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UNIT-I:

Space curves: Definition of a space curve — Arc length — tangent — normal and binormal —
curvature and torsion — contact between curves and surfaces- tangent surface- involutes and
evolutes- Intrinsic equations — Fundamental Existence Theorem for space curves- Helices.
Chapter 1: Sections 1.1 -1.9.

1.1. Space curves:

A plane curve is usually specified either by means of single equation or else by a parametric
representation

Example:

A circle with Centre at origin (0,0) and radius a is specified in cartesian co-ordinate, (x, y)
by single equation x2 + y2 = a? are else by the parametric representation

X = acosu,y = asinu
0<u<?2m

Definition: Space curves

In three-dimensional Euclidian space E5, A Single equation generally represent a surface and
two equation are need to specify a curve.

=~ The curve appears as thus intersection of two surfaces represented by the two equations.
parametrically a curve may specify in Cartesian coordinates by equations

x =x(u)

y=yw
and z = z(u).

where x, y, z are real valued functions of the real parameter 'u’. which is restricted to some
interval.

Alternatively, in vector notation the curves are specified by vector value fiction

# = R(@)

Remark :1

A curve is defined by equation F(x,y,z) = 0,G(x,y,z) = 0. if F, G have its derivatives and

if at least one of the Jacobian determinant,

d(F.G) 8(F.G) 9(F,G) . .
300 3e0 3y not zero at a point (x,, y,, Z,) On the curve.

It’s known from the theory of implicit function that the equation F = 0,G = 0 Can be solved

for two of the variables in terms of the 319
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1.2. Definition of a space curve:

Function of class m.

Let | be a real interval and in a positive integer. A real value function f define on I is said to
be of class m (or) to be ¢™ function. If £ has an m™ derivative at every point of I and if this
derivative is continuous on I.

Note:

c™ function as continuous m™ derivative when a function in infinitely differentiable we say
it class oo or c®.

when a function is analytic we say it is of class w (or) ¢* function.

Definition:

A vector valued function R = (x, y, z) defined on I is said to be of class m if it has on m™
derivative at every point and if this derivative is continuous on I (or) equivalently if each of
its components (x, y, z) is of class m.

Definition:

A function is frequently specified by the vector equation R = (x, y, z) (or) equivalently by

the 3 equation for the Cartesian components

x = x(u)
y =y
z = z(u).

. . . dR . - . P .
(if the derivative =T # 0 Never vanishes on | or equivalently if x, y, Z never vanishes

simultaneously. Then the function is said to be regular. A regular vector valued function of
class m is called a path of class m )
Definition:
Two paths R;, R, of the same class m on I, I, are called equivalent if there exists
a strictly increasing function ¢ of class m which maps I; onto I,
(ie) ¢p: I " I; Riy=Ry°¢
The condition R; = R, o ¢ is equivalent to the three conditions
x;(u) = x, (¢(u))
yi(w) =y, ((b(u))
z,(u) = Zz(ﬁb(u))
Note:

1. Any equivalence class of paths of class m determinds a curve of class m Class m
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determines a curve of class m.

2. Any path R determines a unique curve and is called a parametric representati of the curve,
the variable u being

called the parameter.

3. The equations,

x =x (u)

y=y)

z = z(u) are called parametric equation of the curve,

4. The mapping ¢ which relates two equivalent paths is called a change of parameter, It
produces, the change in the manner of description of the curve the preserving sense

5.A curve of class m in E5 as a Set of points in E5 associtated with an equivalence class of
regular parametric representation of class m involving one parameter.

6. When the function R(u) is a linear, then equation » = R(u) represent a straight line
7.Example of two equivalent representation Consider the circular helix is given by

7 = (acosu,asinu, bu) where 0 <u <m. ...... (1)
= = s
Take, v = ¢(u) = tan (2)
= tan"t(v) = % = 2tan"(v) = u sub in (1)

1 — tan? (%) 2tan (%) ,

'1 + tan? (%)'al + tan? (%),

_ 1-v2 2av
'r' =

r=|a

bztan‘l(v)]

a 1+v2 1402’ 74 N (2)
0fu<ow
we note that ¢:1; — I,
[[0,7] —€ [0, 0]]
u=-m=>u=tann/2 =

Where the function

V =¢(u) =tan (%) is strictly increasing and onto

=~ The representation of equation (1) and (2) are equivalent.

Theorem 1:

Equivalence relation of a path is a proper equivalent relation on the path of the same class m.

Proof:

R;, R,, R5 be any path of the same class m.
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(1) Reflexive:

Define the identity function i,: I; — I; is strictly increasing and onto.
Further, Ry = R, %,.

(i.e.) R, is equivalent to itself.

(if) Symmetric:

Let R, be equivalent to R,

T.P.T: R, isequivalent to R,

From given R; is equivalent to R,.

Then there exists a strictly increasing function

¢ from I; onto .

Suchthat R; = R, ° ¢.

here ¢ : 1 — 1, onto and increasing function

which = ¢~ existsand ¢~ 1: 1, - I;

which is strictly increasing and onto.

(i©) Rz =Ry 0"

(ie) R, is equivalent to R;.

(iii) Transitive:-

Given R, be equivalent to R, and R, be equivalent to R;.
To prove that:- R, be equivalent to R5.

From given R, is equivalent to R,

there exists a strictly increasing function ¢

onto

fromIl, - I,
Suchthat Ry, = R,o¢p. ........... (¢D)

Also given R, is equivalent to R5.

onto

= There exists a strictly increasing function. ¥:1, — I3 ........... (2)

Suchthat, R, = Rz o ¥

¢ and o are strictly increasing function and onto. From I; onto I, and I, to I; respectively
= 1) o ¢ is also a strictly increasing Function and onto from I, to I5.

=~ using (2) in (1).

(1)=Ri=R3°P)od

=Ry =Rzo (o)

with Y o ¢ is strictly increasing function from I, onto I5.
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(i.e.) The path R, is equivalent to R;.

=~ equivalence relation of path is a proper equivalent relation on the path of the same class m.
Note:

(1) Not every property of a path is a property of the curve.

(i) The property or the curve are those Which are common to all parametric representation.
(iii) It the function R (w) is a linear then the equation » = R (u) represents a straight line.

1.3. Arc Length:

1.Distance between two points in Euclidean Space

The Distance between two points 7, = (x4, v4,2,) & 7, = (x5, V5, Z,) in Euclidean space is

the number.

. =1l = (7 = 17,)?
(1e)
= \/(x1 —x2)2+ (1 —y2)2 + (21 — 2,)?
This distance in space will be used to define distance along type a curve of class m > 1.
2. Arc

It given a path ¥ = R(w), and two numbers a, b(a < b) in the range of the parameter then the
path ¥ = R (u)(a < u < b) is an arc of the original path Joining the points corresponding to
a&b.

3. Length of polygon:

Any subdivision A of the interval (a, b) by pointsa = u, <u; <u, < <u, =>b

The correspondence the length

Ly = ) IRGw) — RG]
i=1

of the polygon inserted to the arc by joining successive points on it.

Addition of further points, subdivision increases the length of polygon. Because two sides of

the triangle of are together greater than 31 .

4) The length of are to be trouper bonded of L, taken over all possible sub divisions of (a, b).
This upper bound is always Finite.

Ly STy [T IR@Wldw,

Definition: Arc length

If a < ¢ < b then the arc length from a to b is some of the arc length From a to ¢ and from ¢

tob
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S=5)
The arc length from a to any point u The are length from u, tou = S(u) — S(uy)

S is a function of the same class as the curve

~s=5u) = f; |R(w)|du in terms of a cartesian parametric represent

S=S)= jaJ(xz +y2 + z2)du

a

Note:

(1) The equation $ = |(7)] in cartesian parametric

representation is

s=x%+y%2+2% (or)

ds? = dx? + dy? + dz2.

(i) The function S is the change of parametric from s to u

fu = g(s)

(iii) The curve parametrized with respectto S is v~ = R (¢(s))

Example 1:

Obtain the equations of the circular helix, ¥ = (acosu, asinu, bu), —co < u < o where
a>0 refer to S as parameter and show that the length of one complete from turn of the helix
x is 2C. Where ¢ = Va? + b?

Solution:

Given, ¥ = (acosu, asinu,bu)  ............... (1)

(i) To find the equation of the circular helix with

S X =acosu = X = dx = —asinu parameter s.

y =asinu =y =dy = acosu

Zz=bu >z=dz=5»

Arc length=s = S(u) = f:1/x2 + y2 + z2du (given a>0)

4
= f \/azsin2 u + a?cos?u + b%du
0

u
=f \/az(sin2u+cosz u) + b%2du
0

4
=f v a? + b2du
0

10
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given ¢ = +/a? + b?
u
s=] cdu
0
u
=cj du
0
c[ulo

=Ccu

S
S
:E=u sub in (1)

_ B . B b
(1):r—(acos asin bc).

c’ c’
To show that the length of one Complete turn of the helix =2mc
where ¢ = Va? + b?
The Range or corresponding to one Complete turn of the helix is
Ug S usugt+2m

=~ The Length of one furn to the circular helix equal to u, + 27
length of the arc = fu0u°+2n va? + b?du
+2
=4a%+ bz[u]zg
+27

=4 a?+ bz[u]zg

= clug + 2w — ug)
= 2mc

Example :2

Find the length of the curve given as the intersection of the surfaces.

xz  yr _ P . .
— — 3z = 1&x = acosh [Z] from the point (a, 0,0) to the point (x, y, z)
Proof:

given surfaces.

2 2

Xty
x=a cosh[i] .......... (2)

We know that,

The length of the curve = fat X2+ y24z2dt . (3)
tZ=tinQ
put — =t in(2)

z=at

11
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(2) ® x = acosht sub in (1).

(2) N a?cosh? t _ y_2 —1

a? b2

cosh?t — 2]_2 =1

= cosh?t — 1 = y?2/b?

= sinh? t = y2/b?

= b?sinh? t = y?

= y = bsinht =>sinht=y/b

x = acosht x = asinht
y = bsinht y = bcoshht
z = at zZ=a

Sub ineqgn (2).

The length of the curve = fot\/azsin h?t + B?cost + az] dt

= fot\/a2 (sinh?t + 1) + b2cos h?tdt

= fot\/azcos h2t + b2cos h2tdt
—. fot\/az + b2%cos ht - dt

= a2 + b?[sinht]}

=+/a? + b?sin ht.

= VaZ + b7 (y/b)

1.4. Tangent normal and bi-normal:

7 = The position vector of a point on a curve and also as the function Symbol of a path which
represents the curve a curve represented by the equation.

r=1(u)

R = The position vector of a current point in space not necessarily lying on the curve.
Let r be a curve of class = 1 and let (P, Q) be two neighbouring pts of the curve.
Definition: Unit tangent vector

Let r be represented by the equation

r=1(u)

and let P and Q have parameters u, and u Since r has class > 1.

ar(u) =7(ug) + (w—ug)r(ug) +0(u —up)  coeveennnnn. (1)
where o(u — uy) = (u_zul")zf(uo) + (u_;(’)s%(uo) e

12
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ol 7(w) — 7(u) _ 7(ug)
ut [Fw) — o)l 7o)l

Fr 7(w) — 7(up)
S IIm —

u-ug u—1uy

= F(uo)l

(i.e) The unit vector along the chord PQ tends to a unit vector at P as Q - P

This is called the unit tangent vector to r at P. and it is denoted by t.

7(uo)

|7 (o)

3 |7 ) = - & 1ol = ]
dr

" ds

Note:

ol =

(i) ¢ like the curve is oriented in that its points in the direction of increasing s~
(i) The line through P parallel to ¢is called the tangent line to y at P.
(iii) It R is any point on this line, the vector from the the vector from the pt of contact,
P to R is called a tangent vector to v at P.
(iv) tangent line is a unique line which approximates to the curve to the 1% order near P more
preciously there is a unique linear function L(w).
Such that,
L(u) =7(u) +0(u—uy) asu - ug
= 1(up) + (u — uy)i(uy)
(v) the unit tangent vector t = 7.
Definition: Osculating plane
Let y be a curve of class > 2. and let (P, Q) be two neighbouring p ts on v then the limiting
position as Q — P. If that plane which contains the tangent line at p and the point Q is called
the osculating plane of y at P.
Theorem 1:
Show that when a curve is analytic we obtain a definite oscillating plane at a point of
inflection P unless the curve is a straight line.
Proof:
case (i)
Let P is not a point of inflection
(ie)7"” #=0at 'P'..........(1)
13
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Let the curve gamma be a parameter

w.r to the are length s.

Let P, Q be two neighboring points on y w.r. to the parameters 0 and S.

Consider the plane containing the tangent
vector to y at P and the point Q.

We know that, PQ = 0Q — OP

=7(s) —7(0)

pm, 7' (0) & PQ are coplanar.

(i.e.) The equation of the plane is

[PQ,7(0), ]

(i.e.) [R = 7(0),7(0),7(s) = 7(0)] = 0, .......... 3)
We know that, by Taylor’s theorem,

7(s) = 7(0) + = “’)

2
S’—'f”(O) + 0(s)ass - 0.

. 7(s) — 7(0) = if’(O) +- < -7"'(0) +0(s) ass >0

~(2)=>

|R = 7(0),7 (0,27 (0) +S 71(0) + 0(s)| = 0 (ie) [R — 7(0), 7 (0), 57 (0)] +

[R — 7(0),7'(0 %r” )]

+[R — 7(0),7'(0),0(s)] = 0ass — 0
(ie) [0+ [R = 7(0),7(0),7"(0)] + 0 =
(ie) [R — 7(0),7'(0),7"(0)] = 0

is the equation of the required osculating plane provided that,
7'(0),7"(0) are L. 1.

Since |t] =1

Suppose t = 7,

> |7 =1

=>7 =1

Diff w.r. to 's".

S>7 -+ =7 =0

=21 -r" =0.

14
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>7-7"=0

(i.e) " & 7" are perpendicular to each other
(ile)r" &r" are L.I.

Hence the eqn of the osculating plane

[R —7(0),7'(0),7(0)] =0 ............. 4
Case(ii)

Let P is a point of inflection
(ile)r”"(0)=0atp......(5

Let y is not a straight line and y is analytic.
Since |t|=1= || =1

(ie) I7'] - 17" = 1

(ie) I7']? =1

=>7 =1

Diffw,rto's"’

=>7 " +7" =0

=27 -7 =0

=>7-7"=0at'p"

Again Diff w.rto 's'

S>7 7"+ 7 7 =0 (6).
=>r-r"" =0atP

(i.e) r' perpendicular r'"

(ie) 7" & 7" are L.I.

