the union of open set U,

~ f7Y(V) is open in X

Hence f is continuous.

Homeomorphism

Let X and Y be a topological spaces. Let f: X — Y be a bijection. If both the
function f and inverse function f~1:Y — X are continuous. Then f is called a

Homeomorphism.

Remark 1.

The condition that £~ is continuous says that for each open set U of X, the inverse

image of U under the map f~1:V — X isopenin Y.
But (f 7)™ = f
(O = (V)

Hence a homeomorphism is a bijective correspondence f: X — Y such that £ (V) is open

iff U is open.
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Remark 2

The above remark shows that the homeomorphism f: X — Y gives as a bijective
correspondence not only between X and Y but between the collection of open sets of X

and Y

As aresult, any property of X that is entirely expressed in terms of the topology
of X

Yields, via the correspondence f the corresponding property for the space Y,

such a property of X is called a topology property of X.

Topological Imbedding

Suppose that f:X — Y is an injective continuous map where X are Y are

topological space.
Let Z be the image of f(X) condered as a subspace of Y

Then the function f': X — Z. Obtained by restricting the range of f is bijective.

If f" happens to be a homeomorphism of X with Z, we say that the map f: X —
Y is a topological imbedding (or) simply on imbedding of X in Y.

Remark.

Let f:A— B. If there are function, g:B - A and h:B - A show that
glf(x)] = a,Va € A and f[h(b)] = b,Vb € B, then f is bijectiveand g = b = f 1.

Example 1.

Show that the function f:R—>R is given by f(x)=3x+1 is a

homeomorphism.

Solution.
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Define g:R - Rby g(y) = yT_l

Now, g[f (0] = 75~

_ 3411
glf (] =x
and flg(»)] =3[g(M] +1
=3(5) 41
=y—1+1
flal =y

= By the above result, f is bijective and g = f ! we know that the algebraic functions

are continuous.
Since f and f 1 are algebraic functions, we have f and f~! are continuous.

Hence f is a homeomorphism

Example 2.

x
1-x2

Show that the function F: (—1,1) = R defined by F(x) =

is a homeomorphism.

Solution.

Lety =

1-x2
y(1—-x?)=x
y—xly=x
x’y+x—y=0

__ —btVb?-4ac

2a

S X
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—1++/1+4y? 5 —1—/1+4y?
2y —1—y/1+4y?

Now, x =

1-(1+4y?)

T oy(ieira?)

4y?

—2Y(+1+/1+4y2)

2y

1+4/1+4y2

Define G » R - (—=1,1) by G(y) = 1_\/213_:_73,2

2[F(x)]

GClf(0)] = —F——=
1+ /1+4(F(x))2

2x/(1-x2)

/(1—x2)2+4x2

1+
(1-x2)

2x/(1-x2)

/ (1—x2)2 +4x2

o

2x/(1-x2)

(1-x2)V1+x*—2x2 +4x2

(1-2%)

_ 2x
(1-x2)+V1+x4+2x2

2x

oo

_ 2x
T (1-x2)+(1+x2)
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_ 2y/1+/1+4y2
1-4y2/(1++/1+4y?)2

2y /1+4/1+4y2
(w/1+4y2)2—4y2/ (1+/1+4y2)2

— 2y
= Z

o]
(o)

B 2y(1+1/1+4y2)
 1+1tayze2(VTay?)-ay?

3 2y(1+\/T4yZ)
 2(1+/1+4y?)

flanl=y

By the above result F is bijective and G = F~!

We know than the algebraic function and square root functions are continuous
Since F and F~1 are algebraic and square root function

We have F and F~! are continuous

Hence F is homeomorphism

Example 3.

The identity function g: R; = R is not a homeomorphism.

For , since g is bijective and g is continuous but g~* is not a continuous junction.

Example 4.
Let S’ denote the unit circle.
S" = {x X y/x? + y? = 1} considered as a subspace of the plane R>

Let :[0,1) - S’ be the map defined by f(t) = (cos 2mt, sin 27t)
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Then f is not a homeomorphism.
Since, cos 2mt, sin 2t are continuous functions.

Then clearly f is bijective and continuous functions.
1\ .
LetU = [0, Z) in [0,1)

Then the image of U is not open in S’ for the point p = f(U) lies in no open set V of
RZ

Such that V N S’" < f(U)
= f~1 is not continuous.

Hence, f is not a homeomorphism.

Constructing Continuous Functions
Theorem 2.1.2. (Rules for constructing continuous functions)
Let X,Y and Z a topological spaces.

a) (constant function) If f: X — Y maps all of X into the single point x, of Y, then
f is continuous

b) (Inclusion) If A is a subspace of X, the inclusion function j:4A — X is
continuous.

c) (composition) If f: X — Y and g: Y — Z are continuous, thenthemap g,f: X —
Z is continuous.

d) (Restricting the domain) If f: X — Y is continuous and if A is a subspace of X,
then the restricted function f|A: A — Y is continuous.

e) (Restricting (or) expanding the range)

Let f: X — Y be continuous. If Z is a subspace of Y containing the image
set f(x), then the function g: X — Z obtained by restricting the range of f is
continuous. If Z is space having Y as subspace. Then the function h: X —» Z

obtained by expanding the range of f is continuous.

f) (Local formulation of continuity)
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The map f: X — Y is continuous if X can be written as the union of open

sets. Uy. Such that f|U, is continuous for each .
e) (Continuity at each point)

The map f: X — Y is continuous if for each x € X and each neighbour hood V
of f(x), there is a nbd U of x such that f(U) c V

[Note: If the condition (g) holds for a particular point x of X, we say that f is continuous

at the point x]
Proof.

a) Letf(x) =y, VxeX
Let V be an opensetinY

X i eV
men W ={o if5rgy

In either case, f~1(V) is open
Hence f is continuous.
b) LetU beanopensetinY
Then f~1(V) = U n A, which is open in A by the definition of subspace of
topology.
= j is continuous.
c) Let U be anopensetin Z
Since g: Y — Z is continuous.
g () isopeniny
Since f: X — Y is continuous, f~*(g~1(U)) is open in X
i.e., (f"tog™)(U)isopeniny
but f~*e g™t =(gof)7"
~(gof) Y(U)isopeniny.

Hence g o f is continuous.

d) Here f|A = f o j, where j: A = X is the inclusion
Since f and j are continuous, f o j is also continuous.
i.e,. f|A: A - Y is continuous.

e) Let f:X — Y be continuous
i) Iff(x)cZcY
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To prove g: X — Z obtained from f is continuous
Let B be openin Z
Since Z is subspace of Y, B = U n Z, for some openset U in Y
Since f(x) € Z,g~*(B) = 6 1(V) by elementary set theory
Since f is continuous and U is open in Y, f~1(V) is open in X.
= g~ 1(B) isopenin X
g is continuous.
i) GivenY c Z
To prove, h: X — Z is continuous
Here h = j o f where j: Y — Z is the inclusion function
= h is composition of two continuous function
= h is continuous (by(i))
f) If X can be written as the union of open sets U, such that f|,_ is continuous for
each a.
To prove f: X — Y is continuous
Let V be an opensetinY
Claim: f~1(V) is open in X
Now, f (V) NUy = {x/x € f~1(V) N U}
={x/x € f71(V)and x € Uy}

X
—{%EVandeUo(} - (1)

Also, (fly,) (V) = (x €U /f(X) €V} - (2)

From (1) and (2) F2(V) N Uy = (fly.)” (V)

Since fy,: Ux — Y continuous and V is open in 'Y
(flu.)”"(v) B open in Uy,

But Uy is open in X.

(fIU“)_l(V) is open in X

= f~1(V) N U, is open in X

But U [f*(V) N U] = f71(V) N [UsUs]
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=f1V)nx
=f7)

i.e., f~1(V) is the union of open sets of X

= f~Y(V) is open in X

=~ f is continuous

g) Toprove f: X — Y is continuous

Let V be an open in Y

Claim : f~1(V) is open in X

Letx c f~1(V)

=>f(x) eV

By hypothesis, there is a neighbour hood U, of x of X

Such that, f(U,) c V

Then U, c f~1(V)

=~ for each x € f~1(V), we can change a neighbour hood U, of x of U,

1)
“f V) = Ugep-10) Uy
= f~1(V) is a union of open sets of X.
= f~1(V) is open in X

Hence f is continuous.

Theorem 2.1.3 (Pasting Lemma)

Let X = AU B, where A and B are closed in X. Let f:A—> Y and g:B — Y be
continuous if f(x) = g(x) for every x € AN B then f and g combined to give a
continuous function h: X — Y defined by setting h(x) = g(x) if x € A and h(x) =
g(x)ifx € B.
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Proof.

Let X = A U B where A and B are closed in X.

Since f : A — Y is continuous, f~1(C) is closed in A, where C is closed in Y.
Since g : B — Y is continuous, g~ (C) is closed in B where C is closed in Y.
Ifx € A, h(x) = f(x)and if x € B, h(x) = g(x).

Ifx€ AUB,h(x) = f(x) U g(x).

Now h™1(C) = f~1(C) u g 1(0).

Then h™1(C) is closed in A U B.

Then h=1(C) is closed in X.

Therefore, h is continuous.

Theorem 2.1.4 [maps into product]

Let A - X XY be given by the equation f(a) = (fl(a),fz(a)) then f is

conditions iff the function f;: A — X and f,: A = Y are continuous.
The maps f; and f, are called the co-ordinate functions of f.

Proof

Letmi: X XY - Xand my: X X Y — Y be projections on to the first and second factors,

respectively.

Claim: m; and m, are continuous

We know that 7; 2 (U) = U X Y and ;1 (V) = X X V

If U and V are open, these sets are open.

Sincef: A > XXYm:XXY > Xandn,: X XY - Y foreverya € A.

Sincef;: A - Xandf,: A » Y

fila) = m(f(a)) and f(a) = m,(f(a))
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If the function f is continuous, then f; and f, are composites of continuous functions,
f1 and f, are continuous.
Conversely, suppose that f; and f, are continuous
To prove f: A = X X Y is continuous
Let U X V be any basis element for the product topological space X X Y
Then U and V are open in X and Y respectively
To prove f~1(U X V) is openin A
Claim, f~Y(U x V) = f~Y(U) n fF~X(V)
ca€flUxV)e f(a) eUxXV
A (f1(a),f2(a)) eEUXV
© fi(a) eUand f,(a) €V
oa€ff (U)anda € f,1(V)
ea€ fiW)N V)
Since, fi: A = X is continuous and U is open in X
We have f;1(U) is open in A
Also, since f,: A = Y is continuous and V is open in Y
We have £, 1(V) is open in A
~ W) n £ 2 (V) is openin A
= f~Y(U xV)isopenin A
Hence f is continuous

2.2. The product Topology

Definition.

Let J be an index set. Give a set X. We define a J] — tuple of elements of X to

be a function x: ] — X. If X is an element of /, we often denote the value of x at a by
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x, rather than x(a). We call it the a'* co-ordinate of x and we often denote the

function x itself by the symbol (x,)qe; which is as close as we can come to a tuple

notation form arbitrary index set /. We denote the set of all /] —tuples of the element of

X by X/.

Definition.

Let {Ay}qe; be an indexed family of set. Let X = UyejAy. The Cartesian
product of this indexed family, denoted by [[,e; Ag, is defined to be the set of all

J —tuples (xq) e of elements of X such that x, € A, for each a € J.

i.e., it is the set of all functions x:J = Ugej A, such that X(a) € A, for each

a€]

Definition.

Let {X4}4e; be an indexed family of topological spaces. Let us take as a basis
for a topology on the product space [[,¢; X, of the collection of all the sets of the form
[1ae; Uy where U, is open in X, for each a € J. The topology generated by this basis

is called the box topology.

Remark: The collection [[,¢; Uy, is a basis for a topology on [[ne; X4

This collection satisfies the first condition for a basis because X, is itself a
basis element and it satisfies the second condition because the intersection of any two

basis element is another basis element.

(Hae] Ua) n (Hae] Va) = Hae](Ua N V)

Hence, the above collection is basis for the topology.

Definition.
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The function 7g:[[qe; Xo — Xp defined by n/;((xa)aej) = xg is called the

projection mapping associated with the index £.

Definition.
Let Sg denote the collection
Sp = {ngl(U/;)/U,; is open in Xp}
and let § denote the union of these collection,
S = Upe;Sp

The topology generated by the subbasis S is called product topology. In this topology
[1ae) Xq is called the product space.

Theorem 2.2.1[Comparison of the box and product topology]

The box topology on [ X,, has a basis all set of the form [[ U, where U,, is open
in X, for each a. The product topology on [] X, has a basis all sets of the form [] U,,.
Where U, is open in X, for each a and U, equals X, except for finitely many values

of .
Proof.

By definition of box topology, the basis for box topology on [[X, is B, =
{I1U, U, is openin X, }.

By definition of product topology, the basis for the topology on [] X,, is Bp then Bp is
the collection of all finite intersection of elements of § and Sp = {mg 1(Uﬁ) /Ug is open

Case (i): We take finite intersection of elements of Sp.
Let g " (Ug), mz" (V). 5 (Wp) € Sp

Let B =z (Ug) Nz (V) gt (Wg)
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=z (Us NV NW;) €85 By,
= n[}l(U[’;), where U['; =UgNVpNWs

B = [lqe; Uy where Uy is open in X, for a = ay, ay, ... ... a, and U, — X, for a #

Case (ii): We take intersection of elements from different Sg's.

Let B' = mz*(Up,) Nz " (Ug,) N ....n 1z (Ug,)

Letx = (xg)qe; € B’
Then x = (Xo)qej € B' © (Xa)aej € 15 (Up,) . N 15 (Ug,)
© (Xg)aey EUp, X oo. X Up, X . X Up X ...
© x, €U, for a = By, B, B3y e oo Bn and x, € X, for
a = P1, B2, B3y wov . B
© (xg) € [laej Uy Where is open in X,
For a = B1,55, B3, - - B, and U, = X, for a # B4, B2, B3, - - Bn
B’ = [lge; Uy where Uy is open in X,

Hence in both cases we get every basis elements of the product topology in

[[ X, isofthe form[] U,.
Where U, 1s open in X, and U,, = X, except for finitely many values of a.
Clearly the basis B,, ¢ B,

Therefore, the box topology is finer than the product topology.

Theorem 2.2.2.

Suppose the topology on each space X, is given by a basis B,. The collection

of the set of the form [],¢; B,, where B, € B, for each a, will save as a basis for the
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box topology on []ne; X,. The collection of all sets of the same function form where
B, € B, finitely many induces a and B, = X, for all the remaining indices, will save

as a basis for the product topology [1ne; Xq-

Proof.

Letl = {Haej B, € B, is a basis for xa} for each a.
B, is a collection of open set in X, for every a.

[Taej Ug is openin [[ge; Xy

Therefore [ is a collection of open sets in 7y,

To prove [ is a basis for the box topology in [[,¢; Xq-
Now, x = (xa:)ae] € Hae]Xa

Let U be an open set in 7y, containing x

Now U is an open set in the box topology in 7ty ,x € U
There exists a basis element [[,¢; U, such that x € [[,e; Uy € U
= x, € U, for each a

Now, x, € U, and U, is open in X, and B, is a basis for X, there exists B, € B, such

that x, € B, < U, for each a.
Then (xa)aej € Hae] B, c Hae] Uqg C U.
i.e., X € HCZE]B(X cU

For every x € my_and any open set U containing x there exists [[4e; B, in [ such that

x € [[ge; By € U.
By Lemma 1.1.2, [ is a basis for the box topology on the product space [[4¢; X,

Let I' = {[lgej By /By for finitely many indices and B, = X, for the remaining

indices}
To prove I is a basis for the product topology on [[4e; X,

Let x = (xg) € [laej Xa
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Let V be an open set in []4¢; X, containing x, there exists a basis element [[4¢; U, for
the product topology in [[,e; X, such that x € [[e; U, © V, where Uy, is open in

Xy, fora =aq, ay, a3, ... ... apand U, = X, for a + ay, ay, az, ... ... an
Now, U,; is open in X,; and x,; € U,; then there exist B,; € B,; € U,,.
Define, [14¢; B, where B, € B, for a = ay, ay, az, ... ... an

B, = X, fora # a;,a,, as, ... ... a,

Then clearly, [14e; By € I'and x = (x4)qej € By € [laej Uy € V forall x € [[ye; Xo,

there exists [[,¢; By € I, such that x € [[o¢; B, € V.

