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UNIT – 1 

TOPOLOGICAL SPACES 

 

 1.1.Topological spaces 
 

 The concept of Topological spaces is through out of grew out of the satisfy of 

the real line and Euclidean space and the study of continuous functions on these spaces. 

In this section unit we define a topological space and we study a number of spaces of 

constructing a topology on a set so as to make it into a topological space. We also 

consider some of the elementary concepts associated with topological spaces. Open and 

closed sets, limit points and continuous functions are introduced as natural 

generalisations of the corresponding ideas of real line and Euclidean space. 

 

Definition. 

 A topology on a set X is a collection 𝒯 of subsets of X having the following 

properties. 

(i) ∅  𝑎𝑛𝑑 𝑋 are in  𝒯 

(ii) The union of the elements of any sub collection of 𝒯 is in 𝒯 

(iii) The intersection of elements of any finite subcollection of 𝒯 is in 𝒯. 

 A set X function which a topology 𝒯 has been specified is called a topological 

space. 

 

Note. A topological space is an ordered pair (𝑋, 𝒯 ) consisting of a set 𝑋 and a topology 

𝒯 𝑜𝑛 𝑋 but we often omit specific mention of 𝒯. 

 

Remark. 

 If 𝑋 is a topological space with topology 𝒯, we say that a subset 𝑈 of 𝑋 is an 

open set of 𝑋 if 𝑈 belongs to the collection 𝒯. Using this terminology, we can say that 
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a topological space is a set 𝑋 together with a collection of subsets of 𝑋, called open set, 

such that ∅ and 𝑋 are both open and such that arbitrary unions and finite intersections 

of open sets are open. 

 

Example 1.  

 Let 𝑋 = {𝑎, 𝑏, 𝑐}. There are many possible topologies on 𝑋. Consider the 

following topologies in the Figure 1.1.  

 

 

 

 

 

 

 

The diagram in the upper right-hand corner indicates the topology in which the 

open sets are 𝑋, 𝜙, {𝑎, 𝑏}, {𝑏}, 𝑎𝑛𝑑 {𝑏, 𝑐}. The topology in the upper left-hand corner 

contains only X and  𝜙, while the topology in the lower right-hand corner contains 

every subset of X. We can get other topologies on X by permuting a, b and c. 

 

Note. From the above example, we can see that even a three-element set has many 

different topologies. But not every collection of subsets of X is a topology on X. For 

instance, neither of the collections indicated in the Figure 1.2 is a topology. 

 

Figure 1.2 

Figure 1.1 
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Example 2. 

 If X is any set, the collection of all subsets of X is a topology on X, then it is 

called the discrete topology. The collection consisting of X and ∅ only is also a topology 

on X, then it is called the indiscrete topology or the trivial topology. 

 

Example 3. 

 Let X be set. Let  𝒯𝑓 be the collection of all subsets  𝑈 of X such that 𝑋~𝑈 either 

is finite (or) is all of X. Then 𝒯𝑓 is a topology on X, is called the finite complement 

topology. 

For, since 𝑋 − 𝑋 = ∅ is finite (or) 𝑋~∅ = 𝑋, either is finite or is all of X. 

 ∴ Both 𝑋 and ∅ are in 𝒯𝑓. 

 Let {∪𝛼} be an indexed family of non-empty elements of 𝜏𝑓 

 To show that ⋃ 𝑈𝛼 ∈ 𝒯𝑓𝛼∈𝐼  

 Now, 𝑋 −∪ 𝑈𝛼 =∩ (𝑋~𝑈𝛼) 

 Since each 𝑋~𝑈𝛼 is finite, ∩ (𝑋~𝑈𝛼) is finite 

  ∴ 𝑋~ ∪ 𝑈𝛼 is finite 

  ∪ 𝑈𝛼 ∈ 𝒯𝑓 

 If 𝑈1, 𝑈2, ……… 𝑈𝑛 are non-empty elements of 𝒯𝑓 

 To show that ⋂ 𝑈1
𝑛
𝑖=1 ∈ 𝒯𝑓 

 Now, 𝑋 − ⋂ 𝑈𝑖
𝑛
𝑖=1 = ⋃ (𝑋 − 𝑈𝑖)

𝑛
𝑖=1  

 Since each (𝑋 − 𝑈𝑖) is finite 

  ⋃ (𝑋 − 𝑈𝑖)
𝑛
𝑖=1  is finite 

  𝑋~⋂ 𝑈𝑖
𝑛
𝑖=1  

  ∴ ⋂ 𝑈𝑖
𝑛
𝑖=1 ∈ 𝒯𝑓 

 Thus 𝒯𝑓 is a topology on X and it is called finite complement topology. 
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Example 4. 

 Let X be a set. 𝒯𝐶  be the collection of all subsets of X. Such that 𝑋~𝑈 is either 

countable (or) is all of X. Then 𝒯𝐶  is a topology on X, is called countable complement 

topology on X. 

For, since 𝒯𝐶 = {𝑈 ≤ 𝑋/𝑋~ 𝑈 𝑖𝑠 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 (𝑜𝑟) 𝑋~𝑈 = 𝑋}  

i.e, the countable complement topology on X is the collection of subset = {𝑋} ∪ {𝑈 ≤

𝑋/𝑈𝐶  𝑖𝑠 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒} 

clearly, 𝑋 ∈ 𝒯𝐶  

since, ∅𝐶 = 𝑋~∅ = 𝑋 which is a countable set. 

 ∴ ∅ ∈ 𝒯𝐶 

Let {𝑈𝛼} be any arbitrary collection of subsets of X from 𝒯𝐶 . 

Then 𝑈𝛼
𝐶 is countable for each 𝛼 ∈ 𝐼 

Now, (𝑈𝛼∈1𝑈𝛼)
𝐶 = ⋂ 𝑈𝛼

𝐶
𝛼∈𝐼  

The intersection of countable collection of sets is countable ⋂ 𝑈𝛼
𝐶

𝛼∈𝐼  is countable. 

∴ (𝑈𝛼∈1𝑈𝛼)
𝐶 is countable. 

⇒ 𝑈𝛼∈𝑇𝑈𝛼 ∈ 𝒯𝐶   

Let 𝑈1, 𝑈2, ………𝑈𝑛 be a finite collection of subsets for 𝑋 from 𝒯𝐶 . 

Then 𝑈𝑖
𝐶 is countable for each 𝑖 ∈ 1,2, ……𝑛 

(⋂ 𝑈𝑖
𝑛
𝑖=1 )𝐶 = ⋃ 𝑈𝑖

𝐶𝑛
𝑖=1   

Since the finite union of a countable collection of sets is countable, ⋃ 𝑈𝑖
𝐶𝑛

𝑖=1  countable. 

 ∴ (⋂ 𝑈𝑖
𝐶𝑛

𝑖=1 ) is countable 

 ⇒ (⋂ 𝑈𝑖
𝑛
𝑖=1 ) ∈ 𝒯𝐶  

Thus 𝒯𝐶  is topology on X, is called countable complement topology on X 
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Definition.  

 Suppose that 𝒯   and 𝒯′ are two topologies on a given set 𝑋. If 𝒯′ ⊇ 𝒯, we say 

that 𝒯′ is finer then 𝒯 (or) 𝒯 is coarser then 𝒯′. If 𝒯′ ⊃ 𝒯,  we say that 𝒯′ is strictly 

finer then 𝒯 (or) 𝒯 is strictly coarser finer then 𝒯′ We say 𝒯 is comparable with 𝒯′ 

of either 𝒯′ ⊃ 𝒯 (𝑜𝑟) 𝒯 ⊃ 𝒯′ 

 

1.2. Basis for a Topology 
 

Definition. 

 If 𝑋 is a set, a basis for a topology on X is a collection 𝔅 of subsets of X (called 

basis elements) such that 

(i) For each 𝑥 ∈ 𝑋, there is at least one basis element B containing 𝑥 

(ii) If 𝑥 belongs to the intersection of two basis elements 𝐵1 𝑎𝑛𝑑 𝐵2, then there 

is a basis element 𝐵3 containing 𝑥 such that 𝐵3 ⊂ 𝐵1 ∩ 𝐵2. 

If 𝔅 satisfies these two conditions, then we define the topology 𝓣 generated by 

𝕭 as follows: A subset 𝑈 𝑜𝑓 𝑋 is said to open in 𝑋 (i.e to be an element of 𝒯) if for each 

𝑥 ∈ 𝑈, there is a basis element 𝐵 ∈ 𝔅 such that 𝑥 ∈ 𝐵 and 𝐵 ⊂ 𝑈 

Note that each basis element is itself an element of 𝒯. 

 

Example 1. 

Let 𝔅 be the collection of all circular 

region (interior of circles) in the plane.  Then 𝔅 is 

a basis for the topology on X. 

For, since 𝔅  satisfies both conditions for a basis. 

The second condition is illustrated in figure 1.2.1. 

In the topology generated by 𝔅, a subset U of the 

plane is open if every x in U lies in some circular region 

contained in U. 

 

Figure 1.2.1 
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Example 2.  

Let 𝔅′ be the collection of all rectangular regions (ie, the interior of the 

rectangular) in the plane, where the rectangular have sides parallel to the coordinate 

axes. Then 𝔅′ is a basis for the topology on X. 

For, since 𝔅′  satisfies both conditions for a basis. The 

second condition is illustrated in figure 1.2.2. In this case, 

the condition is trivial, because the intersection of any two 

basis elements us itself a basis element (or empty).   

 In the topology generated by 𝔅′, a subset U of the 

plane is open if every x in U lies in some rectangular region 

contained in U. 

. 

Example 3. 

If 𝑋 is any set, then the collection 𝒯 of all one-point subsets of X is a basis for 

a discrete topology on 𝑋 and the collection 𝒯 generated by the basis 𝔅 is a topology 

on 𝑋. 

Solution. 

If  𝑈 = ∅ then clearly 𝑈 is open 

 ∴ 𝑈 = ∅ ∈ 𝒯 

If for each 𝑥 ∈ 𝑋, there exist a basis element 𝐵 containing 𝑥 and 𝐵 ⊆ 𝑋 

 ∴ 𝑋 ∈ 𝒯 

Let us take the indexed family {𝑈𝛼}𝛼∈𝐽 of the elements of 𝒯 

Show that 𝑈 = ⋃ 𝑈𝛼 ∈𝛼∈𝐽 𝒯 

Given 𝑥 ∈ 𝑈, there is an index 𝛼 such that 𝑥 ∈ 𝑈𝛼. 

Since 𝑈𝛼 is open, there is a basis element B such that 𝑥 ∈ 𝐵 ∈ 𝑈𝛼.  
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Then 𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝐵 ⊂ 𝑈. 

∴ By definition, U is open 

∴ 𝑈 = ⋃ 𝑈𝛼 ∈ 𝒯𝛼∈𝐼   

Next, we show that ⋂ 𝑈𝑖 ∈ 𝒯
𝑛
𝑖=1  

Now, let us take two elements 𝑈1 and 𝑈2 of 𝒯 and show that 𝑈1 ∩ 𝑈2 ∈ 𝒯 

Given, 𝑥 ∈ 𝑈1 ∩ 𝑈2, choose a basis of element 𝐵1 containing 𝑥 such that 𝑥 ∈ 𝐵1 ⊂ 𝑈1 

and also choose a basis element 𝐵2 containing such that 𝑥 ∈ 𝐵2 ⊂ 𝑈2. 

Then, by definition, we have to choose a basis element 𝐵3 containing 𝑥 such that 𝑥 ∈

𝐵3 ⊂ 𝐵1 ∩ 𝐵2. 

Then 𝑥 ∈ 𝐵3 and 𝐵3 ⊂ 𝑈1 ∩ 𝑈2 

∴ 𝑈1 ∩ 𝑈2 ∈ 𝒯  …………(1) 

Finally, we show by induction that any finite intersection 

𝑈1 ∩ 𝑈2 ∩ ……… ∩ 𝑈𝑛 ∈ 𝒯 

This fact is trivial when 𝑛 = 1 

Suppose it is true for 𝑛 − 1 and prove it for 𝑛 

Now, 𝑈1 ∩ 𝑈2 ∩ ………∩ 𝑈𝑛 = (𝑈1 ∩ 𝑈2 ∩ ………∩ 𝑈𝑛−1) ∩ 𝑈𝑛 

By induction hypothesis 𝑈1 ∩ 𝑈2 ∩ ………∩ 𝑈𝑛−1 ∈ 𝒯 and by result (1) 

(𝑈1 ∩ 𝑈2 ∩ ………∩ 𝑈𝑛−1) ∩ 𝑈𝑛 ∈ 𝒯 

i.e., 𝑈1 ∩ 𝑈2 ∩ ………∩ 𝑈𝑛 ∈ 𝒯 

∴ The result is true for 𝑛 

Thus, the collection of open sets generated by a basis 𝔅 is a topology. 

 

Lemma 1.2.1. 

Let 𝑋 be a set. Let 𝔅 be the basis for a topology 𝒯 on 𝑋. Then 𝒯 equals the 

collection of all unions of elements of 𝔅. 
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Proof. 

Let X be a set and 𝔅 be the basis for the topology 𝒯 on X. 

Given a collection of elements of 𝔅, they are also an element of 𝒯 

Since 𝒯 is a topology, then their union is in 𝒯 

Conversely, given, 𝑈 ∈ 𝒯 

For each 𝑥 ∈ 𝑈, choose an element 𝐵𝑥 of 𝔅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ 𝐵𝑥 ⊂ 𝑈. 

Then 𝑈 = ⋃ 𝐵𝑥𝑥∈𝑈  

Hence 𝑈 equals a union of elements of 𝔅. 

 

Lemma 1.2.2. 

Let 𝑋 be a topological space. Suppose that 𝒞 is a collection of open sets of X 

such that for each open set 𝑈 of X and each 𝑥 in 𝑈, there is an element 𝐶 of 𝒞  such that 

𝑥 ∈ 𝐶 ⊂ 𝑈.  Then 𝒞  is a basis for the topology of 𝑥. 

Proof. 

We show that 𝒞  is a basis 

Given 𝑥 ∈ 𝑋. Since 𝑋 itself an open. Then by hypothesis there is an element 𝐶 of 

𝒞 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ 𝐶 ⊂ 𝑋.  

Let 𝑥 ∈ 𝐶1 ∩ 𝐶2, where 𝐶1, 𝐶2 ∈ 𝒞  

Since 𝐶1 and 𝐶2 are open, 𝐶1 ∩ 𝐶2  is open. 

By hypothesis, there exist an element 𝐶3 𝑜𝑓 𝒞 such that 𝑥 ∈ 𝐶3 ⊂ 𝐶1 ∩ 𝐶2 

∴ 𝒞  is a basis. 

Let 𝒯 be the collection of open sets of X. 

We show that, the topology 𝒯′ generated by 𝒞  equals the topology 𝒯. 

First note that, if 𝑈 ∈ 𝒯 and 𝑥 ∈ 𝑈, then by the hypothesis, there is an element 

𝐶 𝑜𝑓 𝒞 such that 𝑥 ∈ 𝐶 ⊂ 𝑈 
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∴ 𝑈 ∈ 𝒯′  

Conversely, if 𝑊 ∈ 𝒯′, then by lemma 1.2.1 W equals a union of elements of 𝒞 . 

Since, each element of 𝒞  belongs to 𝒯 and 𝒯 is a topology. 

∴ 𝑊 ∈ 𝒯. 

Thus 𝒯 = 𝒯′ 

Hence, 𝒞  is a basis for the topology of 𝑋. 

 

Lemma 1.2.3. 

Let 𝔅 and 𝔅′ to the bases for the topologies 𝒯  and 𝒯′ respectively on 𝑋. Then the 

following are equivalent. 

i) 𝒯′ is finite than 𝒯 

ii) For each 𝑥 ∈ 𝑋 and each basis element 𝐵 ∈ 𝔅 containing 𝑥, there is a basis 

element 𝐵′ ∈ 𝔅′. Such that 𝑥 ∈ 𝐵′ ⊂ 𝐵. 

Proof. 

(𝑖𝑖) ⇒  (𝑖)  

Given an element 𝑈 ∈ 𝒯 

We show that 𝑈 ∈ 𝒯′ 

Let 𝑥 ∈ 𝑈 

Since 𝔅 generates 𝒯, there is an element 𝐵 ∈ 𝔅 such that 𝑥 ∈ 𝐵 ⊂ 𝑈 

By (2), there exist basis element 𝐵′ ∈ 𝔅′ such that 𝑥 ∈ 𝐵′ ⊂ 𝐵 

Then 𝑥 ∈ 𝐵′ ⊂ 𝑈 

So, by definition, 𝑈 ∈ 𝒯′  

∴ 𝒯′ is finer than 𝒯 

(𝑖) ⇒ (𝑖𝑖)  

Given 𝑥 ∈ 𝑋 and 𝐵 ∈ 𝔅 with 𝑥 ∈ 𝐵 
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Then by definition 𝐵 ∈ 𝒯 and 𝒯′ ⊃ 𝒯, by (i) 

∴ 𝐵 ∈ 𝒯′  

Since, 𝒯′ is the topology generated by 𝔅′, there is an element 𝐵′ ∈ 𝔅′ such that 𝑥 ∈

𝐵′ ⊂ 𝐵 

 

Definition. 

 If 𝔅 is the collection of open intervals in the real line, (𝑎, 𝑏) = {𝑥/𝑎 < 𝑋 < 𝑏},  

the topology generated by 𝔅 is called the S on the real line. 

 If 𝔅′ is the collection of all half-open intervals of the form [𝑎, 𝑏) = {𝑥/𝑎 ≤ 𝑥 <

𝑏},  where 𝑎 < 𝑏, the topology generated by 𝔅′ is called the lower limit topology. When 

ℝ is given the lower limit topology, we denote it by ℝ𝑙. 

Let 𝐾 denote the set of all numbers of the form 
1

𝑛
 for 𝑛 ∈ ℤ and let 𝔅′′ be the 

collection of all open intervals (𝑎, 𝑏), along with all lets of the form (𝑎, 𝑏) − 𝐾. The 

topology generated by 𝔅′′ is called the 𝑲−topology on ℝ. When ℝ is given this 

topology, we denote it by ℝ𝐾. 

 

Lemma 1.2.4. 

The topologies of ℝ𝑙 and ℝ𝐾 are strictly finer than the standard topology on ℝ, 

but are not comparable with one another. 

Proof. 

Let 𝒯,𝒯′ and  𝒯′′ be the topologies of ℝ,ℝ𝑙 , 𝑎𝑛𝑑 ℝ𝐾 respectively. 

Given a basis element (𝑎, 𝑏) for 𝒯 and a point 𝑥 ∈ (𝑎, 𝑏) the basis element [𝑥, 𝑏) for 

 𝒯′ contains 𝑥 and lies in (𝑎, 𝑏). On the other hand, given the basis element [𝑥, 𝑑) for 

 𝒯′, there is no open interval (𝑎, 𝑏) that contains 𝑥 and lies on [𝑎, 𝑑). 

Thus  𝒯′ is strictly finer than 𝒯. 

A similar argument applies to ℝ𝐾. 
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Given a basis element (𝑎, 𝑏) for 𝒯 and a point 𝑥 ∈ (𝑎, 𝑏), this same interval is a basis 

element for  𝒯′′ that contains x. On the other hand, given the basis element 𝐵 =

(−1,1) − 𝐾 and the point 0 𝑜𝑓 𝐵, there is no open interval that contains 0 and lies in 

B. 

sThus  𝒯′′ is strictly finer than 𝒯. 

By definition of  ℝ,ℝ𝑙  𝑎𝑛𝑑 ℝ𝐾 topologies we have that ℝ𝑙 and ℝ𝐾 are strictly finer 

than ℝ. 

But we cannot arrive that  𝑇′ ⊂ 𝑇′′ and  𝑇′′ ⊂ 𝑇′ 

Hence ℝ𝑙 and ℝ𝐾 are not comparable. 

 

Definition. 

 A subbasis 𝒮 for a topology on 𝑋 is a collection of subsets of 𝑋 whose union 

equals 𝑋. The topology generated by the subbasis 𝓢 is defined to be the collection 𝒯 of 

all unions of finite intersection of elements of 𝒮. 

 

1.3.The order Topology 
 

Definition. 

 If X is a simply ordered set, there is a standard topology for X, defined using 

the order relation. It is called the order topology. 

Suppose that X is a set having a simple order relation <. Given elements a and 

b of X such that 𝑎 <  𝑏, there are four subsets of X that are called the intervals 

determined by a and b. They are the following: 

(𝑎, 𝑏)  =  {𝑥|𝑎 <  𝑥 <  𝑏}, 

(𝑎, 𝑏]  =  {𝑥|𝑎 <  𝑥 ≤  𝑏}, 

[𝑎, 𝑏)  =  {𝑥|𝑎 ≤  𝑥 <  𝑏}, 

[𝑎, 𝑏]  =  {𝑥|𝑎 ≤  𝑥 ≤  𝑏}. 
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A set of the first type is called an open interval in X, a set of the last type is called a 

closed interval in X, and sets of the second and third types are called half-open 

intervals. 

 

Definition. 

 Let X be a set with a simple order relation; assume X has more than one 

element. Let 𝔅 be the collection of all sets of the following types: 

(1) All open intervals (𝑎, 𝑏) in X. 

(2) All intervals of the form [𝑎0, 𝑏), where 𝑎0 is the smallest element (if any) of X. 

(3) All intervals of the form (𝑎, 𝑏0], where 𝑏0 is the largest element (if any) of X. 

The collection 𝔅 is a basis for a topology on X, which is called the order topology. 

If X has no smallest element, there are no sets of type (2), and if X has no largest 

element, there are no sets of type (3). 

 

Example 1. 

 The standard topology on R is the order topology derived from the usual order 

on R. 

 

Example 2. 

 Consider the set ℝ × ℝ in the dictionary order; we shall denote the general 

element of 

ℝ ×ℝ by 

𝑥 ×  𝑦. The 

set ℝ ×ℝ 

has neither 

a largest 

nor a 

smallest Figure 1.3.1 
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element, so the order topology on ℝ ×ℝ has as basis the collection of all open intervals 

of the form (a × b, c × d) for a < c, and for a = c and b < d. These two types of 

intervals are indicated in Figure 1.3.1. The subcollection consisting of only intervals of 

the second type is also a basis for the order topology on ℝ× ℝ. 

 

 

 

 

 

 

Example3. 

 The positive integers 𝑍+ form an ordered set with a smallest element. The order 

topology on 𝑍+ is the discrete topology, for every one-point set is open: If 𝑛 >  1, then 

the one-point set {𝑛}  =  (𝑛 −  1, 𝑛 +  1) is a basis element; and if 𝑛 =  1, the one-

point set {1}  =  [1, 2) is a basis element. 

 

Example 4. 

 The set 𝑋 =  {1, 2}  ×  𝑍+ in the dictionary order is another example of an 

ordered set with a smallest element. Denoting 1 ×  𝑛 by 𝑎𝑛 and 2 ×  𝑛 by 𝑏𝑛, we can 

represent X by 

𝑎1  , 𝑎2, . . . ;  𝑏1, 𝑏2, … 

The order topology on X is not the discrete topology. Most one-point sets are open, but 

there is an exception—the one-point set {𝑏1}. Any open set containing 𝑏1 must contain a 

basis element about 𝑏1 (by definition), and any basis element containing 𝑏1 contains 

points of the 𝑎𝑖 sequence. 

 

Definition.  
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 If X is an ordered set, and 𝑎 is an element of X, there are four subsets of X that 

are called the rays determined by a. They are the following: 

(𝑎, +∞)  =  {𝑥 | 𝑥 >  𝑎}, 

(−∞, 𝑎)  =  {𝑥 | 𝑥 <  𝑎}, 

[𝑎, +∞)  =  {𝑥 | 𝑥 ≥  𝑎}, 

(−∞, 𝑎]  =  {𝑥 | 𝑥 ≤  𝑎}. 

Sets of the first two types are called open rays, and sets of the last two types are called 

closed rays. 

 

1.4.The Product Topology on 𝑿 × 𝒀 

 

If X and Y are topological spaces, there is a standard way of defining a 

topology on 

the cartesian product 𝑋 ×  𝑌. 

 

 

Definition.  

 Let X and Y be topological spaces. The product topology on 𝑋 ×  𝑌 is the 

topology having as basis the collection 𝔅   of all sets of the form 𝑈 ×  𝑉, where U is 

an open subset of X and V is an open subset of Y. 

 

Note. The collection 𝔅 of all sets of the form 𝑈 ×  𝑉, where U is an open subset of X 

and V is an open subset of Y. Then 𝔅 is a basis for 𝑋 ×  𝑌 but not a topology on 𝑋 ×  𝑌. 

For, the first condition is trivial, since 𝑋 ×  𝑌 is itself a basis element. 

Let 𝑈1 × 𝑉1, 𝑈2 × 𝑉2 ∈ 𝔅. 

Then  

(𝑈1  ×  𝑉1)  ∩  (𝑈2  ×  𝑉2)  =  (𝑈1  ∩  𝑈2)  ×  (𝑉1  ∩  𝑉2), 
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Since 𝑈1 𝑎𝑛𝑑  𝑈2 are open in X, 𝑈1  ∩  𝑈2 is open in X. 

Similarly, 𝑉1  ∩  𝑉2 is open in Y. 

Therefore, (𝑈1  ∩  𝑈2)  × (𝑉1  ∩  𝑉2) is a basis 

element 

⇒ (𝑈1  ×  𝑉1)  ∩  (𝑈2  ×  𝑉2) is a basis element. 

∴ the second condition for a basis is satisfied. 

Thus 𝔅 is a basis for 𝑋 ×  𝑌. See Figure 1.4.1.  

 

Note that the collection 𝔅 is not a topology on X × Y. The union of the two 

rectangles pictured in Figure 1.4.1, for instance, is not a product of two sets, so it 

cannot belong to 𝔅; however, it is open in X × Y. 

 

Theorem 1.4.1.  

 If ℬ is a basis for the topology of X and 𝒞 is a basis for the topology of Y, then 

the collection 𝒟 = {B × C | B ∈ ℬ and C ∈ 𝒞 } is a basis for the topology of X × Y. 

Proof. 

We apply Lemma 1.2.1, 

Given an open set W of X × Y and a point x × y of W 

Then by definition of the product topology, there is a basis element U × V such that 

𝑥 ×  𝑦 ∈ 𝑈 ×  𝑉 ⊂  𝑊.  

Because ℬ and 𝒞 are bases for X and Y , respectively, we can choose an element B of ℬ 

such that x ∈ B ⊂ U, and an element C of 𝒞 such that y ∈ C ⊂ V. Then x × y ∈ B × C 

⊂ W.  

Thus, the collection 𝒟 meets the criterion of Lemma 13.2, so 𝒟 is a basis for X × Y. 

Example 1.  

 We have a standard topology on ℝ: the order topology. The product of this 

topology with itself is called the standard topology on ℝ ×ℝ = ℝ2. It has as basis the 

collection of all products of open sets of R, but the theorem 1.4.1 tells us that the much 

Figure 1.4.1 
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smaller collection of all products (𝑎, 𝑏) × (𝑐, 𝑑) of open intervals in R will also serve 

as a basis for the topology of ℝ2. Each such set can be pictured as the interior of a 

rectangle in ℝ2.  

 

Definition.  

 Let 𝜋1 ∶  𝑋 ×  𝑌 →  𝑋 be defined by the equation 𝜋1(𝑥, 𝑦)  =  𝑥; let 𝜋2 ∶

 𝑋 ×  𝑌 →  𝑌 be defined by the equation 𝜋2(𝑥, 𝑦)  =  𝑦. The maps 𝜋1 and 𝜋2 are called 

the projections of X × Y onto its first and second factors, respectively. 

 

Remark. 

 If U is an open subset of X, then the set 

𝜋1
−1(𝑈) = 𝑈 × 𝑌 , which is open in 𝑋 ×  𝑌. Similarly, 

if V is open in Y , then 𝜋2
−1(𝑉) =  𝑋 ×  𝑉, which is 

also open in 𝑋 ×  𝑌 . The intersection of these two sets 

is the set 𝑈 ×  𝑉, as indicated in Figure 1.4.2. 

 

 

Theorem 1.4.2.  

 The collection 𝒮 =  {𝜋1
−1(𝑈) | 𝑈 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋}  ∪  {𝜋1

−1(𝑉)| 𝑉 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑌 } is a 

subbasis for the product topology on 𝑋 ×  𝑌. 

Proof. 

Let 𝒯 denote the product topology on 𝑋 ×  𝑌 ;  

Let 𝒯′ be the topology generated by 𝒮. 

Because every element of 𝒮 belongs to 𝒯 , so do arbitrary unions of finite intersections 

of elements of 𝒮.  

Thus 𝒯′ ⊂ 𝒯 .  

Figure 1.4.2 
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On the other hand, every basis element 𝑈 ×  𝑉 for the topology 𝒯 is a finite intersection 

of elements of 𝒮, since 𝑈 ×  𝑉 =  𝜋1
−1(𝑈) ∩ 𝜋2

−1(𝑉). 

Therefore, 𝑈 ×  𝑉 ∈ 𝒯, so that 𝒯 ⊂  𝒯′ as well. 

 

1.5. The Subspace Topology 

 

Definition.  

Let X be a topological space with topology 𝒯 . If Y is a subset of X, the collection 

𝒯𝑌 = {𝑌 ∩ 𝑈|𝑈 ∈ 𝒯 } is a topology on Y, called the subspace topology. With this 

topology, Y is called a subspace of X; its open sets consist of all intersections of open 

sets of X with Y. 

 

Lemma 1.5.1.  

If ℬ is a basis for the topology of X then the collection  

ℬ𝑌 = {𝐵 ∩ 𝑌|𝐵 ∈ ℬ} 

is a basis for the subspace topology on Y. 

Proof. 

Consider U is open in X.  

Given ℬ is a basis for the topology of X.  

We can choose an element B of ℬ such that 𝑦 ∈ 𝐵 ⊂ 𝑈. 

Then 𝑦 ∈ 𝐵 ∩ 𝑌 ⊂ 𝑈 ∩ 𝑌 , since ℬ𝑌 = {𝐵 ∩ 𝑌|𝐵 ∈ ℬ}. 

It follows from Lemma 1.2.2 that ℬ𝑌 is a basis for the subspace topology on Y. 

Definition. 

 If Y is a subspace of X, we say that a set U is open in Y (or open relative to Y) 

if it belongs to the topology of Y; this implies in particular that it is a subset of Y. We 

say that U is open in X if it belongs to the topology of X. 
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Lemma 1.5.2.  

Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open 

in X. 

Proof.  

Given U is open in Y and Y is open in X. 

Since U is open in Y and Y is a subspace of X then 𝑈 = 𝑌 ∩ 𝑉 where V is open 

in X. 

Since Y and V are both open in X, 𝑌 ∩ 𝑉 is open in X. 

Therefore, U is open in X. 

 

Theorem 1.5.3.  

If A is a subspace of X and B is a subspace of Y, then the product topology on 

𝐴 × 𝐵 is the same as the topology 𝐴 × 𝐵 inherits as a subspace of 𝑋 × 𝑌. 

Proof.  

The set 𝑈 × 𝑉 is the general basis element for 𝑋 × 𝑌, where U is open in X and V is 

open in Y. 

Then (𝑈 × 𝑉) ∩ (𝐴 × 𝐵) is the general basis element for the subspace topology on 

𝐴 × 𝐵. Now 

(𝑈 × 𝑉 ) ∩ (𝐴 × 𝐵) = (𝑈 ∩ 𝐴) × (𝑉 ∩ 𝐵). 

Since 𝑈 ∩ 𝐴 and 𝑉 ∩ 𝐵 are the general open sets for the subspace topologies on A and 

B respectively, the set (𝑈 ∩ 𝐴) × (𝑉 ∩ 𝐵) is the general basis element for the product 

on 𝐴 × 𝐵. 

The bases for the subspace topology on 𝐴 × 𝐵 and for the product topology on 𝐴 × 𝐵 

are the same.  

Hence the topologies are the same. 
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Remark. 

Now let X be an ordered set in the order topology, and let Y be a subset of X. 

The order relation on X, when restricted to Y , makes Y into an ordered set. However, 

the resulting order topology on Y need not be the same as the topology that Y inherits 

as a subspace of X. We give one example where the subspace and order topologies on 

Y agree, and two examples where they do not. 

 

Example 1.  

Consider the subset 𝑌 = [0,1] of the real line ℝ, in the subspace topology. 

The subspace topology has as basis all sets of the form (𝑎, 𝑏) ∩ 𝑌, where (𝑎, 𝑏) is an 

open interval in ℝ. Such a set is of one of the following types: 

(𝑎, 𝑏) ∩ 𝑌 =

{
 

 
(𝑎, 𝑏)               𝑖𝑓 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑖𝑛 𝑌,
[0, 𝑏)              𝑖𝑓 𝑜𝑛𝑙𝑦 𝑏 𝑖𝑠 𝑖𝑛 𝑌 ,       
(𝑎, 1]              𝑖𝑓 𝑜𝑛𝑙𝑦 𝑎 𝑖𝑠 𝑖𝑛 𝑌 ,       
𝑌 𝑜𝑟 ∅         𝑖𝑓 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 𝑛𝑜𝑟 𝑏 𝑖𝑠 𝑖𝑛 𝑌

 

By definition, each of these sets is open in Y. But sets of the second and third types are 

not open in the larger space R. 

Note that these sets form a basis for the order topology on Y. Thus, we see that in the 

case of the set Y = [0, 1], its subspace topology (as a subspace of R) and its order 

topology are the same. 

Example 2.  

Let Y be the subset [0,1) ∪ {2} of ℝ. In the subspace topology on Y the one-

point set {2} is open, because it is the intersection of the open set (
3

2
,
5

2
) with Y. But in 

the order topology on Y, the set {2} is not open. Any basis element for the order topology 

on Y that contains 2 is of the form 

{𝑥 | 𝑥 ∈  𝑌 𝑎𝑛𝑑 𝑎 <  𝑥 ≤  2} 

for some 𝑎 ∈ 𝑌; such a set necessarily contains points of Y less than 2. 

 



 

 

20 Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli  

Man 

Example 3.  

Let I = [0,1]. The dictionary order on 𝐼 × 𝐼 is just the restriction to 𝐼 × 𝐼 of the 

dictionary order on the plane 𝑅 × 𝑅.  

However, the dictionary order topology on 𝐼 × 𝐼 is not the same as the subspace 

topology on 𝐼 × 𝐼 obtained from the dictionary order topology on 𝑅 × 𝑅!. 

For example, the set {1/2} × (1/2,1] is open in 𝐼 × 𝐼 in the subspace topology, but not 

in the order topology. See Figure 1.5.1. 

 

Figure 1.5.1 

 

The set I×I in the dictionary order topology will be called the ordered square, 

and denoted by 𝐼0
2. 

 

Definition. 

Given an ordered set X, let us say that a subset Y of X is convex in X if for 

each pair of points a < b of Y , the entire interval (a, b) of points of X lies in Y . Note 

that intervals and rays in X are convex in X. 
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Theorem 1.5.4.  

Let X be an ordered set in the order topology; let Y be a subset of X that is 

convex in X. Then the order topology on Y is the same as the topology Y inherits as a 

subspace of X. 

Proof. 

Consider the ray (𝑎, +∞) in X. 

If 𝑎 ∈ 𝑌 , then (𝑎,+∞) ∩ 𝑌 = {𝑥|𝑥 ∈ 𝑌 𝑎𝑛𝑑 𝑥 > 𝑎}; this is an open ray of the 

ordered set Y. 

If 𝑎 ∉ 𝑌 , then a is either a lower bound on Y or an upper bound on Y, since Y is 

convex. 

If 𝑎 ∈ 𝑌 , the set (𝑎, +∞) ∩ 𝑌 equals all of Y. If 𝑎 ∉  𝑌 , it is empty. 

Similarly the intersection of the ray (−∞, 𝑎) ∩ 𝑌 is either an open ray of Y, or Y itself 

or empty. 

Since the sets (𝑎, +∞) ∩ 𝑌 and (−∞, 𝑎) ∩ 𝑌 form a subbasis for the subspace 

topology on Y and since each is open in the order topology, the order topology 

contains the subspace topology. 

Conversely, Y equals the intersection of X with Y, that is 𝑋 ∩ 𝑌 = 𝑌.  

So, it is open in the subspace topology on Y. The order topology is 

contained in the subspace topology. Therefore, the order topology and 

subspace topology are same. 

 

1.6. Closed Sets and Limit Points 
 

Definition.  

A subset A of a topological space X is said to be 𝑐𝑙𝑜𝑠𝑒𝑑 if the set 

𝑋 − 𝐴 is open. 
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Example 1.  

(i)The subset [𝑎, 𝑏] of ℝ is closed because its complement 

 ℝ− [𝑎, 𝑏] = (−∞, 𝑎) ∪ (𝑏, +∞), is open.  