Again Diff w.rto's'

o "+ =0

=7 -7 =0at'p’

similarly continuing this process, we get,
Tk =0atp.......(7)

where r* represent the non-zero derivative. of 7 at P for k > 2.
Further,

given the curve y is analytic
2
2 1"(s) = 7"(0) + 7" (0) + 27" (0) + ds ass — 0

« 7" (s) = 0,Vs.
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= 7''(s) = constant

= yisastraight line

which is a contradiction.

=~ from(6),

7®0) #0,fork =2,3...(k—1)

2 k
7(s) = 7(0) + %f’(O) F () + —rk(O)

2 k
~7(s) = 7(0) = 7'(0) + o7 O+ + ;7 (0)

s sk
= FT'(O) o r®(0) + o(s)ass > 0

We know that, the equation of the plane is,

[R —7(0),7'(0),7'(s) =7 (0)] = 0

(i) [R = 7(0),7(0), 57 (0) + S 7(0) + 0(s)]
(i8) |[R — 7(0), 7 (0),—,f'(0)]

l_ —7(0),7 (0) "(O)l
+[R — 7(0),7(0),0(s)] = 0

The eq of the osculating plane become
Example 1:

1

1
Consider the curve y is defined by 7(u) = (u, e uZ, 0),u <0,7(u) = (u O,e'u_Z) U >

0,7(0) = (0,0,0) - Show that at a point of inflection even a curve of class infinity need not
possess an osculating plane.
Proof:

We know that osculating plane at all points with parameter u < 0.

(i.e) F(u) = (u,e‘l/“z,O)

2
= 7(u) = (1,Ee‘1/”2,0>

, 6 4
= 7(u) = (O, [—Fe‘l/“ ——e‘luz],0>

ué

=~ The eq of the osculating plane is if u < 0.

16
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X—Uu y—e
2 e
1 Ee 1w 0 =0
_6 2 4’ _ 2
0 Fe 1/u —ﬁe 1/u 0
= z|-—e [3+—] =

if u < 0 then z = 0 [The equation of the osculating plane]

Similarly, the equation of the osculating plane at all points on y with u > 0isy =0
To find the limit 7(0) for u < 0.

- 7(0) = limy_o- %
(u, e~1/%*,0) - (0,0,0)
u
(u, e~1/%*,0)
u

= lim,,_, -

= limy_,o-

-1/u? . .
= lim,_- (1% 0) if u < 07(0) = (1,0,0)

Similarly 7(0) = (1,0,0) if u > 0.
Now, To find the limit #(0) foru < 0

r(u) —7(0)

f(O) = limu_)o— U — 0

1,2 =174 0] = [1,0,0]
= limu_,o— S -

u

-O,%e—l/uz O
u

)
= limy_ - -

u

= lim,,_,o- :O,Fe‘l/“z,O:
#(0) = (0,0,0) ifu <0
Similarly 7(0) = (0,0,0) ifu > 0.

- we get #(0) exists and 7(0) = (0,0,0)
Hence u = 0 is a point of inflection for k > 2

Extending like we get

17
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7*(0) = 0.

Thus at a point of inflection, even a curve of class infinity need not possess an osculating

plane.

Example 2:

Show that if a curve is given in terms of a general parameter ' u ' then the egn of the

osculating plane corresponding to

[R — 7(0),7 (0),7'(0)] = 0is [R — 7, 7,#] = 0

Solution:
_ _, dr dr/du
t=7r =—=
ds ds/du
_1'7
i
7 vdu — udv
e e
S v
~ Diffwr.to's"'
., st —r13du (“du_ 1)
T T T e s \Uds
oy ST
given,= 7" = )2
|R = 7(0),7(0),7"(0)| = 0
2 oo T 5778
| i )’s:’ sz |

=

i

S

1 SN
:>S—2[R —-7(0),7,7#]—-0=0

= [R — 7(0),7,#] = 0 in the equation of the osculating plane.

Example 3:

Find the equation of the osculating plane at a general paint on the cubic curve

given by 7 = (u, u?,u?).

Show that the osculating plane at any three points

of the curve meet at a point lying in the plane determined by this three points.

T 7s

S| =0

P77 R
= R—T'(O),—,,g - R_T(O);g;g_z =0

[ $7 )
— R—T(O),g,g—x —[R—T'(O),g,

18
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Proof:

We know that, the equation of the osculating plane at any point.
[R—7(0),7,#] =0 .......... (1)

In-T = (u,u?,u)

Therefore, 7 = (1,2u,3u?) and # = (0,2,6u)and R = (X,Y,Z) sub ineqn(1)
s Q)= [(x —w), (y —u?),(z —u?)],(1,2u,3u?), (0,2,6u)] = 0.

x—u y—u? z—ud

1 2u 3u2 | =0
0 2 6u

= (x —w)(12u? — 6u?) — (y —u?)[6u— 0] + (z — u?)
(2-0)=0
= (x —w)(6u®) — (y —u?)(bu) + (z—u*)(2) = 0
= 6u?x — 6ud — 6uy + 6y3 + 2z — 2ud = 0.
= 6ulx —6uy+2z—2u=0

= 3u?x —3uy +z—u3 = 0.

equation of the osculating plane to the cubic curve.
If uy, u,, us are three distinct values of the parameter.
=~ The osculating plane at this points are linearly Independent and the plane meat at a point
(X0, Yo, Zo)-
= The parameters uy, u,, u5 satisfying the condition, u3 — 3u?x, + 3uy, — z, = 0-(2)
If Ix + my + nz + p = 0, is a equation of the plane passing through the 3 points
Then the parameters satisfy the conditions
lu+mu?+nud+p=0...... (3)
Since the equation (3) have 3 distinct roots and we have n # 0
=~ The corresponding coefficient are
equation (2) and (3) .

we get.

1 —3x0 _ 3y0 _ZO
n m I p

= [ = 3ny,

= m = —3nx,; subin (3)
= p == _nZO

~(3)=>

The eqgn of the plane is
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3nyyx — 3nx,y +nz —nz, =0

+n = 3yox —3x0y +z— 29 = 0.

Definition: Normal plane

The normal plane at a print p on a curve is that plane through p which is orthogonal to the
tangent at p

Definition: Principle Normal

The principle Normal at p is a line of intersection of the Normal plane and the osculating
plane at P. A unit vector along the principle Normal is denoted by 7.

Definition: curvature

The arc rate at which the tangent changes direction as P moves along the curve is the

curvature of the curve, and is denoted by K (kappa)
. ~ dt

(ie) k] = ¢ = [&

(i.e.) Arc rate at which ¢t Exchanges direction

Theorem 2:

Prove that t' = kn

Proof:
We know that 7' = E &|E| = 1

7o =1
Diffw.r.t0's..
f"f”‘l‘f”'f”:o
=22 " =0
=>7 7" =0.
=>7 7" =0.
=>t-r" =0.
= t perpendicular 7"’

!

~ r'" lies in the Osculating plane.

-

~ 7'" is proprotional to n

o7 =+kn

=| 7"|| = +kn.

= t' = +kn, t is called the curvature of the vector.

Theorem 3:

A Necessary and sufficient condition that A ere curve be a straight line is that ¥ = 0 at all
points (or) Show that a curve is a straight line iff the curvature k = 0

Proof:
20
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Necessary part:

Assume that the curve be a straight line.

To prove that : The curvature k = 0.

We know that, the vector equation of the straight line is
Ff=a+sb

where a & b are constants

and S is a parameter

Diffw.r.to's".
>7=0+bh
7 =b
=>t=0b

Again diff w.r.to 's'

=>t'=0
=>kn=0][t' = kn]
k=0(n=+0).

Sufficient part :
Assume that ¥ = 0 at all points

To prove that: a curve in a straight line.

Ask =0
=>kn=20
=>t' =0
=>7" =0.

Integrate w.r.to 's'.

= 7' = b where b = constant.

Again Integratew. r.to's '

= 7 = sb + a where @ = constant

This is represent the eqn of a straight line.

Definition: Binormal line

The Binormal line at D is the normal in a direction orthogonal to the osculating plane
The sense of the unit vector b along the Binormal is chosen show that £, 7, b form right hand
system of axis.

(ie)b=txn

Definition: Torsion

As P moves along a curve the are rate at which the osculating pane turns above the tangent is

21
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called the torsion of the curve and is denote by 7. 7 = |’
(or) b = —1n.

Theorem 4:

Prove that b' = —1n.

Proof:

We know that, |b| = 1
>b-b=1

"Diff w.r.to 's".

=>b -b+b-b'=0
©2b-b=0

=>b'-b=0

=b' 1" b

= b'&bare L.l

= b’ lines in the osculating plane
Alsob L"t=>b—t=0
Differentiate with respect to 's".
=>b -t+b-t' =0.

=SB T+b-7 =0

=>b-t=0
=>p 1t
= b &tare L.l

= b’ lies in the osculating plane & is proportional to n-

= h'is || ton

(ie.) b' = +tn
> b = —17
Note:

(1) Torsion is regarded as positive when the rotation of the osculating plane has S increasing
is in the direction of a Right find travelling in the direction of t.
(2) A Torsion t is determined both in magnitude and sign.

(3) The curvature k is determined only in magnititude.

22
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Theorem 5:

Let y be a curve for which b various differentially with are length then a necessary and
sufficient condition that a curve y be a plane curve is that 7 = 0 at all points.

Proof:

Given y be a curve for which b various differentially with arc length.

Necessary part:

Assume that y = 0 at all points

To prove that: 7 = 0 at all points.

from our assumption, the osculating plane at any point is Just the plane containing the curve
(i.e.) The osculating plane is fixed.

b is a constant vector.

=b' =0.

=>—-tn=0m=*0)
=>-1=0
= 7 = ( at all points.

Sufficient part:

Assume that T = 0 at all points.

To prove that: The curve « is plane curve.
From our assumption, 7 = 0.

>-m=0

=>b=0

Integrate with respect to s
b = constant.

We know that, t - b = 0

(ie) ¥'b = 0.

=>7b+th'=0 [b =0]

= (- b)' = 0.

= ¥ -b = constant.
(ie)7,b=c ... 1)

where b = (by, by, b3) &

7= (x(s),y(s),2(s))

= (1) byix(s) + byy(s) + b3z(s) = ¢ = constant.
= This condition shows that the pt

(x(5),y(s),2z(s)) lies in the plane.

23
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r= =¥

“bix +byy+byz=c
=~y is lies in the plane curve.
Example 4:
Prove that [, 7",7""] = k%1
Solution:
We know that, t =7'& t' =7".
ST XTF =t Xt
=t XKi

= k(t X 1)

7 X 7" = kb

Differentiate with respect to s

7' x 7" + 7 X7 =k'b+k'b’

"X 7" —k'b — k't

0+7 x7" =k'b— k't
=7 x 7" =k'b— ktn
Multiply both sides Secularly by ' *
= 7" [f x7"] =7".[k'b — ktn]
= —[F, 7,71 = E' - [k'b — ktn]
= knlk'b — ktn].
—[7,7",7"] =0 — k?t
(i) [7,7",7"] = k?7.

Example 5:

Show that [, #,#] = 0 is a necessary and sufficient condition that the curve be a plane curve.

Proof:
Necessary part:
Assumes that the curve be a plane curve.

To prove that [7,#,7] = 0.

We know that, 7' = ar
ds

_ dr du
" du ds
=r.du/ds ... (1)

Diff equation 1 with respect to s,
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="

N1/ A | d !
ST =TU +gu
., dr du
=T G s

=7u" +tu'u’
= U 4+ FW)2 e, 2)

Diff (2) w.rto's .

. dr ) d
"o . I n = 12 n N2
" =7u +_dsu +7rqw")(u )+—ds(u)

~ n dr du 3 ar du _ i
TIII — ru”' +=. _un + ZFUIU,” 4+ == (u ,rlll — ru”’
du ds du ds

Iy, 1

+ #u'u" + aru'u” + 7 (W')3.
" =ru" 4 3fu'u" + 7?3

consider,

[, 7", 7"] = {7u, [Fu” + ?(u’)z],

[Fu' + 3Fu'u” + 7(u')?]

= [Fu’ - Fu”, [Fu" + 3ru'n’” + #(u)?]
+rw, #@W)?, [Fu" + 3Fu'u” + F(u')?]]

= [ru',7u”,vu'"] + [ru',7u”, 3iu'u""]
+[1'”u’,?u”,'7"'(u’)3] + [ru', 7(w)?, 7u'"]
+[7'“u’,7'7-’(u’)2, 3ru'u”] + [Fw, #(w)?# (u')?]
=0+0+0+0+0+ (w’[r##]

[7, 7, 7"] = (u)[F, #, ]

k%t = (uW)C[r,#,7] .ccoonnen. 4)

From our assumption the curve is plane curve = 7 =0
~(4)= 0= @W)[[r,#7]

= [#,##] =0

Sufficient part:

Assume that [#,#,#] =0 ............. (5)

To prove that: The curve is a plane curve.
(i.e.) To prove that T = 0.

Suppose t # 0

from (4) & (3) we get

k*r=0.

25

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.


http://w.r.to/

TR

>k?=0=>k=0.

= A curve is a straight line

This is contradiction to our assumption.

~1=0.

= The curve is a plane curve.

Example 6:

Calculate curvature & torsion of the cubic curve given by 7 = (u, u?, u3)

Solution:

|FXT

TR PRRTORRRURRTY (1)

7|

Curvature = k =

[F7,7]

Torsion =7 = 2 —
To find: 7,7 &1
given, 7 = (u,u?,u?)