By Lemma 1.1.2, " is a basis for the product topology in [] X,.

Example.

Consider the Euclidean space R™. A basis for R consists of all open intervals
in R. Hence, a basis for the topology of R™ consists of all products of the form
(aq, by) X (az by) X ... ... X (ay,, by). Since R™ is a finite product the box and product
topologies are agree. Whenever we consider R", we will assume that it is given this

topology, unless we specifically state otherwise.

Theorem 2.2.3.

Let A, be a subspace of X, for each a € J, then 4 is a subspace of [ X, if
both products are given the box topology or if both products are given the product
topology.

Proof.

By theorem 2.2.1, [[4¢; B, is the basis for the subspace [[ A, (~ A, © Xp)

S HaE]Aa C HaE]Xa-

Theorem 2.2.4.

Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli



If each X, is a Hausdorsff Space, that [[ X, is a Hausdorff space in both the
box and product topology.

Proof.

Since, X, is Hausdorff, then there are distinct neighbour hoods in X, their

product also containing disjoint neighbour hood.

[T X, is Hausdorff.

Theorem 2.2.5.

Let {X,} be an indexed family of space. Let A, < X, for each a. If [[ X, is

given either the product (or) the box topology, then [ 4, = [14,.
Proof.
Letx = (x,) € [14,
To show that x € [[4,
Let U =[] U,, be a basis for the box (or) product topology that containing x.
Since x = (x,) € [14, , We can choose a point y, € U, N A,
Theny = (y,) EUandy € [[A4,

Since, U is arbitrary (x,) € mA,

Conversely, suppose x = (x,) € A,
Such that, x = (x,) € [14,

LetV = my, € my, containing x

Let Vg € Xp containing xp for each f
By the definition of product topology

Since, ngl(Vﬁ) is open in [[4¢; X, in either topology, x5 € Vg € Xp
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Then, ngl(Vﬁ) is open in [ X,
Since, A, € Xo, vy € [144
NOW, yﬁ € V[g N A[g

Then, x5 € Ag

= (x5) €144

Theorem 2.2.6

Let f:A > [lge; X, be given by the equation f(a) = (fa(a))aej where

fu: A = X, for each a. Let [ X, haves the product topology. Then the function f is

continuous iff each function f, is continuous.

Proof

Let f: A - []qe; X, be given by f(a) = (f“(a))aej’ where f: A — [[4e; X, for each

a

Let [14¢; X have the product topology

Now, let g be the projection of the product onto its S factor

ie., mg: [lae) Xo = Xp

If Ug is open in Xg, then g 1 (Uﬁ) is a subbasis element for the product topology on X,
*+ Tg 1s continuous

Now suppose f: A = []qe; X, is continuous

Since, g and f are continuous

The composite of these two maps g o f is continuous
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ie., mg o f = f,, where f;: A > X, is continuous
Conversely, suppose that each function f, is continuous
To prove, f: A = [Igej X, is continuous.

g 1(U[;) is a subbasis element for the product topology on 7y , where Ug is open in
Xg

-1 -1 _ -1 _ -1
£ (3 (Up)) = (mg = ) (Up) = £ *(Up)

Since, f,: A = Xp is continuous, fa_l(U[;) is open in A

o f1 (T[El(uﬁ)) is open in A

=~ fis continuous.

2.3. The Metric Topology

One of the most important and frequently used ways of imposing a topology on
a set is to define the topology in terms of a metric on the set. Topologies given in this
way lie at the heart of modern analysis, for example. In this section, we shall define the

metric topology and shall give a number of examples.

Definition.

A metric on a set X is a function d: X X X — R having the following properties:
(1) d(x,y) = Oforall x,y € X;equality holds if and only if x = y.
2)d(x,y) =d(y,x) forall x,y € X.

(3) (Triangle inequality) d(x,y) + d(y,z) = d(x,z), forall x,y,z € X.

Given a metric d on X, the number d(x, y) is often called the distance between
x and y in the metric d. Given € > 0, considertheset By (x,€) = {y|d(x,y) < €}of
all points y whose distance from x is less than €. It is called the € -ball centered at x.
Sometimes we omit the metric d from the notation and write this ball simply as B(x, €),

when no confusion will arise.
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Definition.

If d is a metric on the set X, then the collection of all € -balls B;(x, €), for x €

X and € > 0, is a basis for a topology on X, called the metric topology induced by d.

Result. Prove that the collection B of € — ball is a basis.
Proof.
The first condition for a basis is trivial, since x € B(x, €) for any € > 0.

Before checking the second condition for a basis, we show that if y is a
point of the basis element B(x, €), then there is a basis element B(y, §)

centered at y that 1s contained in B(x, €).

Now, let y € B(x,€)

=>d(x,y)>¢€

=>¢e—B(x,e) >0

Take 6§ = € — B(x,€),then § > 0.

Claim: B(y,6) < B(x,¢€). 0
Letz € B(y,6)

=>dy,z) <d=€—d(x,y)

=>d(x,y)+dy,z)<e

=>d(x,z)<e

o2 Bxe) Figure 2.3.1

~ B(y,8) € B(x,€)
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Now to check the second condition for a basis, let B; and B, be two basis
elements and let y € B; N B,. We have just shown that we can choose

positive numbers §; and &, so that B(y,§;) € B, and B(y, d,) € B,.
Let § = min{d,, 6,}

Then, B(y,8) € By and B(y,6) € B,

= B(y,8) € B N B,.

= the second condition of the basis is satisfied.

Thus, the collection B of e-ball is a basis.

Result.

A set U is open in the metric topology induced by d if and only if for
eachy € U, thereis a & > 0 such that B;(y,6) c U.

Proof.
Suppose for each y € U, there isa § > 0 such that B;(y,§) c U.
Then U is open.

Conversely, if U is open, it contains a basis element B = B, (x,€)

containing y, and B in turn contains a basis element B;(y, §) centered at y.

Example 1. Given a set X, define
d(x,y) =1lifx #y,
d(x,y) =0ifx=y.

Then d is a metric.
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For, if x € X, then B;(x,1) = {x}.

The topology it induces is the discrete topology; the basis element B(x, 1)

consists of the point x alone.

Example 2.

The standard metric on the real numbers R is defined by the equation
d(x,y) =|x — y|. Then d is a metric and the topology it induces is the

same as the order topology.
For, It is easy to check that d is a metric.

Each basis element (a, b) for the order topology is a basis element for the

metric

topology; indeed, (a,b) = B(x,€),where x = (a+ b)/2and € = (b —
a)/2. And conversely, each € -ball B(x, €) equals an open interval: the

interval (x — €,x + €).

Definition.

If X is a topological space, X is said to be metrizable if there exists a
metric d on the set X that induces the topology of X. A metric space is a
metrizable space X together with a specific metric d that gives the topology

of X.
Definition.

Let X be a metric space with metric d. A subset 4 of X is said to be

bounded if there is some number M such that d(a,, a,) < Mfor every pair
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a,, a, of points of 4. If 4 is bounded and nonempty, the diameter of A4 is

defined to be the number diam A = sup{d(a,,a,)|a,,a, € A}.

Theorem 2.3.1.

Let X be a metric space with metric d. Defined:X X X — R by the

equation
d(x,y) = min{d(x,y),1}.
Then d is a metric that induces the same topology as d.
The metric d is called the standard bounded metric corresponding to d.
Proof.
Let X be a metric space with metric d.
d: X x X - R defined as d(x,y) = min{d(x,y),1} ... ... (D
First two conditions for a metric are trivial.
To check the triangle inequality:
d(x,2) < d(x,y) +d(y,2) ... ... (2)
If either d(x,y) = 1 or d(y,z) = 1, then
R.H.S of (2) is atleast 1.
Since L.H.S of (2) is atmost 1, the inequality (2) holds.
Now, consider d(x,y) < 1and d(y,z) <1
We have d(x,2) < d(x,y) +d(y,z) = d(x,y) + d(y, z)

Since d(x, z) < d(x, z) by definition, the triangle inequality holds for d.
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We know that the collection of € — balls with € < 1 forms a basis for a

metric topology.
Every basis element contains x such that an e-ball centered at x.
Since the collection of e-balls with € < lunder d and d are same.

Thus d and d induce the same topology on X.

Definition.

Given x = (xq,...,%,) in R", we define the norm of x by the

equation
[Ixl] = Gef + -+ 22
and we define the Euclidean metric d on R™ by the equation
d(x,y) = |lx=yl| = [(xx — y1)* + - +(xn — y)?1V2
We define the square metric o by the equation
p(x,y) = max{lx; — yil,-.., % — ynl}-
Remark.

(i) disametric on R".

(i)  pisametricon R™.
Proof.
(i)Since each(x; — y;)%,i = 1,2, ..., n is positive

We have d(x,y) = ||X—3’||

n 1/2
= lz(xi — yl-)zl >0Vx,y € R"
i=1
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Alsod(x,y) = 0iff ||x — y||=0

1
n 2
iff lZ(xi —yi)ZI =0
i=1

iff (x; —y)3i=12,..,n
iff (x;,—y;)=0,,i=12,..,n
iffx;=y,i=12,..,n
iffx=y

And

d(x,y) = |lx - yl|

- n 11/2

= D> G- w?

=1

= -zn:()’i - xi)z-
Li=1 i

= |ly — xI|

1/2

=d(y,x)
Now, d(y,x) = ||x — z]|
=[x -y +y—z
< |lx = yl| +|ly = zl|

=d(x,y)+=d(y,z)
Thus, d is a metric on R™.

(i)since [x; —y;| =2 0Vi=12,..n
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We have max{|x; — y;|, ... |, —y,1} =0
= p(x,y) =0
Also, p(x,y) = 0 if f max{|x; —y1|, .. [xp — Y]} =0
ifflx;—y;1=0,i=12,..,n

iffxi=yi,i=1,2,...,n

iffx=y
And, p(x,y) = max{|x; — yq|, ... 1%, — V| }
= max{|y; — x|, . |V — x5 | }
=p(y,x)

Foreachi = 1,2,...,n, we have
lx; = z;| = |x; —yi + yi — zil
< |x; —yil + lyi — zil
max|x; — z;| < max{|x; — ;| + |y; — z[}

We have, p(x,2) < p(x,y) + p(y,2).

Lemma 2.3.2.

Let d and d be two metrics on the set X; let 7 and T’ be the
topologies they induce, respectively. Then T is finer than T if and only if
for each x in X and each € > 0, there exists a § > 0 such that B;(x,5) C
B,;(x,e€).

Proof.

Suppose that 7 is finer than T.
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Given the basis element B, (x, € ) for T, there is, by Lemma 1.2.3, a basis

element B’ for the topology T’ such that x € B' < B;(x, €).
Within B’ we can find a ball B;(x, §) centered at x.

Hence B, (x,8) € By(x, €).

Conversely, suppose the § — € condition holds.
i.e.,By(x,6) € By(x,€) ..... (%).

Given a basis element B for 7' containing x, we can find within B a ball

B, (x, €) centered at x.
By the given condition (*), there is a § such that By, (x,8) € B, (x, €).

Then Lemma 1.2.3, applies to show 7' is finer than T'.

Theorem 2.3.3.

The topologies on R™ induced by the Euclidean metric d and the
square metric p are the same as the product topology on R™ (or) R" is

metrizable.

Proof.

Step 1:

Letx = (xq,...,xy) and y = (y4,...,¥,) be two points of R".
First we prove that p(x,¥) < d(x,¥) < Vnp(x,y).

We know that d(x,y) = |lx — y|l = [~ ,(x; — v)?]Y/?

And p(x,y) = max{|x; = y1 |, .. % — ¥l }

1
Always |x; — y;| < [X1, (o — yi)?)2

Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli



= max{|x; — y1l, ... % —ynl } < d(x,y)
= px,y) <d(xy).
Now, (x; —y)? < (p(x, )" Vi=1,2,..,n
Adding the above inequality we get,
(X1 - Y1)2 + -+ (xn - Yn)z
2 2 2
< (p(,3)" + (pGx, )" + -+ (p(x, 1)
2
<n(p(x,y))

Square root on both sides we get,

1

[Z(xi - yi)zl <vn (p(x, )’

Hence, p(x,y) < d(x,y) <Vnp(x,y).

Step 2: To prove the two metric topologies are the same.

Let J; and 7}, be the topologies induced by d and p respectively.
Prove that 7; o T,,.
Let x € X and € > 0 be given.
Consider B, (x, €) and take § = €.
Claim: Bg(x,€) € B,(x,€)
Lety € B;(x,€)

=>d(x,y)<e

We have p(x,y) < d(x,y) (by step 1)
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~plxy) <e

=y € By(x,€)

Thus B, (x, €) © B,(x,€).

By Lemma 2.3.1,7; 5 7, .... (1)

Claim: 7,

p 2 Ja

Letx € Xand € > 0 be given

i - £
Consider B;(x, €) and take § = N
Claim: B,(x, 8) © By(x,€) .

Lety € B,(x,6)

€

2 py) <=+
= Vnp(x,y) < e
We have d(x,y) < vn p(x,y) (step 1)
=>d(x,y)<e
= y € By(x,€)
~ B,(x,€) € By(x,6)
By Lemma 2.3.1,7, 5 T ..... (2)
From (1) and (2), 7, = T3
The metric topologies induced by d and p are the same.

Step 3: Prove that the product topologies on R" is the same as the metric

topology induced by p.

Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli



Let B = (aq,by) X---X (a,, b,) be a basis element for the product

topology, and let x = (x4, ..., x;,) be an element of B.

For each i, there is an €; such that (x; — €; ,x; +€;) < (a;,b;).
choose € = min{ey,...,€,}.

Then B,(x,€) < B

By Lemma2.3.1,7, > T

Conversely, let B, (x, €) be a basis element for the p-topology.

Given the element y € B, (x, €), we need to find a basis element B for the

product topology such that y € B c B, (x, €).

Now, By(x,€) = (x; — €, + €) X .. X (X — €,X,, + €) is itself a basis

element for the product topology.

.-.f]":)f];)

Hence T = 17;)

Thus, the product topology on R" is the same as the metric topology by p.

Definition.

Given an index set / , and given points x = (Xy)4e;and y =

(Ya)aey of R/, let us define a metric p on R/ by the equation

p(x,y) = sup{d(xqya)la €]},

where d is the standard bounded metric on R.Then p is called the uniform

metric on R’ | and the topology it induces is called the uniform topology.
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The relation between this topology and the product and box topologies is

the following:

Theorem 2.3.4.

The uniform topology on R/ is finer than the product topology and
coarser than the box topology; these three topologies are all different if J

1s infinite.
Proof.

Suppose that we are given a point x = (x @) @ €J and a product topology

basis
Element [] U, about x.
Let a4,..., a, be the indices for which U, = R.

Since Uy, is open in R, for each i choose €; > 0 such that Ba(xai ) el-) c

Ug,.

Let € = min{ey, ..., €, }

= Bs(x,€) c [1U,

If z € R/such that p(x,z) < €

= d(x,,z,) < €Va

Hence uniform topology is finer than the product topology.