(ii)Similarly, [𝑎, +∞) is closed, because its complement (−∞, a) is open.  

(iii)The subset [𝑎, 𝑏) of ℝ is neither open nor closed. 

 

Example 2.  

In the plane ℝ2, the set {𝑥 × 𝑦| 𝑥 ≥  0 𝑎𝑛𝑑 𝑦 ≥  0} is closed, 

because its complement is the union of the two sets (−∞, 0) × ℝ and 

ℝ × (−∞, 0), each of which is a product of open sets of ℝ and is, therefore, 

open in ℝ2. 

 

Example 3.  

In the finite complement topology on a set X, the closed sets consist 

of X itself and all finite subsets of X. 

 

Example 4.  

In the discrete topology on the set X, every set is open; it follows that 

every set is closed as well. 

 

Example 5.  

Consider the following subset of the real line: 

𝑌 = [0,1] ∪ (2,3), 
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in the subspace topology. In this space, the set [0,1] is open, since it is the 

intersection of the open set (−
1

2
,
3

2
) of ℝ with Y. Similarly, (2, 3) is open 

as a subset of Y; it is even open as a subset of ℝ. Since [0,1] and (2,3) are 

complements in Y of each other, we conclude that both [0,1] and (2,3) are 

closed as subsets of Y. 

 

Theorem 1.6.1.  

Let X be a topological space. Then the following conditions hold: 

(1) ∅ and X are closed. 

(2) Arbitrary intersections of closed sets are closed. 

(3) Finite unions of closed sets are closed. 

Proof. 

(1) ∅ and 𝑋 are closed because they are the complements of the open set 𝑋 

and ∅ respectively. 

(2) Consider a collection of closed sets {𝐴𝛼}𝛼∈𝐽 , we apply De Morgan’s 

law, 

𝑋 −⋂𝐴𝛼
𝛼∈𝐽

 =⋃(𝑋 − 𝐴𝛼)

𝛼∈𝐽

 

Since the sets 𝑋 − 𝐴𝛼 are open. By definition of closed sets, the right side 

of this equation represents an arbitrary union of open sets and is thus open.  

Therefore, ⋂ 𝐴𝛼𝛼∈𝐽  is closed. 

(3) Similarly, if 𝐴𝑖 is closed for 𝑖 =  1, 2,· · · , 𝑛. Consider the equation 
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𝑋 − ⋃𝐴𝑖

𝑛

𝑖=1

=⋂(𝑋 − 𝐴𝑖)

𝑛

𝑖=1

 

The set on the right side of this equation is a finite intersection of open 

sets and is therefore open. Hence ⋃ 𝐴𝑖
𝑛
𝑖=1  is closed. 

 

Definition.  

If Y is a subspace of X, we say that a set A is closed in Y if A is a 

subset of Y and if A is closed in the subspace topology of Y (that is, if 𝑌 −

𝐴 is open in Y). 

 

Theorem 1.6.2.  

Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals 

the intersection of a closed set of X with Y. 

Proof.  

Assume that 𝐴 = 𝐶 ∩ 𝑌 , where C is closed in X. See Figure 1.6.1. 

Then 𝑋 − 𝐶 is open in X, so that (𝑋 − 𝐶) ∩ 𝑌 is open in Y.  

By the definition of the subspace topology, but (𝑋 −  𝐶) ∩ 𝑌 = 𝑌 − 𝐴.  

Hence 𝑌 − 𝐴 is open inY, so that A is closed in Y. 

Conversely, assume that A is closed in Y. See 

Figure 1.6.1 

Then 𝑌 − 𝐴 is open in Y.  

By definition, it equals the intersection of an open set U of X with Y.  

The set 𝑋 − 𝑈 is closed in X and 𝐴 = 𝑌 ∩ (𝑋 − 𝑈).  
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Hence A equals the intersection of a closed set of X with Y. 

 

Theorem 1.6.3.  

Let Y be a subspace of X. If A is closed in Y and Y is closed in X, 

then A is closed in X. 

Proof. 

Given A is closed in Y and Y is closed in X.  

Since A is closed in Y and Y is a subspace of X. 

Let 𝐴 = 𝑌 ∩ (𝑋 −  𝐵) where 𝑋 − 𝐵 is open in X. Then B is closed in X.  

Since Y and B are both closed in X. 𝑇ℎ𝑒𝑛 𝑌 ∩ (𝑋 − 𝐵) is closed in X. 

Therefore, A is closed in X. 

 

Closure and Interior of a Set 

Definition. 

Given a subset A of a topological space X, the interior of A is 

defined as the union of all open sets contained in A, and the closure of A 

is defined as the intersection of all closed sets containing A. 

The interior of A is denoted by 𝐼𝑛𝑡 𝐴 and the closure of A is 

denoted by 𝐶𝑙 𝐴 or by 𝐴̅. Obviously Int A is an open set and A is a closed 

set; furthermore, 

𝐼𝑛𝑡 𝐴 ⊂  𝐴 ⊂  𝐴̅. 

If A is open, 𝐴 = 𝐼𝑛𝑡 𝐴; while if A is closed, 𝐴 = 𝐴̅. 
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Theorem 1.6.4.  

Let Y be a subspace of X; let A be a subset of Y; let 𝐴̅ denote the 

closure of A in X. Then the closure of A in Y equals 𝐴̅  ∩  𝑌. 

Proof. 

Let B denote the closure of A in Y. The set A is closed in X, so A∩Y is 

closed in Y.  

By Theorem 1.6.4, since 𝐴̅ ∩ 𝑌 contains A and since B is closed.  

By definition B equals the intersection of all closed subsets of Y 

containing A, we must have 𝐵 ∩ (𝐴̅ ∩ 𝑌). 

On the other hand, we know that B is closed in Y. By Theorem 1.6.4, 𝐵 =

𝐶 ∩ 𝑌 for some set C closed in X.  

Then C is a closed set of X containing A; because A is the intersection of 

all such closed sets, we conclude that A ⊂ C. Then 

(𝐴 ∩ 𝑌) ⊂ (𝐶 ∩ 𝑌) = 𝐵. Therefore, 𝐵 = 𝐴̅ ∩ 𝑌. 

 

Note. We shall say that a set A intersects a set B if the intersection A ∩ B 

is not empty. 

 

Theorem 1.6.5.  

Let A be a subset of the topological space X. 

(a) Then x∈𝐴̅ if and only if every open set U containing x intersects A. 

(b) Supposing the topology of X is given by a basis, then 𝑥 ∈ 𝐴̅ if and only 

if every basis element B containing x intersects A. 
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Proof. (a)We prove this theorem by contrapositive method. 

If x is not in A, since A is closed, A = A. The set U = X − A is an open set 

containing x that does not intersect A. 

Conversely, if there exists an open set U containing x which does not 

intersect 

A. Then X − U is a closed set containing A. 

By definition of the closure A, the set X − U must contain A, since x ∈ U. 

Therefore, x cannot be in A. 

(b) Write the definition of topology generated by basis,if every open set x 

intersects 

A, so does every basis element B containing x, because B is an open set. 

Conversely, if every basis element containing x intersects A, so does every 

open 

set U containing x, because U contains a basis element that contains x. 

 

Definition.  

If A is a subset of the topological space X and if x is a point of X, we 

say that x is a limit point(or ”cluster point” or ”point of accumulation”) 

of A if every neighborhood of x intersects A in some point other than x 

itself. Said differently, x is a limit point of A if it belongs to the closure of 

A − {x}. The point x may lie in A or not; for this definition it does not 

matter. 
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Theorem 1.6.6. 

Let A be a subset of the topological space X; let A′ be the set of all 

limit points of A. Then A = A̅  ∪  A′. 

Proof. 

Let A′be the set of all limit points of 𝐴. 

If x ∈ 𝐴′, every neighborhood of x intersects of A in a point different from 

x. By 

Theorem 1.6.5, x ∈ A. Then 𝐴′⊂ 𝐴̅. 

By definition of closure, 𝐴 ⊂  𝐴̅. Therefore, 𝐴 ∪  𝐴′ ⊂  𝐴̅. 

Conversely, let x ∈ 𝐴̅ 

To show that 𝐴̅ ⊂ A ∪ A′ 

If x ∈ A then it is trivially true for x ∈ A ∪ A′ 

Suppose 𝑥 ∉ 𝐴. Since x ∈ 𝐴̅, by 0.6.8, we know that every neighborhood 

U of x 

intersect A, because x ∉ A, the set U must intersect A in a point different 

from 

x. Then x ∈ A′ so that x ∈ A ∪ A′  

Then 𝐴̅ ⊂ A ∪ A′ 

Therefore, A = A ∪ A′ 
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Corollary 1.6.7.  

A subset of a topological space is closed if and only if it contains all 

its limit points. 

Proof.  

The set A is closed iff 𝐴 = 𝐴̅ . By Theorem 1.6.7, 𝐴′ ⊂  𝐴. 

 

Definition. 

A topological space X is called a Hausdroff space if for each pair 

𝑥1, 𝑥2 of distinct points of X, there exist neighborhoods 𝑈1 and 𝑈2 of 𝑥1 

and 𝑥2 respectively, that are disjoint. 

 

Theorem 1.6.8.  

Every finite point set in a Hausdorff space X is closed. 

Proof.  

It is enough to show that every one-point set {𝑥0} is closed. 

If x is a point of X different from 𝑥0, then x and 𝑥0have disjoint 

neighborhoods 

U and V respectively. 

Since U does not intersect {𝑥0}, the point x cannot belong to the closure of 

the 

set {𝑥0}. 

As a result, the closure of the set {𝑥0} is {𝑥0} itself. 

Therefore, {𝑥0} is closed. 
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Note: The condition that finite point sets be closed is in fact weaker than 

the Hausdroff condition. For example, the real line ℝ in the finite 

complement topology is not a Hausdorff space, but it is a space in which 

finite point sets are closed. The condition that finite point sets be closed 

has been given a name of its own; it is called the 𝑇1 axiom. 

 

Theorem 1.6.9.  

Let X be a space satisfying the T1 axiom; let A be a subset of X. Then 

the point x is a limit point of A if and only if every neighborhood of x 

contains infinitely many points of A. 

Proof.  

If every neighborhood of x intersects A in infinitely many points, it 

certainly intersects A in some point other than x itself, so that x is a limit 

point of A. 

Conversely, suppose that x is a limit point of A and suppose some 

neighborhood U of x intersects A in only finitely many points. 

Let {𝑥1, 𝑥2,· · · , 𝑥𝑚} be the points of 𝑈 ∩ (𝐴 − {𝑥}). 

The set 𝑋 − {𝑥1, 𝑥2,· · · , 𝑥𝑚} is an open set of X, since the finite point set 

{𝑥1, 𝑥2,· · · , 𝑥𝑚} is closed then 

𝑈 ∩ (𝑋 − {𝑥1, 𝑥2,· · · , 𝑥𝑚}) 

is a neighborhood of x that does not intersects the set 𝐴 − {𝑥}. 

Since {𝑥1, 𝑥2,· · · , 𝑥𝑚}be points of 𝑈 ∩ (𝐴 − {𝑥}). 

This contradicts the assumption that x is a limit point of A. 
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Theorem 1.6.10.  

If X is a Hausdorff space, then a sequence of points of X converges 

to at most one point of X. 

Proof.  

Suppose that 𝑥𝑛 is a sequence of points of X that converges to x. 

If 𝑦 ≠  𝑥, let U and V be disjoint neighborhoods of x and y respectively.  

Since U contains 𝑥𝑛 for all but finitely many values of n, the set V cannot 

contains 𝑥𝑛. 

Therefore, 𝑥𝑛cannot converge. 

If the sequence 𝑥𝑛of points of the Hausdorff space X converges to the point 

x of 

X, we often write 𝑥𝑛 →  𝑥. 

Therefore, x is the limit of the sequence 𝑥𝑛. 

 

Theorem 1.6.11.  

Every simply ordered set is a Hausdorff space in the order topology. 

The product of two Hausdorff spaces is a Hausdorff space. A subspace of 

a Hausdorff space is a Hausdorff space. 

Proof. 

Let X and Y be two Hausdorff spaces. 

To prove 𝑋 × 𝑌 is Hausdorff. 

Let 𝑥1 × 𝑦1 and 𝑥2  × 𝑦2 be two distinct points of 𝑋 × 𝑌 .  
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Then 𝑥1, 𝑥2 are distinct points of X and X is a Hausdorff space, there exists 

neighborhood 𝑈1 and 𝑈2 of 𝑥1 and 𝑥2 such that 𝑈1 ∩ 𝑈2  =  ∅ 

Similarly, 𝑦1, 𝑦2 are distinct point of Y and Y is a Hausdorff space, there 

exists neighborhood 𝑉1 and 𝑉2 of 𝑦1 and 𝑦2 such that 𝑉1 ∩ 𝑉2  =  ∅. 

Then clearly 𝑈1 × 𝑉1 and 𝑈2 × 𝑉2 are open sets in 𝑋 × 𝑌 containing 

𝑥1 × 𝑦1 and 

𝑥2  × 𝑦2 such that (𝑈1 × 𝑉1)  ∩  (𝑈2 × 𝑉2)  =  ∅. 

Therefore, 𝑋 × 𝑌 is a Hausdorff space. 

Let X be a Hausdorff space and let Y be a subspace. 

To prove Y is a Hausdorff space. 

Let 𝑦1, 𝑦2 be two distinct points of Y and Y containing X. Then 𝑦1 and 𝑦2 

are distinct points in X and X is Hausdorff there exists neighborhood 𝑈1 

and 𝑈2 of 𝑦1 and 𝑦2 such that 𝑈1 ∩ 𝑈2  =  ∅. Then 𝑈1 ∩ 𝑌 and 𝑈2 ∩ 𝑌 are 

distinct neighborhoods of 𝑦1 and 𝑦2 in Y . 

Therefore, Y is a Hausdorff space. 
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UNIT – 2 

CONTINUOUS FUNCTIONS 
 

2.1. Continuous Functions 

 

Continuity of a function. 

Definition. 

Let 𝑋 and 𝑌 be a topological spaces. A function 𝑓: 𝑋 → 𝑌 is said to be 

continuous if for each open subset 𝑉 of 𝑌, the set 𝑓−1(𝑉) is an open subset of 𝑋. 

 

Note. 𝑓−1(𝑉 ) is the set of all points x of X for which 𝑓(𝑥) ∈ 𝑉 ; it is empty if V does 

not intersect the image set f(X) of 𝑓. 

 

Remark. 

If the topology of the range space 𝑌 is given by a basis 𝔅, then to prove the 

continuity of 𝑓, it is sufficient to prove that the inverse of every basis element is open: 

For, the arbitrary open set 𝑉 of 𝑌 can be written as 𝑉 = ⋃ 𝐵𝛼𝛼∈𝐽  of basis element 

 Then 𝑓−1(𝑉) = 𝑓−1(⋃ 𝐵𝛼𝛼∈𝐽 ) = ⋃ 𝑓−1(𝐵𝛼) 𝛼∈𝐽  is open. 

 

Remark.  

If the topology of 𝑌 is given by a subbasis 𝑆1 then to prove the continuity of 𝑓, 

it is sufficient to prove that the inverse images of each subbasis element is open: 

 For, the arbitrary basis element 𝐵 of 𝑌 can be written as the finite intersection 

of subbasis element. 

𝐵 = 𝑆1 ∩ 𝑆2 ∩ ……∩ 𝑆𝑛 

⟹ 𝑓−1(𝐵) = 𝑓−1(𝑆1) ∩ 𝑓
−1(𝑆2) ∩ ……∩ 𝑓

−1(𝑆𝑛) 
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∴ 𝑓−1(𝐵) is open if each set 𝑓−1(𝑆1), 𝑓
−1(𝑆2)……𝑓

−1(𝑆𝑛) is open. 

 

Example 1. 

Prove that our definition of continuity implies 𝜖 − 𝛿 definition 

Solution.  

Consider 𝑓:ℝ → ℝ is a real valued function of a real variables  

Let 𝑥0𝜖ℝ (domain) 

Let 𝜖 > 0 be given and 𝑉 = (𝑓(𝑥0) − 𝜖, 𝑓(𝑥0) + 𝜖) 

Then 𝑉 is an open set of the range space ℝ. 

By definition of continuity, 𝑓−1(𝑉) is open set in the domain space ℝ. 

Since 𝑓(𝑥0) ∈ 𝑓
−1(𝑉) 

∴ We can choose an open interval (𝑎, 𝑏) 

Such that 𝑥0 ∈ (𝑎, 𝑏) ⊆ 𝑓−1(𝑉) 

Let 𝛿 = min{𝑥0 − 𝑎, 𝑏 − 𝑥0}  

Then 𝛿 > 0 

Let |x- 𝑥0| < 𝛿 ⟹ 𝑥 ∈ (𝑎, 𝑏) 

  ⟹ 𝑥 ∈ 𝑓−1(𝑉) 

  ⟹ 𝑓(𝑥) ∈ 𝑉 

  ⟹ 𝑓(𝑥) ∈ (𝑓(𝑥0) − 𝜖, 𝑓(𝑥0) + 𝜖) 

  ⟹ 𝑓(𝑥0)−∈< 𝑓(𝑥) < 𝑓(𝑥0) + 𝜖 

  ⟹−𝜖 < 𝑓(𝑥) − 𝑓(𝑥0) < 𝜖 

  ⟹ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖 

i.e., |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖 
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Example 2.  

Let ℝ denote the set of real numbers 𝑛 its usual topology and let ℝ𝑙 denote the 

same set with lower limit topology. 

Let 𝑓:ℝ → ℝ𝑙  be the identity function. 

Such that, 𝑓(𝑥) = 𝑥, then 𝑓 is not continuous 

For, the inverse image of [𝑎, 𝑏) 

i.e., 𝑓−1[(𝑎, 𝑏)] = [𝑎, 𝑏) of equals itself. 

But this interval is not open in ℝ, on the other hand the identity function 𝑔:ℝ𝑙 ->ℝ is 

continuous. 

Since, inverse image of [𝑎, 𝑏) is itself open in ℝ𝑙. 

 

Theorem 2.1.1.  

Let 𝑋 and 𝑌 be the topological spaces. Let 𝑓: 𝑋 → 𝑌 be a mapping. Then the 

following are equivalent. 

(i) 𝑓 is continuous. 

(ii) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑜𝑓 𝑋 𝑜𝑛𝑒 ℎ𝑎𝑠 𝑓(𝐴̅) ⊂ 𝑓(𝐴)̅̅ ̅̅ ̅̅ . 

(iii) For every closed set 𝐵 of 𝑌, the set 𝑓−1(𝐵) is closed in 𝑋. 

(iv) For each 𝑥 ∈ 𝑋 and each neighbourhood 𝑉 of 𝑓(𝑥), there is neighbourhood 

U 𝑜𝑓 𝑥 such that 𝑓(𝑈) ⊂ 𝑉. 

If the condition (iv) holds for the point 𝑥 ∈ 𝑋. We say that 𝑓 is continuous at the 

point 𝑥. 

Proof. 

To show that (𝑖) ⇒  (𝑖𝑖)  ⇒  (𝑖𝑖𝑖)  ⇒ (𝑖) and (𝑖) ⇒  (𝑖𝑣)  ⇒  (𝑖). 

(𝑖) ⇒  (𝑖𝑖) 

Suppose that 𝑓 is continuous 

To prove, 𝑓(𝐴̅) ⊂  𝑓(𝐴)̅̅ ̅̅ ̅̅  
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Let 𝑥 ∈ 𝐴̅, then 𝑓(𝑥) ∈ 𝑓(𝐴̅) 

Claim:  𝑓(𝑥) ∈ 𝑓(𝐴)̅̅ ̅̅ ̅̅   

Since 𝑓 is continuous, 𝑓−1(𝑉) is an open set of X containing x, where 𝑉 be a 

neighborhood of 𝑓(𝑥). 

Now, 𝑓−1(𝑉) intersects 𝐴 in some point 𝑦 

⟹ 𝑉 intersect 𝑓(𝐴) in the point 𝑓(𝑦) 

⟹ 𝑓(𝑥) ∈ 𝑓(𝐴)̅̅ ̅̅ ̅̅    

∴ 𝑓(𝐴̅) ⊆ 𝑓(𝐴)̅̅ ̅̅ ̅̅  . 

To prove (𝑖𝑖)  ⇒  (𝑖𝑖𝑖) 

Let 𝐵 be closed in 𝑌. Let 𝐴 =  𝑓−1(𝐵). 

To prove 𝑓−1(𝐵) is closed in 𝑋 

Let 𝐴 = 𝑓−1(𝐵) 

i.e., To prove 𝐴 is closed in 𝑋 

It is enough to prove 𝐴 = 𝐴̅ 

Always, 𝐴 ⊆ 𝐴̅   

By elementary set theory, we have 𝑓(𝐴)  =  𝑓(𝑓−1(𝐵))  ⊂  𝐵 

If 𝑥 ∈ 𝐴̅, then 𝑓(𝑥) ∈ 𝑓(𝐴̅) ⊂ 𝑓(𝐴)̅̅ ̅̅ ̅̅  ⊂ 𝐵̅  = 𝐵. 

Since A ⊂ A, therefore, 𝐴̅ = A. 

To prove, (iii) ⟹ (i) 

Let 𝑉 be an open set in 𝑌. The set 𝐵 =  𝑌 −  𝑉 . 

Then 𝑓−1(𝐵)  =  𝑓−1(𝑌 −  𝑉 )  =  𝑓−1(𝑌 )  −  𝑓−1(𝑉 )  =  𝑋 − 𝑓−1(𝑉) 

Now B is a closed set of Y then 𝑓−1(𝐵) is closed in X(By hypothesis). 

Then 𝑓−1(𝑉) is open in X. 

Therefore, f is continuous. 
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To prove (i) ⟹ (𝑖𝑣) 

Let 𝑥 ∈ 𝑋 and let 𝑉 be a neighbourhood of 𝑓(𝑥) 

Then the set 𝑈 = 𝑓−1(𝑉) is a neighbourhood of 𝑥 such that 𝑓(𝑉) ⊂ 𝑉 

To prove (iv) ⟹(i)  

Let 𝑉 be an open set of 𝑌 and Let 𝑥 ∈ 𝑓−1(𝑉) 

Then 𝑓(𝑥) ∈ 𝑉 

By our hypothesis there is a neighbourhood 𝑈𝑥 of 𝑥 such that 𝑓(𝑈𝑥) ⊂ 𝑉 

Then 𝑈𝑥 ⊂ 𝑓
−1(𝑉) 

It follows that 𝑓−1(𝑉) can be written as the union of open set 𝑈𝑥 

∴ 𝑓−1(𝑉) is open in 𝑋 

Hence 𝑓 is continuous. 

 

Homeomorphism 

 Let 𝑋 and 𝑌 be a topological spaces. Let 𝑓: 𝑋 → 𝑌 be a bijection. If both the 

function 𝑓 and inverse function 𝑓−1: 𝑌 → 𝑋 are continuous. Then 𝑓 is called a 

Homeomorphism. 

 

Remark 1. 

The condition that 𝑓−1 is continuous says that for each open set 𝑈 of 𝑋, the inverse 

image of 𝑈 under the map 𝑓−1: 𝑉 → 𝑋 is open in 𝑌. 

But (𝑓−1)−1 = 𝑓 

∴ (𝑓−1)−1(𝑉) = 𝑓(𝑉)  

Hence a homeomorphism is a bijective correspondence 𝑓: 𝑋 → 𝑌 such that 𝑓(𝑉) is open 

iff 𝑈 is open. 
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Remark 2 

The above remark shows that the homeomorphism 𝑓: 𝑋 → 𝑌 gives as a bijective 

correspondence not only between 𝑋 and 𝑌 but between the collection of open sets of 𝑋 

and 𝑌 

 As a result, any property of 𝑋 that is entirely expressed in terms of the topology 

of 𝑋 

 Yields, via the correspondence 𝑓 the corresponding property for the space 𝑌, 

such a property of 𝑋 is called a topology property of 𝑋. 

 

Topological Imbedding 

 Suppose that 𝑓: 𝑋 → 𝑌 is an injective continuous map where 𝑋 are 𝑌 are 

topological space. 

 Let 𝑍 be the image of 𝑓(𝑋) condered as a subspace of 𝑌 

 Then the function 𝑓′: 𝑋 → 𝑍. Obtained by restricting the range of 𝑓 is bijective.

  

 If 𝑓′ happens to be a homeomorphism of 𝑋 with 𝑍, we say that the map 𝑓: 𝑋 →

𝑌 is a topological imbedding (or) simply on imbedding of 𝑋 in 𝑌. 

 

Remark. 

Let 𝑓: 𝐴 → 𝐵. If there are function, 𝑔: 𝐵 → 𝐴 and ℎ: 𝐵 → 𝐴 show that 

𝑔[𝑓(𝑥)] = 𝑎, ∀𝑎 ∈ 𝐴 and 𝑓[ℎ(𝑏)] = 𝑏, ∀𝑏 ∈ 𝐵, then 𝑓 is bijective and 𝑔 = 𝑏 = 𝑓−1. 

 

Example 1. 

Show that the function 𝑓:ℝ → ℝ is given by 𝑓(𝑥) = 3𝑥 + 1 is a 

homeomorphism. 

Solution.  
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Define 𝑔:ℝ → ℝ by 𝑔(𝑦) =
𝑦−1

3
 

Now, 𝑔[𝑓(𝑥)] =
𝑓(𝑥)−1

3
 

  =
3𝑥+1−1

3
 

  =
3𝑥

3
 

 𝑔[𝑓(𝑥)] = 𝑥 

and 𝑓[𝑔(𝑦)] = 3[𝑔(𝑦)] + 1 

          = 3 (
𝑦−1

3
) + 1 

           = 𝑦 − 1 + 1 

 𝑓[𝑔(𝑦)] = 𝑦 

∴ By the above result, 𝑓 is bijective and 𝑔 = 𝑓−1 we know that the algebraic functions 

are continuous. 

Since 𝑓 and 𝑓−1 are algebraic functions, we have 𝑓 and 𝑓−1 are continuous. 

Hence 𝑓 is a homeomorphism 

 

Example 2. 

Show that the function 𝐹: (−1,1) → 𝑅 defined by 𝐹(𝑥) =
𝑥

1−𝑥2
 𝑖𝑠 𝑎 homeomorphism. 

Solution. 

Let 𝑦 =
𝑥

1−𝑥2
 

𝑦(1 − 𝑥2) = 𝑥  

𝑦 − 𝑥2𝑦 = 𝑥  

𝑥2𝑦 + 𝑥 − 𝑦 = 0  

∴ 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
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Now, 𝑥 =
−1+√1+4𝑦2

2𝑦
×
−1−√1+4𝑦2

−1−√1+4𝑦2
 

 =
1−(1+4𝑦2)

−2𝑦(−1+√1+4𝑦2)
 

 =
−4𝑦2

−2𝑦(+1+√1+4𝑦2)
 

 =
2𝑦

1+√1+4𝑦2
 

Define 𝐺 → 𝑅 → (−1,1) by 𝐺(𝑦) =
2𝑦

1−√1+4𝑦2
 

𝐺[𝑓(𝑥)] =
2[𝐹(𝑥)]

1+√1+4(𝐹(𝑥))
2
  

 =
2(

𝑥

1−𝑥2
)

1+√1+4(
𝑥

1−𝑥2
)
2
 

 =
2𝑥/(1−𝑥2) 

1+
√(1−𝑥2)

2
+4𝑥2

(1−𝑥2)
2

 

 =
2𝑥/(1−𝑥2) 

1+
√(1−𝑥2)

2
+4𝑥2

(1−𝑥2)

 

 =
2𝑥/(1−𝑥2) 

(1−𝑥2)√1+𝑥4−2𝑥2+4𝑥2

(1−𝑥2)

 

 =
2𝑥

(1−𝑥2)+√1+𝑥4+2𝑥2
 

 =
2𝑥

(1−𝑥2)+√(1+𝑥2)2
 

 =
2𝑥

(1−𝑥2)+(1+𝑥2)
 

 =
2𝑥

2
 

𝐺[𝑓(𝑥)] = 𝑥  

𝑓[𝑔(𝑦)] =
𝑔(𝑦)

1−(𝑔(𝑦))
2  
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 =
2𝑦/1+√1+4𝑦2

1−4𝑦2/(1+√1+4𝑦2)2 
 

 =
2𝑦/1+√1+4𝑦2

(√1+4𝑦2)
2
−4𝑦2/ (1+√1+4𝑦2)2    

 

 =
2𝑦

(1+√1+4𝑦2)

2

−4𝑦2

(1+√1+4𝑦2)

 

 =
2𝑦(1+√1+4𝑦2)

1+1+4𝑦2+2(√1+4𝑦2)−4𝑦2
 

 =
2𝑦(1+√1+4𝑦2)

2(1+√1+4𝑦2)
 

𝑓[𝑔(𝑦)] = 𝑦  

By the above result 𝐹 is bijective and 𝐺 = 𝐹−1 

We know than the algebraic function and square root functions are continuous 

Since 𝐹 and 𝐹−1 are algebraic and square root function 

We have 𝐹 and 𝐹−1 are continuous 

Hence 𝐹 is homeomorphism 

 

Example 3. 

The identity function 𝑔:ℝ𝑙 → ℝ is not a homeomorphism. 

For , since 𝑔 is bijective and 𝑔 is continuous but 𝑔−1 is not a continuous junction. 

 

Example 4. 

Let S′ denote the unit circle. 

𝑆′ = {𝑥 × 𝑦/𝑥2 + 𝑦2 = 1} considered as a subspace of the plane ℝ3 

Let 𝑓: [0,1) → 𝑆′ be the map defined by 𝑓(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡) 
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Then 𝑓 is not a homeomorphism. 

Since, cos 2𝜋𝑡, sin 2𝜋𝑡 are continuous functions. 

Then clearly 𝑓 is bijective and continuous functions. 

Let 𝑈 = [0,
1

4
)  𝑖𝑛 [0,1)  

Then the image of 𝑈 is not open in 𝑆′ for the point 𝑝 = 𝑓(𝑈) lies in no open set 𝑉 of 

ℝ2 

Such that 𝑉 ∩ 𝑆′ ⊂ 𝑓(𝑈) 

∴ 𝑓−1 is not continuous. 

Hence, 𝑓 is not a homeomorphism. 

 

Constructing Continuous Functions 

Theorem 2.1.2. (Rules for constructing continuous functions) 

Let 𝑋, 𝑌 and 𝑍 a topological spaces. 

a) (constant function) If 𝑓: 𝑋 → 𝑌 maps all of 𝑋 into the single point 𝑥0 of 𝑌, then 

𝑓 is continuous 

b) (Inclusion) If 𝐴 is a subspace of 𝑋, the inclusion function 𝑗: 𝐴 → 𝑋 is 

continuous. 

c) (composition) If 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are continuous, then the map  𝑔𝑜𝑓: 𝑋 →

𝑍 is continuous. 

d) (Restricting the domain) If 𝑓: 𝑋 → 𝑌 is  continuous and if 𝐴 is a subspace of 𝑋, 

then the restricted function 𝑓|𝐴: 𝐴 → 𝑌 is continuous. 

e) (Restricting (or) expanding the range) 

Let 𝑓: 𝑋 → 𝑌 be continuous. If 𝑍 is a subspace of 𝑌 containing the image 

set 𝑓(𝑥), then the function 𝑔: 𝑋 → 𝑍 obtained by restricting the range of 𝑓 is 

continuous. If 𝑍 is space having 𝑌 as subspace. Then the function ℎ: 𝑋 → 𝑍 

obtained by expanding the range of 𝑓 is continuous. 

f) (Local formulation of continuity) 
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The map 𝑓: 𝑋 → 𝑌 is continuous if 𝑋 can be written as the union of open 

sets. 𝑈∝. Such that 𝑓|𝑈∝ is continuous for each ∝. 

e) (Continuity at each point) 

 The map 𝑓: 𝑋 → 𝑌 is continuous if for each 𝑥 ∈ 𝑋 and each neighbour hood 𝑉 

of 𝑓(𝑥), there is a 𝑛𝑏𝑑 𝑈 of 𝑥 such that 𝑓(𝑈) ⊂ 𝑉 

[Note: If the condition (g) holds for a particular point 𝑥 of 𝑋, we say that 𝑓 is continuous 

at the point 𝑥] 

Proof. 

a) Let 𝑓(𝑥) = 𝑦0  ∀ 𝑥 ∈ 𝑋 

Let 𝑉 be an open set in 𝑌 

Then 𝑓−1(𝑉) = {
𝑋      𝑖𝑓 𝑦0 ∈ 𝑉
∅     𝑖𝑓 𝑦0 ∉ 𝑉

 

In either case, 𝑓−1(𝑉) is open 

Hence 𝑓 is continuous. 

b) Let 𝑈 be an open set in 𝑌 

Then 𝑓−1(𝑉) = 𝑈 ∩ 𝐴, which is open in 𝐴 by the definition of subspace of 

topology. 

∴ 𝑗 is continuous. 

c) Let 𝑈 be an open set in 𝑍 

Since 𝑔: 𝑌 → 𝑍 is continuous. 

𝑔−1(𝑈) is open in 𝑌 

Since 𝑓: 𝑋 → 𝑌 is continuous, 𝑓−1(𝑔−1(𝑈)) is open in 𝑋 

i.e., (𝑓−1 ∘ 𝑔−1)(𝑈) is open in 𝑌 

but 𝑓−1 ∘ 𝑔−1 = (𝑔 ∘ 𝑓)−1 

∴ (𝑔 ∘ 𝑓)−1(𝑈) is open in 𝑌. 

 Hence 𝑔 ∘ 𝑓 is continuous. 

d) Here 𝑓|𝐴 = 𝑓 ∘ 𝑗, where 𝑗: 𝐴 → 𝑋 is the inclusion 

Since 𝑓 and 𝑗 are continuous, 𝑓 ∘ 𝑗 is also continuous. 

i.e,. 𝑓|𝐴: 𝐴 → 𝑌 is continuous. 

e) Let 𝑓: 𝑋 → 𝑌 be continuous 

i) If 𝑓(𝑥) ⊂ 𝑍 ⊂ 𝑌 
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To prove 𝑔: 𝑋 → 𝑍 obtained from 𝑓 is continuous 

Let 𝐵 be open in 𝑍 

Since 𝑍 is subspace of 𝑌, 𝐵 = 𝑈 ∩ 𝑍, for some open set 𝑈 in 𝑌 

Since 𝑓(𝑥) ⊂ 𝑍, 𝑔−1(𝐵) = 𝛿−1(𝑉) by elementary set theory 

Since 𝑓 is continuous and 𝑈 is open in 𝑌, 𝑓−1(𝑉) is open in 𝑋.  

⇒ 𝑔−1(𝐵) is open in 𝑋 

𝑔 is continuous. 

ii) Given 𝑌 ⊂ 𝑍 

To prove, ℎ: 𝑋 → 𝑍 is continuous 

Here ℎ = 𝑗 ∘ 𝑓 where 𝑗: 𝑌 → 𝑍 is the inclusion function 

⇒ ℎ is composition of two continuous function 

⇒ ℎ is continuous (by(i)) 

f) If 𝑋 can be written as the union of open sets 𝑈∝ such that 𝑓|𝑈∝ is continuous for 

each 𝛼. 

To prove 𝑓: 𝑋 → 𝑌 is continuous 

Let 𝑉 be an open set in 𝑌 

Claim: 𝑓−1(𝑉) is open in 𝑋 

Now, 𝑓−1(𝑉) ∩ 𝑈∝ = {𝑥/𝑥 ∈ 𝑓
−1(𝑉) ∩ 𝑈∝} 

          = {𝑥/𝑥 ∈ 𝑓−1(𝑉)𝑎𝑛𝑑 𝑥 ∈ 𝑈∝} 

           = {
𝑥

𝑓(𝑥)
∈ 𝑉 𝑎𝑛𝑑 𝑥 ∈ 𝑈∝}      → (1) 

 Also, (𝑓|𝑈∝)
−1
(𝑉) = {𝑥 ∈ 𝑈∝/𝑓(𝑥) ∈ 𝑉}        → (2) 

From (1) and (2) 𝐹−1(𝑉) ∩ 𝑈∝ = (𝑓|𝑈∝)
−1
(𝑉) 

Since 𝑓|𝑈∝: 𝑈∝ → 𝑌 continuous and 𝑉 is open in 𝑌 

(𝑓|𝑈∝)
−1
(𝑉) 𝐵 open in 𝑈∝ 

 But 𝑈∝ is open in 𝑋. 