Diffw.rto'u ', 7 = (1,2u, 3u?), ¥ = (0,2u, 6u) and ¥ = (0,0,6)

i j k
X T=(1 2u 3u?
0 2 6u

= i[12u? — 6u?] — j[6u — 0] + k[2 — 0]
=6u’?i — 6uj + 2k

|7 x 7| = J(36u* + 6u? + 4)

= V4V(9u* + 9u? + 1)

= |Fxr|=2Vout+9uZ+1 ... 3)

> |FXF2=40Qut +qu+1) (4)

1 2u 3u?
0 2 6u
0 0 6

= 1(12 — 0) — 2u(0 — 0) + 3u?(0 — 0)

[F, 7, 7] =

[F,#7] =12, e (5)
= Sub (3)in (1)

|7 X 7|

curvature = k = —
|73
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2V9ut +9u2 +1  2(9u* +9u® + 1)'/2

(VI dzrowr)’  (+4u? +ouh3z

Sub (4),(5) in (2)

Torsion = 7 = 27
|7 x#|2
_ 12 _ 3
T a(Qut+9u?+1)  ut+9u?+1
(OR)
Given7 = (w,u?,u3) ... (1)

Differentiate with respect to u,

&I (1,2u,3u)

du ds du

ie)r=7".$ = (1,2u,3u?)
ie)r=1t.$=(12u,3u?® ... (2)

Again diff w. r. to U’

o _ . dt

= t-S+s@ = (0,2,6u)

(ie)r = t.§ + s%t’ = (0,2,6u) ﬁ = ﬂ . E =t
du ds du

(ie) 7 = t§ + s%kn = (0,2,6u)  ......... (3)

Taking cross product of (2) & (3),

X1 = (6u? 6u,2)

Now, (2)% = $2F2 = 1 + 4u? + 9u*
= $% =1+ 4u? + 9u*

Serret - Frenet Formulae:

The relations,

(i) t" = xn (Already proves)

(i) a' = tb — kt
(iii) b’ = —tn  are known as the Serret Frenet Formula
{(ii) proof :

We know that @ = b X £

27
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i'=b"xt+bxt
=-—tnXt+bxkn
= —t(hx ©) + k(b x h)
= —1(=b) + k;(-F)
= —kt +th = tb — kt}

Theorem 6: [Serret-Frenet Formulae]

Prove that the behavior of a curve in the neighborhood of one of its pts may be investigated

by means of relations t’ = ki, 7' = th — kt & b’ = —7n.
Proof:

At a point ' p ' on the curve, Let axis O, Oy, O, be taken along ¢, 7 and b

Let x, y, z be the co-ordinates x of a neighboring point Q of the curve relative to these axis.

If the curve is of class > 4.

If's' denotes the small are length PQ. then using Taylorss theorem,

2 3 4 .
7(s) = 7(0) + %f’(O) + %f”(O) + %f”’(O) + 1—!7‘(“’) +o(s)ass—=0 ........

given relations
t'=xn,n =th—kt &b' =—1R. ... (2)
Here, 7(0)& 7(s) respectively denote the position
vector of the two pts P & Q.
Let7(s) = (x,y,2z) &7(0) = (0,0,0)
We know that 7' (0) = t
=>7"(0) =t =kn
=>7"(0) = k' + k'™
= kth — K*t + k'
7¥(0) = =3kk’ + [2k'T + kT']b + [K" — kT% — K3 70
Therefore (1) =
s? s3 st o
(X,Y,Z) =st+ Ekﬁ + 30 (kth — K2t + k™) + Z(—SK’K"t + b(2K'T + KT)
+i(k" — k3 — kT?)

equating the respective co-eft of £, 7, b.

ZS3 S4—
X=s5— G —3kkﬁ+o(s)
Y—Szk+k,53+54[k” k3 — kr'] +
=7 6 24 Tl+o(s)
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7= KT% + i k't + kt)s* + o(s)

The co-eff. being evaluated at P.

It follows that as a first order approximation the chord PQ in along the tangent.

(ie) 7(s) = 7(0) + s(t)

7(s) — 7(0) = st

0Q — OP =St

(i.e) The projection on the principal normal is a magnitude of the second order and its
projection on the binormal is of the third order.

From eqn. (2) =.

2, K3
27 ks?+53 40, K+—S+:
- = 52 = 2 ~KasSs — 0
X2 SZ(1_k_S_...)
r .

.. 3Z
Similarly, o =

This is similar to Newton's formula for curvature.

To find approximate length of the chord pQ
K?s3 2 k 2 kt 2
(=) w st ) o ()

2sk?s3  k%s* 1
2 2 2 _ 2 _ e — <21 — 2.2
X‘+Y“+Z°=s 3 + 2 + s7[1 7S ]

= length of PQ ~ S [1 - kzsz]

12
K?s2
24

=~ length of chord PQ — S ~ —

When k # 0

The are length PQ differs from the chord PQ

by terms of the third order in' s ".

Rectifying plane:

The plane determined by the tangent and binormal at ' P ' as the rectifying plane.
Example 7:

Show that the projection of the curve near P on the Osculating plane is approximately the

curve z = 0,

y = %kxz, its projection on the rectifying plane is approximately y = 0,z = %er3 and its
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Proof:

We know that, the coordinate x, y, z of a near point to p are given by,

253 S4-
X=s5— G —3kkﬁ+o(s)
Y—Szk+k153+54[k” k3 — kt'] +
) 6 ' 24 vl+o(s)

3

S 1
— ! ! 4
Z—K’L’6 +24(2kr+kr)s + 0(s)

The eqn of the osculating planeisz =0,x = s,y = %sz nearly,

(ie)y=2x?

The eau, of the rectifying plane is y = 0.
0 kts3 kt

y , X =S,Z 6 z 6 X

k k3
v @s® m 9k

z? (E)Zsé B k;gz 272
6

3 2.,3
. 9 k 27T
(e L =2Z222=212
z2 212 9 k

in the equation of the normal plane.

Example 8:

Show that the length of the common perpendicular 'd ' of the tangent at two near points

kts3
12

distance 's' apart in approximately given by d =

Proof :
Let P, Q have parameters O and S repectively.

The unit tangent vectors at P and Q are 7' (0),7'(S)

=~ The unit vector of the common perpendicular in along 7' (s) x 7' (0)

The projection of the vector [7(s) — #(0)] in this direction = d

. DA [Fe)-7(0)7(s)7'(0)]
fd=PQ =" e e (1)

We know that (by Taylor’s Theorem),

7(s) = 7(0) + 2 7(0) + 27 (0) + 577 (0) + 0(5) aS s = 00 . (2)

We know that, ¥'(0) =t
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> 7(0) =

7(0) = —ic2E + K'F + icTh
= «k'(th — kt) + k'
=k(th — xt) + k'n

()=
_ _ s_ s> 3 _ - _
~7(s)—7(0) = It + - K + 3 (—Kzt + Kk’ + K’L'b) v eee e (A)
- o _ES s?k? +_K52+K’s3 +E_krs3
OO e i L I G
Differentiate (A) with respect to s,
_, oz 2sK? _[x 3k’s? = [3KTs?]
= 7'(s) —t[l— - ]+n[5-25+ . ]+b[ | e (B)

= 7 (0) = t[1 — 0] + 11[0] + b[0]
570)=t e (0)

~T'(s) x7'(0) = [f(l - KZZSZ) +n (KS + K,ZSZ) +b (? k‘[)] Xt

_ s? s?
= |7'(s) x 7' (0)| = ‘—b lsrc + K'7l +n [7Ktl

272 4
Z\/[SK+K'S—] + k272
2 4
g4 2 g4 1/2
= [SZKZ + k' —+ 2sKkK' — + — KZ‘L'Z]
4 2 4
g4 o4 1/2
= [SZKZ + K’ -+ kK's3 + :KZ‘L'Z]
[s2Kk? + s3kk']*/? [omit high powers]
= s[x? + skx']/?

s 11/2
= SK [1 + —K’]
K

s 1/2 i .
(i.e) [7'(s) x 7' (0)| = sk [1 + ;K’] (approximation)

~SK [1 + %n’] B [ (M + )" =1+ ncyx + heyx? + -+

From (A), (B) & (C)
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KTSs3

6
KTS

2

2

[7(s) = 7(0), 7 (), 7'(0)] = | | _ st

1 0
= [s == 0 — o1 =[5+ = o -] + [ Jo - s ]
o4 K?1s* N KkK'Ts® _ K21s* _ KkK'Ts®

4 12 6 12

kithrl 1

~ 2 1273
2.4
= e (4)
Sub (3) & (4) in (1),
K27s*
s()>d=—2
sx[1+£x’]
= #32%"'] [omit high powers]

d~ % ( nearly )

1.5. Curvature and torsion of a curve given as the intersection of two surfaces:
Theorem 1:

If a curve is given as the intersection of two surfaces, f(x,y,z) = 0,g(x,y,z) = 0and ifa
set of parametric equations for the curve cannot readily obtained, then explain the method of
the curvature and torsion of the curve.

(or)

Explain the method calculating the curvature and torsion of the curve. Given as the
intersection of two surfaces.

Solution:

Given a curve is the intersection of two surfaces f(x,y,z) = 0,g(x,y,z) = 0. & also
given a set of of parametric eqn's for the curve cannot readily to obtained.

Let the curve of intersection be represented by the equation ¥ = 7(u)

Let the two surfaces be given by,
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f@) =049 =0

Now, The unit tangent vector to the curve in orthogonal to the normal of both surfaces. Thus,

ifyF o [ o of
ITvf = [6x'6y'6z

= _ |99 99 94
&Vg = [6x'6y'6z

~ tis parallel to Vf x Vg

LetVf xVg=h

CAE=VfxVg=h

A7" = h, for some 1 — (4)
ar _

AE =h— (1)

then Ax’ = hy, Ay’ = h,,Az' = hy

d [7] 7] 7]
&Ag=|higtthyg by | = A(s) o )
["/’Ldf—fz
“Tds

Substituting in (1),

dr dx dar dy dr dz| _

Mo ot ot = (huhahs),
" ]
$47ww—~y+—f1=mmww

Comparing the coefficients,

we get, Ax' = h,

Ay' = h,

Az" = hs

F1E = [)lx’g+/1y’g—;+/12’3—:]
:Ag = )lx’;—x+/1y’%+/lz’%]f
:»A% = Ax’:—x+/1y’%+/lz’% = A (let)
= hlj—x+h2%+h3£=A]
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>AF=h

We know that At = h ... ...... ....(4)

= A%(t-t) = h?
=>12(1) =h*=> 1% = h% ... e (5)

From (4) = At = h —» A(At) = Ah
d _
= A—-(AD) = AR

> ANE+ At = Ak [+ (2)]

= A[Af + Ax@l] = Ah

= Wt+ A%k =Ah ...........(6)
Taking cross product of * At " with (6),
~(5)=

A x (WT 4+ 2%kn) = AL x Ah

0+ A3k(tx ) = h X Ah

=>MBkb=h+Ah=k(say) ........... (7)

Equation (7) gives curvature k

Taking dot product with itself in equation (7) on both sides,
equation (7) on both sides,

(23xb) - (A*xb) =% - &

A%x2(1) = k2
S2=5
A6

=~ The curvature is k = /153 ............ (8)

Apply the operator ' A ' on equation (7),
A(23xb) = Ak

= 12 (A3xb) = Ak

= (k)b + W3k)b'| = Ak

= A[A%k]'b + A*k(—1n) = Ak [b = —7171]
= [A(23Kk)'D] — tA*KkA = Ak .. e .. (9)
Taking dot product of (6) with (9),
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[AVE + 22kn] - [[A(2%k)'B] — A2KTi] =

0—0+0—2°?t(n.n) = Ah.Ak

—2°k?t(f. 1) = Ah. Ak

Substitute the values ' A ' from (3) and x from equation (10)

we get 7.

Example 1:

Obtain the curvature and torsion of the curve of intersection of the two quadric surfaces
ax?+ by? +cz? =1,a'x>+ b'y? +c'z? = 1.

Solution:

Let f = %(ax2 +by*+cz*—1) and g = %(arxz F by 4c'z2 —1)

_ (9f of 9\ _
So, Vf = (ax’ay’az) = (ax, by, cz)

Similarly,Vg = (a’x,b"y,c'z)
) 4 7k
VfxVg=|ax by cz
ax by c'z

=1(bc' — cb)yz +j(a'c — c'a)xz + k(ab' — a’b)xy.

= (Ayz,Bxz, Cxy)

ABC
foVg—xyz(— ; E)
=> 47 = xyz(g g g) [« Vf xVg = AF = Af]

Since, 7' = (x',y’,z") is parallel to Vf x Vg

~ we choose, 1, such that,

1( " = (ABC)
(XY z xyzxyz
A A B C
frn-(2
xXyz x'y'z
, A B c o
:;A(x y Z) (;;E) [ putm—l

:;AE:(%,%,S) ....... ). [+ E=7]

operate A on (1)
W=mi=4(%25)
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/ld Aﬂ—ld(ABc> [A
ds[ C Tds\x'y'z

AE+Tt] = [ = +h26 +h362](

_ _ Ad Bad CO A B C
A,A,t‘i'Aan = [(__+__ ) <_J_)_>]
xdx yady z0z) \x y'y

["' AE: }_l = (2 s 2) = (hll hz, h3)]
b A b B b c

= = — = — = -
1 X’ 2 y' 3 7

20+ O OO+ 120 20RO +120-

S AAT+ A2kn = l—
Find (1) cross (2);
4 j k

[AE] X [AVE + 2%ka) = [A/x B/y c/z
_AZ/x3 _BZ/y3 —C2/23

5 J[ Bc? CB2 AC? CA? | AB? BA?
AXAT+AEXA2kA =T|—— + Nzt T s Ty
yz3 xz3 xy? = x3y
s - —BC?y? + CB?z* x2AC? — z* —AB?x? + BA?y?
A°xb =1 NP 2353 +k PERE
= —BC?%y24CB?%z2 x2Ac?%-z2%4%¢ —AB%x24+BA%y?
P = (i), () ()]

Let —BC2y? + CB?z2 = BC[-Cy? + Bz?].
= BC[(—ab' + ba')y? — (ca’ + ac')z?]