On the other hand, let B(x, €) in the p — metric.

Then the box neighbourhood U = [] (xa - g,xa + g) of x is contained in

B.
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Forify € U, then d(xg, y,) < gfor all a, so that p(x,y) < g
Suppose J is infinite.

Let x = (xg)qe; € R/ and let € > 0 be given.

Bs(x,e) ={y |p(x,y) <€}

= {y 1d(xe, Vo) < €q Va }

=W llxe = Yal <€ Va}

=W lye = xol <€ Va}

={y|l-e<y,—x, <€eVa}

={y|lxg—€<y, <x,+eVa}

= (x(,l1 —€,Xq, T e) X (xoc2 — €, Xq, T e) X ...X (xan — €, Xg, T e)

This 1s a basis element for the uniform topology but we cannot find a basis

element [[ U,,.

For the product such that [T X, < B5(x, €)

=~ the product topology is not finer than the uniform topology (since in

[1U,, Uy is open in R for only finite number of indices @).

=~ they are different.

Theorem 2.3.5.

Let d(a, b) = min{|a — b|, 1} be the standard bounded metric on R. If x and y

are two points of R?, define D(x,y) = lub {M} Then D is a metric that induces

L

the product topology on R® is metrizable.

Proof
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Step 1:
First, we prove that D is a metric on R¢
1) Letx,y € R®
Then d(x;,y;) =0

d(xl Vi)

> ——2=>0Vi

= lu b(d(xlyl)>0Vl

= D(x,y) =0

Also D(x,y) =0
= lub (@) =0

l

s &(Xi,yi) =0Vvi
S -yl =0Vi
X =Y Vi

Sx=y
.. _ d(xpy)
(ii) D(x, y) = lub (—i )

= lup (L222)

i
=D(y,x)
(iii) Let x,y,z € R?
For each i,
d(x;, z) < d(x, y) +d (i, 2;)

N 67(96.1',21') < 5(36%',3’1') n a(y'irzi)
l L L

Always, @ <D(x,y) +D(y,2)
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Hence D is a metric on RY
Step 2:
Let T be the product topology on R® and Let 7}, be the metric topology induced by D
Prove that, T = T,
First, we prove that T © T},
Let U be open in the metric topology 7, and
Letx € U.

To prove, T D T} it is enough to find an open set V in the product topology such that
xeVcl.

Since U is open in the metric topology and x € U we can choose an € — ball By (x, €)

such that B, (x, &) c U

Then choose N large enough such that % <e¢
LetV=(x—¢&x;+&)X(x,—&x,+&) X ..... X(xy—&xy+e)XRXR...
Then V is a basis element for the product topology

Prove that, V € B (x, €)

Let y be any point of R®

Now,i =N ==<~

By definition, d(x;,y;) < 1 Vi

= LX) 1y

D(xy) < max{d (220), d (22), ....d (), 1)

Claim: V c Bp(x,¢)

Lety eV
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Theny; € (x; —&,x; + &) fori =1,2...... N
Sx—e<y <xite
= |x;—yil<evi=12,...N
S>dx,y) <|lx—yl<evi=12.... N
> d(x,y) <e<iefori=12,.... N

Now:>d(x:yl)<sforl—12 ..N

adbayd 1 i 5 N - (1)

; N
ﬁd(xlyl)<€f0rl>N - (2) [%<g]
From (1) and (2),

M<£Vi
i

= lub {M} <e
=>D(x,y)<e¢
=y € Bp(x,¢)
Hence V € Bp(x,e) c U
~Vcu
Hence 7" © T
Step 3:
We have to prove that T, > T
Letx € R?

Consider the basis element U = [];¢, U; containing x for the product topology

where U; is open in R for i = dy,d>, ... ... d, and U; = R for all other values of 1.
To prove, Jp D T

It is enough to prove that an open set V for the metric topology such that, x € V < U
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Since, V; is open is R and x; € V;
We can choose ¢; such that (x; — €,x; + ¢) c U; fori = dq,d,, ... ... dy

Also choose each g; < 1 then define

£ = min {8T Ji=dy,dy, dn}
Claim: Bp(x,e) c U
Lety =€ Bp(x, €)

D(x,y)<e

d(xl Vi)

But < D(x,y) <€ Vi

d(x,y;)
i

5> ——=< ¢ Vi

Ifi = dy,dy, . ..dy, then £ < 7

Hence fori = d4,d,, ... ... d,, we have

d(xyy) < £
i i

= d(x,y) < &

But ¢; < 1 we have

d(x;, y1) = |x; = yil

sl =yl < g
=y, € —¢&,x;+¢&)cU; foreachi =d,, dy, ... d,
= y; € U; foreach i = dy,dy, ... ...d,

=>ycnU;

>yelU

~Ip 2T
ThusJp o T

=~ D is a metric that indues that the product topology of R®
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~ R® is metrizable.

2.4. The Metric Topology (Continued)

Theorem 2.4.1.

Let f: X = Y. Let x and y be metrizable with metrices dy and dy respectively.
The continuity of f is equivalent to the requirement that given x € X and given € > 0,

there exists § > 0 such that dy(x,y) <8 = dy(f(x), f(¥)) <e.
Proof.

Suppose that f: X — Y is continuous.

To Prove dy(x,y) < 6 = dy(f(x),f(y)) <e€.

Given x & &, Consider the f~1(B(f(x), €)), which is open in X and contains the point

X.
It contains some 6 -ball B(x, § ) centered at x.

If y is in this §-ball, then f'(y) is in the € -ball centered at f(x)

wdy(xy) <6 = dy(f(x):f()’)) <e&

Conversely, suppose that the ¢ — § condition is satisfied.

To prove f is continuous.

Let V be an open setin Y

Claim: f~1(V) is open in X

Letx € f~1(V)

Since f(x) €V,

Since V is open, there is an e-ball B( f (x), €) centered at f (x) and contained in V'

By & — & condition, there exists § — ball B(x, §)such that f(Bx(x, 8)) € By, (f (x),€)

f(de(x, ) ) cV
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=By (x,8) c f~1(V)
= f~1(V) isopenin V

=~ f is continuous.

Note.

The & — & condition equivalentto y € By, (x,8) = f(y) € By, (f(x), ). Also,

the condition is equivalent to f (BdX (x,6 )) < By, (f(x),€)

Note. A sequence of points of X is a function mapping from Z, onto X

Theorem 2.4.2 (The sequence Lemma)

Let X be a topological space. Let A c X. If there is a sequence of points of A

converging to x. Then x € A; the converse holds if X is metrizable.
Proof
Suppose that (x,) — x, where x,, € A
To prove x € A
Let U be a neighbour hood of x
Since (x,) — x, there exist a positive integer N such thatx; €U Vi > N
Since, x; EA Viwehave x;€UNA Vi=N
= U intersects A
>x€EA
Conversely, suppose that X is mertizable and x € A

Let d be a metric for a topology of X.
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For each positive integer n, take the neighborhood B, (x, 1/n) of radius 1/n of x, and

choose x,, € B (x, %) NnA.

Claim: (x,) - x
Any open set U containing x contains an € -ball Bd (x, ) centered at x;

choose N so that 1/N < ¢, then U contains x; foralli > N

1
esn=>N =2>2=-<Z

<&

2
z|=

= B, (x%) C By(x,e) cU
But, x,, € B, (x, %) vn >N

Hence,n > N, x, €U
“ () > x

Hence the theorem.

Theorem 2.4.3.

Let f: X = Y. Let X be metrizable the function f is continuous then for every
convergent sequence (x,) — x in X, the sequence f(x,) = f(x). The converse holds

if X is metrizable.

Proof.

Suppose that f is continuous

Given (x,) — x

To prove f(x,) - f(x)

Let V be a neighbour hood of f(x)

Since f is continuous, f (V) is a neighbourhood of x

Since, (x;,) — x, there exist a N such thatx,, € f~1(V) Yvn>N

Then f(x,) €V Vn=N
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~ fOg) = f(x)
Conversely, suppose that for every convergent sequence x,, = x in X, f(x,) = f(x)
To prove: f is continuous
Let A be a subset of X
To prove f is continuous, it is enough to prove that f(4A) € f(A)
Letx € A
Then f(x) € f(A)
Claim: f(x) € f(4)
By the sequence Lemma, there is a sequence (x,) of points of A such that, x, = x
By hypothesis f(x,) = f(x)
i.e., (f(x,)) is a sequence of points of f(A) such that f(x,) = f(x)

By the sequence lemma, f(x) € f(A)

= (D) cfA)

Hence f is continuous.

Lemma 2.4.4.

The addition, subtraction and multiplication operations are continuous function
from R X R into R and the quotient operation is a continuous function form R X R —

{0} into R.
Proof

We know that the function f: X — Y, where X and Y are metrizable with metric
dx and dy respectively is continuous iff given x € X and given € > 0, there exist § >

O suchthatd,(x,y) <6 = d, ( f),f (y)) < & and also consider the metric d(a, b) =

la — b| on R and the metric on R? is given by

f((x: y), (xO;}’o)) = max{|x — xol, [y — ¥ol}
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)] Show that the addition ‘+’ is continuous
Here ‘+’ is a function from R X R - R
Let (x9,Y0) € R X Rand Let € > 0 be given

Take § = <
2

Then § > 0
Now d(x +v,x0 + yo) = |(x + ¥) — (xg + Vo)
< |x—xo|l + |y — vol
And
p((x, ), (x0,70)) < 6

= |x—x0l <dand |y —y,l <6
&
-'-d(x+y,xo+yo)<6+6=26=2(5)=e

p((x, y), (xo,yo)) <§=>dx+y,xoty) <e
Thus ‘+’ is continuous.
i1) Show that the subtraction ‘- is continuous

Here ‘- is a function from R X R - R

Let (xg,y0) € R X Rand let € > 0 be given

&

Take § = =
2

Then § > 0
Now, d(x —y,%0 — ¥o) = |(x = ¥) — (%0 — o)
= |(x = x0) + (yo — ¥
= [(x = x)| + |y = yo)

And

P((x» ¥), (xo, J’o)) <é
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= |x—x0l <dand |y —yol <6

~d(x—y,x0 — Vo) <6+6=28=2(§)=£
2 p((6,9), (x0,¥0)) <8 = d(x—y,x0 — yo) < €
Thus - is continuous.

ii1) show that multiplication is continuous

let (x9,¥0) € R X R and let € > 0 be given

Take 36 = min{f————, Ve}

lxol+1yol+1’

=30 <—— and 36 <+e

ol +1yol +1
1
:6<—(E)and<£,62 <=
[%ol+|yol+1 \3 3 9

NOWa p((x; J’): (XOJ yO)) <&
= |x—xo|l <Fand |y —y,l < &
~d(xy, x0¥0)) =[xy — xoYol

= |xy — x0Yo + Xyo — XYo + Xo¥ — Xo¥ + XoYo —

xoYol
= [x%(y — ¥0) + ¥o(x — x0) + (x — x0) (¥ — yo)l
< |xolly = ol + |yollx — x| + |x — x0[ly — yol
< |x0l8 + lyold + 62
= (Ixol + [¥0D)8 + 62

(Ixol+1yol) (f) €
[x0l+|¥ol+1 \3 9

<

w | m

42
9

4&
—<¢
9

e, d(xy,xoyy) <€
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Thusa p((x, y); (XO) yO)) <é6= d(xy' xOyO) <é&
~ Multiplication is continuous.
iv) show that the operation taking reciprocals is continuous map for R{0} to R

let x, € R{0} and let € > 0 be given

Then xy # 0
. clxol x3e
Take, § = min{—,—
2’ 2
1 1 1 1
Now.d (1,2) = [t &
X Xo X X0
Xo—X
- XXo
[x—2x0]
[xxq]

Then, |xxo — x§| = |x0(x — x0)]
= |xo|x — x|
<|x0l6
< oo !

ol 5
— |xo|2
2
x5
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1 2
5—<=
xxq X2

1 1 |[x—2x0]
Hence, d (—,—) =—2
X X

0 [xx0]

~d(x,xp)<6=>d G,i) <c¢

Xo
Hence the reciprocal operation in continuous.

v) show that the quotation is continuous
x 1
Now, — = (x (—)
y € y

Since, the multiplication and the reciprocal operation are continuous, the quotient

operation is continuous.

Theorem 2.4.5.
If X is a topological space, and if f, g: X — R are continuous. Then f + g, f —
g and fg are continuous. If g(x) # 0, Vx, then g is continuous.
Proof.
Let X be a topological space and f, g: X — R are continuous.
Define h: X - R X Rby h(x) = (f(x),g(x))
Since, f and g are continuous, then h is also continuous
Now, f+g=hof
= f + g is composition of two continuous function

= f + g is continuous
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Similarly, f —g =—oh,f.g =.0 h,g =--o h are continuous.

Definition.

Let f,: X = Y be a sequence of functions from the set X to the metric space Y.
Let d be the metric for Y, we say that the sequence {f,,} converges uniformly to the
function f: X — Y if given € > 0, there exist an integer N, such that d( 0O, f (x)) <
g, Vvn=NandVx € X

Theorem 2.4.6 (Uniform limit theorem)

Let function f,:X — Y be a sequence of continuous functions from the
topological space X to the metric space Y. If (f;,,) converges uniformly to f, then f is

continuous.

Proof.

Let V be an openin Y

Claim: f~1(V) is open in X

Letx, € f~1(V)
= f(xo) €V

To prove f is continuous

It is enough to find the neighbour hood U of x, such that f(U) c V

Let yo = f(x), theny, €V

Since V is open in Y, we can choose an € —ball B;(y,, €) such that B;(y,, &) € V
ie, By(f(xp),e) cV ....(1)

Since, {f,} is converges uniformly to f we can choose N such that d(f,,(x), f(x) <
§ Vn=>N,Vx €X ......(2)

Consider, B, ( fn(x0), 2)
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Since fy is continuous we can choose a neighbourhood U of x,  such that f,(U) c
Ba (fu(xo).5) - (3)

Claim: f(U) < By(fw(xo),€)

Letx e U = f(x) € f(V)

Now, d(f (%), f(x0)) < d(f (), () + d(fr (), fou (x0)) + d(fa (x0), f (x0))

<s+i4i=Z=¢
3 3 3 3

ie., d(f(x), f(x)) <€

= f(x) € B4(f(xo), ) < €
= f) eV

= fU) cV

Hence f is continuous.

Example 1
Show that R®S in the box topology is not metrizable.
Solution
We prove that the sequence lemma does not hold for R®
Let A = {(xq, x5, ....)/x; > 0,Vi} be a subset of R®
To prove O € A where 0 = (0,0, .....)
Let B = (aq,by) X (ay, by) X ... ... be any basis element containing zero
= B intersects A that implies O € A
Now, we prove that there is no sequence of points of A converging to O
Let {a,} be a sequence of point of A where a,, = {x1, Xsn, ..... ) here each x;; > 0
Let B' = (—x11,%11) X (—X35 X X55) X ... ...

Since each x;; > 0,0 € B’
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Hence B’ is also a basis element for the box topology containing zero.
Claim: (a,,) doesnot belong to B’ Vn
Then n'" coordinate of a,, = X,, & (=X Xnn)
= Xy € B'Vn
Hence the {a,} cannot converges to zero in the box topology.

~ By sequence lemma, R® is not metrizable in the box topology.