 ∴ (𝑓|𝑈∝)
−1
(𝑉) is open in 𝑋 

 ⇒ 𝑓−1(𝑉) ∩ 𝑈∝ is open in 𝑋 

 But ∪ [𝑓−1(𝑉) ∩ 𝑈∝] = 𝑓−1(𝑉) ∩ [𝑈∝𝑈∝] 
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    = 𝑓−1(𝑉) ∩ 𝑋 

    = 𝑓−1(𝑉) 

 i.e., 𝑓−1(𝑉) is the union of open sets of 𝑋 

 ⇒ 𝑓−1(𝑉) is open in 𝑋 

 ∴ 𝑓 is continuous 

g) To prove 𝑓: 𝑋 → 𝑌 is continuous 

Let 𝑉 be an open in 𝑌 

Claim : 𝑓−1(𝑉) is open in 𝑋 

Let 𝑥 ⊂ 𝑓−1(𝑉) 

⇒ 𝑓(𝑥) ∈ 𝑉  

 By hypothesis, there is a neighbour hood 𝑈𝑥 of 𝑥 of 𝑋 

 Such that, 𝑓(𝑈𝑥) ⊂ 𝑉 

 Then 𝑈𝑥 ⊂ 𝑓
−1(𝑉) 

 ∴ for each 𝑥 ∈ 𝑓−1(𝑉), we can change a neighbour hood 𝑈𝑥 of 𝑥 of 𝑈𝑥 ⊂

𝑓−1(𝑉) 

 ∴ 𝑓−1(𝑉) = ⋃ 𝑈𝑥𝑥∈𝑓−1(𝑉)  

 ⇒ 𝑓−1(𝑉) is a union of open sets of 𝑋. 

 ⇒ 𝑓−1(𝑉) is open in 𝑋 

 Hence 𝑓 is continuous. 

 

Theorem 2.1.3 (Pasting Lemma) 

 Let 𝑋 = 𝐴 ∪ 𝐵, where 𝐴 and 𝐵 are closed in 𝑋. Let 𝑓: 𝐴 → 𝑌 and 𝑔: 𝐵 → 𝑌 be 

continuous if 𝑓(𝑥) = 𝑔(𝑥) for every 𝑥 ∈ 𝐴 ∩ 𝐵 then 𝑓 and 𝑔 combined to give a 

continuous function ℎ: 𝑋 → 𝑌 defined by setting ℎ(𝑥) = 𝑔(𝑥) if 𝑥 ∈ 𝐴 and ℎ(𝑥) =

𝑔(𝑥) if 𝑥 ∈ 𝐵. 
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Proof.  

 

Let 𝑋 =  𝐴 ∪  𝐵 where A and B are closed in X. 

Since 𝑓 ∶  𝐴 →  𝑌 is continuous, 𝑓−1(𝐶) is closed in A, where C is closed in Y. 

Since 𝑔 ∶  𝐵 →  𝑌 is continuous, 𝑔−1(𝐶) is closed in B where C is closed in Y. 

If 𝑥 ∈ 𝐴, ℎ(𝑥) = 𝑓(𝑥) and if 𝑥 ∈ 𝐵, ℎ(𝑥) = 𝑔(𝑥). 

If 𝑥 ∈ 𝐴 ∪ 𝐵, ℎ(𝑥) = 𝑓(𝑥) ∪ 𝑔(𝑥). 

Now ℎ−1(𝐶) = 𝑓−1(𝐶) ∪ 𝑔−1(𝐶). 

Then ℎ−1(𝐶) is closed in 𝐴 ∪ 𝐵. 

Then ℎ−1(𝐶) is closed in X. 

Therefore, ℎ is continuous.  

 

Theorem 2.1.4 [maps into product] 

 Let f: A → X × Y be given by the equation f(a) = (f1(a), f2(a)) then f is 

conditions iff the function f1: A → X and f2: A → Y are continuous. 

 The maps f1 and f2 are called the co-ordinate functions of f. 

Proof 

Let 𝜋1: 𝑋 × 𝑌 → 𝑋 and 𝜋2: 𝑋 × 𝑌 → 𝑌 be projections on to the first and second factors, 

respectively. 

Claim: 𝜋1 and 𝜋2 are continuous 

We know that 𝜋1
−1(𝑈) = 𝑈 × 𝑌 and 𝜋2

−1(𝑉) = 𝑋 × 𝑉 

If U and V are open, these sets are open. 

Since 𝑓 ∶  𝐴 →  𝑋 ×  𝑌, 𝜋1 ∶  𝑋 ×  𝑌 →  𝑋 𝑎𝑛𝑑 𝜋2 ∶  𝑋 ×  𝑌 →  𝑌 , for every 𝑎 ∈ 𝐴. 

Since 𝑓1 ∶  𝐴 →  𝑋 and 𝑓2 ∶  𝐴 →  𝑌 

𝑓1(𝑎)  =  𝜋1(𝑓(𝑎)) and 𝑓2(𝑎)  =  𝜋2(𝑓(𝑎)) 
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If the function 𝑓 is continuous, then 𝑓1 and 𝑓2 are composites of continuous functions, 

𝑓1 and 𝑓2 are continuous. 

Conversely, suppose that 𝑓1 and 𝑓2 are continuous 

To prove 𝑓: 𝐴 → 𝑋 × 𝑌 is continuous 

Let 𝑈 × 𝑉 be any basis element for the product topological space 𝑋 × 𝑌 

Then 𝑈 and 𝑉 are open in 𝑋 and 𝑌 respectively 

To prove 𝑓−1(𝑈 × 𝑉) is open in 𝐴 

Claim, 𝑓−1(𝑈 × 𝑉) = 𝑓−1(𝑈) ∩ 𝑓−1(𝑉) 

∴ 𝑎 ∈ 𝑓−1(𝑈 × 𝑉) ⇔ 𝑓(𝑎) ∈ 𝑈 × 𝑉  

         ⇔ (𝑓1(𝑎), 𝑓2(𝑎)) ∈ 𝑈 × 𝑉 

         ⇔ 𝑓1(𝑎) ∈ 𝑈 and 𝑓2(𝑎) ∈ 𝑉 

         ⇔ 𝑎 ∈ 𝑓1
−1(𝑈) and 𝑎 ∈ 𝑓2

−1(𝑉) 

         ⇔ 𝑎 ∈ 𝑓1
−1(𝑈) ∩ 𝑓2

−1(𝑉) 

Since, 𝑓1: 𝐴 → 𝑋 is continuous and 𝑈 is open in 𝑋 

We have 𝑓1
−1(𝑈) is open in 𝐴 

Also, since 𝒇𝟐: 𝐴 → 𝑌 is continuous and 𝑉 is open in 𝑌 

We have 𝑓2
−1(𝑉) is open in 𝐴 

∴ 𝑓1
−1(𝑈) ∩ 𝑓2

−1(𝑉) is open in 𝐴 

⇒ 𝑓−1(𝑈 × 𝑉) is open in 𝐴 

Hence 𝑓 is continuous 

2.2. The product Topology 
 

Definition.  

 Let 𝐽 be an index set. Give a set 𝑋. We define a 𝑱 − 𝒕𝒖𝒑𝒍𝒆 of elements of 𝑋 to 

be a function 𝑥: 𝐽 → 𝑋. If 𝑋 is an element of 𝐽, we often denote the value of 𝑥 at 𝛼 by 
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𝑥𝛼 rather than 𝑥(𝛼). We call it the 𝛼𝑡ℎ  co-ordinate of 𝑥 and we often denote the 

function x itself by the symbol (𝑥𝛼)𝛼∈𝐽 which is as close as we can come to a tuple 

notation form arbitrary index set 𝐽. We denote the set of all 𝐽 −tuples of the element of 

𝑋 by 𝑋𝐽. 

 

Definition. 

 Let {𝐴𝛼}𝛼∈𝐽 be an indexed family of set. Let 𝑋 = ⋃ 𝐴𝛼𝛼∈𝐽 . The Cartesian 

product of this indexed family, denoted by ∏ 𝐴𝛼𝛼∈𝐽 , is defined to be the set of all 

𝐽 −tuples (𝑥𝛼)𝛼∈𝐽 of elements of 𝑋  such that 𝑥𝛼 ∈ 𝐴𝛼 for each 𝛼 ∈ 𝐽. 

 i.e., it is the set of all functions 𝑥: 𝐽 → ⋃ 𝐴𝛼𝛼∈𝐽  such that 𝑋(𝛼) ∈ 𝐴𝛼 for each 

𝛼 ∈ 𝐽 

  

Definition. 

 Let {𝑋𝛼}𝛼∈𝐽 be an indexed family of topological spaces. Let us take as a basis 

for a topology on the product space ∏ 𝑋𝛼𝛼∈𝐽  of the collection of all the sets of the form 

∏ 𝑈𝛼𝛼∈𝐽  where 𝑈𝛼 is open in 𝑋𝛼 for each 𝛼 ∈ 𝐽. The topology generated by this basis 

is called the box topology. 

 

Remark: The collection ∏ 𝑈𝛼𝛼∈𝐽  is a basis for a topology on ∏ 𝑋𝛼𝛼∈𝐽  

 This collection satisfies the first condition for a basis because 𝜋𝑋𝛼 is itself a 

basis element and it satisfies the second condition because the intersection of any two 

basis element is another basis element. 

(∏ 𝑈𝛼𝛼∈𝐽 ) ∩ (∏ 𝑉𝛼𝛼∈𝐽 ) = ∏ (𝑈𝛼 ∩ 𝑉𝛼𝛼∈𝐽 )   

Hence, the above collection is basis for the topology. 

 

Definition.  
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 The function 𝜋𝛽: ∏ 𝑋𝛼𝛼∈𝐽 → 𝑋𝛽 defined by 𝜋𝛽((𝑥𝛼)𝛼∈𝐽) = 𝑥𝛽 is called the 

projection mapping associated with the index 𝛽. 

 

Definition. 

Let 𝒮𝛽 denote the collection  

𝒮𝛽 = {𝜋𝛽
−1(𝑈𝛽)/𝑈𝛽 is open in 𝑋𝛽}  

and let 𝒮 denote the union of these collection, 

 𝒮 = 𝑈𝛽∈𝐽𝒮𝛽 

The topology generated by the subbasis 𝒮 is called product topology. In this topology 

∏ 𝑋𝛼𝛼∈𝐽  is called the product space. 

 

Theorem 2.2.1[Comparison of the box and product topology] 

 The box topology on ∏𝑋𝛼 has a basis all set of the form ∏𝑈𝛼 where 𝑈𝛼 is open 

in 𝑋𝛼 for each 𝛼. The product topology on ∏𝑋𝛼 has a basis all sets of the form ∏𝑈𝛼. 

Where 𝑈𝛼 is open in 𝑋𝛼 for each 𝛼 and 𝑈𝛼 equals 𝑋𝛼 except for finitely many values 

of 𝛼. 

Proof. 

By definition of box topology, the basis for box topology on ∏𝑋𝛼 is  ℬ𝑏  =

 {∏𝑈𝛼 |𝑈𝛼 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋𝛼}. 

By definition of product topology, the basis for the topology on ∏𝑋𝛼 is ℬ𝑃 then ℬ𝑃 is 

the collection of all finite intersection of elements of 𝒮 and 𝒮𝛽 = {𝜋𝛽
−1(𝑈𝛽)/𝑈𝛽 is open 

in 𝑋𝛽} . 

Case (i): We take finite intersection of elements of 𝒮𝛽. 

Let 𝜋𝛽
−1(𝑈𝛽), 𝜋𝛽

−1(𝑉𝛽), 𝜋𝛽
−1(𝑊𝛽) ∈ 𝒮𝛽 

Let 𝐵 = 𝜋𝛽
−1(𝑈𝛽) ∩ 𝜋𝛽

−1(𝑉𝛽) ∩ 𝜋𝛽
−1(𝑊𝛽) 
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 = 𝜋𝛽
−1(𝑈𝛽 ∩ 𝑉𝛽 ∩𝑊𝛽)  ∈ 𝒮𝛽 ⊂ 𝔅𝑝 

 = 𝜋𝛽
−1(𝑈𝛽

′ ), where 𝑈𝛽
′ = 𝑈𝛽 ∩ 𝑉𝛽 ∩𝑊𝛽 

        𝐵 = ∏ 𝑈𝛼
′

𝛼∈𝐽  where 𝑈𝛼
′  is open in 𝑋𝛼 for 𝛼 = 𝛼1, 𝛼2, ……𝛼𝑛 and 𝑈𝛼

′ − 𝑋𝛼 for 𝛼 ≠

𝛼1, 𝛼2, ……𝛼𝑛 

Case (ii): We take intersection of elements from different 𝒮𝛽′𝑠. 

Let 𝐵′ = 𝜋𝛽
−1(𝑈𝛽1) ∩ 𝜋𝛽

−1(𝑈𝛽2) ∩ … . .∩ 𝜋𝛽
−1(𝑈𝛽𝑛) 

      𝐵′ = 𝜋𝛽
−1(𝑈𝛽1 ∩ 𝑈𝛽2 ∩ ……∩ 𝑈𝛽𝑛) 

Let 𝑥 = (𝑥𝛼)𝛼∈𝐽 ∈ 𝐵′ 

Then 𝑥 = (𝑥𝛼)𝛼∈𝐽 ∈ 𝐵
′ ⇔ (𝑥𝛼)𝛼∈𝐽 ∈ 𝜋𝛽

−1(𝑈𝛽1)…∩ 𝜋𝛽
−1(𝑈𝛽𝑛) 

      ⇔ (𝑥𝛼)𝛼∈𝐽 ∈ 𝑈𝛽1 × … . .× 𝑈𝛽2 × … . .× 𝑈𝛽𝑛 × …… 

      ⇔ 𝑥𝛼 ∈ 𝑈𝛼 for 𝛼 = 𝛽1, 𝛽2, 𝛽3, ……𝛽𝑛 𝑎𝑛𝑑 𝑥𝛼 ∈ 𝑋𝛼 for  

      𝛼 = 𝛽1, 𝛽2, 𝛽3, ……𝛽𝑛 

     ⇔ (𝑥𝛼) ∈ ∏ 𝑈𝛼𝛼∈𝐽  where is open in 𝑋𝛼 

For  𝛼 = 𝛽1, 𝛽2, 𝛽3, ……𝛽𝑛 and 𝑈𝛼 = 𝑋𝛼 for 𝛼 ≠ 𝛽1, 𝛽2, 𝛽3, ……𝛽𝑛 

𝐵′ = ∏ 𝑈𝛼𝛼∈𝐽  where 𝑈𝛼 is open in 𝑋𝛼 

Hence in both cases we get every basis elements of the product topology in 

∏ 𝑋𝛼 is of the form ∏ 𝑈𝛼. 

Where 𝑈𝛼 is open in 𝑋𝛼 and 𝑈𝑛 = 𝑋𝛼 except for finitely many values of 𝛼. 

Clearly the basis 𝔅𝑝 ⊂ 𝔅𝑏 

Therefore, the box topology is finer than the product topology. 

 

Theorem 2.2.2. 

 Suppose the topology on each space 𝑋𝛼 is given by a basis 𝔅𝛼. The collection 

of the set of the form ∏ 𝐵𝛼𝛼∈𝐽 , where 𝐵𝛼 ∈ 𝔅𝛼 for each 𝛼, will save as a basis for the 



 

 

51 Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli  

Man 

box topology on ∏ 𝑋𝛼𝛼∈𝐽 . The collection of all sets of the same function form where 

𝐵𝛼 ∈ 𝔅𝛼 finitely many induces 𝛼 and 𝐵𝛼 = 𝑋𝛼 for all the remaining indices, will save 

as a basis for the product topology ∏ 𝑋𝛼𝛼∈𝐽 . 

Proof. 

Let 𝑙 = {∏ 𝐵𝛼𝛼∈𝐽 ∈ 𝔅𝛼  𝑖𝑠 𝑎 𝑏𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑥𝛼} for each 𝛼. 

𝐵𝛼 is a collection of open set in 𝑋𝛼 for every 𝛼. 

∏ 𝑈𝛼𝛼∈𝐽  is open in ∏ 𝑋𝛼𝛼∈𝐽  

Therefore 𝑙 is a collection of open sets in 𝜋𝑋𝛼  

To prove 𝑙 is a basis for the box topology in ∏ 𝑋𝛼𝛼∈𝐽 . 

Now, 𝑥 = (𝑥𝛼)𝛼∈𝐽 ∈ ∏ 𝑋𝛼𝛼∈𝐽  

Let 𝑈 be an open set in 𝜋𝑋𝛼 containing 𝑥 

Now 𝑈 is an open set in the box topology in 𝜋𝑋𝛼 , 𝑥 ∈ 𝑈 

There exists a basis element ∏ 𝑈𝛼𝛼∈𝐽  such that 𝑥 ∈ ∏ 𝑈𝛼𝛼∈𝐽 ⊂ 𝑈 

⇒ 𝑥𝛼 ∈ 𝑈𝛼 for each 𝛼 

Now, 𝑥𝛼 ∈ 𝑈𝛼 and 𝑈𝛼 is open in 𝑋𝛼 and 𝔅𝛼 is a basis for 𝑋𝛼, there exists 𝐵𝛼 ∈ 𝔅𝛼 such 

that 𝑥𝛼 ∈ 𝐵𝛼 ⊂ 𝑈𝛼 for each 𝛼. 

Then (𝑥𝛼)𝛼∈𝐽 ∈ ∏ 𝐵𝛼𝛼∈𝐽 ⊂ ∏ 𝑈𝛼𝛼∈𝐽 ⊂ 𝑈. 

  i.e., 𝑥 ∈ ∏ 𝐵𝛼𝛼∈𝐽 ⊂ 𝑈 

For every 𝑥 ∈ 𝜋𝑋𝛼 and any open set 𝑈 containing 𝑥 there exists ∏ 𝐵𝛼𝛼∈𝐽  in 𝑙 such that 

𝑥 ∈ ∏ 𝐵𝛼𝛼∈𝐽 ⊂ 𝑈. 

By Lemma 1.1.2, 𝑙 is a basis for the box topology on the product space ∏ 𝑋𝛼𝛼∈𝐽 . 

Let 𝑙′ = {∏ 𝐵𝛼𝛼∈𝐽 /𝐵𝛼 for finitely many indices and 𝐵𝛼 = 𝑋𝛼 for the remaining 

indices} 

To prove 𝑙′ is a basis for the product topology on ∏ 𝑋𝛼𝛼∈𝐽  

Let 𝑥 = (𝑥𝛼) ∈ ∏ 𝑋𝛼𝛼∈𝐽  
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Let 𝑉 be an open set in ∏ 𝑋𝛼𝛼∈𝐽  containing 𝑥, there exists a basis element ∏ 𝑈𝛼𝛼∈𝐽  for 

the product topology in ∏ 𝑋𝛼𝛼∈𝐽  such that 𝑥 ∈ ∏ 𝑈𝛼𝛼∈𝐽 ⊂ 𝑉, where 𝑈𝛼 is open in 

𝑋𝛼, for 𝛼 = 𝛼1, 𝛼2, 𝛼3, ……𝛼𝑛 and 𝑈𝛼 = 𝑋𝛼 for 𝛼 ≠ 𝛼1, 𝛼2, 𝛼3, ……𝛼𝑛 

Now, 𝑈𝛼𝑖 is open in 𝑋𝛼𝑖 and 𝑥𝛼𝑖 ∈ 𝑈𝛼𝑖 then there exist 𝐵𝛼𝑖 ∈ 𝔅𝛼𝑖 ⊂ 𝑈𝛼. 

Define, ∏ 𝐵𝛼𝛼∈𝐽  where 𝐵𝛼 ∈ 𝔅𝛼 for 𝛼 = 𝛼1, 𝛼2, 𝛼3, ……𝛼𝑛 

𝐵𝛼 = 𝑋𝛼 for 𝛼 ≠ 𝛼1, 𝛼2, 𝛼3, ……𝛼𝑛 

Then clearly, ∏ 𝐵𝛼𝛼∈𝐽 ∈ 𝑙′ and 𝑥 = (𝑥𝛼)𝛼∈𝐽 ∈ 𝐵𝛼 ⊂ ∏ 𝑈𝛼𝛼∈𝐽 ⊂ 𝑉 for all 𝑥 ∈ ∏ 𝑋𝛼𝛼∈𝐽 , 

there exists ∏ 𝐵𝛼𝛼∈𝐽 ∈ 𝑙′, such that 𝑥 ∈ ∏ 𝐵𝛼𝛼∈𝐽 ⊂ 𝑉. 

By Lemma 1.1.2, 𝑙′ is a basis for the product topology in ∏ 𝑋𝛼. 

 

Example.  

 Consider the Euclidean space ℝ𝑛. A basis for 𝑅 consists of all open intervals 

in ℝ. Hence, a basis for the topology of ℝ𝒏 consists of all products of the form 

(𝑎1, 𝑏1) × (𝑎2, 𝑏2) × ……× (𝑎𝑛, 𝑏𝑛). Since ℝ𝒏 is a finite product the box and product 

topologies are agree. Whenever we consider ℝ𝒏, we will assume that it is given this 

topology, unless we specifically state otherwise. 

 

Theorem 2.2.3. 

 Let 𝐴𝛼 be a subspace of 𝑋𝛼, for each 𝛼 ∈ 𝐽, then 𝜋𝐴𝛼  is a subspace of ∏ 𝑋𝛼 if 

both products are given the box topology or if both products are given the product 

topology. 

Proof.  

 By theorem 2.2.1, ∏ 𝐵𝛼𝛼∈𝐽  is the basis for the subspace ∏ 𝐴𝛼 (∵ 𝐴𝛼 ⊂ 𝑋𝛼) 

  ∴ ∏ 𝐴𝛼𝛼∈𝐽 ⊂ ∏ 𝑋𝛼𝛼∈𝐽 . 

 

Theorem 2.2.4.  
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 If each 𝑋𝛼 is a Hausdorsff Space, that ∏ 𝑋𝛼 is a Hausdorff space in both the 

box and product topology. 

Proof. 

 Since, 𝑋𝛼 is Hausdorff, then there are distinct neighbour hoods in 𝑋𝛼 their 

product also containing disjoint neighbour hood. 

 ∏ 𝑋𝛼 is Hausdorff. 

 

Theorem 2.2.5. 

 Let {𝑋𝛼} be an indexed family of space. Let 𝐴𝛼 ⊂ 𝑋𝛼 for each 𝛼. If ∏𝑋𝛼 is 

given either the product (or) the box topology, then ∏𝐴𝛼̅̅̅̅ = ∏𝐴𝛼̅̅ ̅̅ ̅̅ ̅. 

Proof.  

 Let 𝑥 = (𝑥𝛼) ∈ ∏𝐴𝛼̅̅̅̅  

 To show that 𝑥 ∈ ∏𝐴𝛼̅̅ ̅̅ ̅̅ ̅ 

 Let 𝑈 = ∏𝑈𝛼, be a basis for the box (or) product topology that containing 𝑥. 

 Since 𝑥 = (𝑥𝛼) ∈ ∏𝐴𝛼̅̅̅̅  , We can choose a point 𝑦𝛼 ⊂ 𝑈𝛼 ∩ 𝐴𝛼 

 Then 𝑦 = (𝑦𝛼) ∈ 𝑈 and 𝑦 ∈ ∏𝐴𝛼 

 Since, 𝑈 is arbitrary (𝑥𝛼) ∈ 𝜋𝐴𝛼̅̅ ̅̅ ̅ 

 ∴ 𝜋𝐴𝛼̅̅̅̅ ⊆ 𝜋𝐴𝛼̅̅ ̅̅ ̅          ------------ (1) 

 Conversely, suppose 𝑥 = (𝑥𝛼) ∈ 𝜋𝐴𝛼̅̅ ̅̅ ̅ 

 Such that, 𝑥 = (𝑥𝛼) ∈ ∏𝐴𝛼̅̅̅̅  

 Let 𝑉 = 𝜋𝑉𝛼 ∈ 𝜋𝑋𝛼 containing 𝑥 

 Let 𝑉𝛽 ∈ 𝑋𝛽 containing 𝑥𝛽 for each 𝛽 

 By the definition of product topology  

 Since, 𝜋𝛽
−1(𝑉𝛽) is open in ∏ 𝑋𝛼𝛼∈𝐽  in either topology, 𝑥𝛽 ∈  𝑉𝛽 ⊂ 𝑋𝛽 
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 Then, 𝜋𝛽
−1(𝑉𝛽) is open in ∏𝑋𝛼 

 Since, 𝐴𝛼 ⊂ 𝑋𝛼, 𝑦𝛼 ∈ ∏𝐴𝛼 

 Now, 𝑦𝛽 ∈ 𝑉𝛽 ∩ 𝐴𝛽  

 Then, 𝑥𝛽 ∈ 𝐴𝛽̅̅̅̅  

 ⇒ (𝑥𝛽) ∈ ∏𝐴𝛼̅̅̅̅  

 ⇒ ∏𝐴𝛼̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅ ⊆ ∏𝐴𝛼̅̅̅̅  

 ∴ ∏𝐴𝛼̅̅̅̅ = ∏𝐴𝛼̅̅ ̅̅ ̅̅ ̅. 

 

Theorem 2.2.6  

 Let 𝑓: 𝐴 → ∏ 𝑋𝛼𝛼∈𝐽  be given by the equation 𝑓(𝑎) = (𝑓𝛼(𝑎))𝛼∈𝐽 where 

𝑓𝛼: 𝐴 → 𝑋𝛼 for each 𝛼. Let ∏𝑋𝛼 haves the product topology. Then the function 𝑓 is 

continuous iff each function 𝑓𝛼 is continuous. 

Proof 

Let 𝑓: 𝐴 → ∏ 𝑋𝛼𝛼∈𝐽  be given by 𝑓(𝑎) = (𝑓𝛼(𝑎))𝛼∈𝐽, where 𝑓: 𝐴 → ∏ 𝑋𝛼𝛼∈𝐽  for each 

𝛼 

Let ∏ 𝑋𝛼𝛼∈𝐽  have the product topology 

Now, let 𝜋𝛽 be the projection of the product onto its 𝛽𝑡ℎ factor  

i.e., 𝜋𝛽: ∏ 𝑋𝛼𝛼∈𝐽 → 𝑋𝛽 

If 𝑈𝛽 is open in 𝑋𝛽, then 𝜋𝛽
−1(𝑈𝛽) is a subbasis element for the product topology on 𝑋𝛼 

∴ 𝜋𝛽 is continuous 

Now suppose 𝑓: 𝐴 → ∏ 𝑋𝛼𝛼∈𝐽  is continuous 

Since, 𝜋𝛽 and 𝑓 are continuous 

The composite of these two maps 𝜋𝛽 ∘ 𝑓  is continuous 
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i.e., 𝜋𝛽 ∘ 𝑓 = 𝑓𝛼 , where 𝑓𝛼: 𝐴 → 𝑋𝛼 is continuous 

Conversely, suppose that each function 𝑓𝛼 is continuous 

To prove, 𝑓: 𝐴 → ∏ 𝑋𝛼𝛼∈𝐽  is continuous.  

𝜋𝛽
−1(𝑈𝛽) is a subbasis element for the product topology on 𝜋𝑋𝛼 , where 𝑈𝛽 is open in 

𝑋𝛽 

𝑓−1 (𝜋𝛽
−1(𝑈𝛽)) = (𝜋𝛽 ∘ 𝑓)

−1
(𝑈𝛽) = 𝑓𝛼

−1(𝑈𝛽)  

Since, 𝑓𝛼: 𝐴 → 𝑋𝛽 is continuous, 𝑓𝛼
−1(𝑈𝛽) is open in A 

∴ 𝑓−1 (𝜋𝛽
−1(𝑈𝛽)) is open in A 

∴ 𝑓is continuous. 

 

2.3. The Metric Topology 
 

One of the most important and frequently used ways of imposing a topology on 

a set is to define the topology in terms of a metric on the set. Topologies given in this 

way lie at the heart of modern analysis, for example. In this section, we shall define the 

metric topology and shall give a number of examples. 

Definition.  

A metric on a set X is a function 𝑑: 𝑋 × 𝑋 → 𝑅 having the following properties: 

(1)  𝑑(𝑥, 𝑦)  ≥  0 for all 𝑥, 𝑦 ∈  𝑋; equality holds if and only if 𝑥 =  𝑦. 

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋. 

(3) (Triangle inequality) 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Given a metric d on X, the number 𝑑(𝑥, 𝑦) is often called the distance between 

x and y in the metric d. Given  𝜖 >  0, consider the set 𝐵𝑑 (𝑥, 𝜖)  =  {𝑦 | 𝑑(𝑥, 𝑦) <  𝜖} of 

all points y whose distance from x is less than 𝜖. It is called the 𝝐 -ball centered at x. 

Sometimes we omit the metric d from the notation and write this ball simply as B(x, 𝜖), 

when no confusion will arise. 
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Definition. 

 If d is a metric on the set X, then the collection of all 𝜖 -balls 𝐵𝑑(𝑥, 𝜖), for 𝑥 ∈

𝑋 and   𝜖 > 0, is a basis for a topology on X, called the metric topology induced by d. 

 

Result. Prove that the collection ℬ of 𝜖 − 𝑏𝑎𝑙𝑙 is a basis. 

Proof. 

The first condition for a basis is trivial, since 𝑥 ∈ 𝐵(𝑥, 𝜖) for any ϵ > 0. 

Before checking the second condition for a basis, we show that if y is a 

point of the basis element 𝐵(𝑥, 𝜖), then there is a basis element 𝐵(𝑦, 𝛿) 

centered at y that is contained in 𝐵(𝑥, 𝜖). 

Now, let 𝑦 ∈ 𝐵(𝑥, 𝜖) 

⇒ 𝑑(𝑥, 𝑦) > 𝜖 

⇒ 𝜖 − 𝐵(𝑥, 𝜖) > 0 

Take  𝛿 = 𝜖 − 𝐵(𝑥, 𝜖), then 𝛿 > 0. 

Claim: 𝐵(𝑦, 𝛿) ⊂ 𝐵(𝑥, 𝜖). 

Let 𝑧 ∈ 𝐵(𝑦, 𝛿)  

⇒ 𝑑(𝑦, 𝑧) < 𝛿 = 𝜖 − 𝑑(𝑥, 𝑦) 

⇒ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) < 𝜖  

⇒ 𝑑(𝑥, 𝑧) < 𝜖   

⇒ 𝑧 ∈ 𝐵(𝑥, 𝜖)  

∴ 𝐵(𝑦, 𝛿) ⊂ 𝐵(𝑥, 𝜖)  

Figure 2.3.1 
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 Now to check the second condition for a basis, let 𝐵1  and 𝐵2 be two basis 

elements and let 𝑦 ∈ 𝐵1 ∩ 𝐵2. We have just shown that we can choose 

positive numbers 𝛿1 and 𝛿2 so that 𝐵(𝑦, 𝛿1) ⊂ 𝐵1 and 𝐵(𝑦, 𝛿2) ⊂ 𝐵2.  

Let 𝛿 = min{𝛿1, 𝛿2} 

Then, 𝐵(𝑦, 𝛿) ⊂ 𝐵1 and  𝐵(𝑦, 𝛿) ⊂ 𝐵2 

⇒ 𝐵(𝑦, 𝛿) ⊂ 𝐵1 ∩ 𝐵2. 

∴ the second condition of the basis is satisfied. 

Thus, the collection ℬ of 𝜖-ball is a basis. 

 

Result. 

 A set U is open in the metric topology induced by d if and only if for 

each 𝑦 ∈ 𝑈, there is a 𝛿 > 0 such that 𝐵𝑑(𝑦, 𝛿) ⊂ 𝑈. 

Proof. 

Suppose for each 𝑦 ∈ 𝑈, there is a 𝛿 > 0 such that 𝐵𝑑(𝑦, 𝛿) ⊂ 𝑈. 

Then U is open. 

Conversely, if U is open, it contains a basis element 𝐵 = 𝐵𝑑  (𝑥, 𝜖) 

containing y, and B in turn contains a basis element 𝐵𝑑(𝑦, 𝛿) centered at y. 

 

Example 1. Given a set X, define 

𝑑(𝑥, 𝑦) = 1 𝑖𝑓𝑥 ≠ 𝑦, 

𝑑(𝑥, 𝑦)  = 0 𝑖𝑓𝑥 = 𝑦. 

Then d is a metric. 
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For, if 𝑥 ∈ 𝑋, then 𝐵𝑑(𝑥, 1) = {𝑥}. 

The topology it induces is the discrete topology; the basis element 𝐵(𝑥, 1) 

consists of the point x alone.   

 

Example 2.  

The standard metric on the real numbers ℝ is defined by the equation 

𝑑(𝑥, 𝑦) = |𝑥 −  𝑦|. Then d is a metric and the topology it induces is the 

same as the order topology. 

For, It is easy to check that d is a metric. 

Each basis element (𝑎, 𝑏) for the order topology is a basis element for the 

metric 

topology; indeed, (𝑎, 𝑏)  =  𝐵(𝑥, 𝜖),where 𝑥 = (𝑎 + 𝑏)/2 and  𝜖 = (𝑏 −

 𝑎)/2. And conversely, each 𝜖 -ball B(x, 𝜖) equals an open interval: the 

interval (𝑥 −  𝜖, 𝑥 +  𝜖). 

 

 

Definition.  

If X is a topological space, X is said to be metrizable if there exists a 

metric d on the set X that induces the topology of X. A metric space is a 

metrizable space X together with a specific metric d that gives the topology 

of X. 

Definition. 

 Let X be a metric space with metric d. A subset A of X is said to be 

bounded if there is some number M such that 𝑑(𝑎1, 𝑎2) ≤ 𝑀for every pair 
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𝑎1, 𝑎2 of points of A. If A is bounded and nonempty, the diameter of A is 

defined to be the number 𝑑𝑖𝑎𝑚 𝐴 =  𝑠𝑢𝑝{𝑑(𝑎1, 𝑎2)|𝑎1, 𝑎2 ∈ 𝐴}. 

 

Theorem 2.3.1.  

Let X be a metric space with metric d. Define 𝑑̅: 𝑋 × 𝑋 →  𝑅 by the 

equation 

𝑑̅(𝑥, 𝑦) = 𝑚𝑖𝑛{𝑑(𝑥, 𝑦),1}. 

Then 𝑑̅ is a metric that induces the same topology as d. 

The metric 𝑑̅ is called the standard bounded metric corresponding to d. 

Proof. 

Let X be a metric space with metric d. 

𝑑̅: 𝑋 × 𝑋 → ℝ defined as 𝑑̅(𝑥, 𝑦) = min{𝑑(𝑥, 𝑦), 1 }…… (1) 

First two conditions for a metric are trivial. 

To check the triangle inequality: 

 𝑑̅(𝑥, 𝑧) ≤  𝑑̅(𝑥, 𝑦) + 𝑑̅(𝑦, 𝑧)…… (2) 

If either 𝑑(𝑥, 𝑦) ≥ 1 𝑜𝑟 𝑑(𝑦, 𝑧) ≥ 1, then 

R.H.S of (2) is atleast 1. 

Since L.H.S of (2) is atmost 1, the inequality (2) holds. 

Now, consider 𝑑(𝑥, 𝑦) < 1 𝑎𝑛𝑑 𝑑(𝑦, 𝑧) < 1  

We have 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) = 𝑑̅(𝑥, 𝑦) + 𝑑̅(𝑦, 𝑧) 

Since 𝑑̅(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑧) by definition, the triangle inequality holds for 𝑑̅. 
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We know that the collection of 𝜖 − 𝑏𝑎𝑙𝑙s with 𝜖 < 1 forms a basis for a 

metric topology. 

Every basis element contains x such that an 𝜖-ball centered at x. 

Since the collection of 𝜖-balls with 𝜖 < 1under d and 𝑑̅ are same. 

Thus d and 𝑑̅ induce the same topology on X. 

 

Definition. 

Given 𝒙 =  (𝑥1, . . . , 𝑥𝑛) in 𝑅𝑛, we define the norm of x by the 

equation 

||𝒙|| = (𝑥1
2 +⋯+ 𝑥𝑛

2)1/2  

and we define the Euclidean metric d on 𝑅𝑛 by the equation 

𝑑(𝒙, 𝒚)  =  ||𝒙 − 𝒚||  =  [(𝑥1  −  𝑦1)
2  +· · · +(𝑥𝑛  −  𝑦𝑛)

2]1/2. 

We define the square metric ρ by the equation 

𝜌(𝒙, 𝒚)  =  𝑚𝑎𝑥{|𝑥1  −  𝑦1|, . . . , |𝑥𝑛  −  𝑦𝑛|}. 

Remark. 

(i) d is a metric on ℝ𝑛. 

(ii) 𝜌 is a metric on ℝ𝑛. 

Proof. 