= BC[—ab'y? + ba'y? — ca'z? — ac'z?]
= BC[—a(b'y? + ¢'z?) + a’(by? — cz?)]
= BC(—a(1 —a'x?) + aa’(1 — ax?))
[“a'x?+Db'y?+c'z? =1]

&ax? + by? + cz? = 1]
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=BC(a —a) .............. 4)
Similarly — A%cz? + Ac?x? = AC(b' —b) ............... (5)
AB?x? + A’By =AB(c' —¢) ..o (6)
_ |CB(a'—a) AC(b' —b) BA(c' —¢)
(3) = b = I y3z3 ' x3z3 ' x3y3

ABC I(a’—ga)x3 (' —b)y’® (' =)z e (7)

) B ) C

- x3y3z3
Taking (.) product of ( 7 ) with itself,

2
A?B%c?  (a'—a)"x"
x6y676 Y

= (23xb) - (A3xb) =

A2B2.2 _.\%.,6
= 16]{2(1): ¢ Z(a jz) X

x6y626

Taking (.) product of (1) with itself,

(1= 0D- (D =35

AZ

= 2(1) = zﬁ—j =21°=|y (x—z)]3 ..(*) sub in (8)
~(8)=>

()] e - Lrspteat

x2 x6y6z6

r_ 2
2 AZBZcZZ(aAza) x©

e (o]

ABC [(a’—a)x3 (b'-b)y3 (c’—c)z3]
x3y323 A ! B ! c

(7) = 2%xb =

3,3,3
3 X"y~ ZzZ —
put A K==

l(a’ —a)x® (b' = b)y? (¢’ — c)z3l
A

= b = "B ' ¢

Taking A on both sides, [ A= /1%]

—a)x® (b’ —=b)y? (¢’ - c)zl

oL by =2 L |
ds('u)_ ds A ’ B "o
:>/1[,u’l;+,ul;']=[é-i+§-i

o gl o <o

B c

x 0x
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Al — ] = (Aa ,Bo, — a)x?
Ho= =1y ax "y oy t oz A
[A 6+B d ¢ 0 (b’—b)y
x 0x y 0y  z 0z ’
[A 0 +B ](c —c)z
x 0x y z 0z

A3x%(a’ —
_ l—M+o+ol,

X A

3y(b" — b)
|

3Cz%(c' -

[o+o+#”

Au'b — Aprn = [3x(a’ — a),3y(b' — b),3z(c’ — ¢)]
Taking ( - ) product of (2) with (10)

_ _ A? —B? —c?
[AN'T + A%kn] - [Aub — Autn] = [_F,?,Z_Sl [3x(a" —a),3y(b" — b),3z(c’" — )]
34%(a’ — a)
= [0—0+0—13K,LLT] = _ZX—Z
(ie) A3t = y 3420 =a)

x2

3 Z A?(a’ —a) 3 _/13Kx3y3z3
t= A3ux x? K=" 4BC

3ABC Z A%(a' —a)

~ Aok x3y3z3 x?
3ABC A%*(a’ —a)
= A612x3y3 73 2

_ 3ABC  x®y®z°| X(A%/x?)? Az(a
_26x3y323 A2B2(C?2 (a a)2x6

3x3y323 AZLZ—a)

= X

= JABC —x8(at —a)z 24 /x%)]
S

p—
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AZ (a1 B a) ey e

3x°y’z’ 1 ) 2
ABC AT o [°@ — )
D
3x3y3z3 Zw
= ABC 6 / 27 ceeesecsese (11)
x6(a’-a)
o e ]

- equation (9) is curvature and equation (11) is Torsion.

1.6. Contact Between Curves and Surfaces:

Let y be a curve of sufficiently high class, given by the equation ¥ = {f (u), g(u), h(u)} and
let S be a surface given by F(x, y,z) = 0. Where the function f has a sufficiently high class
then 'y’ and s’ are said to be ‘n’ — point contact if F'(uy) = F”(ugy) = - = F™® D (uy) = 0
with F (™ (u,) # 0.

Proof:

Given y be a curve of sufficiently high class and equation of the curve,
7={f(w),gw),h(w)} ............... Q)

Also given ‘s’ be a surface given by F(x,v,2) =0 ... cce e ... (2)

where the function F has a sufficiently high class then, the parameters of points of y.

Which also lie on S are zero’s of the function F (u) = F{f (u), g(w), h(u)].

If u, is such zero. Then the function F(u) may be expressed by Taylor’s theorem in the form,
F(u) = eF'(uq) + Z—Z!F”(uo) + Z—T:F(”)(uo) +0(e™) (B asu - ug
Where € = u — u,

If F'(uy) # 0, then "uy is a simple zero of F(u) and in this case y and in this case 'y’ and ‘s’
have a simple intersection of 7 (u,).

If F'(ugy) = 0, but F'(uy) # 0, then F(u) is of the second order of «.

"ug is a double zero of F(u) and y and s have two point contact.

If F'(uy) = F"(uy) = 0 but F"”"(u,) # 0, then "u,’ is a triple zero of F(u) and y and s have
three point contact.

In general, if F'(uy) = F"(ug) = F'"(up) = - = F® Y (u,) = 0 but F™ (u,) # 0, then y
nad s are said to have n-point contact of 7 (u,).

Example 1:

Show that the osculating plane at P has in general three point contact with the curve at ‘p’

with ‘s’ as parameter measured from p(s=0).
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Proof:
We have F(s) = [7(s) — 7(0),7(0),7"(0)]
Let 7 = 7(s) be the equation of the curve with ‘s’ as a parameter.
Then the equation of the osculating plane [7(s) — 7(0),7'(0),7"(0)] = 0.
We assume that the point with u = 0 as the parameter as the point of contact .
= F(s) = [R —1(0),7(0),7"(0)]
Where 7(s) — 7(0) = s7(0) + 27 (0) + 7" (0) + o(s%)
2 3

- F(s) = [s7(0) + % F1(0) + %f’”(O) + 0(s3),7(0), 7 (0)]

= [s7(0), 7 (0), 7 (O)] + [% 7 (0), 7 (0), 7 (0)| + [% 7 (0), 7(0),7" (0)] + 0(s?) as
s—0

=0+0+ [% f”(o),f’(o),f”(o)] +o0(s®)ass -0

= [7(0),7(0),7"(0)] + o(s?) as s > 0

[+ 7(0)=¢t7'(0)=t =kn
7"(0) = k' + k'
= kth — K?t + K'1i ]
3 — _ —
= SZ [KTb —K’t+Kk'n,t, Kn_] +o(s®)ass -0

= Zs [[KTl_), t,kn| — [k%t,t kil + (k'R £, K?’_l]] +o(s¥)ass >0

%)

3

Z%[[KTE,E,KT_I] -0+ 0] +o(s®)ass -0

s 2 [h Fa 3
=<K T[b,t,n]+o(s yass -0

=%3K2T¢0&SS—>O

“F'(s)=0=F"(s)as s> 0

But F'(s) = —k?7t # 0

[ provided that x and T # 0]

The osculating plane has 3 point of contact with the curve.

Hence proved

Note:

1. The theory of plane curves it is useful to consider the curvature of a curve and the radius of

curvature at ‘p’.
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2. The radius of circle which has three-point contact with the curve at ‘p’.

3. The radius of curvature is the reciprocal of the curvature in plane curve.

4. The theory of space curves the radius of curvature of y at ‘p’ defined as the radius of that
circle which has three point contact with the curve at p’.

Example 2:

To derive the equation of osculating circle, radius of curvature and the cube of curvature.
[Osculating circle:

The osculating circle at a point ‘p’ on a curve at ‘p’. It evidently lies in the osculating plane at
‘p’ and its center 'C’ is at some distance ‘p” along the principal normal at ‘p’.

(i.e)c—7 = pin

The osculating circle is the section of the sphere (¢ — R)? — p? = 0.]

Proof:

We know that (by definition of osculating circle),

Osculating circle is the circle which has three-point at ‘p’ with the curve.

We know that, osculating plane has three-point at any point of the curve.

~osculating circle lies on the osculating plane.

(i.e) Osculating circle can be regarded intersects of the osculating plane with the plane curve
sphere (c —R)? =a? ........(0)

Where,

R — The general point on the sphere

¢ — The center of the sphere

a — The radius of the sphere

Let R = 7(s) ... ....... (2) be the equation of the curve T,.

Get the point of intersection of osculating circle and the curve.

Substituting (2) in (1)

~[e=7($)]* =a?

Now, the circle will have three-point contact if F'(s) = F"(s) = 0and F'"’(s) # 0.
Where F(s) = (¢ — 7(s))” — a?

F'(s) = 2(5— f(s))(—f’(s)) =0

(c—7())[F () =0

(ie)(c—1M.t=0 .ce.....(3)

=(3) implies ¢ — 7 lies on the normal plane
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But ¢ — 7 lies on the osculating plane
=~ ¢ — 1 lies along the normal n
L C—T=un
Substituting this in (4),
1

AA=—
H K

p= - (5)

(5) impliesc—7 =-n

X |-

(i) E—F =pA oo (6) [ p= ﬂ

Equation (6) is the equation of osculating circle ¢ in the cube of osculating circle, p is the
radius of osculating circle and ¢ = r + pn gives the cube of curvature.

Remark:

Letc = (a,B,y)

n=(,mmn)andn = (x,y,2)

=~ From equation (5) we get,

—x+a (=y+p) —-z+y
I m S oon

~a=x+plf =y+pm,y =z+ pn inthe coordinates of the cube of curvature at (X, y,z).
Example 3:

Fins the equation of the plane which have three-point contact at the origin with the curve

F=r(t*—1,t3-1,t>=1) .......(1)
Proof:
Let the equation of the plane be, ax + by + cz =0 ............(2)

Let F(t) =a(t*— 1)+ b3 —1) +c(t>—1)
Since (1) have three-point contact with (2) at the origin
~F'(t)=F"(t)=0att=0and F""(t) # 0att =0
s F'(t) = 4at3 + 3bt? + 2ct and
F"(t) = 12at? + 6bt + 2c.
At the originx =0,y =0,z =0,
at=1,
F'(t) =F"(t) = 0.
~4a+3b+2c=0
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12a+6b+2c=0
=~ Equation of the required plane is 3x + 8y + 6z = 0.
Osculating sphere (or) Sphere of curvature:

The osculating sphere which has four-point contact with the curve at p.

If ¢ is its center and R is radius then the equation of the sphere is (¢ — R)? = R?.

Remark:
(¢ —7).kn =1 fromwhich p = k71

The radius of the osculating circle is |p| = |k

p is called the radius of curvature of the curve at p. Note that 'p" may be negative.

The center of curvature is the center of the osculating circle and its position vector is given by

¢=7+pn.

o = 71 is called the radius of Torsion.

Example 4:

Derive the equation of osculating sphere and its center and radius.
Solution:

Let ¢ = the center of osculating sphere

And R = the position vector of a general point of osculating sphere

R = the radius of osculating sphere.

Then its equation is (¢ — R)? = R? .............(1)

Then let the equation of the curve be R = 7(s) ....ce oo (2)
To get the point of contact of (1) with (2)
ZF()=(C—-7)?—-R?>=0 .o ceee.. (3)

Condition for the point to be four-point contact is
F'(s)=F"(s)=F"(s) = 0and F®(s) # 0.
Difterentiate (3) with respect to ‘s’ we get,
F'(s)=2(c—-r)(-7) =0

C€—1Mt=0 v (4)

F'"(s) =2[-t.t+(c—7).kn] =0

[-1+ (c—7).kn](2) =0
[-1+(—-Mkn] =0

(c-Prn=1

1
(c—r).n—K—p
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(E=F)A=p e (5)

And F""(s) = 0 + [(—D)(kR) + (¢ — D' + (€ — Pr(th — k)| = 0

[~ 7" = b — Kt]
K'(C—7).a+k[t(—Fb—x(c—-Mt]=0
K'(€—7).a+xt(€—7).b—0=0
[+ (4)]

(i) k' (—7).A+kt(E—7).b=0 ..owu...(6)
(—P)b = k'(c—7)n

KT
Equation (4) show that (¢ — 7) in perpendicular to £
It lies on the normal plane.
c — 7 can be expressed as
C—T=Ab+un . (7)
Taking dot product of (7) with 7,
(¢—7).7n=(Ab + pun).7
p = pn.n [+ (5)]
p=u
Taking dot product of (7) with b,
(¢—7).b = (Ab + un).b
EDCER) Z 3.5 [+ a5 =0]

—K'(e=na _ A~ (6)]

“p=2[ (5)]

Substituting A and u in (7) we get,

e ep . [ 1
=pﬁ—%pl§
mrpr s ()
= pi +op'b

(iey¢ =7+ pin+op'b

This gives the center of osculating plane (sphere) It is called as center of Spherical Curvature
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(c-7)? =(@-7)-(c-7)
= (pii+ap'b) - (pfi + 0p'D)
= p? + (0p)? [+ (€~ 7)? = R?]
Radius of the osculating sphere in
It is radius of Spherical curvature.
If x is constant, then p’ = 0
= ¢—F=p[c—7=R]
Note:
1. Q: Prove that the osculating sphere at a point on a curve & derive the formula for its
center and radius (or)
Define osculating sphere and obtain expression for center of curvature and radius of
curvature.
(or)
Prove that the center of curvature of the pt. y of gen. curve in the pt. 7 + pn + p'7b.
2. Center of spherical curvature = ¢ — ¥ = pii + op’b

3. position vector ¢ = 7 + pii + ap’b

4. Radius of Spherical curvature = R = (p? + ozp’z)%
Locus of the center of Spherical curvature:
As the point p traces out a curve c, the corresponding center of spherical curvature traces out
another curve c;, whose curvature and torsion are simply related to the curvature and torsion
of the original curve c.
Example 1:
To obtain the focus of center of spherical curvature. (OR) Relation of ¢ & C bet'n the
curvature & Torsion.
Proof:
Let c be the given curve and ¢, be the locus of center of the osculating sphere.
Let the suffice unity denote the corresponding quantities for the locus c.
Thus #; denote the position vector of a general point on c;.

(i.e) 71, is the position vector of center of spherical curvature

1
T ==
g

SO, 7 =7+pa+p'ch oo (D[ px=1>p=

X IR

Differentiate (1) with respect to 's'
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TR

% =7 +pin' +p'n+ao'p'b+p'cb+pob

dry ds; F A r= I \'h ’ =
— . —==t+pb—«kt)+p'n+(p'c)'b+p'o(—1h)
ds, ds

ds, —

h=t+ pth — pxt + p'n + (p'c)'b — p'oti
=t+pth— ()t+p'b+ (p'0)'b— p’aiﬁ
=t+pth—t+p'n+(p'o)b—pn
=pth+p"cb+p'a’h

sit, = [pr+p"c+p'c’] b

Squaring (2) on both sides,

_ _12
(51,802 = [[pr + 0”0 + p'0B]

= (sp?=lpr+p'o+p'd']....(3)
Equation (2) shows that £, is parallel to b.
-~ Lett; = pb-----m--- (4) where p = +1.