Example 2.
Show that an uncountable product of R with itself is not metrizable.
Solution.
Let J be an uncountable index set.
Prove that, R/ doesnot satisfies the sequence lemma in the product topology

Let A = {(x,)/xq = 0, for infinitely many value of @ and x, = 1,V other value of x}

be a subset of R/
Claim: 0 € A where 0 = (0,0, ... ... )
Let [] U, be a basis element containing 0
Then, U, # R for finitely many values of d. Say d = d;,d; ... ... d,
Construct a point (x,) such that
Xq =0ifd =d;,dy ... ... d, and
Xq =1ifd #d;,d; ... ... d,
Since, 0 € y,, 0 € U, ford = dy, d; ... ... d,
= (xg) € Ty,
By construct of 4, (x,) € A

Hence, (x,) E Ty, N A
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= Ty, intersects A

>0€A
Now, we prove that, there is no sequence of points of A convergin of to 0
Let {a,,} be a sequence of points of A

Then each point a,, is a point of R/ having only finitely many co-ordinates equal to

Z€10.

Let J,, be subset of ] consisting of these indices a for which 2" co-ordinates of a,, is

Zero
Then J,, is finite for each n
= U], is countable subset of |
But J is uncountable.
We can choose 8 € ] such that § & UJ,
Now, B € U], =B &],Vn
= B co-ordinates of a,, = 1,Vn
Let Us = (—1,1) be an open interval in R
Let U = mz"(Upg) then U is open in R/
mz0 = 0 € Ug
=>0€en;"(Us) €U
~0€eU
= U is an neighbour hood of 0
Claim: a, € U Vn
Now, 75 (a,) = B*"* co-ordinate of a,,
=1¢UgVn

v a, € w5 (Up) Vn
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>a, €U Vn
Hence (a,) cannot converges to 0 in the product topology.

=~ By sequence lemma, R/ is not metrizable.
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UNIT -3

CONNECTEDNESS

3.1. Connected Spaces

Definition.

Let X be a topological space. A separation of X is a pair U and V of disjoint
nonempty open subsets of X whose union is X. A space X is said to be connected if

there does not exist a separation of X.

Connectedness is obviously a topological property, since it is formulated entirely in
terms of the collection of open sets of X. Said differently, if X is connected, so is any

space homeomorphic to X.
Another way of formulating the definition of connectedness is the following:

A space X is connected if and only if the only subsets of X that are both open and closed
in X are the empty set and X itself.

For if A is any nonempty proper subset of X which is not open and closed in X,
then the sets U = A and V = X — A constitute a separation of X for they are open,

disjoint and nonempty and their union is X.

Conversely, if U and V form a separation of X, then U is nonempty and different

from X, and it is both open and closed in X.

Lemma 3.1.1.

If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A
and B whose union is Y, neither of which contains a limit point of the other. The space

Y is connected if there exist no separation of Y.
Proof.

Suppose first that A and B form a separation of Y.
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Then A is both open and closed in Y.

The closure of A in'Y is the set A N'Y (where A denote the closure of 4 in X).

Since Ais closedinY,A=ANY or An B = @ (The limit points of A cannot lie in B)
[+ANB=0,(AnY)NB=0,i.e., AN(YNB)=ANB = 0]

Since A is the union of A and its limit points, B contains no limit points of A. A similar

argument shows that A contains no limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y, neither

of which contains a limit point of the other.
ThenANB=@andANB =0

~ We conclude that ANY =Aand BNY = B.

Thus both A and B are closed in Y.

Since A=Y —Band B =Y — A, they are open in Y as well.

~ A and B form a separation of Y.

Example 1.

Let X denote a two — point space in the indiscrete topology. Obviously there is

no separation of X and so X is connected.

Example 2.
LetY = [—1,0) U (0,1], Y is a subspace of the real line.

A =[-1,0) and B = (0,1] are disjoint nonempty subsets of Y whose union is

Y, neither of which contains a limit point of the other (both are open in Y)
=~ They form a separation of Y

~ Y is not connected.
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Example 3.

Let X = [—1,1] be the subspace of R. The sets [—1,0] and (0,1] are disjoint
nonempty whose union is X. They do not form a separation of X, because the first

[—1,0] is not open in X.
Alternatively, note that the first set contains a limit, 0, of the second.
= There is no separation of the space [—1,1].

1.e., X is connected.

Example 4.

The rationales Q are not connected. Indeed, the only connected subspaces of Q
are the one-point sets. If Y is a subspace of Q containing two points p and g, we can
choose an irrational number a lying between p and ¢, and write Y as the union of the

open sets
YN (—o,a)andY N (a,+ ).
Example S.
Consider the following subset of the plane R:
X={xxyly=0U{xxXxy|x>0andy = 1/x}.

Then X is not connected; indeed, the two indicated sets form k

a separation of X because neither contains a limit point of the

other. See Figure 3.1.1.
Lemma 3.1.2.

If the sets C and D form a separation of X, and if Y is a connected subspace of

X. Then Y has to lie entirely within either C or D.
Proof.
Since C and D are both open in X, the sets CNY and D NY are openin Y.

These two sets are disjoint and their union is Y.
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If they were both nonempty, they would constitute a separation of Y.
=~ one of them is empty.

Hence Y must lie entirely in C or D.

Theorem 3.1.3.

The union of a collection of connected sets that have a point in common is

connected.
Proof.

Let {A4}4e; be a collection of connected subsets of a space X, Let p be a point

in NgejAg-
We prove that the set Y = U A, is connected.

Suppose that Y = C U D is a separation of Y. The point p(€ Y) is one of the set C or D
(they are disjoint).

Suppose p € C. Since the set A, is a connected subset of Y (for each a) by the
above lemma it must entirely in either C or D; it cannot lie in D, because it contains the

point p of C.
Hence, A, € C,Va.
~Y =U A, c C contradicting the fact that D is non empty.

This contradiction shows that Y is connected.

Theorem 3.1.4.
Let A be a connected subset of X. If A € B c A, then B is also connected.

(In other words, if B is formed by adjoining to the connected subspace A some or all of

its limit points, then B is connected.)
Proof.

Let A be a connected subset of X andlet A € B € A

Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli m



Suppose that B = C U D is a separation of B.

Since A is a connected subset of B, A must lie entirely in C or D by Lemma 3.1.2.
Suppose that A c C.

ThenA c C

Since € and D are disjoint and since B € A c C, B cannot intersect D.

This contradicts the fact that D is a nonempty subset of B.

~ B 1is connected.

Theorem 3.1.5.

The image of a connected space under a continuous map is connected.
Proof.

Let X be connected and let f: X — Y be a continuous map.

We wish to prove that the image set Z = f(X) is connected.

Since the map obtained from f by restricting its image to the space is also

continuous, it suffices to consider the case of a continuous subjective map g: X — Z.

Suppose that Z = A U B is a separation of Z into two disjoint nonempty sets

open in Z.

Then g~1(A) and g~1(B) are disjoint sets whose union is X; they are open in X

because g is continuous and nonempty because g is surjective.
=~ They form a separation of X, contradicting the assumption that X is connected.

Hence the theorem.

Theorem 3.1.6.
The cartesian product of connected spaces is connected.

Proof.
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We prove the theorem first for the product of two connected spaces X and Y.
Choose a base point a X b in the product space X X Y.

Note that the horizontal slice X X b is connected, being homomorphic with X and each
vertical slice x X Y is connected being homomorphic with Y.

As a result, each “T—shaped” space T, = (X Xb)U XX Y

axhp

(x x Y) is connected, being the union of two connected sets that » X% b

have the point x X b in common. See Figure 3.1.2.

g X
Now, form the union U,ex Ty of all these T —shaped s
Figure 3.1.2
spaces. This union is connected because it is the union of a
collection of connected sets that have the point a X b in common. Since this union

equals X X Y, the space X X Y is connected.

Using induction, we see that any finite product of connected spaces
Xy XX, X o X X, is connected since X; X X, X ...... X X, 1s homeomorphic with

(X1 XX, X . X Xp_1) X X,.

Hence the theorem.

Result. Next, we prove the result for an arbitrary product of connected spaces.

Let {X4}qe; be an indexed family of connected spaces, and let X = [[,¢; X,

Choose a base point b = (by)q4e; for X. Given any finite set (ay,ay, ... ... ,0y) of
indices in /, let us define a subspace X (aq, ... ... a,) of X.

It consists of all points (X;) ;. Show that x, = b, for a # ay, ... ... an

We assert that X (a4, ... ... ay) is homeomorphic with finite product X, X ... ... X

X4, and hence is connected.

Consider the mapping
(Xal, ...... ,Xan) = Va)aey of X, X . X Xy = X(ay, ... ... ,Qy), Where y, = x,
fora = ay, ... ... , &, and y, = b, for all other values of .
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of J.

Then Y is a subspace of X.

Since the spaces X (ay, ... ... @, ) are connected and they are contain the base point b =

(by),Y is connected.

But Y is not all of X. Then Y consists of all points (x,)qe; of X, having the property

that x, = b, for @ # ay, ... ... , 0.
Now we assert that the closure of Y equals all of X.
Once we prove this fact, the connectedness X follows from the theorem (4 € B c A)

Let us take an arbitrary point (x,) of X and an arbitrary basis element U = [[,¢; Uy

about (x,) and prove that U intersects Y.

Each set U, is open in X, and U, = X, except for finitely many indices, say a =

QAq,y e Oy

Construct a point (y,) of X by setting

_ {xa fora =ay,.... , Oy
Yo = b, for all other values of «a
Then (y,) is a point of Y, because it belongs to the space X (ay, ....., ay). (¥,) is also a
point of U; because y, = x, € U, fora = a4, ... ... ,a, and y, = b, € X, for all other
values of a.

Hence U intersects Y as we desired.

Hence the result.
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3.2. Components and Local Connectedness

Definition.

Given X, define an equivalence relation on X by setting x ~ y if there is a
connected subspace of X containing both x and y. The equivalence classes are called the

components (or the “connected components” ) of X.

Result. ~ is an equivalence relation on X.
Proof.
Symmetry and reflexivity of the relation are obvious.

Now, if 4 is a connected subspace containing x and y, and if B is a connected subspace
containing y and z, then 4 U B is a subspace containing x and z that is connected because

A and B have the point y in common. Therefore, transitivity relation holds.

Thus ~ is an equivalence relation.

Theorem 3.2.1.

The components of X are connected disjoint subspaces of X whose union is X,

such that each nonempty connected subspace of X intersects only one of them.
Proof.

Since the components are equivalence classes from the equivalence relation, it is clear

that the components of X are disjoint and their union is X.
Claim: each connected subspace of A of X intersects only one of them.

If A intersects the components C; and C, of X, say in points x; and x,, respectively,

then x; ~ x, by definition; this cannot happen unless C; = C,.
To show the component C is connected.

choose a point x, € C.
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For each point x € C, we know that x, ~ x, so there is a connected subspace A,

containing x, and x.

By the result just proved, A, c C.

Therefore, C = Uyec Ay -

Since the subspaces A, are connected and have the point x, in common, their union is

connected.

Definition.

We define another equivalence relation on the space X by defining x ~ y if there

is a path in X from x to y. The equivalence classes are called the path components of X.
Result.

The relation ~ defined on X by x ~ y if there is a path in X from x to ). Prove

that ~ is an equivalence relation.
Proof.

First, we note that if there exists a path f : [a,b] — X from x to y whose domain is
the interval [a, b], then there is also a path g from x to y having the closed interval [c,
d] as its domain. (This follows from the fact that any two closed intervals in R are

homeomorphic.)

Now the fact that x ~ x for each x € X follows from the existence of the constant path

f : [a,b] » X defined by the equation f(t) = x for all ¢. The reflexivity holds.

From the fact that if f:[0,1] - X is a path from x to y, then the “reverse path”
g:10,1] = X defined by g(t) = f(1—t) is a path from y to x. This follows

symmetry.
Let f:[0,1] = X be a path from x to y, and let g: [1, 2] — X be a path from y to z.

We can “paste fand g together” to get a path h:[0,2] = X from x to z; the path A

will be continuous by the “pasting lemma” .

Hence ~ is an equivalence relation.
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Theorem 3.2.2.

The path components of X are path-connected disjoint subspaces of X whose
union is X, such that each nonempty path-connected subspace of X intersects only one

of them.

Proof. Proof is similar to Theorem 3.2.1.

Note. Each component of a space X is closed in X, since the closure of a connected
subspace of X is connected. If X has only finitely many components, then each
component is also open in X, since its complement is a finite union of closed sets. But

in general, the components of X need not be open in X.

We can say even less about the path components of X, for they need be neither open nor

closed in X.

Example 1. If Q is the subspace of R consisting of the rational numbers, then each

component of Q consists of a single point. None of the components of Q are open in Q.

Example 2.

The “topologist’s sine curve” S of the preceding section is a space that has a
single component (since it is connected) and two path components. One path
component is the curve S and the other is the vertical interval "= 0 X [-1, 1]. Note

that S is open in S but not closed, while V'is closed but not open.

If one forms a space from S by deleting all points of } having rational second
coordinate, one obtains a space that has only one component but uncountably many

path components.

Definition.
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A space X is said to be locally connected at x if for every neighborhood U of x,
there is a connected neighborhood V of x contained in U. If X is locally connected at
each of its points, it is said simply to be locally connected. Similarly, a space X is said
to be locally path connected at x if for every neighborhood U of x, there is a path-
connected neighborhood ¥ of x contained in U. If X is locally path connected at each of

its points, then it is said to be locally path connected.

Example 3.

Each interval and each ray in the real line is both connected and locally

connected.

The subspace [~1, 0) U (0, 1] of R is not connected, but it is locally connected.

The topologist’ s sine curve is connected but not locally connected. The

rational Q are neither connected nor locally connected.

Theorem 3.2.3.

A space X is locally connected if and only if for every open set U of X, each

component of U is open in X.
Proof.

Suppose that X is locally connected; let U be an open set in X; let C be a component of

U.

If x € C, we can choose a connected neighborhood 7 of x such that V < U.
Since V'is connected, it must lie entirely in the component C of U.
Therefore, C is open in X.

Thus each component of U is open in X.

Conversely, suppose that components of open sets in X are open.

Given a point x of X and a neighborhood U of x, let C be the component of U containing

x. Now C is connected; since it is open in X by hypothesis, X is locally connected at x.
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Thus X is locally connected.

Theorem 3.2.4.

A space X is locally path connected if and only if for every open set U of X, each

path component of U is open in X.

Proof. Proof is similar to Theorem 3.2.3.

Theorem 3.2.5.

If X is a topological space, each path component of X lies in a component of X.
If X is locally path connected, then the components and the path components of X are

the same.
Proof.

Let C be a component of X;let x be a point of C;let P be the path component of X

containing x.

Since P is connected, P c C.

We wish to show that if X is locally path connected, P = C.
Suppose that P & C.

Let O denote the union of all the path components of X that are different from P and

intersect C;
Then each of them necessarily lies in C, so that
C=PuUQ.
Because X is locally path connected, each path component of X is open in X.

Therefore, P (which is a path component) and Q (which is a union of path components)

are open in X, so they constitute a separation of C.
This contradicts the fact that C is connected.

Thus P = C.
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UNIT -4

COMPACTNESS

4.1. Compact Spaces

Definition.

A collection A of subsets of a topological space X is said to cover X or to be a
covering of X, if the union of the elements of A is equal to X. It is called an open

covering of X if its elements are open subsets of X.

Definition.

A topological space X is said to be compact if every open covering A of X

contains a finite subcollection that also covers X.

Example 1.

The real line R is not compact. A = {(n,n + 2)/nez} is an open covering of

R. But it contains no finite sub collection that covers R.

Example 2.
LetX ={0}u {% /n € z,}. This is a subspace of R.

Given an open covering A of X, there is an element U of A containing 0. The
set U contains all but finitely many of the points % Choose for each point of X not in
U, an element of A containing it. The collection consisting of these elements of A,

along with the element U, is a finite collection of A, that covers X.

~ X 1s compact.
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Definition.