(i)Since each(𝑥𝑖 − 𝑦𝑖)
2, 𝑖 = 1,2,… , 𝑛 is positive 

We have  𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦|| 

= [∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

]

1/2

≥ 0 ∀𝑥, 𝑦 ∈ ℝ𝑛 
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Also 𝑑(𝑥, 𝑦) = 0 𝑖𝑓𝑓 ||𝑥 − 𝑦||=0 

𝑖𝑓𝑓 [∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

]

1
2

= 0                         

𝑖𝑓𝑓 (𝑥𝑖 − 𝑦𝑖)
2, 𝑖 = 1,2,… , 𝑛                   

𝑖𝑓𝑓 (𝑥𝑖 − 𝑦𝑖) = 0, , 𝑖 = 1,2,… , 𝑛         

𝑖𝑓𝑓 𝑥𝑖 = 𝑦𝑖 , 𝑖 = 1,2,… , 𝑛                       

𝑖𝑓𝑓 𝑥 = 𝑦                                                     

And  

𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦|| 

= [∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

]

1/2

 

= [∑(𝑦𝑖 − 𝑥𝑖)
2

𝑛

𝑖=1

]

1/2

 

= ||𝑦 − 𝑥||                 

= 𝑑(𝑦, 𝑥)                   

Now, 𝑑(𝑦, 𝑥) = ||𝑥 − 𝑧|| 

= ||𝑥 − 𝑦 + 𝑦 − 𝑧||                                                           

≤ ||𝑥 − 𝑦|| + ||𝑦 − 𝑧||                                                     

= 𝑑(𝑥, 𝑦)+= 𝑑(𝑦, 𝑧)                                                          

Thus, d is a metric on ℝ𝑛. 

(ii)since |𝑥𝑖 − 𝑦𝑖| ≥ 0 ∀ 𝑖 = 1,2,… 𝑛 
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We have max{|𝑥1 − 𝑦1|, … . |𝑥𝑛 − 𝑦𝑛| } ≥ 0 

⇒ 𝜌(𝑥, 𝑦) ≥ 0           

Also, 𝜌(𝑥, 𝑦) = 0 𝑖𝑓𝑓 max{|𝑥1 − 𝑦1|, … . |𝑥𝑛 − 𝑦𝑛| } = 0 

𝑖𝑓𝑓 |𝑥𝑖 − 𝑦𝑖| = 0, 𝑖 = 1,2,… , 𝑛                        

𝑖𝑓𝑓 𝑥𝑖 = 𝑦𝑖  , 𝑖 = 1,2,… , 𝑛                                   

𝑖𝑓𝑓 𝑥 = 𝑦                                                                  

And, 𝜌(𝑥, 𝑦) = max{|𝑥1 − 𝑦1|, … . |𝑥𝑛 − 𝑦𝑛| } 

= max{|𝑦1 − 𝑥1|, … . |𝑦𝑛 − 𝑥𝑛| }                                       

= 𝜌(𝑦, 𝑥)                                                                               

For each 𝑖 = 1,2,… , 𝑛, we have  

|𝑥𝑖 − 𝑧𝑖| = |𝑥𝑖 − 𝑦𝑖 + 𝑦𝑖 − 𝑧𝑖| 

≤ |𝑥𝑖 − 𝑦𝑖| + |𝑦𝑖 − 𝑧𝑖| 

𝑚𝑎𝑥|𝑥𝑖 − 𝑧𝑖| ≤ max{|𝑥𝑖 − 𝑦𝑖| + |𝑦𝑖 − 𝑧𝑖|} 

We have,  𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧). 

 

Lemma 2.3.2.  

Let 𝑑 and 𝑑̅ be two metrics on the set X; let 𝒯 and 𝒯′_ be the 

topologies they induce, respectively. Then 𝒯′ is finer than 𝒯 if and only if 

for each x in X and each 𝜖 > 0, there exists a 𝛿 >  0 such that 𝐵𝑑(𝑥, 𝛿) ⊂

𝐵𝑑(𝑥, 𝜖). 

Proof. 

Suppose that 𝒯′ is finer than 𝒯.  
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Given the basis element 𝐵𝑑  (𝑥, 𝜖 ) for 𝒯 , there is, by Lemma 1.2.3, a basis 

element ℬ′ for the topology 𝒯′ such that 𝑥 ∈ ℬ′ ⊂ 𝐵𝑑(𝑥, 𝜖). 

Within ℬ′ we can find a ball 𝐵𝑑(𝑥, 𝛿) centered at x. 

Hence 𝐵𝑑′(𝑥, 𝛿) ⊂ 𝐵𝑑(𝑥, 𝜖). 

Conversely, suppose the 𝛿 − 𝜖 condition holds.  

𝑖. 𝑒. , 𝐵𝑑′(𝑥, 𝛿) ⊂ 𝐵𝑑(𝑥, 𝜖) …… (∗).   

Given a basis element B for 𝒯 containing x, we can find within B a ball 

𝐵𝑑(𝑥, 𝜖) centered at x. 

By the given condition (*), there is a 𝛿 such that 𝐵𝑑′(𝑥, 𝛿) ⊂ 𝐵𝑑(𝑥, 𝜖). 

Then Lemma 1.2.3, applies to show 𝒯′ is finer than 𝒯. 

 

Theorem 2.3.3.  

The topologies on ℝ𝑛 induced by the Euclidean metric d and the 

square metric 𝜌 are the same as the product topology on ℝ𝑛 (or) ℝ𝑛 is 

metrizable. 

Proof. 

Step 1: 

Let 𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑛) be two points of ℝ𝑛. 

First we prove that  𝜌(𝒙, 𝒚)  ≤  𝑑(𝒙, 𝒚)  ≤ √𝑛𝜌(𝒙, 𝒚). 

We know that 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = [∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 ]1/2 

And 𝜌(𝑥, 𝑦) = max{|𝑥1 − 𝑦1|, … . |𝑥𝑛 − 𝑦𝑛| } 

Always |𝑥𝑖 − 𝑦𝑖| ≤ [∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 ]
1

2 
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⇒ max{|𝑥1 − 𝑦1|, … . |𝑥𝑛 − 𝑦𝑛| } ≤ 𝑑(𝑥, 𝑦)   

⇒ 𝜌(𝒙, 𝒚)  ≤ 𝑑(𝑥, 𝑦) . 

Now, (𝑥𝑖 − 𝑦𝑖)
2 ≤ (𝜌(𝑥, 𝑦))

2
, ∀𝑖 = 1,2, . . , 𝑛 

Adding the above inequality we get, 

(𝑥1 − 𝑦1)
2 +⋯+ (𝑥𝑛 − 𝑦𝑛)

2

≤ (𝜌(𝑥, 𝑦))
2
+ (𝜌(𝑥, 𝑦))

2
+⋯+ (𝜌(𝑥, 𝑦))

2
 

≤ 𝑛(𝜌(𝑥, 𝑦))
2
 

Square root on both sides we get, 

 

[∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

]

1
2

≤ √𝑛 (𝜌(𝑥, 𝑦))
2
 

Hence, 𝜌(𝑥, 𝑦)  ≤  𝑑(𝑥, 𝑦)  ≤ √𝑛𝜌(𝑥, 𝑦). 

Step 2: To prove the two metric topologies are the same. 

Let 𝒯𝑑  and 𝒯𝜌 be the topologies induced by d and 𝜌 respectively. 

Prove that 𝒯𝑑  ⊃ 𝒯𝜌. 

Let 𝑥 ∈ 𝑋 and 𝜖 > 0 be given. 

Consider 𝐵𝜌(𝑥, 𝜖) and take 𝛿 = 𝜖. 

Claim:    𝐵𝑑(𝑥, 𝜖) ⊂ 𝐵𝜌(𝑥, 𝜖) 

Let 𝑦 ∈ 𝐵𝑑(𝑥, 𝜖) 

⇒ 𝑑(𝑥, 𝑦) < 𝜖  

We have 𝜌(𝑥, 𝑦)  ≤  𝑑(𝑥, 𝑦) (by step 1) 
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 ∴  𝜌(𝑥, 𝑦) < 𝜖 

⇒ 𝑦 ∈ 𝐵𝜌(𝑥, 𝜖)  

Thus 𝐵𝑑(𝑥, 𝜖) ⊂ 𝐵𝜌(𝑥, 𝜖). 

By Lemma 2.3.1, 𝒯𝑑 ⊃ 𝒯𝜌 … . (1) 

Claim: 𝒯𝜌 ⊃ 𝒯𝑑  

Let x ∈ X and 𝜖 > 0 be given  

Consider 𝐵𝑑(𝑥, 𝜖) and take 𝛿 =
𝜖

√𝑛
. 

Claim: 𝐵𝜌(𝑥, 𝛿) ⊂ 𝐵𝑑(𝑥, 𝜖) . 

Let 𝑦 ∈ 𝐵𝜌(𝑥, 𝛿)  

⇒ 𝜌(𝑥, 𝑦) < 𝛿 =
𝜖

√𝑛
   

⇒ √𝑛𝜌(𝑥, 𝑦) ≤ 𝜖  

We have 𝑑(𝑥, 𝑦) ≤ √𝑛 𝜌(𝑥, 𝑦)  (step 1) 

 ⇒ 𝑑(𝑥, 𝑦) < 𝜖 

⇒ 𝑦 ∈ 𝐵𝑑(𝑥, 𝜖)   

∴ 𝐵𝜌(𝑥, 𝜖) ⊂ 𝐵𝑑(𝑥, 𝛿)  

  By Lemma 2.3.1, 𝒯𝜌 ⊃ 𝒯𝑑 … . . (2) 

From (1) and (2), 𝒯𝜌 = 𝒯𝑑 

The metric topologies induced by 𝑑 and 𝜌 are the same. 

Step 3: Prove that the product topologies on ℝ𝑛 is the same as the metric 

topology induced by 𝜌. 
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Let 𝐵 =  (𝑎1, 𝑏1) ×· · ·× (𝑎𝑛, 𝑏𝑛) be a basis element for the product 

topology, and let 𝒙 = (𝑥1, . . . , 𝑥𝑛) be an element of B. 

For each i, there is an 𝜖𝑖 such that (𝑥𝑖 − 𝜖𝑖  , 𝑥𝑖 + 𝜖𝑖  )  ⊂  (𝑎𝑖  , 𝑏𝑖). 

choose 𝜖 = 𝑚𝑖𝑛{𝜖1, . . . , 𝜖𝑛}. 

Then 𝐵𝜌(𝒙, 𝜖)  ⊂  𝐵 

By Lemma 2.3.1, 𝒯𝜌 ⊃ 𝒯 

Conversely, let 𝐵𝜌(𝒙, 𝜖) be a basis element for the 𝜌-topology.  

Given the element 𝒚 ∈ 𝐵𝜌(𝒙, 𝜖), we need to find a basis element B for the 

product topology such that 𝒚 ∈ 𝐵 ⊂ 𝐵𝜌(𝒙, 𝜖). 

Now, 𝐵𝜌(𝒙, 𝜖) = (𝑥1 − 𝜖, 𝑥1 + 𝜖) × …× (𝑥𝑛 − 𝜖, 𝑥𝑛 + 𝜖)  is itself a basis 

element for the product topology. 

∴ 𝒯 ⊃ 𝒯𝜌 

Hence 𝒯 = 𝒯𝜌 

Thus, the product topology on ℝ𝑛 is the same as the metric topology by 𝜌. 

 

Definition.  

Given an index set 𝐽 , and given points 𝒙 = (𝑥𝛼)𝛼∈𝐽 and 𝒚 =

(𝑦𝛼)𝛼∈𝐽 of 𝑅𝐽 , let us define a metric 𝜌̅ on 𝑅𝐽 by the equation 

 𝜌̅(𝒙, 𝒚)  =  𝑠𝑢𝑝{𝑑̅(𝑥𝛼 , 𝑦𝛼)|𝛼 ∈ 𝐽}, 

where 𝑑̅ is the standard bounded metric on ℝ.Then 𝜌 is called the uniform 

metric on 𝑅𝐽 , and the topology it induces is called the uniform topology. 
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The relation between this topology and the product and box topologies is 

the following: 

 

Theorem 2.3.4.  

The uniform topology on 𝑅𝐽 is finer than the product topology and 

coarser than the box topology; these three topologies are all different if J 

is infinite. 

Proof. 

Suppose that we are given a point x = (xα)α∈J and a product topology 

basis 

Element ∏𝑈𝛼  about x. 

Let 𝛼1, . . . , 𝛼𝑛 be the indices for which 𝑈𝛼 = ℝ. 

Since 𝑈𝛼𝑖 is open in ℝ, for each i choose 𝜖𝑖 > 0 such that 𝐵𝑑̅(𝑥𝛼𝑖 , 𝜖𝑖) ⊂

𝑈𝛼𝑖. 

Let 𝜖 = min{𝜖1, … , 𝜖𝑛} 

⇒ 𝐵𝜌̅(𝑥, 𝜖) ⊂ ∏𝑈𝛼  

If 𝑧 ∈ ℝ𝐽such that 𝜌̅(𝑥, 𝑧) < 𝜖 

⇒ 𝑑̅(𝑥𝛼 , 𝑧𝛼) < 𝜖 ∀𝛼  

Hence uniform topology is finer than the product topology. 

On the other hand, let B(𝑥, 𝜖) in the 𝜌 ̅ − 𝑚𝑒𝑡𝑟𝑖𝑐. 

Then the box neighbourhood 𝑈 = ∏(𝑥𝛼 −
𝜖

2
, 𝑥𝛼 +

𝜖

2
) of x is contained in 

B. 
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For if 𝒚 ∈  𝑈, then 𝑑̅(𝑥𝛼 , 𝑦𝛼) <
𝜖

2
 for all 𝛼, so that 𝜌̅(𝒙, 𝒚) ≤

𝜖

2
. 

Suppose J is infinite. 

Let 𝑥 = (𝑥𝛼)𝛼∈𝐽 ∈ ℝ
𝐽 and let 𝜖 > 0 be given. 

𝐵𝜌̅(𝑥, 𝜖) = {𝑦 |𝜌̅(𝑥, 𝑦) < 𝜖 }  

= {𝑦 |𝑑̅(𝑥𝛼 , 𝑦𝛼) < 𝜖𝛼 ∀𝛼 }  

= {𝑦 ||𝑥𝛼 − 𝑦𝛼| < 𝜖  ∀𝛼 }  

= {𝑦 ||𝑦𝛼 − 𝑥𝛼| < 𝜖  ∀𝛼 }      

= {𝑦 |−𝜖 < 𝑦𝛼 − 𝑥𝛼 < 𝜖 ∀𝛼 }  

= {𝑦 | 𝑥𝛼 − 𝜖 < 𝑦𝛼 < 𝑥𝛼 + 𝜖 ∀𝛼 }  

 = (𝑥𝛼1 − 𝜖, 𝑥𝛼1 + 𝜖) × (𝑥𝛼2 − 𝜖, 𝑥𝛼2 + 𝜖) × … .× (𝑥𝛼𝑛 − 𝜖, 𝑥𝛼𝑛 + 𝜖) 

This is a basis element for the uniform topology but we cannot find a basis 

element ∏𝑈𝛼. 

For the product such that ∏𝑋𝛼 ⊂ 𝐵𝜌̅(𝑥, 𝜖) 

∴ the product topology is not finer than the uniform topology (since in 

∏𝑈𝛼, 𝑈𝛼 is open in R for only finite number of indices 𝛼). 

∴ they are different. 

 

Theorem 2.3.5. 

 Let 𝑑̅(𝑎, 𝑏) = 𝑚𝑖𝑛{|𝑎 − 𝑏|, 1} be the standard bounded metric on ℝ. If 𝑥 and 𝑦 

are two points of ℝ𝜔, define 𝐷(𝑥, 𝑦) = 𝑙𝑢𝑏 {
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
}. Then 𝐷 is a metric that induces 

the product topology on ℝ𝜔 is metrizable. 

Proof 
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Step 1: 

 First, we prove that 𝐷 is a metric on ℝ𝜔 

i) Let 𝑥, 𝑦 ∈ ℝ𝜔 

Then 𝑑̅(𝑥𝑖, 𝑦𝑖) ≥ 0 

⇒
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
≥ 0∀𝑖  

⇒ 𝑙𝑢𝑏 (
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
) ≥ 0 ∀𝑖  

⇒ 𝐷(𝑥, 𝑦) ≥ 0  

 Also 𝐷(𝑥, 𝑦) = 0 

  ⟺ 𝑙𝑢𝑏 (
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
) = 0 

  ⟺
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
= 0 

  ⟺ 𝑑̅(𝑥𝑖, 𝑦𝑖) = 0 ∀𝑖 

  ⟺ |𝑥𝑖 − 𝑦𝑖| = 0 ∀𝑖 

  ⟺ 𝑥𝑖 = 𝑦𝑖   ∀𝑖 

  ⟺ 𝑥 = 𝑦 

 (ii) 𝐷(𝑥, 𝑦) = 𝑙𝑢𝑏 (
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
) 

          = 𝑙𝑢𝑏 (
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
) 

         = 𝐷(𝑦, 𝑥) 

 (iii) Let 𝑥, 𝑦, 𝑧 ∈ ℝ𝜔 

 For each 𝑖, 

   𝑑̅(𝑥𝑖, 𝑧𝑖) ≤ 𝑑̅(𝑥𝑖, 𝑦𝑖) + 𝑑̅(𝑦𝑖, 𝑧𝑖)  

   ⇒
𝑑̅(𝑥𝑖,𝑧𝑖)

𝑖
≤

𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
+
𝑑̅(𝑦𝑖,𝑧𝑖)

𝑖
 

 Always, 
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
≤ 𝐷(𝑥, 𝑦) + 𝐷(𝑦, 𝑧) 
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 Hence 𝐷 is a metric on ℝ𝑤 

Step 2: 

Let 𝒯 be the product topology on ℝ𝜔 and Let 𝒯𝐷 be the metric topology induced by 𝐷 

Prove that, 𝒯 = 𝒯𝐷 

First, we prove that 𝒯 ⊃ 𝒯𝐷 

Let 𝑈 be open in the metric topology 𝒯𝐷 and  

Let 𝑥 ∈ 𝑈. 

To prove, 𝒯 ⊃ 𝒯𝐷 it is enough to find an open set 𝑉 in the product topology such that 

𝑥 ∈ 𝑉 ⊂ 𝑈. 

Since 𝑈 is open in the metric topology and 𝑥 ∈ 𝑈 we can choose an 𝜀 − ball 𝐵𝐷(𝑥, 𝜀) 

such that 𝐵𝐷(𝑥, 𝜀) ⊂ 𝑈 

Then choose 𝑁 large enough such that 
1

𝑁
< 𝜀 

Let 𝑉 = (𝑥1 − 𝜀, 𝑥1 + 𝜀) × (𝑥2 − 𝜀, 𝑥2 + 𝜀) × ……× (𝑥𝑁 − 𝜀, 𝑥𝑁 + 𝜀) × ℝ ×ℝ…. 

Then 𝑉 is a basis element for the product topology 

Prove that, 𝑉 ⊆ 𝐵𝐷(𝑥, 𝜀) 

Let 𝑦 be any point of ℝ𝜔 

Now, 𝑖 ≥ 𝑁 ⇒
1

𝑖
<

1

𝑁
 

By definition, 𝑑̅(𝑥𝑖, 𝑦𝑖) ≤ 1  ∀𝑖 

⇒
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
≤

1

𝑖
 ∀𝑖   

⇒
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
≤

1

𝑁
 𝑖𝑓𝑖 ≥ 𝑁  

 𝐷(𝑥, 𝑦) ≤ max {𝑑̅ (
𝑥1,𝑦1

1
) , 𝑑̅ (

𝑥2,𝑦2

2
) , …… 𝑑̅ (

𝑥𝑁,𝑦𝑁

𝑁
) ,

1

𝑁
} 

Claim:  𝑉 ⊂ 𝐵𝐷(𝑥, 𝜀) 

Let 𝑦 ∈ 𝑉 
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Then 𝑦𝑖 ∈ (𝑥𝑖 − 𝜀, 𝑥𝑖 + 𝜀) for 𝑖 = 1,2……𝑁 

⇒ 𝑥𝑖 − 𝜀 < 𝑦𝑖 < 𝑥𝑖 + 𝜀                                                                                                    

 ⇒ |𝑥𝑖 − 𝑦𝑖| < 𝜀 ∀𝑖 = 1,2, … .𝑁 

 ⇒ 𝑑̅(𝑥𝑖 , 𝑦𝑖) ≤ |𝑥𝑖 − 𝑦𝑖| < 𝜀 ∀𝑖 = 1,2……𝑁 

 ⇒ 𝑑̅(𝑥𝑖 , 𝑦𝑖) < 𝜀 ≤ 𝑖𝜀 𝑓𝑜𝑟 𝑖 = 1,2, ……𝑁 

 Now ⇒
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
< 𝜀 for 𝑖 = 1,2, … . . 𝑁 

  
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
≤

1

𝑁
   𝑖 ≥ 𝑁   → (1) 

 ⇒
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
< 𝜀 for 𝑖 ≥ 𝑁 → (2)   [∵

1

𝑁
< 𝜀] 

 From (1) and (2), 

   
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
< 𝜀 ∀𝑖           

 ⇒ 𝑙𝑢𝑏 {
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
} < 𝜀 

 ⇒ 𝐷(𝑥, 𝑦) < 𝜀 

 ⇒ 𝑦 ∈ 𝐵𝐷(𝑥, 𝜀) 

 Hence 𝑉 ⊂ 𝐵𝐷(𝑥, 𝜀) ⊂ 𝑈 

  ∴ 𝑉 ⊂ 𝑈 

 Hence 𝒯 ⊃ 𝒯𝐷 

Step 3: 

We have to prove that 𝒯𝐷 ⊃ 𝒯 

Let 𝑥 ∈ ℝ𝜔 

Consider the basis element 𝑈 = ∏ 𝑈𝑖𝑖∈𝕫  containing 𝑥 for the product topology 

where 𝑈𝑖 is open in ℝ for 𝑖 = 𝑑1, 𝑑2, ……𝑑𝑛 and 𝑈𝑖 = ℝ for all other values of 1. 

To prove, 𝒯𝐷 ⊃ 𝒯 

It is enough to prove that an open set 𝑉 for the metric topology such that, 𝑥 ∈ 𝑉 ⊂ 𝑈 
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Since, 𝑉𝑖 is open is ℝ and 𝑥𝑖 ∈ 𝑉𝑖 

We can choose 𝜀𝑖 such that (𝑥𝑖 − 𝜀, 𝑥𝑖 + 𝜀) ⊂ 𝑈𝑖 for 𝑖 = 𝑑1, 𝑑2, ……𝑑𝑛 

Also choose each 𝜀𝑖 ≤ 1 then define 

  𝜀 = min {
𝜀𝑖

𝑖
/𝑖 = 𝑑1, 𝑑2, ……𝑑𝑛} 

Claim: 𝐵𝐷(𝑥, 𝜀) ⊂ 𝑈 

Let 𝑦 =∈ 𝐵𝐷(𝑥, 𝜀) 

 𝐷(𝑥, 𝑦) < 𝜀 

But 
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
≤ 𝐷(𝑥, 𝑦) <∈  ∀𝑖 

 ⇒
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
< 𝜀  ∀𝑖 

If 𝑖 = 𝑑1, 𝑑2, ……𝑑𝑛, then 𝜀 ≤
𝜀𝑖

𝑖
 

Hence for 𝑖 = 𝑑1, 𝑑2, ……𝑑𝑛 we have 

  
𝑑̅(𝑥𝑖,𝑦𝑖)

𝑖
≤

𝜀𝑖

𝑖
 

  ⇒ 𝑑̅(𝑥𝑖 , 𝑦𝑖) < 𝜀𝑖 

But 𝜀𝑖 ≤ 1 we have 

 𝑑̅(𝑥𝑖, 𝑦𝑖) = |𝑥𝑖 − 𝑦𝑖| 

 ∴ |𝑥𝑖 − 𝑦𝑖| < 𝜀𝑖 

⇒ 𝑦𝑖 ∈ (𝑥𝑖 − 𝜀𝑖, 𝑥𝑖 + 𝜀𝑖) ⊂ 𝑈𝑖 for each 𝑖 = 𝑑1, 𝑑2, ……𝑑𝑛 

⇒ 𝑦𝑖 ∈ 𝑈𝑖 for each 𝑖 = 𝑑1, 𝑑2, ……𝑑𝑛 

 ⇒ 𝑦 ⊂ 𝜋𝑈𝑖  

 ⇒ 𝑦 ∈ 𝑈 

 ∴ 𝒯𝐷 ⊃ 𝒯 

Thus 𝒯𝐷 ⊃ 𝒯 

∴ 𝐷 is a metric that indues that the product topology of ℝ𝜔 
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∴ ℝ𝜔 is metrizable. 

 

2.4. The Metric Topology (Continued)   
 

Theorem 2.4.1. 

 Let 𝑓: 𝑋 → 𝑌. Let 𝑥 and 𝑦 be metrizable with metrices 𝑑𝑋 and 𝑑𝑌 respectively. 

The continuity of 𝑓 is equivalent to the requirement that given 𝑥 ∈ 𝑋 and given 𝜀 > 0, 

there exists 𝛿 > 0 such that 𝑑𝑋(𝑥, 𝑦) < 𝛿 ⇒ 𝑑𝑌(𝑓(𝑥), 𝑓(𝑦)) < 𝜀. 

Proof. 

Suppose that 𝑓: 𝑋 → 𝑌  is continuous. 

To Prove 𝑑𝑋(𝑥, 𝑦) < 𝛿 ⇒ 𝑑𝑌(𝑓(𝑥), 𝑓(𝑦)) < 𝜖. 

Given 𝑥 & 𝜀, Consider the 𝑓−1(𝐵(𝑓(𝑥), 𝜀)), which is open in X and contains the point 

x.  

It contains some δ-ball B(x,δ) centered at 𝑥. 

If y is in this 𝛿-ball, then f (y) is in the 𝜀 -ball centered at f (x) 

∴  𝑑𝑋(𝑥, 𝑦) < 𝛿 ⇒ 𝑑𝑌(𝑓(𝑥), 𝑓(𝑦)) < 𝜀 

Conversely, suppose that the 𝜀 − 𝛿 condition is satisfied. 

To prove 𝑓 is continuous. 

Let 𝑉 be an open set in 𝑌 

Claim: 𝑓−1(𝑉) is open in 𝑋 

Let 𝑥 ∈ 𝑓−1(𝑉) 

Since 𝑓(𝑥) ∈ 𝑉, 

Since 𝑉 is open, there is an 𝜀-ball B( f (x), 𝜀) centered at f (x) and contained in V 

By 𝜀 − 𝛿 condition, there exists 𝛿 − 𝑏𝑎𝑙𝑙 𝐵(𝑥, 𝛿)such that 𝑓(𝐵𝑋(𝑥, 𝛿)) ⊆ 𝐵𝑑𝑌(𝑓(𝑥), 𝜀) 

 ∴ 𝑓 (𝐵𝑑𝑦(𝑥, 𝛿) ) ⊂ 𝑉 
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 ⇒ 𝐵𝑑𝑥(𝑥, 𝛿) ⊂ 𝑓
−1(𝑉) 

 ⇒ 𝑓−1(𝑉) is open in 𝑉 

 ∴ 𝑓 is continuous. 

 

Note. 

 The 𝜀 − 𝛿 condition equivalent to 𝑦 ∈ 𝐵𝑑𝑋(𝑥, 𝛿) ⇒ 𝑓(𝑦) ∈ 𝐵𝑑𝑌(𝑓(𝑥), 𝜀). Also, 

the condition is equivalent to 𝑓 (𝐵𝑑𝑋(𝑥, 𝛿)) ≤ 𝐵𝑑𝑌(𝑓(𝑥), 𝜀)  

 

Note. A sequence of points of 𝑋 is a function mapping from ℤ+ onto 𝑋 

 

Theorem 2.4.2 (The sequence Lemma) 

 Let 𝑋 be a topological space. Let 𝐴 ⊂ 𝑋. If there is a sequence of points of 𝐴 

converging to 𝑥. Then 𝑥 ∈ 𝐴̅; the converse holds if 𝑋 is metrizable. 

Proof 

Suppose that (𝑥𝑛) → 𝑥, where 𝑥𝑛 ∈ 𝐴 

To prove 𝑥 ∈ 𝐴̅ 

Let 𝑈 be a neighbour hood of 𝑥 

Since (𝑥𝑛) → 𝑥, there exist a positive integer 𝑁 such that 𝑥𝑖 ∈ 𝑈    ∀𝑖 ≥ 𝑁 

Since, 𝑥𝑖 ∈ 𝐴    ∀𝑖 we have 𝑥𝑖 ∈ 𝑈 ∩ 𝐴       ∀𝑖 ≥ 𝑁 

 ⇒ 𝑈 intersects 𝐴 

 ⇒ 𝑥 ∈ 𝐴̅ 

Conversely, suppose that 𝑋 is mertizable and 𝑥 ∈ 𝐴̅ 

Let 𝑑 be a metric for a topology of 𝑋. 
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For each positive integer n, take the neighborhood 𝐵𝑑 (𝑥, 1/𝑛) of radius 1/n of x, and 

choose 𝑥𝑛 ∈ 𝐵 (𝑥,
1

𝑛
) ∩ 𝐴. 

Claim: (𝑥𝑛) → 𝑥 

Any open set U containing x contains an 𝜀 -ball Bd (x, _) centered at x; 

choose N so that 1/𝑁 < 𝜀, then U contains 𝑥𝑖 for all 𝑖 ≥  𝑁 

 ∴ 𝑛 ≥ 𝑁 ⇒
1

𝑛
≤

1

𝑁
< 𝜀 

 ⇒ 𝐵𝑑 (𝑥,
1

𝑛
) ⊂ 𝐵𝑑(𝑥, 𝜀) ⊂ 𝑈 

But, 𝑥𝑛 ∈ 𝐵𝑑 (𝑥,
1

𝑛
)  ∀𝑛 ≥ 𝑁 

Hence, 𝑛 ≥ 𝑁,   𝑥𝑛 ∈ 𝑈 

 ∴ (𝑥𝑛) → 𝑥  

Hence the theorem. 

 

Theorem 2.4.3. 

 Let 𝑓: 𝑋 → 𝑌. Let 𝑋 be metrizable the function 𝑓 is continuous then for every 

convergent sequence (𝑥𝑛) → 𝑥 in 𝑋, the sequence 𝑓(𝑥𝑛) → 𝑓(𝑥). The converse holds 

if X is metrizable. 

Proof. 

Suppose that 𝑓 is continuous 

Given (𝑥𝑛) → 𝑥 

To prove 𝑓(𝑥𝑛) → 𝑓(𝑥) 

Let 𝑉 be a neighbour hood of 𝑓(𝑥) 

Since 𝑓 is continuous, 𝑓−1(𝑉) is a neighbourhood of 𝑥 

Since, (𝑥𝑛) → 𝑥, there exist a 𝑁 such that 𝑥𝑛 ∈ 𝑓
−1(𝑉)  ∀𝑛 ≥ 𝑁 

Then 𝑓(𝑥𝑛) ∈ 𝑉    ∀𝑛 ≥ 𝑁 
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 ∴ 𝑓(𝑥𝑛) → 𝑓(𝑥) 

Conversely, suppose that for every convergent sequence 𝑥𝑛 → 𝑥 in 𝑋, 𝑓(𝑥𝑛) → 𝑓(𝑥) 

To prove: 𝑓 is continuous 

Let 𝐴 be a subset of 𝑋 

To prove 𝑓 is continuous, it is enough to prove that 𝑓(𝐴̅) ⊆ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

Let 𝑥 ∈ 𝐴̅ 

Then 𝑓(𝑥) ∈ 𝑓(𝐴̅) 

Claim: 𝑓(𝑥) ∈ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

By the sequence Lemma, there is a sequence (𝑥𝑛) of points of 𝐴 such that, 𝑥𝑛 → 𝑥 

By hypothesis 𝑓(𝑥𝑛) → 𝑓(𝑥) 

i.e., (𝑓(𝑥𝑛)) is a sequence of points of 𝑓(𝐴) such that 𝑓(𝑥𝑛) → 𝑓(𝑥) 

By the sequence lemma, 𝑓(𝑥) ∈ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

  ⇒ 𝑓(𝐴̅) ⊂ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

Hence 𝑓 is continuous. 

 

Lemma 2.4.4. 

 The addition, subtraction and multiplication operations are continuous function 

from ℝ × ℝ into ℝ and the quotient operation is a continuous function form ℝ× ℝ −

{0} into ℝ. 

Proof 

 We know that the function 𝑓: 𝑋 → 𝑌, where 𝑋 and 𝑌 are metrizable with metric 

𝑑𝑋 and 𝑑𝑌 respectively is continuous iff given 𝑥 ∈ 𝑋 and given 𝜀 > 0, there exist 𝛿 >

0 such that 𝑑𝑥(𝑥, 𝑦) < 𝛿 ⇒ 𝑑𝑦(𝑓(𝑥), 𝑓(𝑦)) < 𝜀 and also consider the metric 𝑑(𝑎, 𝑏) =

|𝑎 − 𝑏| on ℝ and the metric on ℝ𝟐 is given by 

 𝑓((𝑥, 𝑦), (𝑥0, 𝑦0)) = max{|𝑥 − 𝑥0|, |𝑦 − 𝑦0|} 
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i) Show that the addition ‘+’ is continuous 

Here ‘+’ is a function from ℝ× ℝ → ℝ 

Let (𝑥0, 𝑦0) ∈ ℝ × ℝ and Let 𝜀 > 0 be given 

 Take 𝛿 =
𝜀

2
 

 Then 𝛿 > 0 

 Now 𝑑(𝑥 + 𝑦, 𝑥0 + 𝑦0) = |(𝑥 + 𝑦) − (𝑥0 + 𝑦0)| 

       ≤ |𝑥 − 𝑥0| + |𝑦 − 𝑦0| 

 And 

  𝜌((𝑥, 𝑦), (𝑥0, 𝑦0)) < 𝛿 

  ⇒ |𝑥 − 𝑥0| < 𝛿 and |𝑦 − 𝑦0| < 𝛿 

  ∴ 𝑑(𝑥 + 𝑦, 𝑥0 + 𝑦0) < 𝛿 + 𝛿 = 2𝛿 = 2 (
𝜀

2
) = 𝜀 

  ∴ 𝜌((𝑥, 𝑦), (𝑥0, 𝑦0)) < 𝛿 ⇒ 𝑑(𝑥 + 𝑦, 𝑥0 + 𝑦0) < 𝜀 

 Thus ‘+’ is continuous. 

 ii) Show that the subtraction ‘-‘ is continuous 

  Here ‘-‘ is a function from ℝ ×ℝ → ℝ 

 Let (𝑥0, 𝑦0) ∈ ℝ × ℝ and let 𝜀 > 0 be given 

  Take 𝛿 =
𝜀

2
 

 Then 𝛿 > 0 

  Now, 𝑑(𝑥 − 𝑦, 𝑥0 − 𝑦0) = |(𝑥 − 𝑦) − (𝑥0 − 𝑦0)| 

         = |(𝑥 − 𝑥0) + (𝑦0 − 𝑦)| 

         = |(𝑥 − 𝑥0)| + |(𝑦 − 𝑦0)| 

 And 

  𝜌((𝑥, 𝑦), (𝑥0, 𝑦0)) < 𝛿 
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  ⇒ |𝑥 − 𝑥0| < 𝛿 and  |𝑦 − 𝑦0| < 𝛿 

  ∴ 𝑑(𝑥 − 𝑦, 𝑥0 − 𝑦0) < 𝛿 + 𝛿 = 2𝛿 = 2 (
𝜀

2
) = 𝜀 

  ∴ 𝜌((𝑥, 𝑦), (𝑥0, 𝑦0)) < 𝛿 ⇒ 𝑑(𝑥 − 𝑦, 𝑥0 − 𝑦0) < 𝜀 

  Thus ‘-‘ is continuous. 

 iii) show that multiplication is continuous 

      let (𝑥0, 𝑦0) ∈ ℝ × ℝ and let 𝜀 > 0 be given 

      Take 3𝛿 = min{
𝜖

|𝑥0|+|𝑦0|+1
, √𝜖}  

  ⇒ 3𝛿 <
𝜖

|𝑥0|+|𝑦0|+1
 𝑎𝑛𝑑 3𝛿 < √𝜖 

  ⇒ 𝛿 <
1

|𝑥0|+|𝑦0|+1
(
𝜖

3
) and <

√𝜖

3
 , 𝛿2 <

𝜖

9
 

 Now, 𝜌((𝑥, 𝑦), (𝑥0, 𝑦0)) <  𝛿 

  ⇒ |𝑥 − 𝑥0| < 𝛿 and |𝑦 − 𝑦0| < 𝜀 

  ∴ 𝑑(𝑥𝑦, 𝑥0𝑦0)) = |𝑥𝑦 − 𝑥0𝑦0|  

    = |𝑥𝑦 − 𝑥0𝑦0 + 𝑥𝑦0 − 𝑥𝑦0 + 𝑥0𝑦 − 𝑥0𝑦 + 𝑥0𝑦0 −

𝑥0𝑦0| 

    = |𝑥0(𝑦 − 𝑦0) + 𝑦0(𝑥 − 𝑥0) + (𝑥 − 𝑥0)(𝑦 − 𝑦0)| 

    ≤ |𝑥0||𝑦 − 𝑦0| + |𝑦0||𝑥 − 𝑥0| + |𝑥 − 𝑥0||𝑦 − 𝑦0| 

    ≤ |𝑥0|𝛿 + |𝑦0|𝛿 + 𝛿
2 

    = (|𝑥0| + |𝑦0|)𝛿 + 𝛿
2 

    <
(|𝑥0|+|𝑦0|)

|𝑥0|+|𝑦0|+1
 (
𝜀

3
) +

𝜀

9
 

    <
𝜀

3
+
𝜀

9
 

    =
4𝜀

9
< 𝜀 

  i.e., 𝑑(𝑥𝑦, 𝑥0𝑦0) < 𝜀 
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 Thus, 𝜌((𝑥, 𝑦), (𝑥0, 𝑦0)) < 𝛿 ⇒ 𝑑(𝑥𝑦, 𝑥0𝑦0) < 𝜀 

 ∴ Multiplication is continuous. 

iv) show that the operation taking reciprocals is continuous map for ℝ{𝟎}  to ℝ 

 let 𝑥0 ∈ ℝ{0} and let 𝜀 > 0 be given 

 Then 𝑥0 ≠ 0 

 Take, 𝛿 = min{
|𝑥0|

2
,
𝑥0
2𝜀

2
}  

 Now, 𝑑 (
1

𝑥
,
1

𝑥0
) = |

1

𝑥
−

1

𝑥0
| 

   = |
𝑥0−𝑥

𝑥𝑥0
| 

   
|𝑥−𝑥0|

|𝑥𝑥0|
 

 If |𝑥 − 𝑥0| < 𝛿 

 Then, |𝑥𝑥0 − 𝑥0
2| = |𝑥0(𝑥 − 𝑥0)| 

        = |𝑥0||𝑥 − 𝑥0| 

        < |𝑥0|𝛿 

        < |𝑥0|
|𝑥0|

2
 

        =
|𝑥0|

2

2
 

        =
𝑥0
2

2
 

  ⇒
−𝑥0

2

2
< 𝑥𝑥0 − 𝑥0

2 <
𝑥0
2

2
 

  𝑥0
2 −

𝑥0
2

2
< 𝑥𝑥0 < 𝑥0

2 +
𝑥0
2

2
 

  
𝑥0
2

2
< 𝑥𝑥0 <

3𝑥0
2

2
 

  ∴ 0 <
𝑥0
2

2
< 𝑥𝑥0 
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  ⇒
1

𝑥𝑥0
<

2

𝑥0
2 

 Hence, 𝑑 (
1

𝑥
,
1

𝑥0
) =

|𝑥−𝑥0|

|𝑥𝑥0|
 

      <
𝛿

|𝑥𝑥0|
 

      <
2𝛿

𝑥0
2 

      < 𝜀 

 ∴ 𝑑(𝑥, 𝑥0) < 𝛿 ⇒ 𝑑 (
1

𝑥
,
1

𝑥0
) < 𝜀 

Hence the reciprocal operation in continuous. 

v) show that the quotation is continuous 

 Now, 
𝑥

𝑦
= (𝑥) (

1

𝑦
) 

Since, the multiplication and the reciprocal operation are continuous, the quotient 

operation is continuous. 