Differentiate (4) with respectto ' s ".
a _ hh
ds
a ds_ o oo
ds, ds - p( Tn)
=>(K1My) - S; = =PI weecer eee e (5)

Equation (5) shows that 7, is parallel to i

~ Letn, = p;ft..e ... (6) Where p; = 1
Substituting (6) in (5),

(5) = Kk p1517 = —pTNL.

= K1p1S1 = —pT

> s = K‘l’;l BN )

We know that, b; =, X 71, [+ b =t X 7]

= pb X p17i [ by (4) & (6) ]

=pp(bXxn)[*nXb=E

(i.e)b; = —ppit oo (8)[* b x 11 = —1]
= by is parallel to £

= Differentiate (8) with respect to 's',

(b)) = —ppy

d T d51

—(b1) —= = —pp1(kn)

ds ds
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e =
bis; = —pp; (kit)

—TyMyS; = —pp1kN

T1p1MS] = PP1KT

= T,5; = pK

1 _ PK
ﬁSl—;

From (7) & (9) we get,
_ T _pK

k1p1 T1
-T _ K

kip1 T
= T = _kk1p1

if P11 = _1,

The product of

(i.e) The product of the torsions } = { the curvature it p; = —1 at corresponding points

then = =X

T1 K1
(ie) kk; = T, Which is required result

whenp; = —-1&p =-1

ds; , kK T

e T S
o =51 T (*)
Note:

If pac~1+ 0'p’ + op” = 0, then then corresponding point on p, in a singular point.
Theorem 1:

If the curvature k of c is constant, then the curvature «, of c; is also constant.
Proof:

Since k is constant.

1.
= p = = is also constant.
K

- pl — pll — O
= From equation (3) we have,
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= [pt + 0]?
= p272
dsy _
ds_pT
T 1
=i lr=1]
dsq T
= — = -
ds k

(But from (*))

Thus = ===k = Kk,
K K1

(i.e) k4 is also constant.
Theorem 2:

The radius of curvature p; & radius of torsion o, are given by.
d ' 2 d '

pr=p+o--(op)anday =%+ p—(ap)

Proof:

From equation (*)

s1 _ T

dS_K1

LA _1.ds i
=12 (using eqn (3))

— g [g + (Gp’)’]
pr=p+a-(op")
Similarly using (*),

2
_P d ,
01 = o +Pds(0P)

Example 2:
Prove that the radius of curvature of the locus of the center of curvature of a curve is given

by,

-1/2
{Pzai(a_p') _ 1}2 n p'o, /
R3 ds\ p R p2R*

where p, g, R have the usual meaning.

Proof:
Let the suffix unity be used to distinguish quantities belonging to the locus of the center of
curvature of the given curve.

~ If r; denotes the position vector, the center of curvature then,
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L)

Fl = f + pﬁ- ............ (1)
Differentiate with respect to 's', we get,
ﬂ d51

s, ds =7 +p'n+pn’

%E1=f+p’ﬁ+p(rl3—rcf)
=f+p’ﬁ+prE—pKf['-'p=i]
=f+p’ﬁ+§5—f[r=ﬂ

—ta Py
pn+ab
dsy - P
=t = ;[pn+b]
:% %tl ——pn+b N )

Squaring (2) we get,

o[22 = [Zptn o]

p ds
:p_(dsl) ()_”zp'2(1)+(1)+2"” fi-b
i _ _
=%P2+1[':ﬁ2=ﬁ-ﬁ=1andﬁ'b=0:t2= ]
o2 (ds, a?p"?+p?
(le)pz(ds) T p2

2 2
> (%) =52 +p?) = 5[ R? = 0% + p?]

Where R = The radius of the osculating sphere.

. dS]_ R

== i (3)

ds g

Differentiate (2) with respect to 's’ provides,

o ds; dt d o dsi| -
L.H.S:_._l._1+_[_._1]t1
p ds ds dslp ds

_ o d51 dtl dSl d [U dsl]
- p ds ds; ds ds 1

o[dsi]?dty , d[o ds;
=—|=| ++— &
plLds dasq ds lp ds

p ds
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_ o[dss odsi)

—p[ds Kefly + 2 [p e (2R
o ,dn d ap] =

RHS—ppd+dS[p + b

= Zp'[th — t] + =[] i - v

_ !
=Erb—ﬂkt+—[—]ﬁ—rﬁ
dslL p

p p
=%rb—“7"'xt+[%[“7”']—r]ﬁ e (5)
.-.%[%]le 1+dS[Z‘ZS; t1=——1ct+[ [—]—T]Tl'l'%‘[b U ()

= The vector (X) product of (2) and (6),

2
odsy o |dsq odsq
——1t, X —[— K ]t
p ds 1 [p ds 11-I-dspds 1

= [%p’ﬁ+5] X [—%Kt+ [E[T] —T]T_l-l-%‘[b]

:é(%mm—- o) o - (2] ]
p'ZKb+ prt—%p,;cn—[ —] T]E
(8 = s [ 2]

Squaring on both sides,

o4 (ds;\° a4 2 a?p'? d [op’
—4<—1> K%:FP’4K2+O'ZZ—2K2+[ P r——[—pl+rl

p*\ds p? ds

R6 :0_4 4K2+ ZpIZK N Uzplz_l_i
a2pipl  p*’ p?

- ’ a2p"? o2p? + ap
=Fp4-;c2+ e K2+[
B p20.4—p/4-K2 + p40.2p12K2 O'p 0.2 /2
B p° ds

pZO.ZpIZKZ[ 2 /2 + p O'p 0.2 /2

p* ds

R6 ZpIZ[ 2 12 + p O.p O.

o?p*p} ds
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1 p*a? [azp [02p2+p? ] [ [a’p
p2 RS p2 ds

04p P o?
ezl 2
2

RNV [ ap] _ro B
pi  p*R* R3 op?

1 oip'? Gp' 1 2

P2~ p2R* 2R4 ] "R

CIZ ! 1 _1/2

_ o ap _ 1

= wemt T l l ]l Rl
Example 3:

If the radius of spherical curvature is constant, prove that the curve either lies on a sphere or

has constant curvature.

Proof:

We know that Radius of the spherical curvature is given by,

R?=p%+(p'0)?> ............ (1)
Given R is constant = z—f = 0.

Differentiate (1) with respect to 's'

d ! ! ! !
2R -5 =2pp" + 2(p'0) (p'0)
! d !
0=2p [P"‘UE(P 0)]

= either 2p’ = 0 (or) p+a%(p’a) = 0.

If p' = 0 = p = constant.

= % = constant
(i.e) the curve has a constant curvature.
Ifp + ai[p’a] = 0.
then o [E + % [p’a]] = 0.
== + [p ol=0

= A curve lies on a Sphere [ by Ex(3)]

51

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Example 4:

If a curve lies on a sphere. Show that p & ¢ ane related by % [a,p] + g = 0. (or)

Show that N and s condition that a curve lies on a sphere is that g + % [p?] = 0 at every point

of the curve.

Proof:

Necessary part:

Assume that the curve lies on a sphere.

= The osculating sphere of every point of the curve is nothing but the given sphere itself
~ R is the radius of osculating sphere (i.e) The radius of sphere curve is constant
We know that, R? = p% + p26? ..........

[R = constant impliesz—f = 0]
Differentiate (1) with respect to ’s’,
ZRZ—ISe =2pp’ +2p'p" 0% + 2p'%oc0’
=2p'lp'p"0* +p'c'a’]
0=2p'[p+0clp"o+p'a'l]
0=2p'[p+0<(p'0)]
0=2p'c [g + :—S (p’a)]
:>§+%(p’0) =0[+0o#0]
This is required condition.
Sufficient part:
Let §+ %(p’a) =0 i (2)
> a[§+%(p’0)] =0[~o+#0]
(ie) p + a%(p’a) = 0.
(ie) 20" |p'0" £ (p'0) | = 0.
(o) pp’ + (') £ (p'o) = 0.
> Sl2+ (o =o.
= p? + (p'0)? = constant
= R? = constant.

Where R = radius of the osculating sphere. Thus the radius of the osculating sphere is

constant
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We know that,
The cube of osculating sphere is given by,
c=7+pn+pob

Differentiate with respect to ‘s’,

Z_f =7 +p'n+pi' + (p'o)b+pob
S = E+p'+ p(th — kE) + (p'0)'b + (p'0) (—Th)

=t+p'n+pth—pxt+ (p'0)'b + (p'c)(—1N)
=t++p'n+pth—p (i) t+ (p'0)'b+ (p'o)(—th)
=p'n+pth+ (p'c)b—p'o- iﬁ

=p'th+ (p'a)'b

=lor+ LGB by @]

dé _
= == 0 = ¢ = constant

3]

(i.e) cube of the osculating sphere in constant

From (3)and (4)

We conclude that, The osculating sphere is same at every point of the curve.

=~ The curve lies on a sphere.

1.7.Tangent Surface, Involutes And Evolutes:

A tangent space curve C determines two infinite systems of curves which are the invoutes and
evolutes of ‘C’

The theory of evolutes of space curves is essentially different from that or plane curve. a
plane curve has a unique evolute while a space curve has infinitely many, the evolute of a
plane curve is offer defined as the locus of its center of curvature but it will be seen that
neither the locus of the center of curvature nor the locus of the center of Spherical curvature
are evolutes of a space curve.

A natural generalization to space curves of the concept of involute of a plane curve and once
an involute of a curve ¢ has been defined, it is natural to define C to be an evolute of ¢.
Tangent Surface:

The tangent surface of a curve C is the surface generated by lines tangent to c. Any point. 'p'
on the tangent surface is determined by two parameters's "and ' u .

Where ' s ' is the arc length of C measured from some convenient base point on the curve to a
point where the tangent pass through P and ' u ' measures the distance of ' p ' along this

tangent.
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The position vector of ' p ' can be written asw

R(s,u) = 7(s) + ut(s)

Additional relation bet'n "u "and ' s ' of the form u = A(s) determines a curve which lies on
the tangent surface of ' ¢ ".

The class of the curve being the same as the class of 4 (or) C, whichever in the Smaller.
Involute:

An involute of c is a curve ' ¢; ' which lies on the tangent surface of ¢ and intersects the
generators orthogonally.

Example 1:

To derive the equation of involute of the given curve.

Solution:

Let ' ¢ ' be a given curve with eqn. 7 = 7(s). Let 'c; be the involute of ' ¢ .

we shall use the suffix unity to denote the quantities belonging to c;

Let P, be an arbitrary point on c, then OP, = OP + PP, [R =r,].

r =7+ A(s)t

Differentiate (1) with respect to ' s;

M~ 2 [y 4 A(s)t]

dSl o dS]_
d _ — ds
= E[T +A(S)t]d—51

o f =[S+ XE+a7] —:jl
l.e
I = [E+ Xt + A7) :TS N )

1
Taking dot product of (2) with ,
— - ’ E
t;-t= (1+/’1)ds1
But t, is perpendicular to t,
.0 = n 4s.
~0= (1+/’l)ds1

5L 20:.(1+)=021=-1
dSl
i

=-1
ds
(or) dA = —ds
>1=-s+c

where ¢ = constant.
Substituting in (1)

~()=>1r =7+ (c—s)t
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(ie)R =7+ (c — 5)F

This is equation of involute of ' ¢’

This equation represents an infinite system of invotutes of ' ¢ ', a different curve arising from

each different choice of the parameter ' ¢ .

Example 2:

To derive an expression the curvature & torsion of the involute, (or) Show that the torsion of

p(ap*=a'p)
(p2+02)(c—s)

an involute of a curve =
Solution:

We know that the equation of the involute
n=7+(C—-5)t e (D)

Differentiate (1) with respectto s, ',

() = -+ (e =) = [T+ (e~ )T o>

t, = [—+(—1)t+(c—s)t]d—s1 (-.-fzr"zt

t; = [(c — s)kn] (ds ) S )|

d51

Taking dot product of (2) with itself.
t; -t = [c(—s)xﬁd—s] . [(c - s)lcﬁ:—;].
— _ 2,.2
1 (C S) (dsl)

1
(& 02 = g e 3)

dS]_

(2) shows that t; is parallel to 7.

Differentiate (2) with respect to s;

o ;i (e = sem) (F)]
Sle—smm| =

KTy = [( 1)Kn< )+ (c — s)kn' (:S) a5

asq
ki = [—kn + (c — s)r(th — Kﬂ] (E)Z

k1M, = (c — s)x(th — ki) -

(c- S)ZKZ
. (4)
Taking dot product of (4) with itself,

tbh—«kt

KNy = ——
171 (c-9)k
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(r17y) - (ky.7y) = [“5"‘5] . [TB—KE]

(c—-9)k (c-9)k

2 _ T?+K?
Ky = (omsyZiZ (5)

We know that, b, = £, X 7y

th—kt
KkKq1(c—s)

b, =7 X [ ] [ t, is parallel to 71]

(i.e) kxy(c —s)by = (A X b) — k(A X t)
ki, (c —s)by =1t + kb .............(6)

Differentiate (6) with respectto ' s’

d [KK1 (c — s)b;| = —[tt + Kb]
{ [Krc, (c — s)]} b1 + (KK1)(C —s)b; = i [Tf+ kb] (E)
{ (KK, (c — s)]}bl + (k) (c — s)T Ay = [T +1t' +x'b+Kkb] ( )

{% [kk,(c — s)]} b, — kx,(c — s)T7y = [T f+ thii+x'b — ktn]
1

d = _ e i1 d
{d_51 [kky(c — s)}b, — KKy (c — s)Tyny = [T’ + Kk'D] d—; N ¢

Taking dot product (7) with (4),

rE—xf] ) [T’E+K’E]
(c-s)k

s )| [ Gorae = 0] - mante = 9, = |

(c-9s)k

—kK2(c—s)Ty = m [Tk’ — k1']
okt -

R O

(k' —x") ) K% (c—s)?

Kk3(c—=s)3  (12+k2)

=K L (8) [ (5)]

17 k(z24K2)(c-s)

Equation (5) and (8) gives the values of ;& 7, of the involute respectively
Evolute:

If ¢, in an involute of c, then c is an evolute of ¢.

Example 3:

To derive the equation of evolute.

Solution:

Let ¢ be the curve & c¢ be the evolute of é.
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LGS ) s

Let P to the point on ¢ corresponding to the

Then P must lie in the plane through Q normal to ¢.

point Q on ¢.