If Y is a subspace of X, a collection A of subsets of X is said to cover Y if the

union of its elements contains Y.

Lemmas 4.1.1.

Let Y be a subspace of X. Then Y is compact iff every covering of Y by sets

open in X contains a finite subcollection covering Y.
Proof.

Given Y be a subspace of X.

Assume that Y is compact.

Let A = {A,/a € ]} be a covering of Y, where A4, is open in X.

To prove Y € UL, A,

Since A, is open in X

=> A, NYisopenin?Y.

=>UA,NY)=WUA,)NY

=YnY

=>U A, NnY)=Y

~{AyNY/a € J}is an covering of Y.

Since Y is compact.

=~ The above open cover has a finite subcover {Aa NY, A, NY, ... JAg, N Y}
= UL (4, nY) =Y
= (UL 4g)NY =Y

=Y € UiLi(Aq)
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1.e., every open covering of Y by sets open in X contains a finite subcollection covering

Y.

Conversely, assume that every open covering of Y by sets open in X contains a finite

subcollection covering Y.

To prove: Y is compact.

Let A" = {A,/a € J} be an open covering of Y, where Ay, is open in Y.
~UA, =Y, wherea €]

Since A, is open in Y.

~ Ay = A, NY, where A, is open in X.

=>Y=Ul,NnY)

=>Y=UA4,)NY

=Y cU (4q)

i.e., The set {A,/a € J} is a open covering of Y by sets open in X.
By assumption, this has a finite subcollection that covers Y.

ie.Y € UL, Ay

2 Y = (Ul 4,) NY

#Y € Uy (Ag)

ie,Y S UL, &i

A’ has a finite subcollection {A& P , A&n} that covers Y.

Hence Y is compact.

Theorem 4.1.2.
Every closed subspace of a compact space is compact.

Proof.

Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli 1 OO



Let X be a compact space and let Y be a closed subspace of X.
To prove: Y is compact.

Enough to prove that every covering of Y by sets open in X contains a finite

subcollection covering Y.

Let A be a covering of Y by sets open in X.
Since Y is closed in X, X\Y is open in X.

s~ B =AU (X\Y) is an open cover of X.
Since X is compact.

= B contains a finite subcollection covering X.

If this subcollection contains the set X\Y, discard X —Y, otherwise, leave the

subcollection alone.
=~ The resulting subcollection is a finite subcollection of A that covers Y.

Hence Y is compact.

Theorem 4.1.3.
Every compact subspace of a Haussdorff space is closed.
Proof.

Lemma 4.1.4: If'Y is a compact subspace of Hausdorft space X and x, & Y. Then there

exist a disjoint open sets U and V of X containing x, and y respectively.
Proof of lemma.

Given Y is a compact subspace X and x, € Y.

= x, €EX\Y

LetyeY =>x,#y

1.e, Xy and y are two distinct points in X.

since X is Hausdorff.
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= 3 two open sets Uy, V), of x, and y respectively. Show that U, NV, # 0.
= The collection {V,,/y € Y} is a covering of Y by sets open in X.

Since Y is compact.

=~ The above open cover has a finite subcollection, say {1/3,1, Vyys ven one , V3’n}’ that covers

Y.

e, Y CV

v U W

letV="V U.... UV, , which is an open set containing Y.

Taking U, , U

v Uyyyoee e , Uy, be the corresponding neighbourhoods of x,.

LetU =Uy, N ... U U, , which is an open set and x, € U.

i.e., we have found out two open sets U and V such that x, € Uand Y C V.

Now to prove U NV = 0. b i

Y2

Suppose U NV # @, 3 at least one element, say x e U NV,

//ya

>x€Uandx eV v,
:eryanyzn ...... nUynandeVle ...... UVyn
>x€el,vVi=1,.... n,x €V, for some |

i ]

:>xEinnVyj

=& (S ince Uy,and Vy, are disjoint)

Hence UNV = @.
Proof of the theorem.
Let X be a housedorft space and let Y be a compact subspace of X.
To prove Y is closed in X.
i.e., to prove Y¢ is open in X.

i.e., to prove X\Y is open in X
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Let xy € X\Y

By previous theorem, 3 disjoint open sets U and V show that x, € U and y € V and
unv =29.

Now,UNV =@(sinceU CVE Yl =X\Y)
=~ For each x, € X\Y, 3 and open set U containing x, show that x, € U € X\Y.
= X\Y is open in X.

1.e., Y is closed in X.

Example S.

Once we prove that the interval [a, b] in R is compact, it follows from Theorem
4.1.2 that any closed subspace of [a, b] is compact. On the other hand, it follows from
Theorem 4.1.3 that the intervals (a, b] and (a, b) in R cannot be compact (which we

knew already) because they are not closed in the Hausdorff space R.

Example 6.

One needs the Hausdorff condition in the hypothesis of Theorem 4.1.3.
Consider, for example, the finite complement topology on the real line. The only proper
subsets of R that are closed in this topology are the finite sets. But every subset of R is

compact in this topology.

Theorem 4.1.5.

The image of a compact space under a continuous map is compact.
Proof.

Let X be a compact space and Y be a subspace of X.

Let f: X — Y be a continuous map.

To prove: f(X) is compact.
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Let A = {A,/a € ]} be an open cover for f(X) by sets openinY.

Since A, 's are openin Y.

= f~1(A,) is opne in X[ f is continuous]

= {f"1(A,)/a € ]} is an open cover for X.

Since X is compact, the above open cover has a finite sub collection that covers X.
ie, X €Uk, f'(4y)

— F(X) € UL, A,

ie., {Aa P , Aan} is a finite sub collection of A that covers f(X) and hence f(X) is

compact.

Thus the continuous image of a compact space is compact.

Theorem 4.1.6.

Let f:X = Y be a bijective continuous function. If X is compact anf Y is

Hausdarff space. Then f is a homeomorphism.
Proof.

Given f: X — Y is a bijective continuous map and let X be compact and Y be

hausdorft.

To prove f is homeomorphism.

i.e., To prove f~1 is contuinuous.

In order to prove, if A is closed in X = (f~1)71(4) is closed in Y.

* [f is continuous iff for every close set B in Y, the set f ~1(B) is closed in X]
s To prove f(A) isclosedinY.

Since A is closed in X.

= A is compact [ ~every closed subspace of compact space is compact]

= f(A) is compact [by previous theorem]
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= f(A) is closed [every compact subspace of a hausdorff space is closed]
= f~1is continuous.
~ f is homeomorphism.
Theorem 4.1.7.
The product of finitely many compact spaces is compact
Proof.
Let X4, X5, ..., X, be compact spaces.
To prove X; X X, X...X X, is compact.

First, we shall prove that the product of two compact space is compact. Then the

theorem follows by induction for any finite product.

Before proving this theorem, let us prove the Tube lemma.

Lemma 4.1.8.(Tuba Lemma).

Consider the product space X X Y, where Y is compact. If N is an open set of
X XY containing the slice x, X Y of X X Y, then N contains some tube W X Y about

xo X Y, where W is the neighbourhood of x; in X.
Proof of the Lemma.

Suppose that we are given two spaces X and Y, with Y is a compact space.
Suppose that x, € X and N is an open set of X X Y containing the slice x, X Y of XX Y.

To prove N contains the tube W X Y about x, X Y, where W is the neighbourhood of

Xo in X.
Since N is open in X X Y containing x, X Y

= 3J a basis element U X V in X X Y Such that x, XY € U XV € N [+~ U is open in

X,VisopeninY]

= The collection A = {U X V /U is openin X and V is open in Y} is the open cover for

Xo XY by setsopenin X X Y.
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Since xy X Y is homeomorphic with Y.
& Xo X Y is compact.
=~ A has a finite subcollection contains x, X Y.

e, xg XY CU XViUU, XV, U ........U U, XV, ===--mmmmemv (1)

Since each U; is open in X, W is open in X.

Sincexyg €U; Vi=1...... n and x, € W also.

L |
= xo XY EW XY N <"
N
To prove W XY C N ' 3
Letx XxyeW xY ‘ x%" | X
W
=x€EWandy€Y Figure 4.1.2

= x € U; Viand y € V; for some j

~x Xy € U; X V; for some j

= xXyeWxY

= x Xy € N (- all the sets U; X V; lie in N)
~WXYCSN

Hence the Lemma.

Proof of the theorem.

We shall prove that the product of finite two compact space is compact and the

theorem follows by induction on any finite product of finite.

Let X and Y be two compact spaces.

To prove X X Y is compact.

Let A = {A,/A,'s are open in X} be an open covering for X X Y.

Letxy € X
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Consider the slice xy X Y. Clearly A is a covering of x, X Y by sets openin X X Y.
Since xy X Y is homeomorphic with Y and Y is compact.
= X X Y is compact.

A has a finite subcollection A, , Ag,, - .- ,Ag, such that x, X Y is contained in

Ay, UAg, U ... UA,, =N.
Each A, is openin X X ¥ and N is an open in X X Y containing the slice xy X Y.

=~ by Tube lemma, 3 a Tube W X Y about xy X Y such that W XY € N, where W is a

neighbourhood of x,.

=~ For each x € X we can choose a neighbourhood W, of x such that the tube W, X Y

can be covered by finitely many elements of A.
Consider the collection A" = {W, /x € X} is an open covering of X.
Since X is compact.

= 3 a finite subcollection W, , W, ... ... , Wy, of A" show that X = W, UW,, U ..... U

Then X X Y = (W, X Y) U (W, X Y) U o..oU (W, X V)

i.e., The collection W, XY, W, XY, ...... , Wy, XY forms a covering of X X Y ----- 2)
from (1) and (2),we conclude that X X Y is covered by finitely many elements of A.
= X X Y is compact.

=~ The product of two compact spaces is compact.

~ By using induction method, we get product sof finitely many compact spaces is

compact.

Definition.

A collection C of subset of X is said to have a finite intersection property of

for every finite sub collection Cy, C5, ... ... , Cp, of C such that N}, C; # O.
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Theorem 4.1.9.

Let X be a topological space. Then X is compact iff for every collection C of
closed sets in X having finite intersection property, the intersection N ee C of all

elements of C is nonempty.
Proof.

Assume that X is compact and C is a collection of closed sets in X satisfying

the finite intersection property.

To prove N C # 0

Suppose not, i.e., Neee C # @

= (Ncee )¢ =0 =X

=>X\nC=X

Ucee(X\C) = X

~ {X\C/C € C} is open cover for X.

Since X is compact, This open cover has a finitely subcover X\C;, X\C5, ... ... ,X\Cp,
ie, UL, (X\C) =X

=>X\NL, G =X

Taking complement,

SN G =0

=<« [ every collection of closed set has a finite intersection property]|
Hence Ngee C # 0

Conversely, assume that for every collection C of closed sets in X satisfying finite

intersection property, Ngee C # @
To prove X is compact.

Let {A,/a € ]} be an open cover for X.
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To prove this has a finite subcover.
Suppose it does not have a finite subcover.
Since {A,/a € J}is an open in X.
= X\4, is closed set in X.
C = {X\A,/a € J}is a collection of closed sets.
Since {A,/a € J}is an open cover for X.

= Ugegj A =X

= (X\Uqej4a) = @

= Naey(X\Ag) = 0

=~ We conclude that C = {X\A,/a € J} is a collection of closed sets having empty

intersection.

~ C does not satisfy the finite intersection property.

i.e, 3 a finite sets in C, namely X\A, , X\Aq,, .- .- , X\Ag,,, show that
Nt (X\Ag,) =0

= X\Uiz144, =0

= Uit14q, =X

= A has a finite subcover.

The open cover what we have chosen has a finite subcover.

~ Our assumption is wrong. i.e, every open cover for X has a finite subcover and hence

X is compact.

Corollary.

The space X is compact iff for every collection A of subset of X satisfying finite

intersection property Nueq #* 0.
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Proof.
Assume that X is compact.

Let A = {A,/a € J} be a collection of subsets of X having a finite intersection

property.
To prove Nic1Ag, # @
Consider A = {A,/a € ]}
Since A satisfy finite intersection property.
ie, Nty Ag, # 0
= NIy Ag € Ny A, # 0
= ﬂ?=1x‘fai 0
= A'satisfies a finite intersection property.
~ X is compact = Nyeq A # @

Conversely, assume that for every collection A of subsets of X satisfying finite

intersection property Naeq A # @
To prove X is compact.
Let C be a collection of closed sets in X satisfying finite intersection condition.

~ Our assumption, every collection A of subsets X satisfying finite intersection

condition. We have,
Naca A # O
“NeeeC# @

Since C has closed sets.
>C=C

i, NeeeC = 0

=~ By previous theorem, we get X is compact.
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4.2.Limit Point Compactness

Definition.

A space X is said to be limit point compact if every infinite subset of X has a limit point.

Theorem 4.2.1.
Compactness implies limit point compactness, but not conversely.
Proof.
Let X be a compact space. Given a subset 4 of X.
we wish to prove that if 4 is infinite, then 4 has a limit point.
We prove the contrapositive—if 4 has no limit point, then 4 must be finite.
So, suppose A has no limit point. Then 4 contains all its limit points, so that A4 is closed.

Furthermore, for each a € 4 we can choose a neighborhood U, of a such that U, intersects 4
in the point a alone. The space X is covered by the open set X — 4 and the open sets U, ; being

compact, it can be covered by finitely many of these sets.

Since X — 4 does not intersect 4, and each set Ua contains only one point of 4, the set 4 must

be finite.

Example 1.

Let Y consist of two points; give Y the topology consisting of Y and the empty
set. Then the space X =Z+ X Yis limit point compact, for every nonempty subset of X
has a limit point. It is not compact, for the covering of X by the open sets U, =

{n} X Y has no finite subcollection covering X.

Example 2.
Consider the minimal uncountable wellordered set S, , in the order topology.
The space S, is not compact, since it has no largest element.

However, it is limit point compact: Let 4 be an infinite subset of S, .
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Choose a subset B of 4 that is countably infinite.

Being countable, the set B has an upper bound b in S, ; then B is a subset of the interval

[ag, b] of S, , where a; is the smallest element of S, .

Since S,, has the least upper bound property, the interval [a, b] is compact.
By the preceding theorem, B has a limit point x in [ag, b].

The point x is also a limit point of A4.

Thus S, is limit point compact.

Definition.

Let X be a topological space. If (x,,) is a sequence of points of X, and if n; < n, <
-+ < n; <---isanincreasing sequence of positive integers, then the sequence (y;)
defined by setting y; = X, is called a subsequence of the sequence (x,). The space

X is said to be sequentially compact if every sequence of points of X has a convergent

subsequence.

Theorem 4.2.2.

Let X be a metrizable space. Then the following are equivalent:
(1) X'is compact.

(2) X 1s limit point compact.

(3) X is sequentially compact.

Proof.

We have already proved that (1) = (2).

To show that (2) = (3)

Assume that X is limit point compact.

Given a sequence (x,,) of points of X, consider the set A = {x,, |n € Z,}.
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If the set A4 is finite, then there is a point x such that x = x,, for infinitely many values

of n.

In this case, the sequence (x,) has a subsequence that is constant, and therefore

converges trivially.

On the other hand, if 4 is infinite, then 4 has a limit point x. We define a subsequence

of (xn) converging to x as follows: First choose n; so that
Xn, € B(x, 1).

Then suppose that the positive integer n;_; is given. Because the ball B(x,1/i)

intersects A4 in infinitely many points, we can choose an index n; > n;_; such that
Xn;, € B(x,1/1).
Then the subsequence x,, , Xy, , ... converges to x.

Finally, we show that (3) = (1).

First, we show that if X is sequentially compact, then the Lebesgue number lemma holds

for X.