 

Theorem 2.4.5.  

 If 𝑋 is a topological space, and if 𝑓, 𝑔: 𝑋 → ℝ 𝑎𝑟𝑒 continuous. Then 𝑓 + 𝑔, 𝑓 −

𝑔 and 𝑓𝑔 are continuous. If 𝑔(𝑥) ≠ 0, ∀𝑥, then 
𝑓

𝑔
 is continuous. 

Proof. 

Let X be a topological space and 𝑓, 𝑔: 𝑋 → ℝ  are continuous.  

Define ℎ: 𝑋 → ℝ × ℝ by ℎ(𝑥) = (𝑓(𝑥), 𝑔(𝑥)) 

Since, 𝑓 and 𝑔 are continuous, then ℎ is also continuous 

Now, 𝑓 + 𝑔 = ℎ ∘ 𝑓 

⇒ 𝑓 + 𝑔 is composition of two continuous function 

⇒ 𝑓 + 𝑔 is continuous 
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Similarly, 𝑓 − 𝑔 = − ∘ ℎ, 𝑓. 𝑔 =.∘ ℎ,
𝑓

𝑔
=÷∘ ℎ are continuous. 

 

Definition. 

 Let 𝑓𝑛: 𝑋 → 𝑌 be a sequence of functions from the set 𝑋 to the metric space 𝑌. 

Let  𝑑 be the metric for 𝑌, we say that the sequence {𝑓𝑛} converges uniformly to the 

function 𝑓: 𝑋 → 𝑌 if given 𝜀 > 0, there exist an integer 𝑁, such that 𝑑(𝑓𝑛(𝑥), 𝑓(𝑥)) <

𝜀, ∀𝑛 ≥ 𝑁 and ∀𝑥 ∈ 𝑋 

 

Theorem 2.4.6 (Uniform limit theorem) 

 Let function 𝑓𝑛: 𝑋 → 𝑌 be a sequence of continuous functions from the 

topological space 𝑋 to the metric space 𝑌. If (𝑓𝑛) converges uniformly to 𝑓, then 𝑓 is 

continuous. 

Proof. 

Let 𝑉 be an open in 𝑌 

Claim: 𝑓−1(𝑉) is open in 𝑋 

Let 𝑥0 ∈ 𝑓
−1(𝑉) 

 ⇒ 𝑓(𝑥0) ∈ 𝑉 

To prove 𝑓 is continuous 

It is enough to find the neighbour hood 𝑈 of 𝑥0 such that 𝑓(𝑈) ⊂ 𝑉 

Let 𝑦0 = 𝑓(𝑥0), then 𝑦0 ∈ 𝑉 

Since 𝑉 is open in 𝑌, we can choose an 𝜀 −ball 𝐵𝑑(𝑦0, 𝜀) such that 𝐵𝑑(𝑦0, 𝜀) ⊂ 𝑉 

 i.e., 𝐵𝑑(𝑓(𝑥0), 𝜀) ⊂ 𝑉  … . (1) 

Since, {𝑓𝑛} is converges uniformly to 𝑓 we can choose 𝑁 such that 𝑑(𝑓𝑛(𝑥), 𝑓(𝑥) <

𝜀

3
  ∀𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑋…… . (2) 

Consider, 𝐵𝑑 (𝑓𝑛(𝑥0),
𝜀

3
) 
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Since 𝑓𝑁 is continuous we can choose a neighbourhood 𝑈 of 𝑥0 such that 𝑓𝑛(𝑈) ⊂

𝐵𝑑 (𝑓𝑁(𝑥0),
𝜀

3
)  …… (3) 

Claim: 𝑓(𝑈) ⊂ 𝐵𝑑(𝑓𝑁(𝑥0), 𝜀) 

Let 𝑥 ∈ 𝑈 ⇒ 𝑓(𝑥) ∈ 𝑓(𝑉) 

Now, 𝑑(𝑓(𝑥), 𝑓(𝑥0)) ≤ 𝑑(𝑓(𝑥), 𝑓𝑛(𝑥)) + 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑥0)) + 𝑑(𝑓𝑛(𝑥0), 𝑓(𝑥0)) 

   <
𝜀

3
+

𝜀

3
+

𝜀

3
=

3𝜀

3
= 𝜀 

i.e., 𝑑(𝑓(𝑥), 𝑓(𝑥0)) <∈ 

⇒ 𝑓(𝑥) ∈ 𝐵𝑑(𝑓(𝑥0), 𝜀) < 𝜀  

⇒ 𝑓(𝑥) ∈ 𝑉  

⇒ 𝑓(𝑈) ⊂ 𝑉  

Hence 𝑓 is continuous. 

 

Example 1 

 Show that ℝ𝜔𝑆 in the box topology is not metrizable. 

Solution 

We prove that the sequence lemma does not hold for ℝ𝜔 

Let 𝐴 = {(𝑥1, 𝑥2, … . )/𝑥𝑖 > 0, ∀𝑖} be a subset of ℝ𝜔 

To prove 𝑂 ∈ 𝐴̅ where 𝑂 = (0,0, … . . ) 

Let 𝐵 = (𝑎1, 𝑏1) × (𝑎2, 𝑏2) × …… be any basis element containing zero 

⇒ 𝐵 intersects 𝐴 that implies 𝑂 ∈ 𝐴̅ 

Now, we prove that there is no sequence of points of 𝐴 converging to 𝑂 

Let {𝑎𝑛} be a sequence of point of 𝐴 where 𝑎𝑛 = {𝑥1𝑛,𝑥2𝑛, … . . ) here each 𝑥𝑖𝑛 ≥ 0 

Let 𝐵′ = (−𝑥11, 𝑥11) × (−𝑥22 × 𝑥22) × …… 

Since each 𝑥𝑖𝑖 > 0, 𝑜 ∈ 𝐵′ 
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Hence 𝐵′ is also a basis element for the box topology containing zero. 

Claim:  (𝑎𝑛) doesnot belong to 𝐵′ ∀𝑛 

Then nth coordinate of 𝑎𝑛 = 𝑥𝑛𝑛 ∉ (−𝑥𝑛𝑛, 𝑥𝑛𝑛) 

 ⇒ 𝑥𝑛𝑛 ∉ 𝐵
′∀𝑛 

Hence the {𝑎𝑛} cannot converges to zero in the box topology. 

∴ By sequence lemma, ℝ𝜔 is not metrizable in the box topology. 

 

Example 2. 

 Show that an uncountable product of ℝ with itself is not metrizable. 

Solution. 

Let 𝐽 be an uncountable index set. 

Prove that, ℝ𝐽 doesnot satisfies the sequence lemma in the product topology 

Let 𝐴 = {(𝑥𝛼)/𝑥𝛼 = 0, for infinitely many value of 𝛼 𝑎𝑛𝑑 𝑥𝛼 = 1, ∀ other value of 𝑥} 

be a subset of ℝ𝐽 

Claim: 0̅ ∈ 𝐴̅ where 0̅ = (0,0, …… ) 

Let ∏𝑈𝛼 be a basis element containing 0̅ 

Then, 𝑈𝛼 ≠ 𝑅 for finitely many values of 𝑑. Say 𝑑 = 𝑑1, 𝑑2……𝑑𝑛 

Construct a point (𝑥𝛼) such that 

   𝑥𝛼 = 0 if 𝑑 = 𝑑1, 𝑑2……𝑑𝑛 and 

   𝑥𝛼 = 1 if 𝑑 ≠ 𝑑1, 𝑑2……𝑑𝑛 

Since, 0 ∈ 𝜋𝑈𝛼 , 0 ∈ 𝑈𝛼 for 𝑑 = 𝑑1, 𝑑2……𝑑𝑛 

 ⇒ (𝑥𝛼) ∈ 𝜋𝑈𝛼  

By construct of 𝐴, (𝑥𝛼) ∈ 𝐴 

Hence, (𝑥𝛼) ∈ 𝜋𝑈𝛼 ∩ 𝐴 
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 ⇒ 𝜋𝑈𝛼  intersects 𝐴 

 ⇒ 0̅ ∈ 𝐴̅ 

Now, we prove that, there is no sequence of points of 𝐴 convergin of to 0̅   

Let {𝑎𝑛} be a sequence of points of 𝐴 

Then each point 𝑎𝑛 is a point of ℝ𝐽 having only finitely many co-ordinates equal to 

zero. 

Let 𝐽𝑛 be subset of 𝐽 consisting of these indices 𝛼 for which 2th co-ordinates of 𝑎𝑛 is 

Zero 

Then 𝐽𝑛 is finite for each 𝑛 

⇒ 𝑈𝐽𝑛 is countable subset of 𝐽 

But 𝐽 is uncountable. 

We can choose 𝛽 ∈ 𝐽 such that 𝛽 ∉ 𝑈𝐽𝑛 

Now, 𝛽 ∉ 𝑈𝐽𝑛 ⇒ 𝐵 ∉ 𝐽𝑛 ∀𝑛 

⇒ 𝛽𝑡ℎ co-ordinates of 𝑎𝑛 = 1, ∀𝑛 

Let 𝑈𝛽 = (−1,1) be an open interval in ℝ 

Let 𝑈 = 𝜋𝛽
−1(𝑈𝛽) then 𝑈 is open in ℝ𝐽 

𝜋𝛽0̅ = 0 ∈ 𝑈𝛽 

⇒ 0̅ ∈ 𝜋𝛽
−1(𝑈𝛽) ∈ 𝑈 

 ∴ 0̅ ∈ 𝑈 

∴ 𝑈 is an neighbour hood of 0̅ 

Claim: 𝑎𝑛 ∉ 𝑈 ∀𝑛 

Now, 𝜋𝛽(𝑎𝑛) = 𝛽𝑡ℎ co-ordinate of 𝑎𝑛 

  = 1 ∉ 𝑈𝛽 ∀𝑛 

 ∴ 𝑎𝑛 ∈ 𝜋𝛽
−1(𝑈𝛽) ∀𝑛 
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 ⇒ 𝑎𝑛 ∉ 𝑈 ∀𝑛 

Hence (𝑎𝑛) cannot converges to 0̅ in the product topology. 

∴ By sequence lemma, ℝ𝐽 is not metrizable. 
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UNIT - 3 

CONNECTEDNESS 

 

3.1. Connected Spaces 
 

Definition. 

 Let 𝑋 be a topological space. A separation of 𝑋 is a pair 𝑈 and 𝑉 of disjoint 

nonempty open subsets of 𝑋 whose union is 𝑋. A  space 𝑋 is said to be connected if 

there does not exist a separation of 𝑋. 

Connectedness is obviously a topological property, since it is formulated entirely in 

terms of the collection of open sets of X. Said differently, if X is connected, so is any 

space homeomorphic to X. 

Another way of formulating the definition of connectedness is the following:  

A space X is connected if and only if the only subsets of X that are both open and closed 

in X are the empty set and X itself. 

 For if 𝐴 is any nonempty proper subset of 𝑋 which is not open and closed in 𝑋, 

then the sets 𝑈 = 𝐴 and 𝑉 = 𝑋 − 𝐴 constitute a separation of 𝑋 for they are open, 

disjoint and nonempty and their union is 𝑋. 

 Conversely, if 𝑈 and 𝑉 form a separation of 𝑋, then 𝑈 is nonempty and different 

from 𝑋, and it is both open and closed in 𝑋. 

 

Lemma 3.1.1. 

 If 𝑌 is a subspace of 𝑋, a separation of 𝑌 is a pair of disjoint nonempty sets 𝐴 

and 𝐵 whose union is 𝑌, neither of which contains a limit point of the other. The space 

𝑌 is connected if there exist no separation of 𝑌. 

Proof. 

Suppose first that 𝐴 and 𝐵 form a separation of 𝑌. 
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Then 𝐴 is both open and closed in 𝑌. 

The closure of 𝐴 in 𝑌 is the set 𝐴̅ ∩ 𝑌 (where 𝐴̅ denote the closure of 𝐴 𝑖𝑛 𝑋). 

Since 𝐴 is closed in 𝑌, 𝐴 = 𝐴̅ ∩ 𝑌 or 𝐴̅ ∩ 𝐵 = ∅ (The limit points of 𝐴 cannot lie in 𝐵) 

 [∵ 𝐴 ∩ 𝐵 = ∅, (𝐴̅ ∩ 𝑌) ∩ 𝐵 = ∅, 𝑖. 𝑒. , 𝐴̅ ∩ (𝑌 ∩ 𝐵) = 𝐴̅ ∩ 𝐵 = ∅] 

Since 𝐴̅ is the union of 𝐴 and its limit points, 𝐵 contains no limit points of 𝐴. A similar 

argument shows that 𝐴 contains no limit points of 𝐵.  

Conversely, suppose that 𝐴 and 𝐵 are disjoint nonempty sets whose union is 𝑌, neither 

of which contains a limit point of the other. 

Then 𝐴̅ ∩ 𝐵 = ∅ and 𝐴 ∩ 𝐵̅ = ∅ 

∴ We conclude that 𝐴̅ ∩ 𝑌 = 𝐴 𝑎𝑛𝑑 𝐵̅ ∩ 𝑌 = 𝐵. 

Thus both 𝐴 𝑎𝑛𝑑 𝐵 are closed in 𝑌. 

Since 𝐴 = 𝑌 − 𝐵 and 𝐵 = 𝑌 − 𝐴, they are open in 𝑌 as well. 

∴ 𝐴 and 𝐵 form a separation of 𝑌. 

 

Example 1. 

 Let 𝑋 denote a two – point space in the indiscrete topology. Obviously there is 

no separation of 𝑋 and so 𝑋 is connected. 

 

Example 2. 

 Let 𝑌 = [−1,0) ∪ (0,1], 𝑌 is a subspace of the real line. 

 𝐴 = [−1,0) and 𝐵 = (0,1] are disjoint nonempty subsets of 𝑌 whose union is 

𝑌, neither of which contains a limit point of the other (both are open in 𝑌)  

 ∴ They form a separation of 𝑌 

 ∴ 𝑌 is not connected. 
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Example 3. 

 Let 𝑋 = [−1,1] be the subspace of ℝ. The sets [−1,0] 𝑎𝑛𝑑 (0,1] are disjoint 

nonempty whose union is 𝑋. They do not form a separation of 𝑋, because the first 

[−1,0] is not open in 𝑋. 

 Alternatively, note that the first set contains a limit, 0,  of the second. 

 ∴ There is no separation of the space [−1,1].  

i.e., 𝑋 is connected. 

 

Example 4. 

 The rationales ℚ are not connected. Indeed, the only connected subspaces of ℚ 

are the one-point sets. If Y is a subspace of ℚ containing two points p and q, we can 

choose an irrational number a lying between p and q, and write Y as the union of the 

open sets 

𝑌 ∩ (−∞, 𝑎) 𝑎𝑛𝑑 𝑌 ∩ (𝑎, +∞). 

Example 5.  

Consider the following subset of the plane ℝ: 

𝑋 =  {𝑥 ×  𝑦 | 𝑦 =  0}  ∪  {𝑥 ×  𝑦 | 𝑥 >  0 𝑎𝑛𝑑 𝑦 =  1/𝑥}. 

Then X is not connected; indeed, the two indicated sets form 

a separation of X because neither contains a limit point of the 

other. See Figure 3.1.1.  

Lemma 3.1.2. 

 If the sets 𝐶 and 𝐷 form a separation of 𝑋, and if 𝑌 is a connected subspace of 

𝑋. Then 𝑌 has to lie entirely within either 𝐶 or 𝐷. 

Proof.  

 Since 𝐶 and 𝐷 are both open in 𝑋, the sets 𝐶 ∩ 𝑌 and 𝐷 ∩ 𝑌 are open in 𝑌. 

 These two sets are disjoint and their union is 𝑌. 



 

 

89 Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli  

Man 

 If they were both nonempty, they would constitute a separation of 𝑌. 

 ∴ one of them is empty.  

 Hence 𝑌 must lie entirely in 𝐶 or 𝐷. 

 

Theorem 3.1.3. 

 The union of a collection of connected sets that have a point in common is 

connected. 

Proof. 

 Let {𝐴𝛼}𝛼∈𝐽 be a collection of connected subsets of a space 𝑋, Let p be a point 

in ⋂ 𝐴𝛼𝛼∈𝐽 . 

We prove that the set 𝑌 = ⋃𝐴𝛼 is connected.  

Suppose that 𝑌 = 𝐶 ∪ 𝐷 is a separation of 𝑌. The point 𝑝(∈ 𝑌) is one of the set 𝐶 or 𝐷 

(they are disjoint). 

 Suppose 𝑝 ∈ 𝐶. Since the set 𝐴𝛼 is a connected subset of 𝑌 (for each 𝛼) by the 

above lemma it must entirely in either 𝐶 or 𝐷; it cannot lie in 𝐷, because it contains the 

point p of C. 

 Hence, 𝐴𝛼 ⊂ 𝐶, ∀𝛼. 

 ∴ 𝑌 =∪ 𝐴𝛼 ⊂ 𝐶 contradicting the fact that 𝐷 is non empty. 

 This contradiction shows that 𝑌 is connected. 

 

Theorem 3.1.4. 

 Let 𝐴 be a connected subset of 𝑋. If 𝐴 ⊂ 𝐵 ⊂ 𝐴̅, then 𝐵 is also connected. 

(In other words, if 𝐵 is formed by adjoining to the connected subspace 𝐴 some or all of 

its limit points, then 𝐵 is connected.) 

Proof. 

Let 𝐴 be a connected subset of 𝑋 and let 𝐴 ⊂ 𝐵 ⊂ 𝐴̅ 



 

 

90 Directorate of Distance & Continuing Education. Manonmaniam Susndaranar University, Tirunelveli  

Man 

Suppose that 𝐵 = 𝐶 ∪ 𝐷 is a separation of 𝐵. 

Since 𝐴 is a connected subset of 𝐵, 𝐴 must lie entirely in 𝐶 or 𝐷 by Lemma 3.1.2. 

Suppose that 𝐴 ⊂ 𝐶. 

Then 𝐴̅ ⊂ 𝐶̅ 

Since 𝐶̅ and 𝐷 are disjoint and since 𝐵 ⊂ 𝐴̅ ⊂ 𝐶̅, 𝐵 cannot intersect 𝐷. 

This contradicts the fact that 𝐷 is a nonempty subset of 𝐵. 

∴ 𝐵 is connected. 

 

Theorem 3.1.5. 

 The image of a connected space under a continuous map is connected. 

Proof. 

 Let 𝑋 be connected and let 𝑓: 𝑋 → 𝑌 be a continuous map. 

 We wish to prove that the image set 𝑍 = 𝑓(𝑋) is connected. 

 Since the map obtained from 𝑓 by restricting its image to the space is also 

continuous, it suffices to consider the case of a continuous subjective map 𝑔: 𝑋 → 𝑍. 

 Suppose that 𝑍 = 𝐴 ∪ 𝐵 is a separation of 𝑍 into two disjoint nonempty sets 

open in 𝑍. 

 Then 𝑔−1(𝐴) and 𝑔−1(𝐵) are disjoint sets whose union is 𝑋; they are open in 𝑋 

because 𝑔 is continuous and nonempty because 𝑔 is surjective. 

 ∴ They form a separation of 𝑋, contradicting the assumption that 𝑋 is connected.  

Hence the theorem. 

 

Theorem 3.1.6. 

 The cartesian product of connected spaces is connected. 

Proof. 
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We prove the theorem first for the product of two connected spaces 𝑋 and 𝑌. 

Choose a base point 𝑎 × 𝑏 in the product space 𝑋 × 𝑌. 

Note that the horizontal slice 𝑋 × 𝑏 is connected, being homomorphic with 𝑋 and each 

vertical slice 𝑥 × 𝑌 is connected being homomorphic with 𝑌. 

 As a result, each “T−shaped” space 𝑇𝑥 = (𝑋 × 𝑏) ∪

(𝑥 × 𝑌) is connected, being the union of two connected sets that 

have the point 𝑥 × 𝑏 in common. See Figure 3.1.2.  

 Now, form the union ⋃ 𝑇𝑥𝑥∈𝑋  of all these 𝑇 −shaped 

spaces. This union is connected because it is the union of a 

collection of connected sets that have the point 𝑎 × 𝑏 in common. Since this union 

equals 𝑋 × 𝑌, the space 𝑋 × 𝑌 is connected. 

 Using induction, we see that any finite product of connected spaces 

𝑋1 × 𝑋2 × ……× 𝑋𝑛 is connected since  𝑋1 × 𝑋2 ×……× 𝑋𝑛 is homeomorphic with 

(𝑋1 × 𝑋2 × ……× 𝑋𝑛−1) × 𝑋𝑛. 

Hence the theorem. 

 

Result. Next, we prove the result for an arbitrary product of connected spaces. 

 Let {𝑋𝛼}𝛼∈𝐽 be an indexed family of connected spaces, and let 𝑋 = ∏ 𝑋𝛼𝛼∈𝐽 . 

Choose a base point 𝑏 = (𝑏𝛼)𝛼∈𝐽 for 𝑋. Given any finite set (𝛼1, 𝛼2, …… , 𝛼𝑛) of 

indices in 𝐽, let us define a subspace 𝑋(𝛼1, ……𝛼𝑛) of 𝑋. 

 It consists of all points (𝑋𝛼)𝛼∈𝐽. Show that 𝑥𝛼 = 𝑏𝛼 for 𝛼 ≠ 𝛼1, ……𝛼𝑛. 

 We assert that 𝑋(𝛼1, ……𝛼𝑛) is homeomorphic with finite product 𝑋𝛼1 × ……×

𝑋𝛼𝑛 and hence is connected. 

Consider the mapping 

(𝑋𝛼1 , …… , 𝑋𝛼𝑛) → (𝑦𝛼)𝛼∈𝐽 of 𝑋𝛼1 × …… .× 𝑋𝛼𝑛 → 𝑋(𝛼1, …… , 𝛼𝑛), where 𝑦𝛼 = 𝑥𝛼 

for 𝛼 = 𝛼1, …… , 𝛼𝑛 and 𝑦𝛼 = 𝑏𝛼 for all other values of 𝛼.  

Figure 3.1.2 
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This map is bijective and it arrives a basis element for 𝑋𝛼1 ×,… . .× 𝑋𝛼𝑛 to a basis 

element for 𝑋(𝛼1, …… , 𝛼𝑛). 

Put, 𝑌 =∪× (𝛼1, ……𝛼𝑛), where the union is taken over all finite subsets {𝛼1, …… , 𝛼𝑛} 

of 𝐽. 

Then 𝑌 is a subspace of 𝑋. 

Since the spaces 𝑋(𝛼1, ……𝛼𝑛) are connected and they are contain the base point 𝑏 =

(𝑏𝛼), 𝑌 is connected. 

But 𝑌 is not all of 𝑋. Then 𝑌 consists of all points (𝑥𝛼)𝛼∈𝐽 of 𝑋, having the property 

that 𝑥𝛼 = 𝑏𝛼 for 𝛼 ≠ 𝛼1, …… , 𝛼𝑛. 

Now we assert that the closure of 𝑌 equals all of 𝑋. 

Once we prove this fact, the connectedness 𝑋 follows from the theorem (𝐴 ⊂ 𝐵 ⊂ 𝐴̅) 

Let us take an arbitrary point (𝑥𝛼) of 𝑋 and an arbitrary basis element 𝑈 = ∏ 𝑈𝛼𝛼∈𝐽  

about (𝑥𝛼) and prove that 𝑈 intersects 𝑌. 

Each set 𝑈𝛼 is open in 𝑋𝛼 and 𝑈𝛼 = 𝑋𝛼 except for finitely many indices, say 𝛼 =

𝛼1, … . 𝛼𝑛. 

Construct a point (𝑦𝛼) of 𝑋 by setting 

𝑦𝛼 = {
𝑥𝛼             𝑓𝑜𝑟 𝛼 = 𝛼1, …… , 𝛼𝑛
𝑏𝛼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝛼

  

Then (𝑦𝛼) is a point of 𝑌, because it belongs to the space 𝑋(𝛼1, … . . , 𝛼𝑛). (𝑦𝛼) is also a 

point of 𝑈1 because 𝑦𝛼 = 𝑥𝛼 ∈ 𝑈𝛼 for 𝛼 = 𝛼1, …… , 𝛼𝑛 and 𝑦𝛼 = 𝑏𝛼 ∈ 𝑋𝛼 for all other 

values of 𝛼. 

Hence 𝑈 intersects 𝑌 as we desired. 

Hence the result. 
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3.2. Components and Local Connectedness 
 

Definition.  

Given X, define an equivalence relation on X by setting x ∼ y if there is a 

connected subspace of X containing both x and y. The equivalence classes are called the 

components (or the “connected components”) of X. 

Result.  ~ is an equivalence relation on X. 

Proof. 

Symmetry and reflexivity of the relation are obvious. 

Now, if A is a connected subspace containing x and y, and if B is a connected subspace 

containing y and z, then A ∪ B is a subspace containing x and z that is connected because 

A and B have the point y in common. Therefore, transitivity relation holds. 

Thus ~ is an equivalence relation. 

 

Theorem 3.2.1.  

The components of X are connected disjoint subspaces of X whose union is X, 

such that each nonempty connected subspace of X intersects only one of them.  

Proof. 

Since the components are equivalence classes from the equivalence relation, it is clear 

that the components of X are disjoint and their union is X. 

Claim: each connected subspace of A of X intersects only one of them. 

If A intersects the components 𝐶1 and 𝐶2 of X, say in points 𝑥1 and 𝑥2, respectively, 

then 𝑥1 ∼ 𝑥2 by definition; this cannot happen unless 𝐶1  =  𝐶2. 

To show the component C is connected. 

choose a point 𝑥0 ∈ 𝐶.  
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For each point 𝑥 ∈ 𝐶, we know that 𝑥0 ∼ 𝑥, so there is a connected subspace 𝐴𝑥 

containing 𝑥0 and x. 

By the result just proved, 𝐴𝑥 ⊂ 𝐶.  

Therefore, 𝐶 = ⋃ 𝐴𝑥𝑥∈𝐶  . 

Since the subspaces 𝐴𝑥 are connected and have the point 𝑥0 in common, their union is 

connected. 

 

Definition.  

We define another equivalence relation on the space X by defining x ∼ y if there 

is a path in X from x to y. The equivalence classes are called the path components of X. 

Result.  

 The relation ~ defined on X by x ∼ y if there is a path in X from x to y. Prove 

that ~ is an equivalence relation. 

Proof. 

First, we note that if there exists a path 𝑓 ∶  [𝑎, 𝑏]  →  𝑋 from x to y whose domain is 

the interval [a, b], then there is also a path g from x to y having the closed interval [c, 

d] as its domain. (This follows from the fact that any two closed intervals in R are 

homeomorphic.) 

Now the fact that 𝑥 ∼  𝑥 for each 𝑥 ∈ 𝑋 follows from the existence of the constant path 

𝑓 ∶  [𝑎, 𝑏] →  𝑋 defined by the equation 𝑓(𝑡) = 𝑥 for all t. The reflexivity holds. 

From the fact that if 𝑓: [0, 1] → 𝑋 is a path from x to y, then the “reverse path” 

𝑔: [0, 1] → 𝑋 defined by 𝑔(𝑡)  =  𝑓 (1 − 𝑡) is a path from y to x. This follows 

symmetry. 

Let 𝑓: [0, 1] → 𝑋 be a path from x to y, and let 𝑔: [1, 2] → 𝑋 be a path from y to z. 

We can “paste f and g together” to get a path ℎ: [0, 2] → 𝑋 from x to z; the path h 

will be continuous by the “pasting lemma”. 

Hence ~ is an equivalence relation. 
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Theorem 3.2.2.  

The path components of X are path-connected disjoint subspaces of X whose 

union is X, such that each nonempty path-connected subspace of X intersects only one 

of them. 

Proof. Proof is similar to Theorem 3.2.1. 

 

Note. Each component of a space X is closed in X, since the closure of a connected 

subspace of X is connected. If X has only finitely many components, then each 

component is also open in X, since its complement is a finite union of closed sets. But 

in general, the components of X need not be open in X. 

We can say even less about the path components of X, for they need be neither open nor 

closed in X. 

 

Example 1. If ℚ is the subspace of ℝ consisting of the rational numbers, then each 

component of ℚ consists of a single point. None of the components of ℚ are open in ℚ. 

 

Example 2.  

The “topologist’s sine curve” 𝑆̅ of the preceding section is a space that has a 

single component (since it is connected) and two path components. One path 

component is the curve S and the other is the vertical interval V = 0 × [−1, 1]. Note 

that S is open in 𝑆̅ but not closed, while V is closed but not open. 

If one forms a space from 𝑆̅ by deleting all points of V having rational second 

coordinate, one obtains a space that has only one component but uncountably many 

path components. 

 

Definition.  
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A space X is said to be locally connected at x if for every neighborhood U of x, 

there is a connected neighborhood V of x contained in U. If X is locally connected at 

each of its points, it is said simply to be locally connected. Similarly, a space X is said 

to be locally path connected at x if for every neighborhood U of x, there is a path-

connected neighborhood V of x contained in U. If X is locally path connected at each of 

its points, then it is said to be locally path connected. 

 

Example 3.  

Each interval and each ray in the real line is both connected and locally 

connected.  

The subspace [−1, 0) ∪ (0, 1] of ℝ is not connected, but it is locally connected. 

The topologist’s sine curve is connected but not locally connected. The 

rational ℚ are neither connected nor locally connected. 

 

Theorem 3.2.3.  

A space X is locally connected if and only if for every open set U of X, each 

component of U is open in X. 

Proof. 

Suppose that X is locally connected; let U be an open set in X; let C be a component of 

U. 

If 𝑥 ∈ 𝐶, we can choose a connected neighborhood V of x such that 𝑉 ⊂ 𝑈.  

Since V is connected, it must lie entirely in the component C of U. 

Therefore, C is open in X. 

Thus each component of U is open in X. 

Conversely, suppose that components of open sets in X are open.  

Given a point x of X and a neighborhood U of x, let C be the component of U containing 

x. Now C is connected; since it is open in X by hypothesis, X is locally connected at x. 
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Thus X is locally connected. 

 

Theorem 3.2.4.  

A space X is locally path connected if and only if for every open set U of X, each 

path component of U is open in X. 

Proof. Proof is similar to Theorem 3.2.3. 

 

Theorem 3.2.5.  

If X is a topological space, each path component of X lies in a component of X. 

If X is locally path connected, then the components and the path components of X are 

the same. 

Proof. 

Let C be a component of X;let x be a point of C;let P be the path component of X 

containing x.  

Since P is connected, 𝑃 ⊂ 𝐶.  

We wish to show that if X is locally path connected, 𝑃 = 𝐶.  

Suppose that 𝑃 ⊊ 𝐶.  

Let Q denote the union of all the path components of X that are different from P and 

intersect C;  

Then each of them necessarily lies in C, so that 

𝐶 = 𝑃 ∪ 𝑄. 

Because X is locally path connected, each path component of X is open in X.  

Therefore, P (which is a path component) and Q (which is a union of path components) 

are open in X, so they constitute a separation of C.  

This contradicts the fact that C is connected. 

Thus 𝑃 = 𝐶. 
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UNIT – 4 

COMPACTNESS 
 

4.1. Compact Spaces 
 

Definition. 

 A collection 𝒜 of subsets of a topological space 𝑋 is said to cover 𝑋 or to be a 

covering of 𝑋, if the union of the elements of 𝒜 is equal to 𝑋. It is called an open 

covering of 𝑋 if its elements are open subsets of 𝑋. 

 

Definition. 

 A topological space 𝑋 is said to be compact if every open covering 𝒜 of 𝑋 

contains a finite subcollection that also covers 𝑋. 

 

Example 1. 

 The real line ℝ is not compact. 𝒜 = {(𝑛, 𝑛 + 2)/𝑛𝜖𝕫} is an open covering of 

ℝ. But it contains no finite sub collection that covers ℝ. 

 

Example 2. 

 Let 𝑋 = {0} ∪ {
1

𝑛
/𝑛 ∈ 𝕫+}. This is a subspace of ℝ. 

 Given an open covering 𝒜 of 𝑋, there is an element 𝑈 of 𝐴 containing 0. The 

set 𝑈 contains all but finitely many of the points 
1

𝑛
. Choose for each point of 𝑋 not in 

𝑈, an element of 𝒜 containing it. The collection consisting of these elements of 𝒜, 

along with the element 𝑈, is a finite collection of 𝒜, that covers 𝑋. 

∴ 𝑋 is compact. 
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Definition. 

 If Y is a subspace of X, a collection 𝒜 of subsets of X is said to cover Y if the 

union of its elements contains Y. 

 

Lemmas 4.1.1. 

 Let 𝑌 be a subspace of 𝑋. Then 𝑌 is compact iff every covering of 𝑌 by sets 

open in 𝑋 contains a finite subcollection covering 𝑌. 

Proof. 

 Given 𝑌 be a subspace of 𝑋. 

 Assume that 𝑌 is compact. 

 Let 𝒜 = {𝐴𝛼/𝛼 ∈ 𝐽} be a covering of 𝑌, where 𝐴𝛼 is open in 𝑋. 

 To prove 𝑌 ⊆ ⋃ 𝐴𝛼𝑖
𝑛
𝑖=1  

 Since 𝐴𝛼 is open in X 

 ⇒ 𝐴𝛼 ∩ 𝑌 is open in 𝑌. 