If R, ¥ denote the position vectors of P, Q respectively then the equation of ¢ is

0Q = 0P + PQ
R=7+2Ab+ Ui oo (%)

[+ PQ is perpendicular to the tangent at P. So it lies on the normal plane].

Differentiate (*) with respectto's; "

[we use the suffix unity to denote the Quantities belonging to the evolute c ]

dR . _  __ds
7+ Ab + unj

d_s.1=E[ d—SI[R=T1]
E-—FF+XE+AE+ S
17 lds pnopn ds,

- - — _ _ _ ds
t; = [t +A'b—tnA+u'n+ u(th — KQ]E
1
_ — _ _ . ds
= [t + A'b —tAn+ p'f + uth — K,ut]—
ds;
- _ , — , 4 ds
t; = [(1 —uw)t+ QA +u)b+ (U — Tﬂ)n]g
1

t, is the tangent to c at Q.
~ Itis parallel to Ab + un( t; = Ab + un)

Thus we get, coefficients

0 " D e

1-uxk -2t AM+ur
= = (1)

-'-l—uK=0:>1=uK:>,u=1=p ............ (2)

(ieyp=p
=~ from (2),

u' -t _ A +ut

u s

A A T
ok _ X
7 A A
Ap'—u! _ A2r+u’t

Au - Au

A’ — ur = 1[2% + u?]

Au' —
>T =iz T
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Ay’ — pd di | 1 d
=m [a[ta“ (3)] Wd—x(ﬁ)]

(A’ —ua') /22
[1+ (u/D)?]

(ie) T=

T U
(i.0) ¢ = —[tan"* (/)]

Integrating on both sides,

[ tds+a= tan‘lg where a = constant.

[ tds + a = cot™*[A/u] (or) cot[f zds + a] = A/u

(i.e) pucot[[ tds+a] =2

(ie) peot[f Tds+al =2 e (4) [ (2)]
Sub the values of u & 4 in (*)

~R=7+pan+pcotl[ tds+alb .........(5

This is the equation of evolute. where ' a ' = constant
Note:

From equation (5) we get,

The locus of the center of curvature of a space curve is not an evolute.
Example 4:

Show that the involutes of a circular helix are plane curves.
Solution:

We know that the equation of the circular helix is ¥ = (a — cosu, asin u, bu) and
a b

T 22t T e
~ k' =0and t' = 0,7, = the torsion of the involute = 0
= Involute is a plane curve.
Example 5:
Find the equation of the tangent surface to the curve 7 = r(u, u?,u3?) ... ... .. ..... (1)
Solution:
Equation of the tangent surface is,
R(u,s) =7 +ut(s) ......ooeoon... )

Differentiate with respect to 'u ',
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ar
du

(1,2u, 3u?)

ot Gz

7l VitauZ+out
Equation of the tangent surface,

r

.5 = (1,2u,3u?)
~R(u,z)=7r+u [—W

s=|r,=s= |d—y|

ar

where, s = |r|,= S =
du

S =+V1+4u?+9u?
Example 6:

Prove that the locus of cube of curvature is an evolute < when the curve is plane

Solution:
We know that the equation of the locus of the cube of curvature is,

L =7 +ph... .. .....(1) and equation of the evolute is

R =f+pﬁ+pcotUrds+a]b.............(2)

Comparing (1) & (2) we get,

pcot(y + a)b =0 wherep = [ 1ds
(i.e) pcot(yp +a) =0.(+ b # 0)
(ie) cot(p+a)=0(p #0)

(ie)

Y+a=cot™10

1/)+a=nz—n
Y="-a

[ tds = nz—n —a
Differentiating we get, T = 0.
Thus locus of cube of curvature is an evolute when 7 = 0.

(ie) when the curve is a plane curve.
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1.8.Interinsic Equations, Fundamental Existence Theorem for space curves:

If the same curve be referred to a different set of Cartesian axis, then the defining equations
are quite different and it is by u, means obvious that they refer to the same curve.

Intrinsic Equation (or) Natural Equations:

The intrinsic equations or a curve are of the form, k = f(s),T = g(s), which express the
curvature and the torsion in terms of the arc length.

Theorem 1: (Uniquiness Theorem for Space Curve)

Let ¢ & c; be two curves defined in terms of their respective arc length ' s " and Let points
With. the same values of ' s ' correspond. Then if the curvature and torsion of ¢ have the same
values as the curvature & torsion at the corresponding pis of c,, then ¢ & c¢; ane congruent.
(or)

The curve is uniquely determine except as to position in space when the curvature and torsion
are given functions of its arc length.

Let c; be moved. So that the two pts on ¢ and ¢, corresponding to s = 0 coincide.

Suppose that c, is suitably oriented so that the two trials (£, 7, b), (E, ny, b_l) Coincide at s =
0, then, we have %(tl, t)=t -t;+t-t;.

It is possible.

Let it be two curves c and ¢, having equal curvature x of equal torsion curve t, For the Same
value of s.

Let the suffix unity le west for quantity belonging to c;.

Now c; is moved,

So that the 2 points on ¢ & c; corresponding to the some value of coincide.

we have,

LE )=t -F+E-E

ds 1 1 1
:Kﬁ’fl‘l'f”clﬁl

= knt; + -k, (v kK = Kq)

S (EF) = k[iLE +E7y]

a - -~ =1 = = =/
—(n.n)=n"-n,+n-ny

ds

:(TB_Kt_)'ﬁl +ﬁ,’(T151_Klfl)

= (th — kD), + A(thy — Kt;)
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e

%(ﬁ -7y) = [¢(bny + b_lﬁ) —k(tn, + t;.n)]. [v T =1, and k = K]

similarly, == (b - b;) = (=t)by + b - (-7 - ;)

%(5, El) = _Tﬁ51 + TET_ll

= _T(ﬁ51 + Eﬁl) ('o' T = Tl)

a%ﬁia+ﬁﬁﬁ+EﬁJ=KM¥E+£ﬁﬂ+rw4n+@-ﬂ
—k[t, 7, + E, il — t[t- by + b - 71y

=t-t;+n-n, +b-b, = constant .............. €))

we move ¢, in such away that at s = 0, The two triads (£, 7, b)&(#;, 2y, b, ) coincide then,

~()=>t-t,+n-1,+b-b; =3 (whens = 0).
But the sum of the 3 cosines is equal to ' s ' If angle in zero (or) an integral multiple of 2 (ie)
t=t,n=my,b=hb
Thus gives 7' = 7

(o) 5-(F—7) =0

=TI —71; = constant.
Butats =0,7r =1,
~ 7 = 1; at all the corresponding points.
Hence the two curves coincides
Theorem 2:
Fundamental Existence Theorem for Space curves.
If x(s), T(s) are cts, functions of the real variable 's', where s > 0, then there exists a Space
curve for which k is the curvature, 7 is the torsion, and 's' in the arc length measured from
some suitable base point Such a curve is uniquely determined to within a Eudidecen motion.
Proof :

Using the given functions k(s) & t(s). we form the following differential equations,
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da \

= =B

ab _ .,

5 =T Ka,} ........... (1)
da

=" )

We know that the system (1) has a unique solution.
(@, By, vy) for any given initial condition s = s, = 0
In particular for the given initial condition a(s) = 1,5(S) = 0,y(S) =0ats = 0.
(1) has a unique solution.
Denoted it by a4, 51,V
Similarly for the initial condition,
) =LL)=0,y(S) =0ats=0
Let the solution of (1) be a5, B,,7-.
Again for the initial condition,
a(s) =0,B(s) =0,y(s)=1lats =0.

To prove that:a? + B +y# =1
af +pF+y:i =1
af +p+yi=1

. d '
Consider, —[af + Bf + ] = 2[ayai + b1 B + 1171

= 2[a,(kfy) + B1(ry1 — ya) + ay (—TB)] [+ (D]

= 2[ayyB; + B1v1T — Prkay — ay By7]
= 0.
= a? + B2+ yZ = constant ............ ()
Butats =0,a;, =1,6,=0,y, =0.
Substitute in (2).
(2) = 1+ 0 + 0 = constant = constant = 1.

Sai+ B+ =1

Similarly, aZ + Bz +y2=1; wveeeee. (3)
as +ps+yi=1

a0y + P1f2 +v1v2 =0

Similarly, a2a3 + ﬁzﬁ3 + y2y3 = 0 tes ses wee seen .(4)
azay + P30 +v3y1 =0
a B v
A=la, B, v,|isorthogonal
as Pz vs
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(ie) AA" =1

Where A" = The transpose of A.

Since the columns of A are Linearly independent.
= A is non-singulas.

(ie) A1 exists

=~ pre-multiply (5) by A~1.

(5)=> A1AA" = A1,

= A =A"1l
.'.AA_1=I
a, a; azlfa; B1 o 1 0 O
(e) |Br B2 Ba|lay B ax[=[0 1 0
Yi Y2 Villas B3 a3 0 0 1

a?+at+a?=1
pi+p:+pi=1

a1B1 + azf, + asf; =0
a1y + azy; +asyz =0

Biv1 + B2y2 + B3ys = 01
It follows that there are three mutually orthogonal unit vectors

putt = (aq, ay, as)
‘rz' = (,81) ,821 ,83)
b = (xq,x5,x3)

The relation (6) show that the 3-values

b are unit vectors, and they are 3 mutually perpendicular vectors.
S
f tds
0

Then 7 = 7(s) is the position vector of a point on a curve which has,

T
t as tangent vector

7 as principal normal.
b as binormal,

K as curvature,

T as torsion.

s as arc length

This proves the existence of the required cure.
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=) =7
Example 1:

Show that the intrinsic equations of the curve given by
x = ae%cosu,y = aeYsinu,z = betare
V2a 1 b 1
o= (2a? + b?)1/2 st (2a + b2)1/2 5"
Proof:
Given x = ae“cosu

= X = ae“cosu + ae*(—sinu)
= X = ae%[cosu — sin u]

given,y = ae%sinu
=y = aeYsinu + ae*cosu
= y = aeY[sinu + cosu]
given, z,, = be"
~ 7 = (ae*cosu, a e¥sinu, be u)
¥ = (ae*[cosu — sin u], ae*[sinu + cosu], be u)

I7] = \Ja2(e®)?[cosu — sinu]? + a2(e*)?[sinu + cosu]? + b2(e%)?

= e%/a?[cos? u + sin2 u — 2 cos usinu + sin? u + cos? u + 2cog[usinu] + b2

= e%\/a2[2(cos? u + sinZ u)] + b2
|7] = e*\2a? + b?
LS = [e”\/m].
s=["_ e*(V2aZ+b?)du
= \/ZaZ—-I—bszoo etdu
=+/2a% + b2et =$

S$=S5 (1)

— 7 _ (ae%(cosu-—sinu),ae”(cosu+sinu),be*)

r'=—=
ev2a2+b?

|7

Pl o= e%(a(cosu—sinu),a(cos u+sin u),b)
etv2a2+p?
f,::(a@osu—ﬂnu)a@osu+ﬂnu)b) ".".".".".(1)
V2aZ+p?
. [(a(—sin u—cosu),a(—sin u+cos u),O)] du
V2a2+b? ds
(—a(sinu+cosu),a(cos u—sin u),O)%

V2aZ+p?
Taking modulus on both sides and squaring,

Kn =

64

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



~(3)=>s7" = ﬁ (—a(sinu + cosu),a(—sinu + cos),0) ...........(4)
s +1's = x/mlﬁ (—a(cosu — sinu), (—a(sinu + cosu),0) ...........(5)
$8 X)) = ——(0,0,2a%) oo (B)
T J k

—a(cosu +sinu) a(cosu—sinu) 0
—a(cosu —sinu) —a(cosu+sinu) 0

= k[a?(cosu + sinu)? + a?(cosu — sin u)?]
= k(a?2)
Taking scalar product of (2) & (B),

2
3=l =11 =117l 2a°b
S3F, 7, 7] = Garip? )l
2
3 2 _ 2a“b
§3(r*r) = (2a2+b2)3/2
s32a%t 2a%b
(2a2+b2)s2 ~ (2a2+b?)3/2
b
S>5T=———
T S(2a%+p?)1/2
1.9.Helices:

Cylindrical Helix:
A cylindrical helix is a space curve which lies on a cylinder and cuts the generators at a
constant angle.
Its tangent makes a constant angle ' « ' with a fixed line known as the axis of the helix.
Note:

1. Helices more general than cylindrical helices.

2. Helix mean cylindrical helix. (in this book).
A characteristic property of Helices:

The ratio of the curvature to the torsion is constant at all points.
(ie) g = constant.

Proof:

Let @ = a unit vector in the direction of the axis of the cylinder.
then,t-@a=cosa ............... (1)

Where a = constant angle.

Differentiate with respect to ‘s’,
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= =%
t'-a+t(0)=0.
kn-a=0
=>n-a=0(~k # 0) = nisperpendicular to a.

This shows that the principal normal is everywhere perpendicular to a the generator But
principal normal is everywhere perpendicular to the rectrifying plane,
ca =AM+ub .. (3)

=>cosa =41
(3)b=>a-b=At-b+ub-b
=>sina=0+u
=>sina=u
~(3)=>a=cosat +sinab
Differentiate with respect to 's,

a' = cosat’ + sinab’

0 = cosa(kn) + sin a(—1n)

0 = (kcosa — tsin a)n.

= 0 = kcosa —tsina [+ n # 0]

= KCOosSa = TSin«
K _ sina

T cosa’

= E = tan ¢ = constant
Remark:
Converse is also true.
(ie) Ifg = constant for a curve then it should be a helix.
Proof:
Given g = constant = ¢ (say)

K=CT

We know that

t' =kn

=cTn

= —cb'[~ D' = —tq |
>t +ch =0

dt db
—+c—=
ds ds

= 0
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d .— —
= g [E+cB] =0
=t + cb = constant = a( say )

Taking scalar product of each side with ¢

~t-t+ch-t=a-t
1+0=a-t
= a-t=1= constant

(i.e) the tangent at every point of the curve makes a constant angle with a fixed vector Q. -
The curve is a helix

Circular Helix:

A circular helix is one which lies on the surface of a circular cylinder, the axis of the helix
being that of the cylinder.

It the z-axis is the axis of the helix, the parametric eqn. of the curve is

X = acosu,y = asinu,z = bu, wherea > 0

~ 7 = (acosu,asinu, bu)

If b > 0, then the helix is right hand.