Let A be an open covering of X. We assume that there is no 6 > 0 such that each set of

diameter less than ¢ has an element of A containing it, and derive a contradiction.

Our assumption implies in particular that for each positive integer n, there exists a set
of diameter less than 1/z that is not contained in any element of A; let C,, be such a set.
Choose a point x, € Cy, for each n. By hypothesis, some subsequence (xy, ) of the
sequence (x,) converges, say to the point a. Nowa belongs to some element 4 of the
collection A; because 4 is open, we may choose an € > 0 such that B(a, €) Cc 4. Ifiis
large enough that 1/n; < €/2, then the set Cy, lies in the € /2-neighborhood of x, ; if
i is also chosen large enough that d(x,,, , @) < €/2, then Cy,, lies in the e-neighborhood

of a. But this means that C;,; C A, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given € > 0, there exists a

finite covering of X by open e-balls. Once again, we proceed by contradiction.
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Assume that there exists an € > 0 such that X cannot be covered by finitely many e-

balls. Construct a sequence of points x,, of X as follows: First, choose x; to be any point

of X.

Noting that the ball B(x4, €) is not all of X (otherwise X could be covered by a single
e-ball), choose x, to be a point of X not in B(x4, €). In general, given x4, ..., X, choose

Xn4+1 to be a point not in the union
B(x1,€) U---U B(xy,€),

using the fact that these balls do not cover X. Note that by construction d (X, 41, x; ) =
€ fori = 1,...,n. Therefore, the sequence (x,,) can have no convergent subsequence;

in fact, any ball of radius €/2 can contain x,, for at most one value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let A be an open
covering of X. Because X is sequentially compact, the open covering A has a Lebesgue
number J.Let € = §/3; use sequential compactness of X to find a finite covering of
X by opene-balls. Each of these balls has diameter at most 26 /3, so it lies in an element
of A. Choosing one such element of A for each of these e-balls, we obtain a finite

subcollection of As that covers X.

4.3.Local Compactness

Definition.

A space X is said to be locally compact at x if there is some compact subspace
C of X that contains a neighborhood of x. If X is locally compact at each of its points,
X 1s said simply to be locally compact.

Note. A compact space is automatically locally compact.

Example 1.

The real line R is locally compact. The point x lies in some interval (a, b),
which in turn is contained in the compact subspace [a, b]. The subspace Q of rational

numbers is not locally compact.
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Example 2.

The space R™ is locally compact; the point x lies in some basis element
(aq,by) X+ X (ay, by), which in turn lies in the compact subspace [aq,b;] X- - -

X [a,, by]-

The space R® is not locally compact; none of its basis elements are contained in

compact
subspaces. For if
B = (aq,by) X---X(a, by) X RX---XRX---
were contained in a compact subspace, then its closure
B = [ag, by] X+ - X [an by] X R X- -
would be compact, which it is not.
Example 3.

Every simply ordered set X having the least upper bound property is locally
compact: Given a basis element for X, it is contained in a closed interval in X, which is

compact.
Theorem 4.3.1.

Let X' be a space. Then X is locally compact Hausdorff if and only if there exists

a space Y satisfying the following conditions:
(1) X is a subspace of Y.
(2) The set Y — X consists of a single point.
(3) Yis a compact Hausdorff space.

If Y and Y'are two spaces satisfying these conditions, then there is a homeomorphism

of Y with Y’ that equals the identity map on X.

Proof-
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Step 1. We first verify uniqueness. Let ¥ and Y'be two spaces satisfying these
conditions. Define h : Y — Y'by letting 42 map the single point p of Y — X to the point
g of Y' — X, and letting / equal the identity on X. We show that if U is open in Y, then
h(U) is open in Y'. Then Symmetry implies that 4 is a homeomorphism.

First, consider the case where U does not contain p. Then A(U) = U. Since U is
open in Y and is contained in X, it is open in X. Because X is open in Y’, the set U is also

open in Y’, as desired.

Second, suppose that U contains p. Since C =Y —U is closed in Y, it is compact
as a subspace of Y . Because C is contained in X, it is a compact subspace of X. Then
because X is a subspace of Y’, the space C is also a compact subspace of Y'. Because Y’

is Hausdorff, C is closed in Y, so that #(U) = Y'— C is open in Y’, as desired.

Step 2. Now we suppose X is locally compact Hausdorff and construct the space Y. Step
1 gives us an idea how to proceed. Let us take some object that is not a point of X,
denote it by the symbol ©o for convenience, and adjoin it to X, forming the set ¥ =
X U {o9}. Topologize Y by defining the collection of open sets of Y to consist of (1)
all sets U that are open in X, and (2) all sets of the form Y — C, where C is a compact

subspace of X.

We need to check that this collection is, in fact, a topology on Y. The empty set
is a set of type (1), and the space Y is a set of type (2). Checking that the intersection of

two open sets is open involves three cases:
U; N U, isof type (1).
Y —-C)n Y —C) =Y — (C; U Cy)isoftype (2).
Uyn —C) =U; n (X —Cy)isoftype (1),

because C; is closed in X. Similarly, one checks that the union of any collection of open

sets 1s open:
uu,=U is of type (1).
UY-c)=Y-(Ng)=Y-C is of type (2).

(UU DU MUY =C))=UU( —C)=Y - (C—U),
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which is of type (2) because C — U is a closed subspace of C and therefore compact.
Now we show that X is a subspace of Y. Given any open set of Y, we show its
intersection with X is open in X. If U is of type (1), then U N X = U;if Y = Cis of
type (2),then (Y — C) N X = X — C; both of these sets are open in X. Conversely,

any set open in X is a set of type (1) and therefore open in Y by definition.

To show that Y is compact, let A be an open covering of Y. The collection A
must contain an open set of type (2), say ¥ —C, since none of the open sets of type (1)
contain the point c°. Take all the members of A different from Y — C and intersect them
with X; they form a collection of open sets of X covering C. Because C is compact,
finitely many of them cover C; the corresponding finite collection of elements of A

will, along with the element ¥ — C, cover all of Y.

To show that Y is Hausdorff, let x and y be two points of Y. If both of them lie
in X, there are disjoint sets U and 7 open in X containing them, respectively. On the
other hand, if x € X and y = ©o, we can choose a compact set C in X containing a
neighborhood U of x. Then U and Y — C are disjoint neighborhoods of x and <°,

respectively, in Y.

Step 3. Finally, we prove the converse. Suppose a space Y satisfying conditions
(1)-(3) exists. Then X is Hausdorff because it is a subspace of the Hausdorff space Y.
Given x € X, we show X is locally compact at x. Choose disjoint open sets U and V' of
Y containing x and the single point of Y — X, respectively. Then the set C =Y —V'is

closed in 7, so it is a compact subspace of Y. Since C lies in X, it is also compact as a

subspace of X; it contains the neighborhood U of x.

If X itself should happen to be compact, then the space Y of the preceding
theorem is not very interesting, for it is obtained from X by adjoining a single isolated
point. However, if X is not compact, then the point of ¥ — X'is a limit point of X, so that.

X=1Y.
Definition.

If Yis a compact Hausdorff space and X is a proper subspace of ¥ whose closure
equals Y, then Y is said to be a compactification of X. If Y —X equals a single point, then

Y is called the one-point compactification of X.
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Example 4.

The one-point compactification of the real line R is homeomorphic with the
circle. Similarly, the one-point compactification of R? is homeomorphic to the sphere
S2.If R? is looked at as the space C of complex numbers, then C U {0} is called the

Riemann sphere, or the
Theorem 4.3.2.

Let X be a Hausdorff space. Then X is locally compact if and only if given x in
X, and given a neighborhood U of x, there is a neighborhood ¥ of x such that V is

compactand V c U.
Proof.

Clearly this new formulation implies local compactness; the set C = V is the
desired compact set containing a neighborhood of x. To prove the converse, suppose X
is locally compact; let x be a point of X and let U be a neighborhood of x. Take the one-
point compactification Y of X, and let C be the set Y — U. Then C'is closed in Y, so that
C is a compact subspace of ¥ . Apply Lemma 26.4 to choose disjoint open sets V" and
W containing x and C, respectively. Then the closure V of ¥ in Y is compact;

furthermore, V is disjoint from C, so that V U, as desired.

Corollary 4.3.3.

Let X be locally compact Hausdorff; let A be a subspace of X. If 4 is closed in

X or open in X, then 4 is locally compact.
Proof-

Suppose that A is closed in X. Given x € A4, let C be a compact subspace of X
containing the neighborhood U of x in X. Then C N A4 is closed in C and thus compact,
and it contains the neighborhood U N A of x in A.
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Suppose now that A is open in X. Given x € A, we apply the preceding theorem
to choose a neighborhood V of x in X such that V is compactand V ¢ A.ThenC = V

is a compact subspace of A containing the neighborhood V of x in A.

Corollary 4.3.4.

A space X is homeomorphic to an open subspace of a compact Hausdorff space

if and only if X is locally compact Hausdorff.

Proof- This follows from Theorem 4.3.1 and Corollary 4.3.3.
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UNIT -5

COUNTABILITY AND SEPERATION AXIOMS

5.1. The Countability Axioms

Definition.

A space X is said to have a countable basis at x if there is a countable collection
B of neighbourhood of x such that each neihbourhood of x contains at least one of the
elements of B. A space that has a countable basis at each of its points is said to satisfy

the first countability axiom, or to be first-countable.

Theorem 5.1.1.
Let X be a topological space.

(a) Let 4 be a subset of X. If there is a sequence of points of 4 converging to x,

then x € A; the converse holds if X is first-countable.

(b) Let f: X — Y. If fis continuous, then for every convergent sequence x,, — x

in X, the sequence f (x,) converges to f(x). The converse holds if X is first countable.
Proof.

(a) Suppose x € A. Since X is first countable, there exists a countable basis say U,, at

X.
Letd, = U;nU,n..nU, forn = 1,2,...

Then {A,} is a countable collection of neighbourhood of x and 4; D 4, D...0 A4, D

Apyq 2.
Claim: {A4,} is a countable basis at x.

Let U be a neihbourhood of x. Since U, is a countable basis at x, there exists Uy, in {U,}

such that U, c U.
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Also, Ay, € Uy. Therefore, we have A, c U, c U.

Thatisx € A, C U.

Therefore, {A,} is a countable basis at x.

Now, forany n, A, N A # Q.

Choose x, EA, NAforn = 1,2,..

Now, we have a sequence (x,,) in A such that x,, € A, forn = 1,2,....
Claim: (x,) — x.

Let V be a neigbourhood of x.

Since {A,} is a countable basis at x, there exists x such that Ay c V.
Also, A, c Ay Vn = N.

Therefore, xn € An c V

=>xn€VVn2N.

Therefore, (x,) — x.

Conversely, suppose there exists a sequence (x;) in A such that (x,,) = x.
To prove x € A

Suppose there exists a sequence of points in A converging to x.

Let W be a neighbourhood of x.

Since (x,,) — x and W is a neighbourhood of x, there exists a positive integer N such

thatx,, e W,vn > N.

=>WnA=0Q.

Therefore, x € A.

Suppose f: X = Y is continuous.

To prove (f(x,)) = f(x) where (x,,) = x.

Let (x,,) — x. Let V be the neigbourhood of f(x).
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= f~1(V) is the neigbourhood of x.

Since (x,) — x, there exists a positive integer N such that x,, € f~1(V),vn = N
= f(x,) EVVYn=N.

Therefore, (f(x,)) = f(x).

Conversely, suppose that (f(x,,)) = f(x) whenever (x,) — x.

To prove f is continuous.

It is enough to prove f(A) < f(A) for any subset A of X.

Lety € f(A). Theny = f(x) for some x € A.

Now, x € A. By (a), there exists a sequence (x,,) in A such that (x,,) — x.
By hypothesis, (f(xn)) = f(x).

Then by (a), f(x) € f(A)

=y € f(4).

Therefore, f(A) < f(A).

Hence f is continuous.

Definition.

If a space X has a countable basis for its topology, then X is said to satisfy the

second countability axiom, or to be second-countable.

Example 1.

1. R has a countable basis. It is the collection of all open intervals (a, b) with rational

end points.

2. R™ has a countable basis. It is the collection of all products of intervals having

rational end points.
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3. R” has a countable basis. It is the collection of all product [lnez, Un where Uy is

an open interval with rational end points for finitely many values of n and U,, = R for

all values of n.

Theorem 5.1.2.

Q) A subspace of a first countable space is first countable and a countable
product of first countable spaces is first countable.
(i) A subspace of a second countable space is second countable and a

countable product of second countable space is second countable.
Proof.
(1) Let A be a subspace of a first countable space X.
Letx € X.
Let B be a countable basis for X.
LetC={BNnA/B € B}.
Then C is a countable basis for the subspace A of X. Therefore, A is first countable.
Let (X;) be a sequence of first countable spaces.
To prove [] X; is first countable.
Let B; be a countable basis for the space X;.

Then the collection of all products [] U;, where U; € B; for finitely many values of i is

a countable basis for [[ X;. Therefore, [ X; is first countable.

(i1) Consider the second countability axiom. Let X be a second countable space.

Let A be a subspace of X.

Let B be a countable basis for X.

LetC = {BNA/B € B}.

Then C is a countable basis for the subspace A of X. Therefore, A is second countable.

Therefore, any subspace of a second countable space is second countable.
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Let (X;) be a sequence of second countable spaces.
To prove [] X; is second countable.
Let B; be a countable basis for the space X;.

Then the collection of all products [[ U; where U; € B; for finitely many values of i is

a countable basis for [[ X;. Therefore, [[ X; is second countable.
Definition. A subset A of a space X is said to be dense in X if A = X.

Theorem 5.1.3.

Suppose that X has a countable basis. Then:

(a) Every open covering of X contains a countable subcollection covering X.
(b) There exists a countable subset of X that is dense in X.

Proof.

Given X as a countable basis.

Let {B,,} be a countable basis for the topology on X.

(a) Let A be an open covering for X.

For each positive integer n for which it is possible to choose an element A4, of A

containing the basis element B,,.

Thatis B, € 4,

Let A" = {A,}, then clearly A’ is the countable collection of open subsets of X.
To prove X =U A,,. Trivially, UA,, € X ———(1)

Letx € X

> x €Aforsome A € A.

There exists B,, € {B,,} such that x € B, C A.

Since B, € A,
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= x EUA,.

Therefore, X c U A, ———(2).

From (1) and (2) we get, X =U A,,.

Therefore, A’ is a countable subcollection covering X.
(b) For each nonempty basis element Bn, choose a point x,, € B,,.
Let D be the set consisting of the point x,,.

Clearly, D is the countable subset of X.

Claim:D = X

Clearly, D c X.

To prove X € D.

Letx € X.

Let U be a neihbourhood of x.

Then there exists B,, such that x € B, c U.

Now, x,, € B, x, € D

=>x,€B,ND

=>B,ND+ @

=>x €D.

Therefore, x € D .Hence D = X.

Therefore, D is dense in X.

Definition.

A space for which every open covering contains a countable subcovering is
called a Lindelof space. A space having a countable dense subset often said to be

separable.
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Example 3.

The space R, satisfies all the countability axioms but the seconds or R; topology

is first countable but not second countable.

Proof.

Let x € Ry, the set of all elements of the form [x, x + %) is a countable basis at x and it

is easy to see that the rational number of dense inR;. Hence it is first countable.
To show [R; is not second countable.

Let B be a basis for R;.

Choose for each x, an element B; of B such that x € B, C [x,x + 1).

If x # y, then B, # B,

Since x = inf Byandy = inf B,.

Therefore, B must be countable.

Therefore, it does not satisfy the second countability axiom.

Example 4.

The product of two Lindelof spaces need not be Lindelof.

(or)

R; is Lindelof but the product R; X R; is not Lindelof.