 ⇒∪ (𝐴𝛼 ∩ 𝑌) = (∪ 𝐴𝛼) ∩ 𝑌 

   = 𝑌 ∩ 𝑌 

 ⇒∪ (𝐴𝛼 ∩ 𝑌) = 𝑌 

 ∴ {𝐴𝛼 ∩ 𝑌/𝛼 ∈ 𝐽} is an covering of 𝑌. 

 Since 𝑌 is compact. 

 ∴ The above open cover has a finite subcover {𝐴𝛼1 ∩ 𝑌, 𝐴𝛼2 ∩ 𝑌,…… , 𝐴𝛼𝑛 ∩ 𝑌} 

 ⇒ ⋃ (𝐴𝛼𝑖 ∩ 𝑌) = 𝑌
𝑛
𝑖=1  

 ⇒ (⋃ 𝐴𝛼𝑖
𝑛
𝑖=1 ) ∩ 𝑌 = 𝑌 

 ⇒ 𝑌 ⊆ ⋃ (𝐴𝛼𝑖
𝑛
𝑖=1 )  
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i.e., every open covering of 𝑌 by sets open in 𝑋 contains a finite subcollection covering 

𝑌. 

Conversely, assume that every open covering of Y by sets open in X contains a finite 

subcollection covering Y. 

To prove: Y is compact. 

Let 𝐴′ = {𝐴𝛼
′ /𝛼 ∈ 𝐽} be an open covering of 𝑌, where 𝐴𝛼

′  is open in 𝑌. 

∴∪ 𝐴𝛼
′ = 𝑌,   𝑤ℎ𝑒𝑟𝑒 𝛼 ∈ 𝐽  

Since 𝐴𝛼
′  is open in Y. 

∴ 𝐴𝛼
′ = 𝐴𝛼 ∩ 𝑌, where 𝐴𝛼 is open in 𝑋. 

⇒ 𝑌 =∪ (𝐴𝛼 ∩ 𝑌)  

⇒ 𝑌 = (∪ 𝐴𝛼) ∩ 𝑌  

⇒ 𝑌 ⊂∪ (𝐴𝛼)  

i.e., The set {𝐴𝛼/𝛼 ∈ 𝐽} is a open covering of Y by sets open in X. 

By assumption, this has a finite subcollection that covers 𝑌. 

i.e. 𝑌 ⊆ ⋃ 𝐴𝛼𝑖
𝑛
𝑖=1  

∴ 𝑌 = (⋃ 𝐴𝛼𝑖
𝑛
𝑖=1 ) ∩ 𝑌  

∴ 𝑌 ⊆ ⋃ (𝐴𝛼𝑖
𝑛
𝑖=1 )   

i.e., 𝑌 ⊆ ⋃ 𝐴𝛼𝑖
′𝑛

𝑖=1  

𝐴′  has a finite subcollection {𝐴𝛼1
′ , …… , 𝐴𝛼𝑛

′ } that covers Y. 

Hence Y is compact. 

 

Theorem 4.1.2. 

 Every closed subspace of a compact space is compact. 

Proof. 
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Let X be a compact space and let Y be a closed subspace of X. 

To prove: Y is compact. 

Enough to prove that every covering of Y by sets open in X contains a finite 

subcollection covering Y. 

Let 𝒜 be a covering of Y by sets open in X. 

Since Y is closed in X, X\Y is open in X. 

∴ ℬ = 𝒜 ∪ (𝑋\𝑌) is an open cover of X. 

Since X is compact. 

⇒ ℬ contains a finite subcollection covering X. 

If this subcollection contains the set 𝑋\𝑌, discard 𝑋 − 𝑌, otherwise, leave the 

subcollection alone. 

∴ The resulting subcollection is a finite subcollection of 𝒜 that covers Y.  

Hence Y is compact. 

 

Theorem 4.1.3. 

 Every compact subspace of a Haussdorff space is closed. 

Proof. 

Lemma 4.1.4: If Y is a compact subspace of Hausdorff space X and 𝑥0 ∉ 𝑌. Then there 

exist a disjoint open sets 𝑈 and V of X containing 𝑥0 and y respectively. 

Proof of lemma. 

Given Y is a compact subspace X and 𝑥0 ∉ 𝑌. 

⇒ 𝑥0 ∈ 𝑋\𝑌  

Let 𝑦 ∈ 𝑌 ⇒ 𝑥0 ≠ 𝑦 

i.e, 𝑥0 and y are two distinct points in X. 

since X is Hausdorff. 
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⇒ ∃ two open sets 𝑈𝑦, 𝑉𝑦 of 𝑥0 and y respectively. Show that 𝑈𝑦 ∩ 𝑉𝑦 ≠ 0. 

∴ The collection {𝑉𝑦/𝑦 ∈ 𝑌} is a covering of Y by sets open in X. 

Since Y is compact. 

∴ The above open cover has a finite subcollection, say {𝑉𝑦1 , 𝑉𝑦2 , …… , 𝑉𝑦𝑛}, that covers 

Y. 

i.e., 𝑌 ⊆ 𝑉𝑦1 ∪ 𝑉𝑦2 ∪ ……∪ 𝑉𝑦𝑛 

let 𝑉 = 𝑉𝑦1 ∪ ……∪ 𝑉𝑦𝑛, which is an open set containing Y. 

Taking 𝑈𝑦1 , 𝑈𝑦2 , …… , 𝑈𝑦𝑛 be the corresponding neighbourhoods of 𝑥0. 

Let 𝑈 = 𝑈𝑦1 ∩ ……∪ 𝑈𝑦𝑛, which is an open set and 𝑥0 ∈ 𝑈. 

i.e., we have found out two open sets U and V such that 𝑥0 ∈ 𝑈 and 𝑌 ⊂ 𝑉.  

Now to prove 𝑈 ∩ 𝑉 = ∅. 

Suppose 𝑈 ∩ 𝑉 ≠ ∅, ∃ at least one element, say 𝑥 ∈ 𝑈 ∩ 𝑉, 

⇒ 𝑥 ∈ 𝑈 and 𝑥 ∈ 𝑉 

⇒ 𝑥 ∈ 𝑈𝑦1 ∩ 𝑈𝑦2 ∩ ……∩ 𝑈𝑦𝑛 and 𝑥 ∈ 𝑉𝑦1 ∪ ……∪ 𝑉𝑦𝑛 

⇒ 𝑥 ∈ 𝑈𝑦𝑖 , ∀ 𝑖 = 1,……𝑛, 𝑥 ∈ 𝑉𝑦𝑗 for some j 

⇒ 𝑥 ∈ 𝑈𝑦𝑖 ∩ 𝑉𝑦𝑗  

⇒⇐ (𝑆𝑖𝑛𝑐𝑒 𝑈𝑦𝑖𝑎𝑛𝑑 𝑉𝑦𝑗  𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡)  

Hence 𝑈 ∩ 𝑉 = ∅. 

Proof of the theorem. 

 Let X be a housedorff space and let Y be a compact subspace of X. 

To prove Y is closed in X. 

i.e., to prove 𝑌𝐶  is open in X. 

i.e., to prove 𝑋\𝑌 is open in X 
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Let 𝑥0 ∈ 𝑋\𝑌 

By previous theorem, ∃ disjoint open sets 𝑈 and 𝑉 show that 𝑥0 ∈ 𝑈 and 𝑦 ⊆ 𝑉 and 

𝑈 ∩ 𝑉 = ∅. 

Now, 𝑈 ∩ 𝑉 = ∅( since 𝑈 ⊆ 𝑉𝐶 ⊆ 𝑌𝐶 = 𝑋\𝑌 ) 

∴ For each 𝑥0 ∈ 𝑋\𝑌, ∃ and open set U containing 𝑥0 show that 𝑥0 ∈ 𝑈 ⊆ 𝑋\𝑌. 

⇒ 𝑋\𝑌 is open in X. 

i.e., Y is closed in X. 

 

Example 5.  

Once we prove that the interval [a, b] in R is compact, it follows from Theorem 

4.1.2 that any closed subspace of [a, b] is compact. On the other hand, it follows from 

Theorem 4.1.3 that the intervals (a, b] and (a, b) in R cannot be compact (which we 

knew already) because they are not closed in the Hausdorff space R. 

 

Example 6.  

One needs the Hausdorff condition in the hypothesis of Theorem 4.1.3. 

Consider, for example, the finite complement topology on the real line. The only proper 

subsets of R that are closed in this topology are the finite sets. But every subset of R is 

compact in this topology. 

 

Theorem 4.1.5. 

 The image of a compact space under a continuous map is compact. 

Proof. 

 Let 𝑋 be a compact space and 𝑌 be a subspace of 𝑋. 

 Let 𝑓: 𝑋 → 𝑌 be a continuous map. 

To prove: 𝑓(𝑋) is compact. 
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Let 𝒜   = {𝐴𝛼/𝛼 ∈ 𝐽} be an open cover for 𝑓(𝑋) by sets open in 𝑌. 

Since 𝐴𝛼 ′𝑠 are open in 𝑌. 

⟹ 𝑓−1(𝐴𝛼) is opne in 𝑋[∵ 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠] 

⟹ {𝑓−1(𝐴𝛼)/𝛼 ∈ 𝐽} is an open cover for 𝑋. 

Since 𝑋 is compact, the above open cover has a finite sub collection that covers 𝑋. 

i.e., 𝑋 ⊆ ⋃ 𝑓−1(𝐴𝛼𝑖)
𝑛
𝑖=1  

⟹ 𝑓(𝑋) ⊆ ⋃ 𝐴𝛼𝑖
𝑛
𝑖=1   

i.e., {𝐴𝛼1 , …… , 𝐴𝛼𝑛} is a finite sub collection of 𝒜 that covers 𝑓(𝑋) and hence 𝑓(𝑋) is 

compact. 

Thus the continuous image of a compact space is compact. 

 

Theorem 4.1.6. 

 Let 𝑓: 𝑋 → 𝑌 be a bijective continuous function. If 𝑋 is compact anf 𝑌 is 

Hausdarff space. Then 𝑓 is a homeomorphism. 

Proof. 

 Given 𝑓: 𝑋 → 𝑌 is a bijective continuous map and let 𝑋 be compact and 𝑌 be 

hausdorff. 

To prove 𝑓 is homeomorphism. 

i.e., To prove 𝑓−1 𝑖𝑠 contuinuous. 

In order to prove, if 𝐴 is closed in 𝑋 ⟹ (𝑓−1)−1(𝐴) is closed in 𝑌. 

∵ [𝑓 is continuous iff for every close set 𝐵 in 𝑌, the set 𝑓−1(𝐵) is closed in X] 

s To prove 𝑓(𝐴) is closed in 𝑌. 

Since 𝐴 is closed in 𝑋. 

⟹ 𝐴 is compact [∵every closed subspace of compact space is compact] 

⟹ 𝑓(𝐴) is compact [by previous theorem] 
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⟹ 𝑓(𝐴) is closed [∵every compact subspace of a hausdorff space is closed] 

⟹ 𝑓−1 is continuous. 

∴ 𝑓 is homeomorphism. 

Theorem 4.1.7. 

 The product of finitely many compact spaces is compact 

Proof. 

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be compact spaces. 

To prove 𝑋1  ×  𝑋2  × . . .×  𝑋𝑛 is compact. 

First, we shall prove that the product of two compact space is compact. Then the 

theorem follows by induction for any finite product. 

Before proving this theorem, let us prove the Tube lemma. 

 

Lemma 4.1.8.(Tuba Lemma). 

 Consider the product space 𝑋 × 𝑌, where 𝑌 is compact. If 𝑁 is an open set of 

𝑋 × 𝑌 containing the slice 𝑥0 × 𝑌 of 𝑋 × 𝑌, then 𝑁 contains some tube 𝑊 × 𝑌 about 

𝑥0 × 𝑌, where 𝑊 is the neighbourhood of 𝑥0 in 𝑋. 

Proof of the Lemma. 

 Suppose that we are given two spaces X and Y, with 𝑌 is a compact space. 

Suppose that 𝑥0 ∈ 𝑋 and 𝑁 is an open set of 𝑋 × 𝑌 containing the slice 𝑥0 × 𝑌 of X× 𝑌. 

To prove 𝑁 contains the tube 𝑊 × 𝑌 about 𝑥0 × 𝑌, where 𝑊 is the neighbourhood of 

𝑥0 in 𝑋. 

Since 𝑁 is open in 𝑋 × 𝑌 containing 𝑥0 × 𝑌 

⟹ ∃ a basis element 𝑈 × 𝑉 in 𝑋 × 𝑌 Such that 𝑥0 × 𝑌 ∈ 𝑈 × 𝑉 ⊆ 𝑁 [∵ 𝑈 is open in 

𝑋, 𝑉 is open in 𝑌] 

∴ The collection 𝒜 = {𝑈 × 𝑉/𝑈 𝑖𝑠  open in 𝑋 and 𝑉 is open in 𝑌} is the open cover for 

𝑥0 × 𝑌 by sets open in 𝑋 × 𝑌. 
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Since 𝑥0 × 𝑌 is homeomorphic with 𝑌. 

∴ 𝑥0 × 𝑌 is compact. 

∴ 𝒜 has a finite subcollection contains 𝑥0 × 𝑌. 

i.e., 𝑥0 × 𝑌 ⊆ 𝑈1 × 𝑉1 ∪ 𝑈2 × 𝑉2 ∪ …… . .∪ 𝑈𝑛 × 𝑉𝑛 -------------(1) 

Let 𝑊 = 𝑈1 ∩ 𝑈2 ∩ ……∩ 𝑈𝑛 

Since each 𝑈𝑖 is open in 𝑋,𝑊 is open in 𝑋. 

Since 𝑥0 ∈ 𝑈𝑖  ∀𝑖 = 1……𝑛 and 𝑥0 ∈ 𝑊 also.   

⟹ 𝑥0 × 𝑌 ∈ 𝑊 × 𝑌  

To prove 𝑊 × 𝑌 ⊆ 𝑁  

Let 𝑥 × 𝑦 ∈ 𝑊 × 𝑌 

⟹ 𝑥 ∈ 𝑊 𝑎𝑛𝑑 𝑦 ∈ 𝑌  

⟹ 𝑥 ∈ 𝑈𝑖 ∀𝑖 𝑎𝑛𝑑 𝑦 ∈ 𝑉𝑗 for some j 

∴ 𝑥 × 𝑦 ∈ 𝑈𝑖 × 𝑉𝑗 for some j 

⟹ 𝑥 × 𝑦 ∈ 𝑊 × 𝑌  

⟹ 𝑥 × 𝑦 ∈ 𝑁 (∴ all the sets 𝑈𝑖 × 𝑉𝑗 lie in 𝑁)  

∴ 𝑊 × 𝑌 ⊆ 𝑁  

Hence the Lemma. 

Proof of the theorem. 

 We shall prove that the product of finite two compact space is compact and the 

theorem follows by induction on any finite product of finite. 

Let 𝑋 𝑎𝑛𝑑 𝑌 be two compact spaces. 

To prove 𝑋 × 𝑌 is compact. 

Let 𝒜 = {𝐴𝛼/𝐴𝛼′𝑠 are open in 𝑋} be an open covering for 𝑋 × 𝑌. 

Let 𝑥0 ∈ 𝑋 

Figure 4.1.2 
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Consider the slice 𝑥0 × 𝑌. Clearly 𝒜 is a covering of 𝑥0 × 𝑌 by sets open in 𝑋 × 𝑌. 

Since 𝑥0 × 𝑌 is homeomorphic with 𝑌 and 𝑌 is compact. 

⟹ 𝑥0 × 𝑌 is compact. 

∴ 𝒜 has a finite subcollection 𝐴𝛼1 , 𝐴𝛼2 , …… , 𝐴𝛼𝑛  such that 𝑥0 × 𝑌 is contained in 

𝐴𝛼1 ∪ 𝐴𝛼2 ∪ ………∪ 𝐴𝛼𝑛 = 𝑁. 

Each 𝐴𝛼𝑖 is open in 𝑋 × 𝑌 and 𝑁 is an open in 𝑋 × 𝑌 containing the slice 𝑥0 × 𝑌. 

∴ by Tube lemma, ∃ a Tube 𝑊 × 𝑌 about 𝑥0 × 𝑌 such that 𝑊 × 𝑌 ⊆ 𝑁, where 𝑊 is a 

neighbourhood of 𝑥0. 

∴ For each 𝑥 ∈ 𝑋 we can choose a neighbourhood 𝑊𝑥 of 𝑥 such that the tube 𝑊𝑥 × 𝑌 

can be covered by finitely many elements of 𝒜. 

Consider the collection 𝒜′ = {𝑊𝑥/𝑥 ∈ 𝑋} is an open covering of 𝑋. 

Since 𝑋 is compact. 

⟹ ∃ a finite subcollection 𝑊𝑥1 ,𝑊𝑥2 …… ,𝑊𝑥𝑛 of 𝐴′ show that 𝑋 = 𝑊𝑥1 ∪𝑊𝑥2 ∪ ……∪

𝑊𝑥𝑛. 

Then 𝑋 × 𝑌 = (𝑊𝑥1 × 𝑌) ∪ (𝑊𝑥2 × 𝑌) ∪ ……∪ (𝑊𝑥𝑛 × 𝑌) 

i.e., The collection 𝑊𝑥1 × 𝑌,𝑊𝑥2 × 𝑌,…… ,𝑊𝑥𝑛 × 𝑌 forms a covering of 𝑋 × 𝑌 -----(2) 

from (1) and (2),we conclude that 𝑋 × 𝑌 is covered by finitely many elements of 𝒜. 

⟹ 𝑋 × 𝑌 is compact. 

∴ The product of two compact spaces is compact. 

∴ By using induction method, we get product sof finitely many compact spaces is 

compact. 

 

Definition. 

 A collection 𝒞 of subset of 𝑋 is said to have a finite intersection property of 

for every finite sub collection 𝐶1, 𝐶2, …… , 𝐶𝑛 of 𝒞 such that ⋂ 𝐶𝑖 ≠ ∅𝑛
𝑖=1 . 
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Theorem 4.1.9. 

 Let 𝑋 be a topological space. Then 𝑋 is compact iff for every collection 𝒞 of 

closed sets in 𝑋 having finite intersection property, the intersection ⋂ 𝐶𝑐∈𝒞  of all 

elements of 𝒞 is nonempty. 

Proof. 

 Assume that X is compact and 𝒞 is a collection of closed sets in X satisfying 

the finite intersection property. 

To prove ⋂ 𝐶 ≠ ∅𝑐∈𝒞   

Suppose not, i.e., ⋂ 𝐶 ≠ ∅𝑐∈𝒞   

⇒ (⋂ 𝐶𝐶∈𝒞 )𝐶 = ∅𝐶 = 𝑋  

⇒ 𝑋\∩ 𝐶 = 𝑋  

⋃ (𝑋\𝐶)𝐶∈𝒞 = 𝑋  

∴ {𝑋\𝐶/𝐶 ∈ 𝒞} is open cover for 𝑋. 

Since 𝑋 is compact, This open cover has a finitely subcover 𝑋\𝐶1, 𝑋\𝐶2, …… , 𝑋\𝐶𝑛 

i.e.,⋃ (𝑋\𝐶𝑖)
𝑛
𝑖=1 = 𝑋 

⇒ 𝑋\⋂ 𝐶𝑖
𝑛
𝑖=1 = 𝑋  

Taking complement, 

∴ ⋂ 𝐶𝑖
𝑛
𝑖=1 = ∅  

⇒⇐ [∵ every collection of closed set has a finite intersection property] 

Hence ⋂ 𝐶 ≠ ∅𝑐∈𝒞  

Conversely, assume that for every collection 𝒞 of closed sets in 𝑋 satisfying finite 

intersection property, ⋂ 𝐶 ≠ ∅𝑐∈𝒞   

To prove 𝑋 is compact. 

Let {𝐴𝛼/𝛼 ∈ 𝐽} be an open cover for 𝑋. 
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To prove this has a finite subcover. 

Suppose it does not have a finite subcover. 

Since {𝐴𝛼/𝛼 ∈ 𝐽} is an open in 𝑋. 

⇒ 𝑋\𝐴𝛼  is closed set in 𝑋. 

𝒞 = {𝑋\𝐴𝛼/𝛼 ∈ 𝐽} is a collection of closed sets. 

Since {𝐴𝛼/𝛼 ∈ 𝐽} is an open cover for 𝑋. 

 ⇒ ⋃ 𝐴𝛼𝛼∈𝐽 = 𝑋 

 ⇒ (𝑋\⋃ 𝐴𝛼𝛼∈𝐽 ) = ∅ 

 ⇒ ⋂ (𝑋\𝐴𝛼)𝛼∈𝐽 = ∅ 

∴ We conclude that 𝒞 = {𝑋\𝐴𝛼/𝛼 ∈ 𝐽} is a collection of closed sets having empty 

intersection. 

∴ 𝒞 does not satisfy the finite intersection property. 

i.e., ∃ a finite sets in 𝒞, namely 𝑋\𝐴𝛼1 , 𝑋\𝐴𝛼2 , …… , 𝑋\𝐴𝛼𝑛 , show that 

⋂ (𝑋\𝐴𝛼𝑖) = ∅
𝑛
𝑖=1   

⇒ 𝑋\⋃ 𝐴𝛼𝑖
𝑛
𝑖=1 = ∅  

⇒ ⋃ 𝐴𝛼𝑖
𝑛
𝑖=1 = 𝑋  

⇒ A has a finite subcover. 

The open cover what we have chosen has a finite subcover. 

∴ Our assumption is wrong. i.e, every open cover for 𝑋 has a finite subcover and hence 

𝑋 is compact. 

 

Corollary. 

 The space 𝑋 is compact iff for every collection 𝒜 of subset of 𝑋 satisfying finite 

intersection property ⋂ ≠ ∅𝐴∈𝒜 . 
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Proof. 

 Assume that 𝑋 is compact. 

 Let 𝒜 = {𝐴𝛼/𝛼 ∈ 𝐽} be a collection of subsets of 𝑋 having a finite intersection 

property. 

To prove  ⋂ 𝐴𝛼𝑖
𝑛
𝑖=1 ≠ ∅ 

Consider 𝒜′ = {𝐴𝛼̅̅̅̅ /𝛼 ∈ 𝐽} 

Since 𝒜 satisfy finite intersection property. 

i.e., ⋂ 𝐴𝛼𝑖
𝑛
𝑖=1 ≠ ∅ 

 ⇒ ⋂ 𝐴𝛼𝑖
𝑛
𝑖=1 ⊆ ⋂ 𝐴̅𝛼𝑖

𝑛
𝑖=1 ≠ ∅ 

 ⇒ ⋂ 𝐴̅𝛼𝑖
𝑛
𝑖=1 ≠ ∅ 

 ⇒ 𝐴′ satisfies a finite intersection property. 

 ∴ 𝑋 is compact ⇒ ⋂ 𝐴̅ ≠ ∅𝐴∈𝒜  

Conversely, assume that for every collection 𝒜 of subsets of 𝑋 satisfying finite 

intersection property ⋂ 𝐴 ≠ ∅𝐴∈𝒜  

To prove 𝑋 is compact. 

Let 𝒞 be a collection of closed sets in 𝑋 satisfying finite intersection condition. 

∴ Our assumption, every collection 𝒜 of subsets 𝑋 satisfying finite intersection 

condition. We have, 

⋂ 𝐴̅ ≠ ∅𝐴∈𝒜   

∴ ⋂ 𝐶̅ ≠ ∅𝑐∈𝒞   

Since 𝒞 has closed sets. 

⇒ 𝐶 = 𝐶̅  

i.e., ⋂ 𝐶 ≠ ∅𝑐∈𝒞  

∴ By previous theorem, we get 𝑋 is compact. 
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4.2.Limit Point Compactness 
 

Definition. 

A space X is said to be limit point compact if every infinite subset of X has a limit point. 

 

Theorem 4.2.1.  

Compactness implies limit point compactness, but not conversely. 

Proof.  

Let X be a compact space. Given a subset A of X. 

we wish to prove that if A is infinite, then A has a limit point.  

We prove the contrapositive—if A has no limit point, then A must be finite. 

So, suppose A has no limit point. Then A contains all its limit points, so that A is closed.  

Furthermore, for each a ∈ A we can choose a neighborhood 𝑈𝑎 of a such that 𝑈𝑎 intersects A 

in the point a alone. The space X is covered by the open set X – A and the open sets 𝑈𝑎; being 

compact, it can be covered by finitely many of these sets. 

Since X − A does not intersect A, and each set Ua contains only one point of A, the set A must 

be finite. 

 

Example 1.  

Let Y consist of two points; give Y the topology consisting of Y and the empty 

set. Then the space X = Z+ × Y is limit point compact, for every nonempty subset of X 

has a limit point. It is not compact, for the covering of X by the open sets 𝑈𝑛  =

 {𝑛}  ×  𝑌 has no finite subcollection covering X. 

 

Example 2.  

Consider the minimal uncountable wellordered set 𝑆𝜔 , in the order topology.  

The space 𝑆𝜔  is not compact, since it has no largest element.  

However, it is limit point compact: Let A be an infinite subset of 𝑆𝜔 .  
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Choose a subset B of A that is countably infinite.  

Being countable, the set B has an upper bound b in 𝑆𝜔 ; then B is a subset of the interval 

[𝑎0, 𝑏] of 𝑆𝜔 , where 𝑎0 is the smallest element of 𝑆𝜔 .  

Since 𝑆𝜔   has the least upper bound property, the interval [𝑎0, 𝑏] is compact.  

By the preceding theorem, B has a limit point x in [𝑎0, 𝑏].  

The point x is also a limit point of A. 

Thus 𝑆𝜔  is limit point compact. 

 

Definition.  

Let X be a topological space. If (𝑥𝑛) is a sequence of points of X, and if 𝑛1  <  𝑛2  <

 · · · <  𝑛𝑖  < · · · is an increasing sequence of positive integers, then the sequence (𝑦𝑖) 

defined by setting 𝑦𝑖  =  𝑥𝑛𝑖  is called a subsequence of the sequence (𝑥𝑛). The space 

X is said to be sequentially compact if every sequence of points of X has a convergent 

subsequence. 

 

Theorem 4.2.2.  

Let X be a metrizable space. Then the following are equivalent: 

(1) X is compact. 

(2) X is limit point compact. 

(3) X is sequentially compact. 

Proof. 

We have already proved that (1) ⇒ (2).  

To show that (2) ⇒ (3)  

Assume that X is limit point compact.  

Given a sequence (𝑥𝑛) of points of X, consider the set 𝐴 = {𝑥𝑛 | 𝑛 ∈  𝑍+}.  
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If the set A is finite, then there is a point x such that 𝑥 =  𝑥𝑛 for infinitely many values 

of n.  

In this case, the sequence (𝑥𝑛) has a subsequence that is constant, and therefore 

converges trivially.  

On the other hand, if A is infinite, then A has a limit point x.  We define a subsequence 

of (xn) converging to x as follows: First choose 𝑛1 so that 

𝑥𝑛1 ∈ 𝐵(𝑥, 1). 

Then suppose that the positive integer 𝑛𝑖−1 is given. Because the ball 𝐵(𝑥, 1/𝑖 ) 

intersects A in infinitely many points, we can choose an index 𝑛𝑖 > 𝑛𝑖−1 such that  

𝑥𝑛𝑖 ∈  𝐵(𝑥, 1/𝑖 ). 

Then the subsequence 𝑥𝑛1  , 𝑥𝑛2  , . .. converges to x. 

Finally, we show that (3) ⇒ (1).  

First, we show that if X is sequentially compact, then the Lebesgue number lemma holds 

for X.  

Let A be an open covering of X. We assume that there is no 𝛿 > 0 such that each set of 

diameter less than δ has an element of A containing it, and derive a contradiction. 

Our assumption implies in particular that for each positive integer n, there exists a set 

of diameter less than 1/n that is not contained in any element of A; let 𝐶𝑛 be such a set. 

Choose a point 𝑥𝑛  ∈  𝐶𝑛, for each n. By hypothesis, some subsequence (𝑥𝑛𝑖  ) of the 

sequence (𝑥𝑛) converges, say to the point a. Nowa belongs to some element A of the 

collection A; because A is open, we may choose an 𝜖 >  0 such that B(a, 𝜖) ⊂ A. If i is 

large enough that 1/𝑛𝑖 < 𝜖/2, then the set 𝐶𝑛𝑖 lies in the 𝜖/2-neighborhood of 𝑥𝑛𝑖 ; if 

i is also chosen large enough that 𝑑(𝑥𝑛𝑖  , 𝑎) < 𝜖/2, then 𝐶𝑛𝑖 lies in the 𝜖-neighborhood 

of a. But this means that 𝐶𝑛𝑖 ⊂ 𝐴, contrary to hypothesis. 

Second, we show that if X is sequentially compact, then given 𝜖 > 0, there exists a 

finite covering of X by open 𝜖-balls. Once again, we proceed by contradiction. 
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Assume that there exists an 𝜖 >  0 such that X cannot be covered by finitely many 𝜖-

balls. Construct a sequence of points 𝑥𝑛 of X as follows: First, choose 𝑥1 to be any point 

of X.  

Noting that the ball 𝐵(𝑥1, 𝜖) is not all of X (otherwise X could be covered by a single 

𝜖-ball), choose 𝑥2 to be a point of X not in 𝐵(𝑥1, 𝜖). In general, given 𝑥1, . . . , 𝑥𝑛, choose 

𝑥𝑛+1 to be a point not in the union 

𝐵(𝑥1, 𝜖)  ∪ · · · ∪  𝐵(𝑥𝑛, 𝜖), 

using the fact that these balls do not cover X. Note that by construction 𝑑(𝑥𝑛+1, 𝑥𝑖 ) ≥

𝜖 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝑛. Therefore, the sequence (𝑥𝑛) can have no convergent subsequence; 

in fact, any ball of radius 𝜖/2 can contain 𝑥𝑛 for at most one value of n. 

Finally, we show that if X is sequentially compact, then X is compact. Let A be an open 

covering of X. Because X is sequentially compact, the open covering A has a Lebesgue 

number δ. Let 𝜖 =  𝛿/3; use sequential compactness of X to find a finite covering of 

X by open𝜖-balls. Each of these balls has diameter at most 2𝛿/3, so it lies in an element 

of 𝒜. Choosing one such element of A for each of these 𝜖-balls, we obtain a finite 

subcollection of 𝒜𝑠 that covers X. 

 

4.3.Local Compactness 
 

Definition.  

A space X is said to be locally compact at x if there is some compact subspace 

C of X that contains a neighborhood of x. If X is locally compact at each of its points, 

X is said simply to be locally compact. 

Note. A compact space is automatically locally compact. 

 

Example 1.  

The real line ℝ   is locally compact. The point x lies in some interval (a, b), 

which in turn is contained in the compact subspace [a, b]. The subspace ℚ of rational 

numbers is not locally compact. 
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Example 2.  

The space ℝ𝑛 is locally compact; the point x lies in some basis element 

(𝑎1, 𝑏1) ×· · ·× (𝑎𝑛, 𝑏𝑛), which in turn lies in the compact subspace [𝑎1, 𝑏1] ×· · ·

× [𝑎𝑛, 𝑏𝑛]. 

The space ℝ𝜔 is not locally compact; none of its basis elements are contained in 

compact 

subspaces. For if 

𝐵 =  (𝑎1, 𝑏1) ×· · ·× (𝑎𝑛, 𝑏𝑛)  ×  ℝ ×· · ·× ℝ ×· · · 

were contained in a compact subspace, then its closure 

𝐵̅ =  [𝑎1, 𝑏1] ×· · ·× [𝑎𝑛, 𝑏𝑛]  ×  ℝ ×· · · 

would be compact, which it is not. 

Example 3.  

Every simply ordered set X having the least upper bound property is locally 

compact: Given a basis element for X, it is contained in a closed interval in X, which is 

compact. 

Theorem 4.3.1.  

Let X be a space. Then X is locally compact Hausdorff if and only if there exists 

a space Y satisfying the following conditions: 

(1) X is a subspace of Y. 

(2) The set 𝑌 − 𝑋 consists of a single point. 

(3) Y is a compact Hausdorff space. 

If Y and 𝑌′are two spaces satisfying these conditions, then there is a homeomorphism 

of Y with 𝑌′ that equals the identity map on X. 

Proof.  
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Step 1. We first verify uniqueness. Let Y and 𝑌′be two spaces satisfying these 

conditions. Define ℎ ∶  𝑌 →  𝑌′by letting h map the single point 𝑝 of 𝑌 − 𝑋 to the point 

q of 𝑌′ −  𝑋, and letting h equal the identity on X. We show that if U is open in Y , then 

h(U) is open in 𝑌′. Then Symmetry implies that h is a homeomorphism. 

First, consider the case where U does not contain p. Then h(U) = U. Since U is 

open in Y and is contained in X, it is open in X. Because X is open in 𝑌′, the set U is also 

open in 𝑌′, as desired. 

Second, suppose that U contains p. Since C = Y −U is closed in Y , it is compact 

as a subspace of Y . Because C is contained in X, it is a compact subspace of X. Then 

because X is a subspace of 𝑌′, the space C is also a compact subspace of 𝑌′. Because 𝑌′ 

is Hausdorff, C is closed in 𝑌′, so that h(U) = 𝑌'− C is open in 𝑌′, as desired. 

Step 2. Now we suppose X is locally compact Hausdorff and construct the space Y. Step 

1 gives us an idea how to proceed. Let us take some object that is not a point of X, 

denote it by the symbol ∞ for convenience, and adjoin it to X, forming the set 𝑌 =

 𝑋 ∪ {∞}. Topologize Y by defining the collection of open sets of Y to consist of (1) 

all sets U that are open in X, and (2) all sets of the form Y − C, where C is a compact 

subspace of X. 

We need to check that this collection is, in fact, a topology on Y. The empty set 

is a set of type (1), and the space Y is a set of type (2). Checking that the intersection of 

two open sets is open involves three cases: 

𝑈1  ∩  𝑈2 is of type (1). 

(𝑌 − 𝐶1)  ∩  (𝑌 − 𝐶2)  =  𝑌 − (𝐶1  ∪  𝐶2) is of type (2). 

𝑈1  ∩  (𝑌 − 𝐶1)  =  𝑈1  ∩  (𝑋 − 𝐶1) is of type (1), 

because 𝐶1 is closed in X. Similarly, one checks that the union of any collection of open 

sets is open: 

⋃𝑈𝛼 = 𝑈      is of type (1). 

⋃(𝑌 − 𝐶𝛽) = 𝑌 − (⋂𝐶𝛽) = 𝑌 − 𝐶   is of type (2). 

(⋃𝑈𝛼) ∪ (⋃(𝑌 − 𝐶𝛽)) = 𝑈 ∪ (𝑌 − 𝐶) = 𝑌 − (𝐶 − 𝑈), 
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which is of type (2) because C − U is a closed subspace of C and therefore compact. 

Now we show that X is a subspace of Y. Given any open set of Y, we show its 

intersection with X is open in X. If U is of type (1), then 𝑈 ∩  𝑋 =  𝑈; if Y − C is of 

type (2), then (𝑌 −  𝐶)  ∩  𝑋 =  𝑋 −  𝐶; both of these sets are open in X. Conversely, 

any set open in X is a set of type (1) and therefore open in Y by definition. 

To show that Y is compact, let 𝒜 be an open covering of Y.  The collection A 

must contain an open set of type (2), say Y −C, since none of the open sets of type (1) 

contain the point ∞. Take all the members of A different from Y − C and intersect them 

with X; they form a collection of open sets of X covering C. Because C is compact, 

finitely many of them cover C; the corresponding finite collection of elements of 𝒜 

will, along with the element Y − C, cover all of Y. 

To show that Y is Hausdorff, let x and y be two points of Y. If both of them lie 

in X, there are disjoint sets U and V open in X containing them, respectively. On the 

other hand, if 𝑥 ∈  𝑋 and 𝑦 =  ∞, we can choose a compact set C in X containing a 

neighborhood U of x. Then U and Y − C are disjoint neighborhoods of x and ∞, 

respectively, in Y. 

Step 3. Finally, we prove the converse. Suppose a space Y satisfying conditions 

(1)–(3) exists. Then X is Hausdorff because it is a subspace of the Hausdorff space Y. 

Given 𝑥 ∈  𝑋, we show X is locally compact at x. Choose disjoint open sets U and V of 

Y containing x and the single point of Y − X, respectively. Then the set C = Y −V is 

closed in Y, so it is a compact subspace of Y. Since C lies in X, it is also compact as a 

subspace of X; it contains the neighborhood U of x. 

If X itself should happen to be compact, then the space Y of the preceding 

theorem is not very interesting, for it is obtained from X by adjoining a single isolated 

point. However, if X is not compact, then the point of Y − X is a limit point of X, so that. 

𝑋̅ =  𝑌. 

Definition.  

If Y is a compact Hausdorff space and X is a proper subspace of Y whose closure 

equals Y, then Y is said to be a compactification of X. If Y −X equals a single point, then 

Y is called the one-point compactification of X. 
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Example 4.  