If b < 0, then the helix is left hand.

In circular helix, both x & T are constant = E is constant.

1 1

—=p= asecza,—= 0 = acoseca seca|.
K T

Note:

The pitch of the helix = 2mb = The displacement along the axis corresponding to a complete
turn round the axis.

Example 1:

Prove that the helix at the constant curvature is necessary a circular helix.

(or)

For any general helix ' ¢ ' there is a simple relation bet' n its curvature & that of the plane
curve ¢, obtained by projecting on a plane orthogonal to its axis.

Proof:

Let ' ¢ ' be a general helix and ' ¢, ' be the curve obtained by projecting' ' ¢ '. on a plane
orthogonal to x-axis.

To prove that: The projection is a circular & hence the helix is a circular helix we use the
suffix unity to denote the entire belonging to 'c1'

Let' P 'be a pointon c and' Q 'be a corresponding pt of C;.'
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{ER

OP =0Q + QP
F =7+ (F.a)a

Differentiate with respect to 's’,

_.a a
ds ds, ds

ar _dr ds [dr‘ ]
ds

.\ - d s 1=

(le)t=t1-£+[t-a]a

— ﬁ _
1 ds+(cosa)a e e (1)

2
ds
:1—c052a=(—1)

2
. ds

= sin?a = (—1)

ds

= % =sina ...........(2)
Substituting in (1),
t=t; sina+acosa
Differentiate with respect to 's".

dt _ dty

=—sina+0
ds ds,
dt dt, ds .
_:_1._1.Slna
ds ds; ds

t' =1t} -%sina [+ (2)]
kin' = k7, (sin @) (sin a)
K7l = Kk,7,Sin? a.
7 is parallel to 77; and k = K, sin? «
Given that helix ' ¢ ' has a constant curvature k
~ Kysin? @ = k = is also constant
= K, is also constant.
Thus the plane curve c; is such that its curvature k; is constant
. ¢y isacircle
Thus c is a circular helix
Example:
Definition: Spherical Indicatrices

[The locus of a point whose position vector in the tangent vector ¢ to a curve y is called the
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Spherical Indicatrisc of the tangent to y.]

Prove that the tangent to the indicatrix is parallel to the principal normal at the corresponding
point of y. Show that the curvature k; and the torsion 7, of the indicatrix are given by,

(k% +12) _ (kt' — k')

2
K T, =
1 LT k(k? + 12)

K2
Proof:
From the definition of the Spherical indicatrix.

We note that "Let ' 0 ' be the center of the unit sphere. Let us dram "0’ the unit tangent vectors
If the different points of y in the positives direction of ¢ then the curve traced on the unit
sphere by the extrenities of the unit tangent through ' O ' is the spherical indicatrix".

Then, 7, =t

Differentiate with respectto ' s; .

arp _ at
dSl_dS1

dt ds

(ie) t, = o a5

F — FI
>t =t d_51

- _ ds dsq
>ti=Kn— |v—=K
dasq ds

>t =1 ...........(1)(.°.ﬂ— ) N )

=K
ds
~ (1) = The tangent to spherical indicatrix is parallel to i of y.
To find: x,

Differentiate (1) with respect to s, ’,

ay _ d o
d51 - d51 (n)

Ky = % (n) (:—;)
i,y = (b — Kt). (i)
Taking dot product of (3) with itself,

(1, 70)  (q, 70) = 5 (2 = ) (vh — KE)
= K? =K—12(1'2 + K2)

To find 7, :
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="

Dx@3)=

Elx;clﬁlzﬁx[

‘L'B—kf]
K

- tt+xb
Kiby =

ki, b=t + Kb
Differentiate with respect to 's, ',

L [kK,]b + kK by = ﬁ [tt + kD]

dsq

d — — I /) AN B ﬂ
o [1cre;1b + wie; (—7478,) = [¢'E + 2’ + 'b + Kcb'] (dsl)

disl [krc,]b — TRy KKky = [T/ + T7 + K'D — kTR (;_si)
disl [KK1]B — TN KK; = [‘[:f + K’E] R () [ :_551 _ K]

Taking dot product of (3) with (4)

(tb—ktr) (T’f+l€’5)
K

—T, K%Kk = p

= Kl—z (k' — k'1")

Kkt —tK’

T =
1 K3K32
7. = [k’ -kt 5 r24K?
17 3(e2472) T 71 T g2
_ (rt'-k'7)
17 e c2+12)
Example 1:

The locus of a point whose position vector in the binormal b of a curve y is called the
spherical Indicatrix of the Binormal to y.

Prove that its curvature k, & torsion 7, are g". by

5 (k% +12)
K =
2 TZ )
(tk; — kT')
T =
27 (k? +12)
Proof:

Let y be the given curve with equation,

T =7(S).

Let 7, be the position vector an any p*. on the Spherical indicatrix.
then 7, = b.
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Diff wi. to ' s,

ar, _ db
das; - ds,
. —_ db ds
(le) t, = R d_sz
. —_ _ ds
(ie) t, = T,
= Ez = _ﬁ fen wen wae s (1)
ds, @
ds

(1) = the tangent to spherical indicatrix is parallel to 7 of y ,
To find x4:

Differentiate (1) with respectto's; ',

dt, _

ds; = ds, [_ﬁ]
= o =l [ by ()]
(i) koTy = (—7h + Kt) = oovvv e (B)[+ ' = 7D — KE]

Taking dot product of (3) with itself,

24,2
T°+K
K%_

72

To find 7,:

(1) X (3) = &, X Ky = (—10) x [22]
tt+kb
T

Kb, =
(or) kb, = 1t + Kb;.
Differentiate with respectto 'S, .

i [Tkzlsz] =

dSZ

d _ —
o [Tt + kb]

d - I A T = ds
=, [ti,1b, + THoby = [¢'C + tE] + bk’ + icb’]d—s2

= [t'E+ kA + K'b + K(—Tﬁ)]ﬁ
dSz
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UNIT 11

Intrinsic properties of a surface: Definition of a surface — curves on a surface — Surface of
revolution — Helicoids — Metric- Direction coefficients — families of curves- Isometric
correspondence- Intrinsic properties.

Chapter 2: Sections 2.1 - 2.9

2. Intrinsic properties of a surface

2.1.Definition of a Surface:

A surface is a locus of a point' P ‘which satisfies a relation or the form

F(x,y,2) =0.......... Q)

This equation is called the implicit or constrained equation of the surfaces.

An explicit form in which the coordinate of a point on the surface are expressed interns of
two parameters.

The parametric or freedom equation of a surface take the form.

x=fwv),y=guwv).

z=hWwv) .............. 2

Where u and v are parameters, where k is real value on the vary freely in some domain D.
The functions g, f, h are single values and continuous to passes continuous partial derivatives
of r'" order. In this case, the surface is said to be of class r. parameters Such as u, v are
frequently called linear co-ordinates, The point determined by the pair (u, v) is referred as a
point (u,v) itself.

When the parametric equation of the surface is given, we will find suitable constrained
equations for example.

Consider a surface given by the parametric equation

X=u+v e (3) where u and v take real values.
y=u-—v,z=4uv

we see that x? — y? = (u+ v)? — (u — v)? = 4uvt

Which represents a certain hyperbolic parabolic.
The parametric equation are not unique
Example 1:

x=uy=1v2=u?—v?........(5)represents the same equation. Sometimes the
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LGS ) s

constraint equations obtain by eliminating the parameters represents more than one Surface.

For example:- Consider the surface equations, given by

X = u coshv
y = u sinhvg ... ... ... ....(6) where u and v are real numbers

z = u?
we have x? — y? = u?(cosh? v — sinh? v) = u? = 1.
x2—yt=1z
Which again represents equations of parabolic hyperbola
Two representation of same surface such as,

xX=u-+v
y=u-—v

z=4uv z=u?— v? are related by parametric transformation of the form.

u' = ¢(u,v)
o =11[)(11’17)}...........(7)

In certain domain D,
This transformation is said to be proper in ¢ & y are single valued & hence they have non-

Vanishing Jacobians.
iy 9@y ;
(i.e.) r) #0inD ............ (8)
The position vector 7 = (x,y, z) of a point on the Surface is a funs u&wv with the Same

continuity and differentiability property here partial differentiation with respect to u and v

— or

T = 7
will be denoted by suffixes, : A SR )
T'Z = W

Definition :
An ordinary point is defined as 1 for which r; X r, # 0
. X1 Y1 Z1\ _
(ie.) (xz Y2 Zz) =2
Show that the property of being an ordinary point is unaltered by a proper parametric

transformation.

Solution:
u' = ¢(u,v)
v =Y (u,v)
(te) mrpxr, #0.
di 07
E X EPe # 0.
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By the Jacobian property —aaiﬁ'lf)) # 0 and aaj,

X % # 0.

= The ordinary point is unaltered by a proper parametric Transformation.

Note:

A point which is not an ordinary points called a point of singularity.

The two parametric curves through the point P are orthogonal if 77 - 7, = 0 at the point P.

If this condition is satisfied at every point, then the two system of parametric curve are
orthogonal.

2.2. Curves on Surface:

Let us consider a surface r=r(u, v) defined on a domain D and if u and v are functions at
single parameter ’t’ then the position vector r becomes function of single parameter t and
hence it is locus is a curve lying on a surface r=r(u, v).

Let u=U(t), v=V(t) then r=r(U(t), V(t)) is a curve lying on a surface in D. The equation u=U(t)
and v=V/(t) are called the curvilinear of the curve on the surface.

Parametric curves: Let r=r (u, v) be the equation of the surface defined on a domain D.

Now by keeping u=constant (or) v=constant, we get the curves of special importance and are
called the parametric curves. Thus if v=c(say) then as u varies then the point r=r(u, c) describe
a parametric curves called u-curve. For u-curve, u is a parameter and determine a sense along
the curve.

The tangent to the curve in the sense of u increasing is along the vector. Similarly, the tangent
to v-curve in the sense v increasing is along the vector. We have two system of parametric
curves viz. u-curve and v-curve and since we know that 0 The parametric curve of different
systems can’t touch each other. If =0 at a point p, then two parametric curves through the point
p are orthogonal. If this condition is satisfied at every point.

(i.e.) For all values of u and v in the domain D, the two system of parametric curves are
orthogonal. Tangent plane: Let the equation of the curve be u=u(t), v=v(t) then the tangent is
parallel to the vector ¥ where

., _dr Ordu Ordv

T =4t T oude Tavde
_ du N dv
LY TIRECPT:

= dr = rydu + rpdv
But r; and r, are non-zero and independent vectors.

The tangent to the curve through a point p on the surface lie in the plane. This plane is called
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the tangent plane at p.

Tangent line to the surface: Tangent to the any curve drawn on a surface is called a tangent line
to the surface.

Definition:

The normal to the surface at p is a line through p and perpendicular to the tangent plane at p.
Since r; and r, lie in the tangent plane at p and passes through p;the normal is perpendicular
to both r; and r,and it is parallel to r; X r,. The normal at p is fixed by the following
convention.

If N denotes the unit normal vector at p, then r;, r,and N should form convention, a right
handed system using this convention, we get

X1, TXTn
x| H

where H = |r; X 15|

Since r; X 1, # 0, wehave H = |r; X 1] #0

= NH =1r X 1,

2.3.Surface of Revolution:

The Sphere:

Obtain the equation of a sphere and a general surface of revolution about z-axis. When the
polar angles that is the colatitude u and longitude v are take as parameter on a sphere at
center o. radius a, The of any point is given by,

7 = (asinu cos v, asinusin v, acosu) .............. (1)

and here the poles u = 0 & u = m are the Singularities and domainof u - v is 0 < u < m and
0<uc<?2m.

The parametric curves v = constant ave the meridians and u = constant are the parallel and

the two systems ane orthogonal.

r, = (g'cosv,g'sinv, f')
r, = (—gsinv, gcosv,0)

For:

7, = (acosucos v, a sin v cos u, —asin u)
7, = (—asin usin v, asin ucos v, 0)

711, = (—a? sinu cosu sin v cos v + a? sin u cos u sin v cosv)
=0
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712+ 72 = a’cos?ucos? v + a?sin? v coszu + a?sin?u +
a?sin? usin? v + a?sin® ucos? v
[ = a?cos?u(l) + a®sin?(1) + a?sin?
= a?(1) + a®sin®u
= a[1 + sin? u)]
This show that the Normal, N is directed outwards from the sphere.
The General Surface of Revolution:-
Taking z-axis for the axis of revolution, let the generating curve in the xoz plane is given by
the parametric equations x = g(u),y = 0,
z=f(u)
If v, u the angle of rotation about z axis the position vector u, v, is given by,
¥ = (@@ cosv, gwsinv, f(u))
The domain of (u,v) is 0 < v < 2m as in the case of the sphere v = constant are medians
given by the various positions of the generating curve & u = constant are the parallels.
(i.e.,) Circular planes parallel to xoy plane the respective vector r; and 7, are
7, = (g'cosv, g'sinv, f')
7, = (—gsinv, gcosv,0)
how see that 77,7, = 0, Vu, v.
1,7, = —gg'cosvsinv + gg'cosvsinv — 0 = 0
(i.e.,) the parameters are orthogonal the normal vector Nis given by

TiXTy

-
N = , where H = |7} X 15|

71 = (g'cosv,g'sinv, f'g'cosv, g'sinv, ')
7y = (—gsinv,, g cosv, 0,2sin vcos v, 0)

7 7k

T X7, =|g'cosv g'sinv f'

—gsinv gcosv O
= 7(0 — f'gcosv) — j(O + f gsinv) + k(gg' cos? v + gg'sin? v)
7y X7, = (—f'gcosv,—f'gsin?v,gg")
_Ax7
-~ H
_ (=f"gcosv,—f'gsinv, gg,)
- g(f12 _|_g12)1/2

It’s after convenient to take g(u) = u. for example the right circular cone of semi-vertical

N

angle a is given by g(u) = u, f (u) = ucota
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The Anchor Ring:
This is obtained by rotating a circle of radius ' a ' about a line in its plane at a distance b > a
from the centre
Let the axis of rotation be the z-axis let M be a point ion the generating curve that lies in the
xoz plane. If m=g(w), 0, f(u)
then g(u) = x — coordinateof m
sf(u) = z - coordinate of m
= asinu
Let v denote the angle of rotation. then the position vector of the point u, v is given by,

¥ = (gw)cosv, g(u)sinv, f (u))
= (b + acosucosv, (b + acosu)sinv, asinu)

Here the domain of u, v is given by, 0 < u < 2m, 0 < v < 2m. Also the parameter curves

u = constant v = constant are circles and

. _dr . . .