Proof.

The space R? has basis of all sets of the form [a, b) X [c, d).

We show that it is not Lindelof.

Consider a subspace L = {x X (—x)/x € R;} and L is closed in R?

Let us cover R?by the open set R? — L and by all elements of the form

[a,b) X [—a,d).

Each of these open sets intersects L in atmost one point.
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Since L is uncountable, no countable subcollection

covers R?.

Therefore, R? is not Lindelof.

The subspace of a Lindelof space need not be N

Lindelof. a % (-a) [ab) x [-a,d)

The ordered square, I3 is compact.

Therefore, it has a countable subcover.
Therefore, it is Lindelof trivially.

Now, consider the subspace A = I x (0,1) of I3.
It is not Lindelof.

For, A is the union of disjoint sets, U, = {x} X (0,1),x € I each of which is open in
A.

This collection of sets is uncountable and no proper subcollection covers A.
It is not Lindelof.

Note: R? is called sorgenfrey plane.

Example 5. 4 subspace of a Lindelof space need not be Lindelof.

Proof.

The ordered square Ig 1s compact; therefore, it is Lindelof, trivially.

However, the subspace A = [ X (0, 1) is not Lindelof.

For A is the union of the disjoint sets Ux = {x} X (0, 1), each of which is open in 4.

This collection of sets is uncountable, and no proper subcollection covers A.
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5.2. The Separation Axioms
Recall that a space X is said to be Hausdorff if for each pair x, y of distinct
points
of X, there exist disjoint open sets containing x and y, respectively.
Definition.

Suppose that one-point sets are closed in X. Then X is said to be regular if for
each pair consisting of a point x and a closed set B disjoint from x, there exist disjoint

open sets containing x and B, respectively.

The space X is said to be normal if for each pair A, B of disjoint closed sets of

X, there exist disjoint open sets containing 4 and B, respectively.
Note. It is clear that a regular space is Hausdorff, and that a normal space is regular.

The three separation axioms are illustrated in Figure 5.2.1.

G 2\ o)

Hausdorft Regular Normal

Figure 5.2.1

Lemma 5.2.1.

Let X be a topological space. Let one-point sets in X be closed.
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(a) X is regular if and only if given a point x of X and a neighborhood U of x, there is a

neighbourhood V of x such that V c U.

(b) X'is normal if and only if given a closed set 4 and an open set U containing A, there

is an open set ¥ containing 4 such that V c U.

Proof.

(a) First assume X is regular.

Given a point x and a neighbourhood U of x.

To prove there exists a neighbourhood V of x such that V < U.
LetB=X-U.

Then B is closed in X.

Also x € B.

Therefore, by hypothesis, there exists disjoint open sets V and W containing x and B

respectively.

Therefore, the set V is disjoint from B.

Since if y € B the set W is a neigbourhood of x such that V c U.
To prove X is regular.

Suppose the closed set B not containing x be given. Then x € U.
By hypothesis, there is a neighbourhood V of x such that V c U.

Therefore, the open sets V and X —V are disjoint open set containing x and B

respectively.

Hence X is regular.

(b) Suppose that X is normal.

Given a closed set A and an open set U containing A.
LetB=X-U.

Since U is open, B is closed in X.
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Also, we have A is closed in X.

Since X is normal, there exist disjoint open sets V and W containing A and b

respectively.

V is disjoint from W.
Therefore, V is disjoint from V.
Therefore, V c U.

Conversely, suppose given a closed set A and an open set U containing A, there is an

open set V containing A such that V c A.

To prove that X is normal.

Let U = X — B is an open set containing A.

By hypothesis, there exists an open set V containing A such that V c U.

Therefore, the open set V and X — V are disjoint open set containing A and B

respectively.
Also, given that the one-point sets are closed in X.

Therefore, X is normal.

Theorem 5.2.2.

(a) A subspace of a Hausdroff space is Hausdroff. A product of Hausdroff space is
Hausdroff.

(b) A subspace of a regular space is regular. A product of a regular space is regular.
Proof.

(a) First let us prove the product of two Hausdroft space is Hausdroff.

Let X; and X, be two Hausdroff spaces.

To prove X; X X, is Hausdroff space.
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Thatis to prove forallx = (xq,x;)andy = (y,¥,) of X; X X,,x # y, there exists
a neighbourhood U and V of (x4, x;) and (y;,y,) suchthat UNnV = @.

Here x; € X1,x, € X5, y1 € X{,¥, € X5.
x #y=>(x,%2) #F (V1,Y2)

=Xy F Y 0T X3 F 5.

We take x; # y;.

Since X, is a Hausdroff space, two point x; # y; of X, there exists a neighbourhood

U, and U, of x; and y; such that U; N U, = @.

Consider U; X X, and U, X X,.

Since Uy, U,, X, are open, U; X X, and U, X X, are open.
Also, (x1,%x3) € Uy X X, and (y4,y2)€EU, X X,.
SinceU;NU, = @,(U; XX,)N (U XX,) = 0.

Thus U; X X, is a neighbourhood of x;, x, and U, X X, is a neighbourhood of y;, y,

Next to prove subspace of a Hausdroff space is Hausdroff.
Let X be a Hausdroff space.

Let Y be a subspace of X.

To prove Y is Hausdroff.

Let y; # y, be two points of Y. Then y,,y, € X.

Since X is Hausdroff, there exists a neighbourhood U,,, and U,,, of y; and y, in X such
that U, N Uy, = @.

LetV,, =Uy,, NYandV, =U,, NY.
Clearly, V,, and V. are neighbourhood of y; and y, in'Y.
Also, Vy,, NV, =(U,, nY)n (U,,NY)

=(U,, NU,,)NY.
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=0 NY

= Q.

Therefore, Y is Hausdroff.

(b) Let X be a regular space.

Let Y be a subspace of a regular space X.

Then one point sets are closed in Y.

Let x be a point of Y.

Let B be a closed set in Y not containing the point x.
Now, B N'Y = B where B denotes the closure of B in X.
Therefore, x & B.

So, using regularity of X we can choose disjoint open sets U and V of X containing x

and B respectively.

Then U NY and V N'Y are disjiont open sets containing X and B respectively.
Therefore, Y is regular.

That is the subspace of X is regular.

That is the subspace of X is regular.

Now, to prove product of a regular space is regular.

let {X,} be a family of regular spaces.

Let X =[] X,.

By (a) part, X is Hausdroff. So that one-point sets are closed in X.
Letx = (X,) € X.

Let U be a neighbourhood of x in X.

Choose a basis element [[ U, about x contained in U.

Then U, is a neighbourhood of x, in X, and each X, is regular.
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Choose for each «, the neighbourhood V,, of x, such that V, c U,. If it happens that
U, = X,, choose V, = X,.

Then V =[]V, is a neighbourhood of x in X.
Since V[ V,.

By a theorem, it follows that, V < [[U, < U.
That isV c U.

Hence by lemma, X is regular.

That is [[ X, is regular.

5.3. Normal Space

Theorem 5.3.1.
Every regular space with a countable basis in normal.
Proof.
Let X be a regular space with a countable basis B
Prove that X is normal.
Let A and B be disjoint closed subsets of X.
NowANB=AnB=0
= Any point of 4 is not a limit point of B.
Hence each point x of A has a neighbourhood U not intersecting B.

Since X is regular, we can choose a neighbourhood V of x, whose

closure lies in U.

Now choose a basis element of B containing x and contained in V.
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<

By choosing such a basis element for each x € A, we construct a

countable covering of A by open sets whose closures do not intersect B.

Since this covering of A is countable, we can index it with positive

integets.
Let us denote it by {U,,}

Similarly, we can choose a countable collection {I},} of open sets

covering B. Such that each set V, is disjoint from A.

The sets U = Upez, Vi are open sets containing A and B

respectively. But they need not be disjoint.

Given n, define Uy, = U, — UL, V, and

Vn’:Vn_U?=1Ul

Since each set U}, is the difference of open sets U,, and a closed set

* .V, Uy, is open, similarly each set 1,

is open, v

Claim {U}} covers A.

Let x € A, then a € U,,, for some n v,

Similarly each set V] is disjoint from A. . 2

SX &V Vi

V‘I
fx € UL T, N

L x €Uy — UL, T,

= x € Uy
~ {U,,} covers A. Figure 5.3.1

Similarly {V}, } covers B.
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Let U' = Upez, Up and V' = Upez,
Then U’ and V' are open sets containing A and B respectively.
Claim U’ and V' = Q.
Assume that U' N V' = Q.
LetxeU'nV'
=>x€eU andx eV’
= x € U and x € Vj for some j and k.
Suppose j < k.
Now,x € U] = x € Uj ~----------- (1)
Now,x €V, =>xe¢ UK,V
>x¢lU, Vi=12,.... k.

In particular, x € U, [~ ] < k]

=>x € U e (2)
- equation (2) contratics equation (1)
Also similar contradiction arises if j > k.
~ Our assumption is wrong.
Hence U' NV' = @.
~ U' and V' are disjoint open sets containing
A and B respectively.

Hence X is normal.
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Theorem 5.3.2.
Every metrizable space is normal.
Proof.
Let X be a metrizable space with metric d.

Let A and B be disjoint closed sets in x, for each a € A, we can

choose ¢, so that B(a, £,) does not intersect B.

Similarly, for each b € B, we can choose &, so that B(b, ,) does not

intersect A.
£a £
Define U = Ugea B (0,%2) and V = Uy B (b, 2)
Then U and V are open sets containing A and B respectively.
ClaimUnV = Q.
Assume that U NV = @

LetZeUNV

=>Z€UandZ €.

=7 €B (a,gz—“), forsomea € Aand Z € B (b,%”) for some b € B.
= d(a,z) < Z—“and d(b,z) < Ez—b

~d(a,b) <d(a,z)+d(zb)

d(a,b) < %+%"

Ife, < &y, thend(a,b) < 82—” +82—b

d(a,b) < g,

= a € B(b, &)
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Similarly, If &, < &, then d(a,b) <=+ =2

d(a,b) < g,
= b € B(a,&,)
-~ We get a contradiction in both cases.
~ Our assumption is wrong.
Hence UNV =@
~ U and V are disjoint open set containing A and B respectively.

Hence X is normal.

Theorem 5.3.3.

Every compact Hausdorff space is normal.
Proof.
Let X be a compact Hausdarff space.
To prove X is regular.
Let x € X and let B be a closed set disjoint from x.
Here B is a closed subset of the compact space X.
Then B is compact.

We know that “Lemma: If Y is a compact subspace of the Hausdarff
space X and x; is not in Y. Then there exist disjoint open set U and V of X

containing x, and Y respectively”.

By the above lemma there exists disjoint open set U and V

containing x and B respectively.
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~ X 1s regular.

Now to prove X is normal.

Let A and B be disjoint closed sets in X.
Leta€e A

Then B is a closed set disjoint from a.

Since X is regular, 3 disjoint open sets U and V of X containing a and B

respectively.

Hence for each a € A we can choose disjoint open sets U, and V,
containing a and B respectively. Consider the collection, {U,/a € A} this

collection is a covering of A by sets open in X.

Since A 1s closed subset of the compact space X, A i1s compact.
= A can be covered by finitely many sets U, ,Ug,, ... ... ,Ug .
ie, Uit Ug, D A

letU =U, UUg, U ......... UUg, andV =1,
Then U and V are open sets containing A and B respectively.
ClaimUNnV =0

Let Z € U, then Z € Uy, for some q;

= Z & Vg,

=Z€V

~UnV=¢0

~ U and V are disjoint open sets containing A and B respectively.

Hence X i1s normal.
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Theorem 5.3.4.

Every well-ordered set X is Normal in the order topology.
Proof.

Let X be a well-ordered set.
Step 1:

First, we prove the following resul: “Every interval of the form (x, y] is

open in X”.

If X has a largest element and y is that element, then (x,y] is a basis

element about y.

If y is not the largest element of X. Then, (x,y] = (x,y') where y' is the

immediate successor.
. (x,y] is open in X.
Step 2:
Now, we prove that X is normal.
Let A and B be disjoint closed subsets of X.

Case (i). Suppose that A and B do not contain the smallest element a, of

X.
ThenANB=ANB=0
=~ for each a € A, there exists a basis element about a disjoint from B.

This basis element contains some interval of the form (x, a]. [since a is

not a smallest element]
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Hence, we can choose for each a € A, such interval (x,, a] disjoint from

B.

Similarly, we can choose for each b € B an interval (y,, b] disjoint from

A.

Let U = Ugea(xq al and V = Upep( ¥y, b]

By step 1, the interval of the form (x, y] is open in X.

~ U and V are open sets containing A and B respectively.
Claim U NV = Q.

Assume that U NV # Q.

LetzeUNV,thenz€Uandz €V.

= z € (x4, a] for some a € A and z € (y,, b] for some b € B
= z € (x4,a] N (yp, b] forsomea € Aand b € B.

Leta < b,

If a < y,, then (x4, a] and (y,, b] are disjoint.

If a > y, then a € (y,, b], where a € A.

=> AN (y, bl =0

= We get a contradiction in both cases.

~ Our assumption is wrong.

~uUnvV=0.

Hence U and V are disjoint open sets containing A and B respectively.
~ X 1s normal.

Case (ii). Suppose that A contains the smallest element a, of X.
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Then the set {a,} is both open and closed in X.
Since {a,} is open, A — {a,} is closed in X.
Also, A — {a,} and B are disjoint closed subsets of X.

By case (i), 3 disjoint open sets U and V containing A — {a,} and B

respectively.
Then U N {a,} and V disjoint open sets containing A and B respectively.
Hence by both cases X is normal.

Hence the theorem.

Example 2.
The product space Sq X Sq, is not normal.
Solution.

Consider the well-order set S, in the order topology and consider

the subset S, in the subspace topologies which is same the order topology.

We know that, every well-ordered set is normal in the order

topology.
~ S, and S, are normal.
We prove that the product space S X S,, is not normal.
This example serves three purposes.
(i) A regular space need not be normal.
For,

Sq and Sq are normal.
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= S, and S, are regular.
= S, X S, is regular, but not normal.

(i) A subspace of the normal space is not normal
For,
Sq X S, is a compact Hausdarff space.
= S, X S, is normal
But the subspace S, X S, is not normal.
(ili)  The product of two normal spaces need not be normal.
Consider, the space S X S, and its diagonal
A= {x x x/x € S,}
Claim A is closed in Sq X S,
i.e. To Prove (S, X S;)\Ais openin Sg X S,

Let (x,¥) € (Sg X Sp)\A

Then x # y in Sq

XXO <0 x0

Since S, is Hausdarff, 3 disjoint &

nbd U and V containing x and y

x % B(x)

respectively. p

X XX

SinceUNV =0,

(x,y) EU XV C (Sg X Sp)\A

= (S X Sp)\A is open g %
Figure 5.3.2
= Aisclosedin S, X S,.

Then in the subspace S, X S,

A=AN (S, xS,)isclosedin Sg X S,
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Hence A = A(Q X Q)

Now, Let B = S, X {12}

Since B is a slice in the product space, B is closed in S, X S,
=~ A and B are disjoint closed subsets of Sq X S,

Assume that there exists disjoint open sets U and V in S X S,

containing A and B respectively.
Letx €S 0-
Consider the vertical slice x X S,

We prove that there is some point B, with x < f < (2 such that

x X [ lies outside U.

Suppose that U contains all the points x X 8 for x < f < {2
Then top point x X {2 of the slice x X Sy, is the limit point of U.
ButxxNeBcV.

1e., V is a nbd of x X2 which does not intersection U

[~UNV = 0]
= x X {2 is not a limit point of U.
This is a contradiction.

Hence there is some point f with x < < 2 such that x X 8 lies
outside U.