The one-point compactification of the real line ℝ is homeomorphic with the 

circle. Similarly, the one-point compactification of ℝ2 is homeomorphic to the sphere 

𝑆2. If ℝ2 is looked at as the space ℂ of complex numbers, then ℂ ∪ {∞} is called the 

Riemann sphere, or the  

Theorem 4.3.2.  

Let X be a Hausdorff space. Then X is locally compact if and only if given x in 

X, and given a neighborhood U of x, there is a neighborhood V of x such that 𝑉̅ is 

compact and 𝑉̅ ⊂  𝑈. 

Proof.  

Clearly this new formulation implies local compactness; the set 𝐶 =  𝑉̅ is the 

desired compact set containing a neighborhood of x. To prove the converse, suppose X 

is locally compact; let x be a point of X and let U be a neighborhood of x. Take the one-

point compactification Y of X, and let C be the set Y − U. Then C is closed in Y , so that 

C is a compact subspace of Y . Apply Lemma 26.4 to choose disjoint open sets V and 

W containing x and C, respectively. Then the closure 𝑉̅ of V in Y is compact; 

furthermore, 𝑉̅ is disjoint from C, so that 𝑉̅ ⊂  𝑈, as desired. 

 

Corollary 4.3.3.  

Let X be locally compact Hausdorff; let A be a subspace of X. If A is closed in 

X or open in X, then A is locally compact. 

Proof.  

Suppose that A is closed in X. Given 𝑥 ∈  𝐴, let C be a compact subspace of X 

containing the neighborhood U of x in X. Then 𝐶 ∩ 𝐴 is closed in C and thus compact, 

and it contains the neighborhood 𝑈 ∩  𝐴 of x in A. 
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Suppose now that A is open in X. Given 𝑥 ∈  𝐴, we apply the preceding theorem 

to choose a neighborhood V of x in X such that 𝑉̅ is compact and 𝑉̅ ⊂  𝐴. Then 𝐶 =  𝑉̅ 

is a compact subspace of A containing the neighborhood V of x in A. 

 

Corollary 4.3.4. 

A space X is homeomorphic to an open subspace of a compact Hausdorff space 

if and only if X is locally compact Hausdorff. 

Proof. This follows from Theorem 4.3.1 and Corollary 4.3.3. 
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UNIT – 5 

COUNTABILITY AND SEPERATION AXIOMS 

 

5.1. The Countability Axioms 

 

Definition. 

 A space X is said to have a countable basis at x if there is a countable collection 

ℬ of neighbourhood of x such that each neihbourhood of x contains at least one of the 

elements of ℬ. A space that has a countable basis at each of its points is said to satisfy 

the first countability axiom, or to be first-countable. 

 

Theorem 5.1.1.  

Let X be a topological space. 

(a) Let A be a subset of X. If there is a sequence of points of A converging to x, 

then 𝑥 ∈ 𝐴̅; the converse holds if X is first-countable. 

(b) Let 𝑓: 𝑋 → 𝑌. If f is continuous, then for every convergent sequence 𝑥𝑛 → 𝑥 

in X, the sequence 𝑓(𝑥𝑛) converges to 𝑓(𝑥). The converse holds if X is first countable. 

Proof. 

(a) Suppose 𝑥 ∈ 𝐴̅. Since X is first countable, there exists a countable basis say 𝑈𝑛 at 

x. 

Let 𝐴𝑛  =  𝑈1 ∩ 𝑈2 ∩ . . .∩ 𝑈𝑛 for 𝑛 =  1, 2, . .. 

Then {𝐴𝑛} is a countable collection of neighbourhood of x and 𝐴1 ⊃ 𝐴2 ⊃ . . . ⊃ 𝐴𝑛 ⊃

 𝐴𝑛+1 ⊃. . . 

Claim: {𝐴𝑛} is a countable basis at 𝑥. 

Let U be a neihbourhood of 𝑥. Since 𝑈𝑛 is a countable basis at 𝑥, there exists 𝑈𝑘 in {𝑈𝑛} 

such that 𝑈𝑘 ⊂ 𝑈. 
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Also, 𝐴𝑘 ⊂ 𝑈𝑘. Therefore, we have 𝐴𝑘 ⊂ 𝑈𝑘 ⊂ 𝑈. 

That is 𝑥 ∈ 𝐴𝑘 ⊂ 𝑈. 

Therefore, {𝐴𝑛} is a countable basis at 𝑥. 

Now, for any n, 𝐴𝑛 ∩ 𝐴 ≠ ∅. 

Choose 𝑥𝑛 ∈ 𝐴𝑛 ∩ 𝐴 for 𝑛 =  1, 2, . .. 

Now, we have a sequence (𝑥𝑛) in A such that 𝑥𝑛 ∈ 𝐴𝑛 for 𝑛 =  1, 2, . . .. 

Claim: (𝑥𝑛)  →  𝑥. 

Let V be a neigbourhood of x. 

Since {𝐴𝑛} is a countable basis at 𝑥, there exists 𝑥 such that 𝐴𝑁 ⊂ 𝑉. 

Also, 𝐴𝑛 ⊂ 𝐴𝑁 ∀ 𝑛 ≥  𝑁. 

Therefore, xn ∈ An ⊂ V 

⇒ xn ∈ V ∀ n ≥ N. 

Therefore, (𝑥𝑛)  →  𝑥. 

Conversely, suppose there exists a sequence (𝑥𝑛) in A such that (𝑥𝑛)  →  𝑥. 

To prove 𝑥 ∈ 𝐴̅ 

Suppose there exists a sequence of points in A converging to 𝑥. 

Let W be a neighbourhood of 𝑥. 

Since (𝑥𝑛)  →  𝑥 and W is a neighbourhood of 𝑥, there exists a positive integer N such 

that 𝑥𝑛 ∈ 𝑊,∀ 𝑛 ≥  𝑁. 

⇒ 𝑊 ∩ 𝐴 ≠ ∅. 

Therefore, 𝑥 ∈ 𝐴̅. 

Suppose 𝑓: 𝑋 → 𝑌 is continuous. 

To prove (𝑓(𝑥𝑛)) → 𝑓(𝑥) where (𝑥𝑛) → 𝑥. 

Let (𝑥𝑛) → 𝑥. Let V be the neigbourhood of 𝑓(𝑥). 
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⇒ 𝑓−1(𝑉) is the neigbourhood of 𝑥. 

Since (𝑥𝑛) → 𝑥, there exists a positive integer N such that 𝑥𝑛 ∈ 𝑓
−1(𝑉), ∀ 𝑛 ≥  𝑁 

⇒ 𝑓(𝑥𝑛) ∈ 𝑉 ∀ 𝑛 ≥ 𝑁. 

Therefore, (𝑓(𝑥𝑛)) → 𝑓(𝑥). 

Conversely, suppose that (𝑓(𝑥𝑛)) → 𝑓(𝑥) whenever (𝑥𝑛) → 𝑥. 

To prove f is continuous. 

It is enough to prove 𝑓(𝐴̅)  ⊂  𝑓(𝐴)̅̅ ̅̅ ̅̅  for any subset A of X. 

Let 𝑦 ∈ 𝑓(𝐴)̅̅ ̅̅ ̅̅ . Then 𝑦 =  𝑓(𝑥) for some 𝑥 ∈ 𝐴. 

Now, 𝑥 ∈ 𝐴̅. By (a), there exists a sequence (𝑥𝑛) in A such that (𝑥𝑛) → 𝑥. 

By hypothesis, (𝑓(𝑥𝑛)) → 𝑓(𝑥). 

Then by (a), 𝑓(𝑥) ∈ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

⇒ 𝑦 ∈  𝑓(𝐴)̅̅ ̅̅ ̅̅ . 

Therefore, 𝑓(𝐴̅)  ⊂  𝑓(𝐴)̅̅ ̅̅ ̅̅ . 

Hence 𝑓 is continuous. 

 

Definition.  

If a space X has a countable basis for its topology, then X is said to satisfy the 

second countability axiom, or to be second-countable. 

 

Example 1.  

1. ℝ has a countable basis. It is the collection of all open intervals (a, b) with rational 

end points. 

2. ℝ𝑛 has a countable basis. It is the collection of all products of intervals having 

rational end points. 
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3. ℝ𝜔 has a countable basis. It is the collection of all product  ∏ 𝑈𝑛𝑛∈ℤ+  where 𝑈𝑛 is 

an open interval with rational end points for finitely many values of n and 𝑈𝑛  = 𝑅 for 

all values of n. 

 

Theorem 5.1.2.  

(i) A subspace of a first countable space is first countable and a countable 

product of first countable spaces is first countable.  

(ii) A subspace of a second countable space is second countable and a 

countable product of second countable space is second countable. 

Proof. 

(i) Let A be a subspace of a first countable space X. 

Let 𝑥 ∈ 𝑋. 

Let ℬ be a countable basis for X. 

Let 𝒞 = {𝐵 ∩ 𝐴/𝐵 ∈ ℬ}. 

Then 𝒞 is a countable basis for the subspace A of X. Therefore, A is first countable. 

Let (𝑋𝑖) be a sequence of first countable spaces. 

To prove ∏𝑋𝑖 is first countable. 

Let 𝐵𝑖 be a countable basis for the space 𝑋𝑖. 

Then the collection of all products ∏𝑈𝑖, where 𝑈𝑖 ∈ 𝐵𝑖 for finitely many values of i is 

a countable basis for ∏𝑋𝑖. Therefore, ∏𝑋𝑖 is first countable. 

(ii) Consider the second countability axiom. Let X be a second countable space. 

Let A be a subspace of X. 

Let ℬ be a countable basis for X. 

Let 𝒞 =  {𝐵 ∩ 𝐴/𝐵 ∈ ℬ}. 

Then 𝒞 is a countable basis for the subspace A of X. Therefore, A is second countable. 

Therefore, any subspace of a second countable space is second countable. 
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Let (𝑋𝑖) be a sequence of second countable spaces. 

To prove ∏𝑋𝑖 is second countable. 

Let ℬ𝑖 be a countable basis for the space 𝑋𝑖. 

Then the collection of all products ∏𝑈𝑖 where 𝑈𝑖 ∈ ℬ𝑖 for finitely many values of 𝑖 is 

a countable basis for ∏𝑋𝑖. Therefore, ∏𝑋𝑖 is second countable. 

 

Definition. A subset A of a space X is said to be dense in X if 𝐴̅  =  𝑋. 

 

Theorem 5.1.3.  

Suppose that X has a countable basis. Then: 

(a) Every open covering of X contains a countable subcollection covering X. 

(b) There exists a countable subset of X that is dense in X. 

Proof. 

Given X as a countable basis. 

Let {𝐵𝑛} be a countable basis for the topology on X. 

(a) Let 𝒜 be an open covering for X. 

For each positive integer n for which it is possible to choose an element 𝐴𝑛 of A 

containing the basis element 𝐵𝑛. 

That is 𝐵𝑛 ⊂ 𝐴𝑛 

Let 𝒜′ = {𝐴𝑛}, then clearly 𝒜′ is the countable collection of open subsets of X. 

To prove 𝑋 =∪ 𝐴𝑛. Trivially, ∪ 𝐴𝑛 ⊂ 𝑋 ————-(1) 

Let 𝑥 ∈ 𝑋 

⇒ 𝑥 ∈ 𝐴 for some 𝐴 ∈ 𝒜 . 

There exists 𝐵𝑛 ∈ {𝐵𝑛} such that 𝑥 ∈ 𝐵𝑛 ⊂ 𝐴. 

Since 𝐵𝑛 ⊂ 𝐴𝑛 
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⇒ 𝑥 ∈∪ 𝐴𝑛. 

Therefore, 𝑋 ⊂ ∪ 𝐴𝑛 ————-(2). 

From (1) and (2) we get, 𝑋 = ∪ 𝐴𝑛. 

Therefore, 𝒜′ is a countable subcollection covering X. 

(b) For each nonempty basis element Bn, choose a point 𝑥𝑛 ∈ 𝐵𝑛. 

Let D be the set consisting of the point 𝑥𝑛. 

Clearly, D is the countable subset of X. 

Claim : 𝐷̅  =  𝑋 

Clearly, 𝐷̅  ⊂ X. 

To prove 𝑋 ⊂ 𝐷̅. 

Let 𝑥 ∈ 𝑋. 

Let 𝑈 be a neihbourhood of 𝑥. 

Then there exists 𝐵𝑛 such that 𝑥 ∈ 𝐵𝑛 ⊂ 𝑈. 

Now, 𝑥𝑛 ∈ 𝐵𝑛, 𝑥𝑛 ∈ 𝐷 

⇒ 𝑥𝑛 ∈ 𝐵𝑛 ∩ 𝐷 

⇒ 𝐵𝑛 ∩ 𝐷 ≠  ∅ 

⇒ 𝑥 ∈ 𝐷. 

Therefore, 𝑥 ⊂  𝐷̅ . Hence 𝐷̅  =  𝑋. 

Therefore, D is dense in X. 

 

Definition.  

A space for which every open covering contains a countable subcovering is 

called a Lindelof space. A space having a countable dense subset often said to be 

separable. 
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Example 3.  

The space ℝ𝑙 satisfies all the countability axioms but the seconds or ℝ𝑙 topology 

is first countable but not second countable. 

Proof. 

Let 𝑥 ∈ 𝑅𝑙, the set of all elements of the form [𝑥, 𝑥 +
1

𝑛
) is a countable basis at x and it 

is easy to see that the rational number of dense inℝ𝑙. Hence it is first countable. 

To show ℝ𝑙 is not second countable. 

Let ℬ be a basis for ℝ𝑙. 

Choose for each x, an element 𝐵𝑖 of ℬ such that 𝑥 ∈ 𝐵𝑥 ⊂ [𝑥, 𝑥 + 1). 

If 𝑥 ≠ 𝑦, then 𝐵𝑥 ≠ 𝐵𝑦. 

Since 𝑥 =  𝑖𝑛𝑓 𝐵𝑥 and 𝑦 =  𝑖𝑛𝑓 𝐵𝑦. 

Therefore, ℬ must be countable. 

Therefore, it does not satisfy the second countability axiom. 

 

Example 4.  

The product of two Lindelof spaces need not be Lindelof. 

(or) 

ℝ𝑙 is Lindelof but the product ℝ𝑙 ×ℝ𝑙 is not Lindelof. 

Proof. 

The space ℝ𝑙
2 has basis of all sets of the form [𝑎, 𝑏) × [𝑐, 𝑑). 

We show that it is not Lindelof. 

Consider a subspace 𝐿 = {𝑥 × (−𝑥)/𝑥 ∈ ℝ𝑙} and L is closed in ℝ𝑙
2 

Let us cover ℝ𝑙
2 by the open set ℝ𝑙

2 −  𝐿 and by all elements of the form 

[𝑎, 𝑏) × [−𝑎, 𝑑). 

Each of these open sets intersects L in atmost one point.  
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Since L is uncountable, no countable subcollection 

covers ℝ𝑙
2. 

Therefore, ℝ𝑙
2 is not Lindelof. 

The subspace of a Lindelof space need not be 

Lindelof. 

The ordered square, 𝐼0
2 is compact. 

Therefore, it has a countable subcover. 

Therefore, it is Lindelof trivially. 

Now, consider the subspace 𝐴 = 𝐼 × (0, 1) of 𝐼0
2. 

It is not Lindelof. 

For, A is the union of disjoint sets, 𝑈𝑥  =  {𝑥} × (0, 1), 𝑥 ∈  𝐼 each of which is open in 

A. 

This collection of sets is uncountable and no proper subcollection covers A. 

It is not Lindelof. 

Note: ℝ𝑙
2 is called sorgenfrey plane. 

 

Example 5. A subspace of a Lindelof space need not be Lindelof.  

Proof. 

The ordered square 𝐼0
2 is compact; therefore, it is Lindelof, trivially.  

However, the subspace 𝐴 =  𝐼 × (0, 1) is not Lindelof.  

For A is the union of the disjoint sets 𝑈𝑥 =  {𝑥}  × (0, 1), each of which is open in A.  

This collection of sets is uncountable, and no proper subcollection covers A. 
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5.2. The Separation Axioms 
 

Recall that a space X is said to be Hausdorff if for each pair x, y of distinct 

points 

of X, there exist disjoint open sets containing x and y, respectively. 

Definition.  

Suppose that one-point sets are closed in X. Then X is said to be regular if for 

each pair consisting of a point x and a closed set B disjoint from x, there exist disjoint 

open sets containing x and B, respectively.  

The space X is said to be normal if for each pair A, B of disjoint closed sets of 

X, there exist disjoint open sets containing A and B, respectively. 

 

Note. It is clear that a regular space is Hausdorff, and that a normal space is regular. 

 

The three separation axioms are illustrated in Figure 5.2.1. 

 

Figure 5.2.1 

 

Lemma 5.2.1.  

Let X be a topological space. Let one-point sets in X be closed. 
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(a) X is regular if and only if given a point x of X and a neighborhood U of x, there is a 

neighbourhood V of x such that 𝑉̅ ⊂ U. 

(b) X is normal if and only if given a closed set A and an open set U containing A, there 

is an open set V containing A such that 𝑉̅ ⊂ U. 

Proof. 

(a) First assume X is regular. 

Given a point x and a neighbourhood U of x. 

To prove there exists a neighbourhood V of x such that 𝑉 ⊂ 𝑈. 

Let 𝐵 = 𝑋 − 𝑈. 

Then B is closed in X. 

Also 𝑥 ∉ 𝐵. 

Therefore, by hypothesis, there exists disjoint open sets V and W containing 𝑥 and B 

respectively. 

Therefore, the set V is disjoint from B. 

Since if 𝑦 ∈ 𝐵 the set W is a neigbourhood of 𝑥 such that 𝑉 ⊂ 𝑈. 

To prove X is regular. 

Suppose the closed set B not containing 𝑥 be given. Then 𝑥 ∈ 𝑈. 

By hypothesis, there is a neighbourhood V of 𝑥 such that 𝑉 ⊂ 𝑈. 

Therefore, the open sets V and 𝑋 − 𝑉 are disjoint open set containing 𝑥 and B 

respectively. 

Hence X is regular. 

(b) Suppose that X is normal. 

Given a closed set A and an open set U containing A. 

Let 𝐵 = 𝑋 − 𝑈. 

Since U is open, B is closed in X. 
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Also, we have A is closed in X. 

Since X is normal, there exist disjoint open sets V and W containing A and b 

respectively. 

V is disjoint from W. 

Therefore, 𝑉̅ is disjoint from V. 

Therefore,  𝑉̅ ⊂ 𝑈. 

Conversely, suppose given a closed set A and an open set U containing A, there is an 

open set V containing A such that 𝑉̅ ⊂ 𝐴. 

To prove that X is normal. 

Let 𝑈 = 𝑋 − 𝐵 is an open set containing A. 

By hypothesis, there exists an open set V containing A such that 𝑉̅ ⊂ U. 

Therefore, the open set V and X − 𝑉̅ are disjoint open set containing A and B 

respectively. 

Also, given that the one-point sets are closed in X. 

Therefore, X is normal. 

 

Theorem 5.2.2.  

(a) A subspace of a Hausdroff space is Hausdroff. A product of Hausdroff space is 

Hausdroff. 

(b) A subspace of a regular space is regular. A product of a regular space is regular. 

Proof. 

(a) First let us prove the product of two Hausdroff space is Hausdroff. 

Let 𝑋1 and 𝑋2 be two Hausdroff spaces. 

To prove 𝑋1 × 𝑋2 is Hausdroff space. 
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That is to prove for all 𝑥 =  (𝑥1, 𝑥2) and 𝑦 =  (𝑦1, 𝑦2) of 𝑋1  ×  𝑋2, 𝑥 ≠  𝑦, there exists 

a neighbourhood U and V of (𝑥1, 𝑥2) and (𝑦1, 𝑦2) such that 𝑈 ∩ 𝑉 =  ∅. 

Here 𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2, 𝑦1 ∈ 𝑋1, 𝑦2 ∈ 𝑋2. 

𝑥 ≠  𝑦 ⇒ (𝑥1, 𝑥2) ≠  (𝑦1, 𝑦2) 

⇒ 𝑥1 ≠ 𝑦1 𝑜𝑟 𝑥2 ≠ 𝑦2. 

We take 𝑥1 ≠ 𝑦1. 

Since 𝑋1 is a Hausdroff space, two point 𝑥1 ≠ 𝑦1 of 𝑋1, there exists a neighbourhood 

𝑈1 and 𝑈2 of 𝑥1 and 𝑦1 such that 𝑈1 ∩ 𝑈2 = ∅. 

Consider 𝑈1 × 𝑋2 and 𝑈2 × 𝑋2. 

Since 𝑈1, 𝑈2, 𝑋2 are open, 𝑈1  ×  𝑋2 and 𝑈2  ×  𝑋2 are open. 

Also, (𝑥1, 𝑥2) ∈ 𝑈1  ×  𝑋2 and (𝑦1, 𝑦2)∈𝑈2  ×  𝑋2. 

Since 𝑈1 ∩ 𝑈2  =  ∅, (𝑈1 × 𝑋2) ∩ (𝑈2 × 𝑋2)  =  ∅. 

Thus 𝑈1 × 𝑋2 is a neighbourhood of 𝑥1, 𝑥2 and 𝑈2 × 𝑋2 is a neighbourhood of 𝑦1, 𝑦2 

with (𝑈1 × 𝑋2) ∩ (𝑈2 × 𝑋2) = ∅. 

Next to prove subspace of a Hausdroff space is Hausdroff. 

Let X be a Hausdroff space. 

Let Y be a subspace of X. 

To prove Y is Hausdroff. 

Let 𝑦1 ≠ 𝑦2 be two points of Y. Then 𝑦1, 𝑦2 ∈  𝑋. 

Since X is Hausdroff, there exists a neighbourhood 𝑈𝑦1 and 𝑈𝑦2 of 𝑦1 and 𝑦2 in X such 

that 𝑈𝑦1∩ 𝑈𝑦2 =  ∅. 

Let 𝑉𝑦1 = 𝑈𝑦1 ∩ Y and 𝑉𝑦2 = 𝑈𝑦2 ∩ Y . 

Clearly, 𝑉𝑦1 and 𝑉𝑦2 are neighbourhood of 𝑦1 and 𝑦2 in Y. 

Also, 𝑉𝑦1∩𝑉𝑦2 = (𝑈𝑦1 ∩ 𝑌) ∩ (𝑈𝑦2 ∩ 𝑌 ) 

= (𝑈𝑦1∩𝑈𝑦2)∩Y. 
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= ∅ ∩ Y 

= ∅. 

Therefore, Y is Hausdroff. 

(b) Let X be a regular space. 

Let Y be a subspace of a regular space X. 

Then one point sets are closed in Y. 

Let x be a point of Y. 

Let B be a closed set in Y not containing the point x. 

Now, 𝐵̅ ∩ 𝑌 = 𝐵 where 𝐵̅ denotes the closure of B in X. 

Therefore, 𝑥 ∉ 𝐵̅. 

So, using regularity of X we can choose disjoint open sets U and V of X containing x 

and 𝐵̅ respectively. 

Then 𝑈 ∩ 𝑌 and 𝑉 ∩ 𝑌 are disjiont open sets containing X and B respectively. 

Therefore, Y is regular. 

That is the subspace of X is regular. 

That is the subspace of X is regular. 

Now, to prove product of a regular space is regular. 

let {𝑋𝛼} be a family of regular spaces. 

Let 𝑋 = ∏𝑋𝛼. 

By (a) part, X is Hausdroff. So that one-point sets are closed in X. 

Let 𝑥 = (𝑋𝛼) ∈ 𝑋. 

Let U be a neighbourhood of x in X. 

Choose a basis element ∏𝑈𝑥 about x contained in U. 

Then 𝑈𝛼 is a neighbourhood of 𝑥𝛼 in 𝑋𝛼 and each 𝑋𝛼 is regular. 
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Choose for each α, the neighbourhood 𝑉𝛼 of 𝑥𝛼 such that 𝑉𝛼 ⊂ 𝑈𝛼. If it happens that 

𝑈𝛼 = 𝑋𝛼, choose 𝑉𝛼 = 𝑋𝛼. 

Then 𝑉 = ∏𝑉𝛼 is a neighbourhood of x in X. 

Since 𝑉̅ ∏𝑉𝛼̅. 

By a theorem, it follows that, 𝑉̅ ⊂  ∏𝑈𝛼 ⊂ 𝑈. 

That is𝑉̅ ⊂ 𝑈. 

Hence by lemma, X is regular. 

That is ∏𝑋𝛼 is regular.  

 

5.3. Normal Space 

 

Theorem 5.3.1. 

 Every regular space with a countable basis in normal. 

Proof. 

 Let 𝑋 be a regular space with a countable basis 𝔅 

 Prove that 𝑋 is normal. 

 Let 𝐴 𝑎𝑛𝑑 𝐵 be disjoint closed subsets of 𝑋. 

 Now 𝐴 ∩ 𝐵̅ = 𝐴 ∩ 𝐵 = ∅ 

 ∴ Any point of 𝐴 is not a limit point of 𝐵. 

 Hence each point 𝑥 of 𝐴 has a neighbourhood 𝑈 not intersecting 𝐵. 

 Since 𝑋 is regular, we can choose 𝑎 neighbourhood 𝑉 𝑜𝑓 𝑥, whose 

closure lies in 𝑈.  

 Now choose a basis element of  𝔅 containing 𝑥 and contained in 𝑉. 
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 By choosing such a basis element for each 𝑥 ∈ 𝐴, we construct a 

countable covering of 𝐴 by open sets whose closures do not intersect 𝐵. 

 Since this covering of 𝐴 is countable, we can index it with positive 

integets. 

 Let us denote it by {𝑈𝑛} 

 Similarly, we can choose a countable collection {𝑉𝑛} of open sets 

covering 𝐵. Such that each set 𝑉𝑛̅ is disjoint from 𝐴. 

 The sets 𝑈 = ⋃ 𝑉𝑛𝑛∈𝕫+  are open sets containing 𝐴 and 𝐵 

respectively. But they need not be disjoint.  

 Given 𝑛, define 𝑈𝑛
′ = 𝑈𝑛 −⋃ 𝑉𝑖̅

𝑛
𝑖=1  and  

       𝑉̅𝑛
′ = 𝑉𝑛 −⋃ 𝑈𝑖̅

𝑛
𝑖=1  

 Since each set 𝑈𝑛
′  is the difference of open sets 𝑈𝑛 and a closed set 

⋃ 𝑉𝑖̅
𝑛
𝑖=1 , 𝑈𝑛

′  is open, similarly each set 𝑉𝑛
′ 

is open, 

Claim {𝑈𝑛
′ } covers 𝐴.  

Let 𝑥 ∈ 𝐴, then 𝛼 ∈ 𝑈𝑛, for some 𝑛 

Similarly each set 𝑉𝑖̅ is disjoint from 𝐴.  

∴ 𝑥 ∉ 𝑉𝑖̅     ∀𝑖  

∴ 𝑥 ∉  ⋃ 𝑉𝑖̅
𝑛
𝑖=1   

∴ 𝑥 ∈ 𝑈𝑛 −⋃ 𝑉𝑖̅
𝑛
𝑖=1   

⇒ 𝑥 ∈ 𝑈𝑛
′   

∴ {𝑈𝑛
′ } covers 𝐴. 

Similarly {𝑉𝑛
′} covers 𝐵. 

Figure 5.3.1 
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Let 𝑈′ = ⋃ 𝑈𝑛
′

𝑛∈𝕫+  and 𝑉′ = ⋃ 𝑉𝑛
′

𝑛∈𝕫+  

Then 𝑈′ and 𝑉′ are open sets containing 𝐴 and 𝐵 respectively. 

Claim 𝑈′ and 𝑉′ = ∅. 

Assume that 𝑈′ ∩ 𝑉′ = ∅. 

Let 𝑥 ∈ 𝑈′ ∩ 𝑉′ 

⇒ 𝑥 ∈ 𝑈′ and 𝑥 ∈ 𝑉′ 

⇒ 𝑥 ∈ 𝑈𝑗
′ and 𝑥 ∈ 𝑉𝑘

′ for some 𝑗 and 𝑘. 

Suppose 𝑗 ≤ 𝑘. 

Now, 𝑥 ∈ 𝑈𝑗
′      ⇒ 𝑥 ∈ 𝑈𝑗 ------------(1) 

Now, 𝑥 ∈ 𝑉𝑘
′       ⇒ 𝑥 ∉ ⋃ 𝑉𝑖̅

𝑘
𝑖=1   

         ⇒ 𝑥 ∉ 𝑈𝑖̅      ∀𝑖 = 1,2,…… , 𝑘. 

In particular, 𝑥 ∈  𝑈𝑗̅                   [∴ 𝑗 ≤ 𝑘] 

  ⇒ 𝑥 ∉  𝑈𝑗            -----------(2)  

∴ equation (2) contratics equation (1)  

Also similar contradiction arises if 𝑗 ≥ 𝑘. 

∴ Our assumption is wrong. 

Hence 𝑈′ ∩ 𝑉′ = ∅. 

∴ 𝑈′ 𝑎𝑛𝑑 𝑉′ are disjoint open sets containing  

𝐴 and 𝐵 respectively. 

Hence X is normal. 
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Theorem 5.3.2.  

 Every metrizable space is normal. 

Proof. 

 Let X be a metrizable space with metric 𝑑. 

 Let 𝐴 and 𝐵 be disjoint closed sets in 𝑥, for each 𝑎 ∈ 𝐴, we can 

choose 𝜀𝑎 so that 𝐵(𝑎, 𝜀𝑎) does not intersect 𝐵. 

Similarly, for each 𝑏 ∈ 𝐵, we can choose 𝜀𝑏 so that 𝐵(𝑏, 𝜀𝑏) does not 

intersect A. 

Define 𝑈 = ⋃ 𝐵 (𝑎,
𝜀𝑎

2
)𝑎∈𝐴  and 𝑉 = ⋃ 𝐵 (𝑏,

𝜀𝑏

2
)𝑏∈𝐵  

Then 𝑈 and 𝑉 are open sets containing 𝐴 and 𝐵 respectively. 

Claim 𝑈 ∩ 𝑉 = ∅. 

 Assume that 𝑈 ∩ 𝑉 ≠ ∅ 

 Let 𝑍 ∈ 𝑈 ∩ 𝑉 

⇒ 𝑍 ∈ 𝑈 and 𝑍 ∈ 𝑉. 

⇒ 𝑍 ∈ 𝐵 (𝑎,
𝜀𝑎

2
), for some 𝑎 ∈ 𝐴 and 𝑍 ∈ 𝐵 (𝑏,

𝜀𝑏

2
) for some 𝑏 ∈ 𝐵. 

⇒ 𝑑(𝑎, 𝑧) <
𝜀𝑎

2
 and 𝑑(𝑏, 𝑧) <

𝜀𝑏

2
 

∴ 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑧) + 𝑑(𝑧, 𝑏)  

𝑑(𝑎, 𝑏) <
𝜀𝑎

2
+

𝜀𝑏

2
. 

If 𝜀𝑎 < 𝜀𝑏, then 𝑑(𝑎, 𝑏) <
𝜀𝑏

2
+
𝜀𝑏

2
 

    𝑑(𝑎, 𝑏) < 𝜀𝑏 

⇒ 𝑎 ∈ 𝐵(𝑏, 𝜀𝑏)  
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Similarly, If 𝜀𝑏 < 𝜀𝑎, then 𝑑(𝑎, 𝑏) <
𝜀𝑎

2
+
𝜀𝑎

2
 

     𝑑(𝑎, 𝑏) < 𝜀𝑎 

⇒ 𝑏 ∈ 𝐵(𝑎, 𝜀𝑎) 

∴ We get a contradiction in both cases. 

∴ Our assumption is wrong. 

Hence 𝑈 ∩ 𝑉 = ∅ 

∴ 𝑈 and 𝑉 are disjoint open set containing 𝐴 and 𝐵 respectively. 

Hence 𝑋 is normal. 

 

Theorem 5.3.3. 

 Every compact Hausdorff space is normal. 

Proof. 

Let 𝑋 be a compact Hausdarff space. 

To prove 𝑋 is regular. 

Let 𝑥 ∈ 𝑋 and let 𝐵 be a closed set disjoint from 𝑥. 

Here 𝐵 is a closed subset of the compact space 𝑋. 

Then 𝐵 is compact. 

 We know that “Lemma: If 𝑌 is a compact subspace of the Hausdarff 

space X and 𝑥0 is not in 𝑌. Then there exist disjoint open set 𝑈 and 𝑉 of 𝑋 

containing 𝑥0 and 𝑌 respectively”. 

 By the above lemma there exists disjoint open set 𝑈 and 𝑉 

containing 𝑥 and 𝐵 respectively. 
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∴ 𝑋 is regular. 

Now to prove 𝑋 is normal. 

Let 𝐴 and 𝐵 be disjoint closed sets in 𝑋. 

Let 𝑎 ∈ 𝐴 

Then 𝐵 is a closed set disjoint from 𝑎. 

Since 𝑋 is regular, ∃ disjoint open sets 𝑈 and 𝑉 of 𝑋 containing 𝑎 and 𝐵 

respectively. 

Hence for each 𝑎 ∈ 𝐴 we can choose disjoint open sets 𝑈𝑎 and 𝑉𝑏 

containing 𝑎 and 𝐵 respectively. Consider the collection, {𝑈𝑎/𝑎 ∈ 𝐴} this 

collection is a covering of 𝐴 by sets open in 𝑋. 

Since 𝐴 is closed subset of the compact space 𝑋, A is compact. 

∴ 𝐴 can be covered by finitely many sets 𝑈𝑎1 , 𝑈𝑎2 , …… , 𝑈𝑎𝑛. 

i.e., ⋃ 𝑈𝑎𝑖
𝑛
𝑖=1 ⊃ 𝐴 

let 𝑈 = 𝑈𝑎1 ∪ 𝑈𝑎2 ∪ ………∪ 𝑈𝑎𝑛 and 𝑉 = 𝑉𝑎1 ∩ 𝑉𝑎2 ∩ ……∩ 𝑉𝑎𝑛. 

Then 𝑈 and 𝑉 are open sets containing 𝐴 and 𝐵 respectively. 

Claim 𝑈 ∩ 𝑉 = ∅  

Let 𝑍 ∈ 𝑈, then 𝑍 ∈ 𝑈𝑎𝑖 for some 𝑎𝑖 

⇒ 𝑍 ∉ 𝑉𝑎𝑖  

⇒ 𝑍 ∈ 𝑉  

∴ 𝑈 ∩ 𝑉 = ∅  

∴ 𝑈 and 𝑉 are disjoint open sets containing 𝐴 and 𝐵 respectively. 

Hence 𝑋 is normal. 
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Theorem 5.3.4. 

 Every well-ordered set 𝑋 is Normal in the order topology. 

Proof. 

 Let 𝑋 be a well-ordered set. 

Step 1: 

First, we prove the following resul: “Every interval of the form (𝑥, 𝑦] is 

open in 𝑋”. 

If 𝑋 has a largest element and 𝑦 is that element, then (𝑥, 𝑦] is a basis 

element about 𝑦. 

If 𝑦 is not the largest element of 𝑋. Then, (𝑥, 𝑦] = (𝑥, 𝑦′) where 𝑦′ is the 

immediate successor. 

∴ (𝑥, 𝑦] is open in 𝑋. 

Step 2: 

 Now, we prove that 𝑋 is normal. 

 Let 𝐴 and 𝐵 be disjoint closed subsets of 𝑋. 

Case (i). Suppose that 𝐴 and 𝐵 do not contain the smallest element 𝑎0 of 

𝑋. 

Then 𝐴 ∩ 𝐵̅ = 𝐴 ∩ 𝐵 = ∅ 

∴ for each 𝑎 ∈ 𝐴, there exists a basis element about a disjoint from 𝐵. 

This basis element contains some interval of the form (𝑥, 𝑎].  [since 𝑎 is 

not a smallest element] 
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Hence, we can choose for each 𝑎 ∈ 𝐴, such interval (𝑥𝑎, 𝑎] disjoint from 

𝐵. 

Similarly, we can choose for each 𝑏 ∈ 𝐵 an interval (𝑦𝑏 , 𝑏] disjoint from 

𝐴. 

Let 𝑈 = ⋃ (𝑥𝑎, 𝑎]𝑎∈𝐴  and 𝑉 = ⋃ (𝑏∈𝐵 𝑦𝑏 , 𝑏]  

By step 1, the interval of the form (𝑥, 𝑦] is open in 𝑋. 

∴ 𝑈 and 𝑉 are open sets containing 𝐴 and 𝐵 respectively. 

Claim  𝑈 ∩ 𝑉 = ∅. 

Assume that 𝑈 ∩ 𝑉 ≠ ∅. 