Let B (x) be the smallest element of S, as follows

Let x,, be any point of S

Letx, = B(xq), x3 = B(x3) ...... and In general x,,.; = B(x,)
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Since B(x) > x,Vx. We have x; < x; < X3 < ... ..

~ {x,} is monotonically increasing sequence in S and the set

{x,,} is a countable subset of Sg,.

We know that, A countable subset of S has an upper bound in

Sq.

= The set {x,,} has an upper bound in S,.

Let b € S, be the least upper bound of the set {x,,}.

Since the sequence (x,,) monotonically increasing (x,,) = b
But X1 = B(x,) Vn, (B(x,)) = b

Then (xn X B(xn)) - b Xbin

the product space. ------- (1) bxb

Now,bxbeAcCU.

X, % Pl
i.e., Uisanbd of b X b.

X X PO,

But by construction x, X

B(xn) €U Vn

= (x, X B(xy)) » b X b p p b >

~(2) contradics equation (1),
=~ Our assumption is wrong.

Hence there is no disjoint open sets U and V in S X S,

containing A and B respectively.

= S, X S, is not normal.
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5.4. The Urysohn Lemma

Theorem 5.4.1.(The Urysohn Lemma)

Let X be a normal space. Let A and B be disjoint closed subsets of
X. Let [a,b] be a closed interval in the real line then there exists a
continuous map f:X — [a, b] such that f(x) =a. Vx €A and f(x) =
b Vx €B.

Proof.

Since [a, b] is homeomorphic to the interval [0,1], it is sufficient to

consider the case where the interval in the Question is the interval [0,1].
Step 1: Let P be the set of all rational numbers in the interval [0,1].

We define, for each p € P an open set U, of in such a way that when

ever p < q, we have Up C U,,.

Thus, the sets U,, will be simply ordered by inclusion in the same

way their subscribes are ordered by the usual ordering in the real line.

Since P is countable, we can use induction to define the sets U,s.

Arrange the elements of P in an infinite sequence in some way.

For convenience, let us suppose that the numbers 1 and 0 are the first

two elements of the sequence.

Now, we define the sets Uy, as follows.

FirstdefineU; = X — B

Since A N B = @, U; is an open set containing the closed set A.
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Since X is normal, we can choose an open set U,
Such that A € Uy and U, € U,

In general, Let P, denote the set consisting of the first n rational numbers

in the sequence.

Suppose that Up is defined far all rational numbers P belonging to

the set P, satisfying the conditionp < q = Up c U, = - (*)
Let r denote the next rational number in the sequence.
Now, we define U,.,
Let P, ; = P, U{r}

P,.1 is a finite subset of the interval [0,1] and it has a simple

ordering derived from the usual order relation ‘<’ on the real line.

We know that, In a finite simple ordered set every element (other
than the smallest and largest) has an immediate predecessor and immediate

SUCCCSSOr.

The number zero is the smallest element and 1 is the largest element

of the simple ordered set P, and r is neither o nor 1.

So r has an immediate predecessor p in P,,; and immediate

successor q in P, 1.

The set U, and U, are defined already and Up C U, by the induction

hypothesis.

Since X is normal we can find an open set U, in X such that Up C

U, and U, c U,.

Now, we shall prove that equation (*) hold, for every pair of

elements of P, ¢
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If both elements lie in P, (*) holds for the induction hypothesis.

If one of them is  and the other is a point s in P,. Then either s < p
in which case U; c U, c U, c U, (or) s < q in which case U, c U, C
U, c Us

Thus, ever pair of elements of P, ;. The relation (*) holds.

By induction, we have defined U, forall p € P.
Step 2:

In step 1, we defined Up for all rational numbers p in the interval

[0,1].

Now, we extend this definition to all rational numbers p in R by

defining Up = @ifp <O0and U, = X ifp > 1.
Then for every pair of rational numbers p # q,p < ¢ = Up c U,
Step 3:
Let x € X.
Let Q(x) = {p:x € Up}
Since U, = @ if p < 0,Q(r)
Since U, = X if p > 1,Q(r) contains every x € U,

~ Q(x) is bounded below and its lower bounded is the point of the interval
[0,1] Define f(x) = inf Q(x) = inf{p:x € Up}

Then f is the function from X into [0,1]

Step 4:

Now, we shall prove that f is the desired function.
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Claim: f(x) =0ifx €A
Letx € A,since A c Uy, x € U,
=>x€Upifp=0
= Q(x) equals the set of all non-negative rational numbers.
= f(x) =inf Q(x) =0
~f(x)=0ifx €A
Claim: f(x) =1ifx € B
Letx € B, Then x € X\B
= x & U [since U;x\B]
Since p < q, we have Up C U,
Thenx ¢ Uy > x € Upifp <1
= Q(x) consists of all rational numbers less than or equal to one.
= fx) =infQx) =1
~ f(x)=1ifx € B.
It remains to prove that f is continuous.
For this, first we prove the following elementary facts:

(i) x€eU, =fx)<r

i) xeU, =fx)=r

(i) Letx €U,

Sincep <q = Up c Uy, x €Usifr <s

= Q(x) contains all rational numbers grater than 7.s
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= f(x)=infQx) <.
~x €U,
= f(x)<r
(i) Letx ¢ U,
Thenx ¢ Uyifs <r
= Q(x) contains no rational number less than r
=fx)=r
cxeU.=f(x)=>r

Now, we shall prove the continuity of f

Given a point x, € X, and the open interval (c, d) in R containing the point
f (x0).
We shall find the neighborhood U of x, such that f(U) c (¢, d).

Since C < f(xy) < d. We can choose the rational numbers p and g such

thatc <p < f(xy) < g < d.

Let U = U,\U,. Then U is an open set prove that U is the desired nbd of
Xo. See Figure 5.4.2.

A
I'_I-q
e

QJ

c f(x,)

Figure 5.4.2

Claim x, € U.
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i.e. To prove x, € U, and x, & U,
Assume that x, & U,

Then f(xy) = ¢ (by (ii))

This is a contradiction

“xg € U,

~ X € Ug|U,

= xy € U.

Claim f(U) c (¢,d)

Let x € U. Then x € U,\U,

= x€Uandx ¢ U,

= x €U andx € Up

= f(x) <qandf(x) 2 p
=p=sf)=q

= f(x) € [p, q] which is subset of (¢, d)
= f(x) € (¢c,d)

Hence f(U) < (c,d)

= f is continuous function

Hence the proof.
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Definition.

If A and B are two subsets of the topological space X and if there is
a continuous function f: X — [0,1] such that f(4) = {0} and f(B) = {1},

we say that A and B can be separated by a continuous function.

Remark.

The Urysohn lemma says that if every pair of disjoint closed sets in
X can be separated by disjoint open sets, then each such pair can be

separated by a continuous function.
The converse is trivial for, if f: X — [0,1] is the continuous function
-1 1 -1 1 e .

then f [O’E) and f (— 7 1] are disjoint open set contains A and

B respectively.

Definition (T'5).

A space X is said to be completely regular if one-point sets are
closed in X and if for each point x, of X and each closed set A not

containing Xx,, there exists a continuous function f:X — [0,1] such that

f(x0) = 0 and f(AS) = {1}.

Note:

= A normal space is completely regular.
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= A completely regular space is regular.

Theorem 5.4.2.

(i) A subspace of a completely regular space is completely
regular.

(i) A product of completely regular space is completely regular.
Proof.
(i)  Let X be acompletely regular space and let Y be a subspace of X.

Let x, be a point of Yand let A be a closed set of Y disjoint from

Xo.
Now, A = ANY,S where A denotes the closure of 4 in X.
S Xo € A

Since X is completely regular, we can choose a continuous
function f:X — [0,1] such that f(x,) =1 and f(4) = {0}.
Then, the restriction of f to Y is the desire continuous function

onY.
~ Y 1s completely regular.

(i) Let X =[] X, be a product of completely regular space.
To prove X is completely regular.

Letb = (b,) be apoint of X and let A be a closed set of X disjoint

from b.

Choose a basis element [| U, containing b that does not intersect

A.
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Then U, =X, except for finitely many a say a =

Given i = 1,2, ... ... ,n choose a continuous function f;: X, —

[0,1] such that f;(bg,) = 1 and f;(X\U,,) = {0}
Let @; maps X continuously into R and vanish outside H;}(Uai)

The product f(x) = @,(x), P,(x), ... ..., @, (x) is the function
such that it equals 1 at b and vanishes outside [] U,,.

=~ f 1s the desired continuous function on X.

Hence X = [] X, is completely regular.

Note.

(i)  The spaces R? and S, X S, are completely regular but not
normal.

(i)  Aregular space need not be completely regular.

5.5. The Urysohn Metrization Theorem

Theorem 5.5.1(Urysohn Metrization Theorem)
Every regular space X with a countable basis in metrizable.
Proof.
We shall prove that x is metrizable by imbedding X in a metrizable space Y.
i.e. To Prove X is homeomorphic with a subspace of Y.

Let {B,} be a countable basis for X.
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Step 1
We prove the following:

“There exists a countable collection of continuous function f;,: x — [0,1] having the
property that given a point xy of X and given a nbd U of x,, there exists an index n

such that f,, in positive at x, and vanishes outside U”.

Let n and m be a pair of indexes for which B, € B,,. Then B,, and X\B,, are

disjoint closed subsets of x.
Since X is regular with countable basis, X is normal.

= By the Urysohn lemma, We can choose a continuous function g, ,,: X — [0,1]

such that gn,m@) = {1} and gnm(X\Bp,) = {0}

Hence far each pair n, m of indices for which B, € B,,. we can choose a continuous

function gy, m: X — [0,1] such that g,,,,(B,) = {1} and g, m (X\Bp,) = {0}

Now we shall prove that { gn,m} satisfies our requirements.

Let U be a nbd ofx, then we can choose a basis element B,,, such that x, € B,, € U.
Since X is regular, we can choose a basis element B,, such that x, € B,, and B, € B,,
Then far this pair n, m of indices g, ,, is defined.

Now, gnm (%) =1 [ xo € By © Byl

“ gnm 18 positive at x.

Letx € U

Then x & By, [+ B © U]

= Gnm(x) =0

= gnm vanishes outside U.

Since this collection is indexed by a subset of Z, X Z, it is countable.

Hence { gn,m} satisfies our requirement.
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Since this collection is countable, the collection can be re indexed with a positive

integer giving us the desired indexed family {f,}.
Step 2: (first version of the proof)

Consider R" is the product topology, given the function f,, of step q, define a
map F:x - RY by F(x) = (f(x), f2(x) ... ....)

Claim

F is continuous.

Since R“ has the product topology and each f,, is continuous, F is continuous.
Claim: F is injective.

Letx #y

Since X is regular, X is Hausdorff

= There exists disjoint neighbourhood U, and U, of x and y respectively.
Then x € U, and u ¢ U,,

By step 1, there exists an induced n such that f,(x) > 0 and f,(y) = 0.
= fu() # f,(y)

= F(x) # F(y)

= F is one — one

Hence F is injective.

Now to prove, F is an imbedding of X in R“ , we shall prove that F is a homeomorphism

of X onto its image, the subspace Z = F(X) of R®.

We know that, F defines a continuous bijection of X with Z.
It remains to prove that F~1: Z — X, is continuous.

i.e, To prove for each open set U in X, F(U) is open in Z.
Let U be open in X.

To prove F(U) is open in Z.
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Let z, be a point of F(U)

We shall find an open set W of Z, such that z, € W
Let x, be a point of U, such that F(x,) = z,
Choose an index N for which fy(x,) > 0 and fy(X\U) = 0.
Consider the open ray (0, ) in R

Let V = [I3*((0, %))

Then V is open in R® .

LetW=VnZ

Since V is open in R” , V' N Z is open in Z.
~ W isopenin Z.

To prove zy € W < F(U)

Claim1z, e W

Now [[n(z0) = HN(F(XO))

= [In(f1(x0), f2(x0) wvv vov e )

= fn(xo) >0

~ [n(20) € (0,0)

= 79 € [Iy"((0, 0))

=2z €V

Alsozy € Z

~zZo€VNZ

>z €W

Now claim 2: W c F(U)

Letze W

=>ze€elVNZ
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=>z€eVandz € Z =F(X)

= 7z € [[§*((0,)) and z = F(x) for some x € X
= [In(2) € (0,%) and Z = F(x)

Now [Tn(2) = [Tn(F ()

= [In(fi (), fo (%) wov e )

[Iv(@ = fu ().

= [v(@) = fu ()

« [n(2) € (0,00)

= fn(x) € (0, )

Since fy vanishes outside U, we must have x in U

e, x €U

= F(x) € F(U) [z=F(x)]

=>Z eFU)

~ W c F(U)

~ F(U) is openin Z

= F~1is continuous.

Hence F is a homeomorphism of X enter the impace of R .
Thus F is a imbedding of X in R .

Hence X is metrizable.

Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli 1 57



Figure 5.5.1s
Step 3 (second version of the proof)

In this version we imbed X in the metric space (R®,p) actually we imbed X in the

subspace [0,1]" on which p equals the metric p(x,y) = lub{|x; — y;|}.
We use the countable collection of function f,,: X — [0,1] constructed in step 1.

But now we impost the additional condition that f,(x) < %Vx, this condition is

satisfied by just dividing each function f,, by n.
Since f,,(x) < %Vx € X.

: 1
fn maps X into [O, ;]

Define F: X — [0,1]" by the equation

F(x) = (f1(x), f2(), oo e s )
Now we shall prove that , F is an imbedding relative to the metric p on [0,1]%¥
By the step 2, F is injective.

Also, if we use the product topology on [0,1]", F carries open set of X, onto open set

of Z = F(X)
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This statement remains true if one passes to the finer (larger) topology on [0,1]®

induced by the metric p
It remains to prove that F is continuous.
Letx, € XandLete >0

To prove the continuity, we shall find the nbd U of x, such that x e U =
p(F(x),F(xp)) <€

<

2|~
N | ™

First choose n, larger enough such that
Since each f,, is continuous, far eachn = 1,2 ... ... N
We can choose a nbd U,, of x, such that |f,,(x) — fr(x0)]| < % Vx € U,

LetU=U;n Uy;N........ NnUy

Then U is a nbd of x,,.

To prove U is the desired nbd of x

Letx €U

Then x € U,,Vn=1.2,...... N

Case (i): Letn < N

Since x € Uy, |f,,(x) — f,(x0)| < % Vx€EU
Case (ii): Letn > N

Then% < %

We know that f,, maps X into [O, %]

s fux) € [O, %] and f,,(xq) € [O, %]

> () — fulr)l S - <~ <=

Ifn >N, | fu(0) = fulxo)| < -

Then by both cases p(F(x), F(xo)) = lun {|F,(x), < 2 < g Vx}
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Hence F is continuous.
Thus F is an imbedding of X in [0,1]¥
Since [0,1]" is metrizable, X is metrizable.

Hence the theorem.

Theorem 5.5.2 (Imbedding theorem)

Let X be a space in which one-point sets are closed. Suppose that the collection
{falaey is an indexed family of continuous function fo:X — R satisfying the
requirement that for each point xy, X and each nbd U of x,, there is an index a such
that f,, is positive at x, and vanishes outside U. Then the function F:X — R/ defined

by F(x) = (f, (x))ae] is an imbedding of X in R). If f,maps X into [0,1] for each a
then F imbeds X in [0,1]/.

Proof.

Replace n by @ and R by R/ in step 2 in the previous theorem.

Definition.

A family of continuous function that satisfies the Hypothesis of this theorem is

said to separate points from closed sets in X.

Theorem 5.5.3.

A space X is completely regular iff it is homeomorphic to a subspace of [0,1]/ for some

]
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