Let 𝑧 ∈ 𝑈 ∩ 𝑉, then 𝑧 ∈ 𝑈 and 𝑧 ∈ 𝑉. 

⇒ 𝑧 ∈ (𝑥𝑎, 𝑎] for some 𝑎 ∈ 𝐴 and 𝑧 ∈ (𝑦𝑏 , 𝑏] for some 𝑏 ∈ 𝐵 

⇒ 𝑧 ∈ (𝑥𝑎, 𝑎] ∩ (𝑦𝑏 , 𝑏] for some 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. 

Let 𝑎 < 𝑏, 

If 𝑎 ≤ 𝑦𝑏, then (𝑥𝑎, 𝑎] and (𝑦𝑏 , 𝑏] are disjoint. 

If 𝑎 > 𝑦𝑏 then 𝑎 ∈ (𝑦𝑏 , 𝑏], where 𝑎 ∈ 𝐴. 

⇒ 𝐴 ∩ (𝑦𝑏 , 𝑏] ≠ ∅  

∴ We get a contradiction in both cases. 

∴ Our assumption is wrong. 

∴ 𝑈 ∩ 𝑉 = ∅. 

Hence 𝑈 and 𝑉 are disjoint open sets containing 𝐴 and 𝐵 respectively. 

∴ 𝑋 is normal. 

Case (ii). Suppose that 𝐴 contains the smallest element 𝑎0 of 𝑋. 
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Then the set {𝑎0} is both open and closed in 𝑋. 

Since {𝑎0} is open, 𝐴 − {𝑎0} is closed in 𝑋. 

Also, 𝐴 − {𝑎0} and 𝐵 are disjoint closed subsets of 𝑋. 

By case (i), ∃ disjoint open sets 𝑈 and 𝑉 containing 𝐴 − {𝑎0} and 𝐵 

respectively. 

Then 𝑈 ∩ {𝑎0} and 𝑉 disjoint open sets containing 𝐴 and 𝐵 respectively. 

Hence by both cases 𝑋 is normal. 

Hence the theorem. 

 

Example 2. 

 The product space 𝑆Ω × 𝑆Ω̅̅ ̅ is not normal. 

Solution. 

 Consider the well-order set 𝑆Ω̅̅ ̅ in the order topology and consider 

the subset 𝑆Ω in the subspace topologies which is same the order topology. 

 We know that, every well-ordered set is normal in the order 

topology. 

 ∴ 𝑆𝛺 and 𝑆Ω̅̅ ̅ are normal. 

We prove that the product space 𝑆Ω × 𝑆𝛺̅̅ ̅  is not normal. 

This example serves three purposes. 

(i) A regular space need not be normal. 

For, 

 𝑆Ω and 𝑆Ω̅̅ ̅ are normal. 
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⇒ 𝑆𝛺 and 𝑆Ω̅̅ ̅ are regular. 

 ⇒ 𝑆𝛺 × 𝑆𝛺̅̅ ̅ is regular, but not normal. 

(ii) A subspace of the normal space is not normal 

For, 

 𝑆Ω̅̅ ̅ × 𝑆𝛺̅̅ ̅ is a compact Hausdarff space. 

 ⇒ 𝑆𝛺̅̅ ̅ × 𝑆𝛺̅̅ ̅ is normal 

But the subspace 𝑆Ω̅̅ ̅ × 𝑆𝛺̅̅ ̅ is not normal. 

(iii) The product of two normal spaces need not be normal. 

Consider, the space 𝑆Ω̅̅ ̅ × 𝑆𝛺̅̅ ̅ and its diagonal  

∆= {𝑥 × 𝑥/𝑥 ∈ 𝑆𝛺̅̅ ̅}  

Claim ∆ is closed in 𝑆Ω̅̅ ̅ × 𝑆𝛺̅̅ ̅ 

𝑖. 𝑒. To Prove (𝑆𝛺̅̅ ̅ × 𝑆𝛺̅̅ ̅)\∆ is open in 𝑆Ω̅̅ ̅ × 𝑆𝛺̅̅ ̅   

Let (𝑥, 𝑦) ∈ (𝑆𝛺̅̅ ̅ × 𝑆𝛺̅̅ ̅)\∆ 

Then 𝑥 ≠ 𝑦 in 𝑆Ω̅̅ ̅       

Since 𝑆Ω̅̅ ̅ is Hausdarff, ∃ disjoint 

nbd 𝑈 and 𝑉 containing 𝑥 and 𝑦 

respectively. 

Since 𝑈 ∩ 𝑉 = ∅, 

(𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊂ (𝑆𝛺̅̅ ̅ × 𝑆𝛺̅̅ ̅)\∆  

⇒ (𝑆𝛺̅̅ ̅ × 𝑆𝛺̅̅ ̅)\∆ is open 

⇒ ∆ is closed in 𝑆𝛺̅̅ ̅ × 𝑆𝛺̅̅ ̅.    

Then in the subspace 𝑆Ω × 𝑆𝛺̅̅ ̅   

𝐴 = ∆ ∩ (𝑆𝛺 × 𝑆𝛺̅̅ ̅) is closed in 𝑆Ω × 𝑆𝛺̅̅ ̅    

Figure 5.3.2 
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Hence 𝐴 = ∆(Ω × Ω)  

Now, Let 𝐵 = 𝑆𝛺 × {𝛺}  

Since 𝐵 is a slice in the product space, 𝐵 is closed in 𝑆𝛺 × 𝑆𝛺̅̅ ̅  

∴ 𝐴 and 𝐵 are disjoint closed subsets of 𝑆Ω × 𝑆𝛺̅̅ ̅ 

Assume that there exists disjoint open sets 𝑈 and 𝑉 in 𝑆Ω × 𝑆𝛺̅̅ ̅ 

containing 𝐴 and 𝐵 respectively. 

Let 𝑥 ∈ 𝑆𝛺. 

Consider the vertical slice 𝑥 × 𝑆𝛺̅̅ ̅ 

We prove that there is some point 𝐵, with 𝑥 < 𝛽 < 𝛺 such that 

𝑥 × 𝛽 lies outside 𝑈. 

Suppose that 𝑈 contains all the points 𝑥 × 𝛽 for 𝑥 < 𝛽 < 𝛺 

Then top point 𝑥 × 𝛺 of the slice 𝑥 × 𝑆𝛺̅̅ ̅ is the limit point of 𝑈. 

But 𝑥 × 𝛺 ∈ 𝐵 ⊂ 𝑉. 

i.e., 𝑉 is a nbd of 𝑥 × 𝛺 which does not intersection 𝑈     

[∵ 𝑈 ∩ 𝑉 = ∅] 

⇒ 𝑥 × 𝛺 is not a limit point of 𝑈. 

This is a contradiction. 

Hence there is some point 𝛽 with 𝑥 < 𝛽 < 𝛺 such that 𝑥 × 𝛽 lies 

outside 𝑈. 

Let 𝛽(𝑥) be the smallest element of 𝑆Ω as follows  

Let 𝑥1, be any point of 𝑆Ω 

Let 𝑥2 = 𝛽(𝑥1),    𝑥3 = 𝛽(𝑥2)…… and In general 𝑥𝑛+1 = 𝛽(𝑥𝑛) 
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Since 𝛽(𝑥) > 𝑥, ∀𝑥. We have 𝑥1 < 𝑥2 < 𝑥3 < ⋯…… 

∴ {𝑥𝑛} is monotonically increasing sequence in 𝑆Ω and the set 

{𝑥𝑛} is a countable subset of 𝑆Ω. 

We know that, 𝐴 countable subset of 𝑆Ω has an upper bound in 

𝑆Ω. 

∴ The set {𝑥𝑛} has an upper bound in 𝑆Ω. 

Let 𝑏 ∈ 𝑆𝛺 be the least upper bound of the set {𝑥𝑛}. 

Since the sequence (𝑥𝑛) monotonically increasing (𝑥𝑛) → 𝑏 

But 𝑥𝑛+1 = 𝛽(𝑥𝑛)  ∀𝑛,   (𝛽(𝑥𝑛)) → 𝑏 

Then (𝑥𝑛 × 𝛽(𝑥𝑛)) → 𝑏 × 𝑏 in 

the product space. -------(1)  

Now, 𝑏 × 𝑏 ∈ 𝐴 ⊂ 𝑈.  

i.e., 𝑈 is a nbd of 𝑏 × 𝑏. 

But by construction 𝑥𝑛 ×

𝛽(𝑥𝑛) ∉ 𝑈   ∀𝑛 

⇒ (𝑥𝑛 × 𝛽(𝑥𝑛)) ↛ 𝑏 × 𝑏  

                                --------(2)  

∴(2) contradics equation (1), 

∴ Our assumption is wrong. 

Hence there is no disjoint open sets 𝑈 and 𝑉 in 𝑆Ω × 𝑆𝛺̅̅ ̅ 

containing 𝐴 and 𝐵 respectively. 

⇒ 𝑆𝛺 × 𝑆𝛺̅̅ ̅ is not normal. 
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5.4. The Urysohn Lemma 

 

Theorem 5.4.1.(The Urysohn Lemma) 

 Let 𝑋 be a normal space. Let 𝐴 and 𝐵 be disjoint closed subsets of 

𝑋. Let [𝑎, 𝑏] be a closed interval in the real line then there exists a 

continuous map 𝑓: 𝑋 → [𝑎, 𝑏] such that 𝑓(𝑥) = 𝑎.     ∀𝑥 ∈ 𝐴 and 𝑓(𝑥) =

𝑏   ∀𝑥 ∈ 𝐵. 

Proof. 

 Since [𝑎, 𝑏] is homeomorphic to the interval [0,1], it is sufficient to 

consider the case where the interval in the Question is the interval [0,1]. 

Step 1: Let 𝑃 be the set of all rational numbers in the interval [0,1]. 

 We define, for each 𝑝 ∈ 𝑃  an open set 𝑈𝑝 of in such a way that when 

ever 𝑝 < 𝑞, we have 𝑈̅𝑃 ⊂ 𝑈𝑞. 

 Thus, the sets 𝑈𝑝 will be simply ordered by inclusion in the same 

way their subscribes are ordered by the usual ordering in the real line. 

 Since 𝑃 is countable, we can use induction to define the sets 𝑈𝑝𝑠. 

 Arrange the elements of 𝑃 in an infinite sequence in some way. 

 For convenience, let us suppose that the numbers 1 and 0 are the first 

two elements of the sequence. 

 Now, we define the sets 𝑈𝑝 as follows. 

 First define 𝑈1 = 𝑋 − 𝐵 

 Since 𝐴 ∩ 𝐵 = ∅, 𝑈1 is an open set containing the closed set 𝐴. 
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 Since 𝑋 is normal, we can choose an open set 𝑈0 

 Such that 𝐴 ⊂ 𝑈0 and 𝑈0̅̅ ̅ ⊂ 𝑈1  

In general, Let 𝑃𝑛 denote the set consisting of the first 𝑛 rational numbers 

in the sequence. 

 Suppose that 𝑈𝑃 is defined far all rational numbers 𝑃 belonging to 

the set 𝑃𝑛 satisfying the condition 𝑝 < 𝑞 ⇒ 𝑈̅𝑃 ⊂ 𝑈𝑞             ---------(*) 

 Let 𝑟 denote the next rational number in the sequence. 

 Now, we define 𝑈𝑟, 

 Let 𝑃𝑛+1 = 𝑃𝑛 ∪ {𝑟} 

 𝑃𝑛+1 is a finite subset of the interval [0,1] and it has a simple 

ordering derived from the usual order relation ‘<’ on the real line. 

 We know that, In a finite simple ordered set every element (other 

than the smallest and largest) has an immediate predecessor and immediate 

successor. 

 The number zero is the smallest element and 1 is the largest element 

of the simple ordered set 𝒫𝑛+1 and 𝑟 is neither o nor 1. 

 So 𝑟 has an immediate predecessor 𝑝 in 𝑃𝑛+1 and immediate 

successor 𝑞 in 𝑃𝑛+1. 

 The set 𝑈𝑝 and 𝑈𝑞 are defined already and 𝑈̅𝑃 ⊂ 𝑈𝑞 by the induction 

hypothesis. 

 Since 𝑋 is normal we can find an open set 𝑈𝑟 in 𝑋 such that 𝑈̅𝑝 ⊂

𝑈𝑟 and 𝑈̅𝑟 ⊂ 𝑈𝑞. 

Now, we shall prove that equation (*) hold, for every pair of 

elements of 𝑃𝑛+1 
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If both elements lie in 𝑃𝑛 (*) holds for the induction hypothesis. 

If one of them is 𝑟 and the other is a point 𝑠 in 𝑃𝑛. Then either 𝑠 ≤ 𝑝 

in which case 𝑈̅𝑠 ⊂ 𝑈𝑝 ⊂ 𝑈̅𝑝 ⊂ 𝑈𝑟 (or) 𝑠 ≤ 𝑞 in which case 𝑈̅𝑟 ⊂ 𝑈𝑞 ⊂

𝑈̅𝑞 ⊂ 𝑈𝑠 

Thus, ever pair of elements of 𝑃𝑛+1. The relation (*) holds. 

 By induction, we have defined 𝑈𝑝 for all 𝑝 ∈ 𝑃. 

Step 2: 

 In step 1, we defined 𝑈𝑃 for all rational numbers 𝑝 in the interval 

[0,1]. 

 Now, we extend this definition to all rational numbers 𝑝 in 𝑅 by 

defining 𝑈𝑃 = ∅ if 𝑝 < 0 and 𝑈𝑝 = 𝑋 if 𝑝 > 1. 

 Then for every pair of rational numbers 𝑝 ≠ 𝑞, 𝑝 < 𝑞 ⟹ 𝑈̅𝑝 ⊂ 𝑈𝑞 

Step 3: 

 Let 𝑥 ∈ 𝑋. 

 Let 𝑄(𝑥) = {𝑝: 𝑥 ∈ 𝑈𝑃} 

Since 𝑈𝑝 = ∅ if 𝑝 < 0, 𝑄(𝑟) 

Since 𝑈𝑝 = 𝑋 if  𝑝 > 1, 𝑄(𝑟) contains every 𝑥 ∈ 𝑈𝑝 

∴ 𝑄(𝑥) is bounded below and its   lower bounded is the point of the interval 

[0,1] Define 𝑓(𝑥) = 𝑖𝑛𝑓  𝑄(𝑥) = 𝑖𝑛𝑓{𝑝: 𝑥 ∈ 𝑈𝑃} 

Then 𝑓 is the function from X into [0,1] 

Step 4: 

Now, we shall prove that 𝑓 is the desired function. 
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Claim: 𝑓(𝑥) = 0 if 𝑥 ∈ 𝐴 

Let 𝑥 ∈ 𝐴, since 𝐴 ⊂ 𝑈0, 𝑥 ∈ 𝑈0 

⇒ 𝑥 ∈ 𝑈𝑃 if 𝑝 ≥ 0 

⇒ 𝑄(𝑥) equals the set of all non-negative rational numbers. 

⇒ 𝑓(𝑥) = 𝑖𝑛𝑓 𝑄(𝑥) = 0  

∴ 𝑓(𝑥) = 0 if 𝑥 ∈ 𝐴 

Claim: 𝑓(𝑥) = 1 if 𝑥 ∈ 𝐵 

Let 𝑥 ∈ 𝐵, Then 𝑥 ∉ 𝑋\𝐵 

⇒ 𝑥 ∉ 𝑈    [since 𝑈𝑖𝑥\𝐵] 

Since 𝑝 < 𝑞, we have 𝑈̅𝑃 ⊂ 𝑈𝑞 

Then 𝑥 ∉ 𝑈1 ⇒ 𝑥 ∉ 𝑈𝑃 if 𝑝 ≤ 1 

⇒ 𝑄(𝑥) consists of all rational numbers less than or equal to one. 

⟹ 𝑓(𝑥) = 𝑖𝑛𝑓 𝑄(𝑥) = 1  

∴ 𝑓(𝑥) = 1 if 𝑥 ∈ 𝐵. 

It remains to prove that 𝑓 is continuous. 

For this, first we prove the following elementary facts: 

(i) 𝑥 ∈ 𝑈̅𝑟  ⟹ 𝑓(𝑥) ≤ 𝑟 

(ii) 𝑥 ∈ 𝑈𝑟  ⟹ 𝑓(𝑥) ≥ 𝑟 

 

(i) Let 𝑥 ∈ 𝑈̅𝑟, 

Since 𝑝 < 𝑞 ⟹ 𝑈̅𝑃 ⊂ 𝑈𝑞 , 𝑥 ∈ 𝑈𝑆 if 𝑟 < 𝑠 

⟹𝑄(𝑥) contains all rational numbers grater than r.s 
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⟹ 𝑓(𝑥) = 𝑖𝑛𝑓 𝑄(𝑥) ≤ 𝑟. 

∴ 𝑥 ∈ 𝑈̅𝑟  

⟹ 𝑓(𝑥) ≤ 𝑟  

(ii) Let 𝑥 ∉ 𝑈𝑟, 

Then 𝑥 ∉ 𝑈0 if 𝑠 < 𝑟 

⟹𝑄(𝑥) contains no rational number less than 𝑟 

⟹ 𝑓(𝑥) ≥ 𝑟  

∴ 𝑥 ∉ 𝑈𝑟 ⟹ 𝑓(𝑥) ≥ 𝑟   

Now, we shall prove the continuity of 𝑓 

Given a point 𝑥0 ∈ 𝑋, and the open interval (𝑐, 𝑑) in 𝑅 containing the point 

𝑓(𝑥0). 

We shall find the neighborhood 𝑈 of 𝑥0 such that 𝑓(𝑈) ⊂ (𝑐, 𝑑). 

Since 𝐶 < 𝑓(𝑥0) < 𝑑. We can choose the rational numbers 𝑝 and 𝑞 such 

that 𝑐 < 𝑝 < 𝑓(𝑥0) < 𝑞 < 𝑑. 

Let 𝑈 = 𝑈𝑞\𝑈𝑝. Then 𝑈 is an open set prove that 𝑈 is the desired  𝑛𝑏𝑑  of 

𝑥0. See Figure 5.4.2. 

 

Figure 5.4.2 

Claim 𝑥0 ∈ 𝑈. 
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i.e. To prove  𝑥0 ∈ 𝑈𝑞 and 𝑥0 ∉ 𝑈̅𝑝 

Assume that 𝑥0 ∉ 𝑈𝑞 

Then 𝑓(𝑥0) ≥ 𝑞    (𝑏𝑦 (𝑖𝑖)) 

This is a contradiction 

∴ 𝑥0 ∉ 𝑈̅𝑝  

∴ 𝑥0 ∈ 𝑈𝑞|𝑈̅𝑝  

⟹ 𝑥0 ∈ 𝑈. 

Claim 𝑓(𝑈) ⊂ (𝑐, 𝑑)  

Let 𝑥 ∈ 𝑈. Then 𝑥 ∈ 𝑈𝑞\𝑈̅𝑞 

⟹ 𝑥 ∈ 𝑈𝑞 and 𝑥 ∉ 𝑈̅𝑝 

⟹ 𝑥 ∈ 𝑈̅𝑞 and 𝑥 ∈ 𝑈𝑃 

⟹ 𝑓(𝑥) ≤ 𝑞 and 𝑓(𝑥) ≥ 𝑝 

⟹ 𝑝 ≤ 𝑓(𝑥) ≤ 𝑞  

⟹ 𝑓(𝑥) ∈ [𝑝, 𝑞] which is subset of (𝑐, 𝑑) 

⟹ 𝑓(𝑥) ∈ (𝑐, 𝑑)  

Hence 𝑓(𝑈) ⊂ (𝑐, 𝑑) 

⟹ 𝑓 is continuous function 

Hence the proof. 
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Definition.  

If 𝐴 and 𝐵 are two subsets of the topological space 𝑋 and if there is 

a continuous function 𝑓: 𝑋 → [0,1] such that 𝑓(𝐴) = {0} and 𝑓(𝐵) = {1}, 

we say that 𝐴 and 𝐵 can be separated by a continuous function. 

 

Remark. 

 The Urysohn lemma says that if every pair of disjoint closed sets in 

𝑋 can be separated by disjoint open sets, then each such pair can be 

separated by a continuous function. 

 The converse is trivial for, if 𝑓: 𝑋 → [0,1] is the continuous function 

then 𝑓−1 ([0,
1

2
)) and 𝑓−1 ((−

1

2
, 1]) are disjoint open set contains A and 

𝐵 respectively. 

 

 

 

Definition (𝑻𝟓). 

 A space 𝑋 is said to be completely regular if one-point sets are 

closed in 𝑋 and if for each point 𝑥0 of 𝑋 and each closed set 𝐴 not 

containing 𝑥0, there exists a continuous function 𝑓: 𝑋 → [0,1] such that 

𝑓(𝑥0) = 0 and 𝑓(𝐴𝑆) = {1}. 

 

Note: 

⟹ A normal space is completely regular. 
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⟹A completely regular space is regular. 

 

Theorem 5.4.2. 

(i) A subspace of a completely regular space is completely 

regular. 

(ii) A product of completely regular space is completely regular. 

Proof. 

(i) Let 𝑋 be a completely regular space and let 𝑌 be a subspace of 𝑋. 

Let 𝑥0 be a point of 𝑌and let 𝐴 be a closed set of 𝑌 disjoint from 

𝑥0. 

Now, 𝐴 = 𝐴̅ ∩ 𝑌,S where 𝐴̅ denotes the closure of 𝐴 in 𝑋. 

∴ 𝑥0 ∉ 𝐴̅  

Since 𝑋 is completely regular, we can choose a continuous 

function 𝑓: 𝑋 → [0,1] such that 𝑓(𝑥0) = 1 and 𝑓(𝐴̅) = {0}. 

Then, the restriction of 𝑓 to 𝑌 is the desire continuous function 

on 𝑌. 

∴ 𝑌 is completely regular. 

(ii) Let 𝑋 = ∏𝑋𝛼 be a product of completely regular space. 

To prove 𝑋 is completely regular. 

Let 𝑏 = (𝑏𝛼) be a point of 𝑋 and let 𝐴 be a closed set of 𝑋 disjoint 

from 𝑏. 

Choose a basis element ∏𝑈𝛼 containing 𝑏 that does not intersect 

𝐴. 
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Then 𝑈𝛼 = 𝑋𝛼 except for finitely many 𝛼 say 𝛼 =

𝛼1, 𝛼2, …… , 𝛼𝑛 

Given 𝑖 = 1,2,…… , 𝑛 choose a continuous function 𝑓𝑖: 𝑋𝛼𝑖 →

[0,1] such that 𝑓𝑖(𝑏𝛼𝑖) = 1 and 𝑓𝑖(𝑋\𝑈𝛼𝑖) = {0} 

Let Φ𝑖 maps 𝑋 continuously into ℝ and vanish outside ∏ (𝑈𝛼𝑖)
−1
𝛼𝑖  

The product 𝑓(𝑥) = 𝛷1(𝑥),𝛷2(𝑥),…… . , 𝛷𝑛(𝑥) is the function 

such that it equals 1 at b and vanishes outside ∏𝑈𝛼. 

∴ 𝑓 is the desired continuous function on 𝑋. 

Hence 𝑋 = ∏𝑋𝛼 is completely regular. 

 

Note. 

(i) The spaces 𝑅𝑙
2 and 𝑆𝛺 × 𝑆𝛺̅̅ ̅ are completely regular but not 

normal. 

(ii) A regular space need not be completely regular. 

 

 

5.5. The Urysohn Metrization Theorem 
 

Theorem 5.5.1(Urysohn Metrization Theorem) 

Every regular space 𝑋 with a countable basis in metrizable. 

Proof.  

We shall prove that 𝑥 is metrizable by imbedding X in a metrizable space 𝑌. 

i.e. To Prove 𝑋 is homeomorphic with a subspace of Y. 

Let {𝐵𝑛} be a countable basis for X. 
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Step 1 

We prove the following: 

“There exists a countable collection of continuous function 𝑓𝑛: 𝑥 → [0,1] having the 

property that given a point 𝑥0 𝑜𝑓 𝑋 and given a nbd 𝑈 of 𝑥0, there exists an index 𝑛 

such that 𝑓𝑛 in positive at 𝑥0 and vanishes outside 𝑈”. 

 Let 𝑛 and 𝑚 be a pair of indexes for which 𝐵𝑛̅̅ ̅ ⊂ 𝐵𝑚. Then 𝐵𝑛̅̅ ̅ and 𝑋\𝐵𝑚 are 

disjoint closed subsets of 𝑥. 

 Since 𝑋 is regular with countable basis, X is normal.  

 ∴ By the Urysohn lemma, We can choose a continuous function 𝑔𝑛,𝑚: 𝑋 → [0,1] 

such that 𝑔𝑛,𝑚(𝐵𝑛̅̅ ̅̅ ̅) = {1} 𝑎𝑛𝑑 𝑔𝑛,𝑚(𝑋\𝐵𝑚) = {0}  

Hence far each pair 𝑛,𝑚 of indices for which 𝐵𝑛̅̅ ̅ ⊂ 𝐵𝑚. we can choose a continuous 

function 𝑔𝑛,𝑚: 𝑋 → [0,1] such that 𝑔𝑛,𝑚(𝐵𝑛̅̅ ̅) = {1} and 𝑔𝑛,𝑚(𝑋\𝐵𝑚) = {0} 

Now we shall prove that {𝑔𝑛,𝑚} satisfies our requirements. 

Let 𝑈 be a 𝑛𝑏𝑑 of𝑥0 then we can choose a basis element 𝐵𝑚 such that 𝑥0 ∈ 𝐵𝑚 ⊂ 𝑈. 

Since X is regular, we can choose a basis element 𝐵𝑛 such that 𝑥0 ∈ 𝐵𝑛  and 𝐵𝑛̅̅ ̅ ⊂ 𝐵𝑚 

Then far this pair 𝑛,𝑚 of indices 𝑔𝑛,𝑚 is defined. 

Now, 𝑔𝑛,𝑚(𝑥0) = 1              [∵ 𝑥0 ∈ 𝐵𝑛 ⊂ 𝐵𝑛̅̅ ̅] 

∴ 𝑔𝑛,𝑚 is positive at 𝑥0. 

Let 𝑥 ∉ 𝑈 

Then 𝑥 ∉ 𝐵𝑚                       [∵ 𝐵𝑚 ⊂ 𝑈] 

⇒ 𝑔𝑛,𝑚(𝑥) = 0  

⇒ 𝑔𝑛,𝑚 vanishes outside 𝑈. 

Since this collection is indexed by a subset of 𝑍+ × 𝑍+, it is countable. 

Hence {𝑔𝑛,𝑚} satisfies our requirement. 
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Since this collection is countable, the collection can be re indexed with a positive 

integer giving us the desired indexed family {𝑓𝑛}. 

Step 2: (first version of the proof) 

 Consider ℝ𝑤 is the product topology, given the function 𝑓𝑛 of step q, define a 

map 𝐹: 𝑥 → ℝ𝑤 by 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)…… . ) 

Claim  

F is continuous. 

Since ℝ𝜔   has the product topology and each 𝑓𝑛 is continuous, 𝐹 is continuous. 

Claim: F is injective. 

Let 𝑥 ≠ 𝑦 

Since 𝑋 is regular, 𝑋 is Hausdorff 

∴ There exists disjoint neighbourhood 𝑈𝑥 and  𝑈𝑦 of 𝑥 and 𝑦 respectively. 

Then 𝑥 ∈ 𝑈𝑥 and 𝑢 ∉ 𝑈𝑥, 

By step 1, there exists an induced 𝑛 such that 𝑓𝑛(𝑥) > 0 and 𝑓𝑛(𝑦) = 0. 

⇒ 𝑓𝑛(𝑥) ≠ 𝑓𝑛(𝑦)  

⇒ 𝐹(𝑥) ≠ 𝐹(𝑦) 

⇒ 𝐹 is one – one  

Hence 𝐹 is injective. 

Now to prove, F is an imbedding of 𝑋 in ℝ𝜔 , we shall prove that 𝐹 is a homeomorphism 

of 𝑋 onto its image, the subspace 𝑍 = 𝐹(𝑋) of ℝ𝜔 . 

We know that, F defines a continuous bijection of 𝑋 with 𝑍. 

It remains to prove that 𝐹−1: 𝑍 → 𝑋, is continuous. 

i.e, To prove for each open set 𝑈 in 𝑋, 𝐹(𝑈) is open in 𝑍. 

Let 𝑈 be open in 𝑋. 

To prove 𝐹(𝑈) is open in 𝑍. 
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Let 𝑧0 be a point of 𝐹(𝑈) 

We shall find an open set 𝑊 of Z, such that 𝑧0 ∈ 𝑊 

Let 𝑥0 be a point of 𝑈, such that 𝐹(𝑥0) = 𝑧0 

Choose an index 𝑁 for which 𝑓𝑁(𝑥0) > 0 and 𝑓𝑁(𝑋\𝑈) = 0. 

Consider the open ray (0,∞) 𝑖𝑛 ℝ 

Let 𝑉 = ∏ ((0,∞))−1
𝑁  

Then 𝑉 is open in ℝ𝜔 . 

Let 𝑊 = 𝑉 ∩ 𝑍 

Since 𝑉 is open in ℝ𝜔 , 𝑉 ∩ 𝑍 is open in 𝑍. 

∴ 𝑊 is open in 𝑍. 

To prove 𝑧0 ∈ 𝑊 ⊂ 𝐹(𝑈) 

Claim 1 𝑧0 ∈ 𝑊  

Now ∏ (𝑧0)𝑁 = ∏ (𝐹(𝑥0))𝑁  

= ∏ (𝑓1(𝑥0), 𝑓2(𝑥0)……… )𝑁   

= 𝑓𝑁(𝑥0) > 0  

∴ ∏ (𝑧0)𝑁 ∈ (0,∞)  

⇒ 𝑧0 ∈ ∏ ((0,∞))−1
𝑁   

⇒ 𝑧0 ∈ 𝑉  

Also 𝑧0 ∈ 𝑍 

∴ 𝑧0 ∈ 𝑉 ∩ 𝑍  

⇒ 𝑧0 ∈ 𝑊  

Now claim 2: 𝑊 ⊂ 𝐹(𝑈)   

Let z∈ 𝑊 

⇒ z ∈ 𝑉 ∩ 𝑍  
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⇒ z ∈ 𝑉 and 𝑧 ∈ 𝑍 = 𝐹(𝑋) 

⇒ z ∈ ∏ ((0,∞))−1
𝑁  and 𝑧 = 𝐹(𝑥) for some 𝑥 ∈ 𝑋 

⇒ ∏ (z)𝑁 ∈ (0,∞) and 𝑍 = 𝐹(𝑥) 

Now ∏ (z)𝑁 = ∏ (𝐹(𝑥))𝑁  

= ∏ (𝑓1(𝑥), 𝑓2(𝑥)………)𝑁    

∏ (z)𝑁 = 𝑓𝑁(𝑥). 

∴ ∏ (z)𝑁 = 𝑓𝑁(𝑥)  

∴ ∏ (z)𝑁 ∈ (0,∞)  

⇒ 𝑓𝑁(𝑥) ∈ (0,∞)  

 

Since 𝑓𝑁 vanishes outside 𝑈, we must have 𝑥 in 𝑈 

i.e., 𝑥 ∈ 𝑈 

⇒ 𝐹(𝑥) ∈ 𝐹(𝑈)               [𝑧 = 𝐹(𝑥)]  

⇒ 𝑍 ∈ 𝐹(𝑈)  

∴ 𝑊 ⊂ 𝐹(𝑈)  

∴ 𝐹(𝑈) is open in 𝑍 

⇒ 𝐹−1 is continuous. 

Hence 𝐹 is a homeomorphism of 𝑋 enter the impace of ℝ𝜔 . 

Thus 𝐹 is a imbedding of 𝑋 in ℝ𝜔 . 

Hence 𝑋 is metrizable. 
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Figure 5.5.1s 

Step 3 (second version of the proof) 

In this version we imbed 𝑋 in the metric space (ℝ𝜔 , 𝜌̅) actually we imbed 𝑋 in the 

subspace [0,1]𝑤 on which 𝜌̅ equals the metric 𝜌(𝑥, 𝑦) = 𝑙𝑢𝑏{|𝑥𝑖 − 𝑦𝑖|}. 

 We use the countable collection of function 𝑓𝑛: 𝑋 → [0,1] constructed in step 1. 

But now we impost the additional condition that 𝑓𝑛(𝑥) ≤
1

𝑛
∀𝑥, this condition is 

satisfied by just dividing each function 𝑓𝑛 by 𝑛. 

Since 𝑓𝑛(𝑥) ≤
1

𝑛
∀𝑥 ∈ 𝑋. 

𝑓𝑛 maps 𝑋 into [0,
1

𝑛
] 

Define 𝐹: 𝑋 → [0,1]𝑤  by the equation 

𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), ……… )  

Now we shall prove that , F is an imbedding relative to the metric 𝜌 on [0,1]𝑤 

By the step 2, 𝐹 is injective. 

Also, if we use the product topology on [0,1]𝑤, F carries open set of 𝑋, onto open set 

of 𝑍 = 𝐹(𝑋) 
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This statement remains true if one passes to the finer (larger) topology on [0,1]𝜔  

induced by the metric 𝜌 

It remains to prove that 𝐹 is continuous. 

Let 𝑥0 ∈ 𝑋 and Let 𝜀 > 0 

To prove the continuity, we shall find the 𝑛𝑏𝑑 𝑈 𝑜𝑓 𝑥 , such that 𝑥 ∈ 𝑈 ⇒

𝜌(𝐹(𝑥), 𝐹(𝑥0)) < 𝜀 

First choose 𝑛, larger enough such that 
1

𝑁
≤

𝜀

2
 

Since each 𝑓𝑛 is continuous, far each 𝑛 = 1,2……𝑁 

We can choose a 𝑛𝑏𝑑 𝑈𝑛  of 𝑥0  such that |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥0)| ≤
𝜀

2
 ∀𝑥 ∈ 𝑈𝑛  

Let 𝑈 = 𝑈1 ∩ 𝑈2 ∩ ………∩ 𝑈𝑁 

Then 𝑈 is a 𝑛𝑏𝑑 of 𝑥0. 

To prove 𝑈 is the desired 𝑛𝑏𝑑  of 𝑥0 

Let 𝑥 ∈ 𝑈 

Then  𝑥 ∈ 𝑈𝑛, ∀ 𝑛 = 1,2, ………𝑁 

Case (i):  Let 𝑛 ≤ 𝑁  

Since 𝑥 ∈ 𝑈𝑛, |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥0)| ≤  
𝜀

2
  ∀ 𝑥 ∈ 𝑈 

Case (ii): Let 𝑛 > 𝑁 

Then 
1

𝑛
<

1

𝑁
 

We know that 𝑓𝑛 maps 𝑋 into [0,
1

𝑛
] 

∴ 𝑓𝑛(𝑥) ∈ [0,
1

𝑛
] and 𝑓𝑛(𝑥0) ∈ [0,

1

𝑛
] 

⇒ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥0)| ≤
1

𝑛
<

1

𝑁
<

𝜀

2
  

If 𝑛 > 𝑁, |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥0)| ≤
𝜀

2
 

Then by both cases 𝜌(𝐹(𝑥), 𝐹(𝑥0)) = 𝑙𝑢𝑛 {|𝐹𝑛(𝑥), ≤
𝜀

2
< 𝜀 ∀𝑥}  
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Hence F is continuous. 

Thus F is an imbedding of 𝑋 in [0,1]𝑤 

Since [0,1]𝑤 is metrizable, 𝑋 is metrizable. 

Hence the theorem. 

 

Theorem 5.5.2 (Imbedding theorem) 

Let 𝑋 be a space in which one-point sets are closed. Suppose that the collection 

{𝑓𝛼}𝛼∈𝐽 is an indexed family of continuous function 𝑓𝛼: 𝑋 → 𝑅 satisfying the 

requirement that for each point 𝑥0, 𝑋 and each nbd 𝑈 of 𝑥0, there is an index 𝛼 such 

that 𝑓𝛼 is positive at 𝑥0 and vanishes outside 𝑈. Then the function 𝐹: 𝑋 → ℝ𝐽 defined 

by 𝐹(𝑥) = (𝑓𝛼(𝑥))𝛼∈𝐽 is an imbedding of 𝑋 in ℝ𝐽. If 𝑓𝛼maps 𝑋 into [0,1] for each 𝛼 

then 𝐹 imbeds 𝑋 in [0,1]𝐽. 

Proof. 

Replace n by 𝛼 and ℝ𝑤 by ℝ𝐽 in step 2 in the previous theorem. 

 

Definition. 

 A family of continuous function that satisfies the Hypothesis of this theorem is 

said to separate points from closed sets in 𝑋. 

 

Theorem 5.5.3. 

A space 𝑋 is completely regular iff it is homeomorphic to a subspace of [0,1]𝐽 for some 

𝐽. 
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