= é = (—asinu cos v,—a sin u sin v, a oS u)
__dy

== (=(b + acosu)sinv, (b + acosu)cos v, 0)
=0

Hence both the system of parametric curves is orthogonal.

The normal vector N is given by,

- TIXT,
N P e—
|71 X 73]
7 7 k
X1y, = —asin ucosv —asin usin v acosu
—(b + acosu)sinv (b + acosu)cosv 0

7, X1, = (0—acosu(cosv) (b + acosu) —acosusinv(b + acosu) — asinu(b + acos u)

N = (—cosucosv,—cosusinv, —sinu)
2.4.Helicoids:
A helicoid is a surface, generated by the Screw motion of a curve about a fixed line known as
the axis.
The various position of a generating curve are obtained by first translating it through a

distance 4, parallel to the axis and then rotating through an angle V about the axis, and then
rotating through an angle v about the axis, where % has a constant value ' d '.

The distance travelled in one complete revolutions is 2ma.
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The constant 2ma is called the pitch of the he |cgrid. The pitch is positive or negative arc as
the helicoid is right (or) left handed and the pitch is zero, for a given surface of revolution.
Equation the General Helicoids:
The section of the surface by the planes containing the taxis are congruent plane curves and
the Surface is generated by the Screw motion of anyone of the curves
There is no loss of generality, if the generating curve is assumed to be plane. which is given
by the equations of the form, x = g(u),y = 0,z = f(u).
Let T be the point on the helicoid that corresponds to (u, v). where v is the angle of rotation.
Then we have xp = 0Q.
= g(u)sin(90° — v)
xXp = g(u)cosv
Yp = OR
= g(u)cos(90° — v)
Yp = g(w)sinv
=~ The position vector of any point on the generate helicoid given by,
7 = (g(u) cosv, g(u) sinv, f(u) + av)
Now the parametric curves, V5 constant are the various le position of the pic
u = constant are the circular helices.
Diff. with respect to r 'u
1 = (g'(wWcosv, g’ (Wsinv, f'(w))
Diff. with respect to r
7, = (—gw)sinu, g(u) cosv, a)
The parametric curves are orthogonal if, 77 - 7, = 0 = af’(u) = 0.
a = 0 = It is a surface revolution
f'(u) = 0= f(u) = constant
= The helicoid is rigid helicoid.
Definition: Right Helicoid
This is helicoid, generated by a screw motion of a curve, straight line which meets the axis at
right angle.
Taking the axis as the z-axis, the position vector of a points is, ¥ = (u cos v, usin v, av)
where u is the distance from the axis and v is the angle of rotation.

Here the generate being assumed to be to x-axis when v = 0.
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VM = x = usin(90 — v)

= UCOS Vv
OM =y =ucos(90 —v)
= usinv

NP=z=1=av

Example 1:

A helicoid is generated by the Screw motion of a straight line skew to the axis. Find the curve

coplanar with the axis, which generates the same helicoid.

Proof :

Let ¢ be the Shortest-distance between the z-axis and the skew line.
Let a be the angle of relation between the axis and the straight line.
Then any point the skew line is,

X=c
y =usina
Z = ucosa

Here, u is the distance of any point on the Skew line from to x-axis

To derive the equations of the helicoid

Let P denote the point on the helicoid obtained by the combination of rotation through an

angle v about the z-axis and the translation with a distance a parallel to the axis.
=~ The position vector of any point p is given by,

}7 = (ccos v — usin a sin v, (sin v + usin acos v, ucos a + av)

The required plane curve is the section of the Surface by the plane y = 0.

¢ sinv + usin acosv = 0.
usinacosv = —sinv, c

usina = —ctanv
X cot” =ccosv+ ctanvsinv

csin?v  c(cos?v + sin? v)

= ccosv + =
CoS vV cosv
= csecv,
yof 7 =0
. sina
zofr =av+ ucosa = av + ucosa - —
sin «

= av + cota + cota (—c tanv)

= av — ccotatanv
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2.5. Metric:

Obtain the expression for ds 2 where s is the arc length of a curve u = u(t), v = v(t) ona
surface 7 = 7(U, V)

Proof :

On a given surface 7 = 7(u, v)

consider the curve given by,

u=u(t),v=v(t)

Then 7 is a functions of ¢ along the curve and the arc length s is related to the parameter. ' t '
by the equations.

&) - (%)

2

(d_r’ du d7 dv)

o ac T @
du du\?
=(T1E+TZE>
, (du 2 du dv  rdv 2
=1{ (E) +2r1rZE'E+7”2 (E)
ds\ 2 du 2 du du dvy*
(%> =E(E> +2F-E-E+G(E) (D)

where E = 72, F = /75, G = 7%

Equations (1), becomes,

ds? = Edu? + 2Fdudv + Gdv? ................ (2)

we consider these quadratic differential For m as defined on the surface.
Geometrically (ds) can be interpreted as the infinite decimal distance from the point (u, v) to
the point (u + du, v + dv),

we see that, (7 X 13) = 72 - 152 — (17 - 13)°2.

(ie) the co-effi Satisfy the eqgns,

H> =EG—-F?>0

where H = (1] X 13)

(ie.) H = +VEG — F2

Example 1:

For the paraboloid x = u,y = v,z = u? — v? find H.

Solution:
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E=72=1+0+4u?>=1+4u?
G=7=0+1+4v? =1+ 4v?

F=7 7 =0+0—4uv
H =+GE —F2=/(1+ 4u?)(1 + 4v2) — 16u2v?
H =+/1+ 4u? + 402 + 16u?v? — 16u?v?

Note:

when F =0, (ie) 7 -1, =0

This Show that the parametric curves are orthogonal.
Angle Between parametric curves:

The parametric directions are given 7; & 7, angle w. where (0 < w < 1) between them is

given by,
n-r F
COSW = TS5 —
Il (EG)/?
. TXTy H
SIn w = =

Irilir] — (EG)Y?
In general, the angle between the parametric directions varies from point to point.
Element of Area:
Consider the figure with four vertices (u, v), (u + du, v), (u + du, v + 6v), (u, v + 6v)j
joined by, the above figure is approximately a parallelogram with adjacent series r; du and
1,0V

The area of the parallelogram

= |r{éu X 7,6v| = |r] X 15| 6udv
= H Sudv
=~ The elementary area of the surface is given by ds = H dvdu.

Example 2:
For the Anchor Ring in section 2.3:
¥ = (b + acosu)cos v, (b + acosu)sinv,asinu) 0s 0 < u < 27,0 < v < 2. Find the

surface area of the anchor ring S

81

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



S

= =7
Solution:
We know that, ds = H dudv. where H = |r] X 75|.
_,_or . o
= i (—asinu cos v, —a sinu sin v, acos u)

r
r, = Frie (=(b + acosu)sinv, (b + acosu)cos v, 0)

-

-> -
l ] k
- bond — - . .
ry X7, =| —asinucosv —asinusinv acosu
—(b + acosu)sinv (b + acosu)cosv 0

=1(—a(b + acosu) cosu cosv) — j(a(b + a cosu) cosusin v
+k(—asinu (b + acosu)cos? v — asinu (b + a cos w)sin? v

71 X7, = (—acosucosv(b + acosu), —asinvcosu (b + acosu) )
—a(b + acosu)sinu
= a? cos?u cos? v (b + acosu)? + a?cos? u)sin? v
(b + acosv)? + a?sin? u(b + acosu)?
= a?cos? u(b + acosu)? + a?sin? u(b + acosu)?
|7y X 75|12 = a®(b + a cosu)?
H = |r{ X713 = a(b + a cosu)

T3 X 1y|?

=~ Surface area of the anchor ring

2T 2T
= .[ f Hdudv
0 0

21 21
= f f (a(b + a) cosu du dv).
027r 027r 21
= f f (ab + a’cosu)du dv = f a(b2m + a(0)dv
o Jo 0

2T
= f ab2ndv = ab - 2w - 2m = 4 w?ab
0

Metric is invariant under parametric Transformation:
Letu' = ¢(u,v) and

v' = (u,v) be a prove that

, 0F 0r ou 0rdv
190 ou ow +%6u’

ou v

—

" ou' tr ou'
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v 61"’_61"’ 6u+617 ov

"2 T 50 T ou ov T ov ov'
L, Ou _ 0v

“Ngy tgy

In terms of the parameter u’'and v’

E'(du")? + 2F'du'dv' + G'(dv')?

=72(du')? + 2(#, r5)du’ - dv' + )% (dv')?
=7 / Pondd 12

= (Adu' +75 dv')
= (#du’ +71,'dv")

_{(_)au_l__)av)d ,+<é6u+%6v)d ,}2
-\ u Tzau' v Tlav’ Tzav’ v

_{e(aud,+6ud,>+9<6vd,+6vd,)}2
- u’u 6v’v T2 au'” av'”

= {ridu + r,dv}?

= 7#2(du)? + 2(7; - 15)dudv + 72 (dv)?
= E(du)? + 2Fdudv + G(dv)>.

=~ The metric is invariant under the parameter transformation but the co-efficient E, F, G are
not invariant.

2.6.Direction Coefficients:

At a point ' p ' of a surface, there are three independent vectors. N, 7, and 7. Every vector a
at f can therefore be expressed as,

d = a,N + Ar; + ur;

[line of intersection of the plane containing N and d with the tangent plane at P]

Angles in the tangent plane:

Find the angle between two directions :

Angle in the tangent plane will be measured in the sense of relation. which carries the
direction of 77 to the direction of 7, through an angle between 0 and 7.

This is also the positive sense of relation about N [ If (I, m) and (I’,m’) are the direction co-
eff of two directions, at the same point the correspond unit vectors are

a=Ilr +mr,

b=1rT+mr,

83

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



cos@=d-b XN-sin@=axb

we have,
b= +mr)- ('K +mT7)
= W72+ (Im' + U'm)rry + mm'r;
cos@ = Ell' + F(Im' +U'm) + Gm' ...........(3)
dxb=(r+mr)x (T +m'T7)
=1Im'(r] x1) + U'm(r; X 17)
= xp)(Im' = U'm)
|d x b| = |7y x 75| (Im’ — I'm)
= |N -sinf| = H(Ilm' — l'm)
~sin@ = H(m' —l'm) ............(4)

Example 1:

Find the coefficient of the direction which makes an angle gwith the direction whose co-

efficients are (I, m). [ Interms of given direction (4, m)].

Solution:

Let (I',m’") be the required direction co-efficient in the direction. which makes an angle /2

with the given direction.
cos@ = Ell' + F(Im' +U'm) + G(m')
sin@ = H'(Im' — U'm)’".

Then from (3) & (4)

0=Ell'+F(m' +(n) +Gmm’ ................ (i)
[=H({m' —1U'm) ........(i0)
From (i)

U(El+ Fm)+m'(FI+Gm) =0
>U'(El+ Fm) = —m/'(Fl + Gm)
T(Fl+Gm) El+Fm °
=>l' = —a(Fl+ Gm)

m' = a(El + Fm)

Sub (ii)
1 =H(la(El + Fm) + ma(Fl + Gm))
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1 =aH(EI?> 4+ 2Flm + Gm?)

1=aH(1)
_1
“=H

1
l'= _E(Fl + Gm)
[m’ = %(El + Fm)(l’,m") are indeed directed co-efficient.
12 [ 2 E 2 2F G 5
ElU'“ +2FI'm’' + Gm =ﬁ(Fl+Gm) —ﬁ(Fl+ Gm)(El+ Fm) +m(El+Fm)
1
= 7] [EF?1%2 + 2EFGIm + EGG?*m? — 2EF?12 — 2F31 — 2EFGlm
—2F%Gm? + E%GI? + 2EFGIm + F2GM

1
= —[EI>(EG — F?) + 2Flm € EG — F?) + Gm?(EG — F?)

H?2
EG — F?
=W[Elz+2Flm+Gm2] H=+ EG — F?

=(+ H? = EG — F?)
=1
[« (#',m") direction coefficient = El'? + 2FI'm’ + Gm'? = 1].
Exercises:
Find the identity satisfied by direction coefficient in relation to the co-efficient of the metric
ds 2. Find the angle between two directions obtain (I, m) in terms of given
directions ratio (A, p)
(or)
On asurface 7 =7 (u,0) . Let u over line u=u(t), and v = v(t) respectively a curve obtain an
expression for the angle between them and also find the elemental area in terms of the co-
efficient of the metric ds?. use this to complete the area of whole anchor ring
g(uy=b+acosu, f(u)y=asinu
2.7. Families of Curves:
Let ¢(u,v) be a single valued function of u,v possessing continuous partial derivative
¢+, ¢, which do not vanish. Then the implicit equation ¢(u,v) = ¢ where c is a real
parameter gives a family of curves on the surface 7 = 7(u, v)
Properties:
)] Through every point (u, v) on the surface there passes one and only member of the
family.
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i) Let ¢(uy, vo) = cywhere (ug, vy) is any point on the surface. Then
P (uy, vy) = ¢4 is a member of the family passing through (u,, v,). Hence
through every point on the surface, there passes one and only one member of the

family.
i) The direction ratios of the tangent to the curve of the family at (u, v) is
(_(ibz ’ (nbl )
Theorem 1:

The curve of the family ¢( u, v)=constant are the solution of the differential equation

¢,du+ ¢, dv=0 ......(1) and conversely a first order differential equation of the form

P(u, v)du + Q(u, v)dv=0 .....(2) where P and q are differential functions which do not vanish
simultaneously define a family of curves.

Proof:

Since ¢, = Z—‘zand ¢, = g—f , we get from (1), Z—i du + Z—‘f dv = 0 =0 giving d¢ =0
Hence we conclude that ¢ (u, v)=c. Thus as the constant ¢ varies, the curves of the family are
the different solutions of the differential equation.

Conversely let us consider the equation (2). Unless the equation is exact, it is not in general
possible to find a single function ¢ (u, v) such that ¢,=P and ¢,=Q.

However we can find integrating factor A(u,v) such that ¢, = PAand ¢, = QA..
Rewriting the equation (2) in the form AP du + AQ dv = 0, we get ¢,du+ ¢, dv=0, so that

the solution of the equation is ¢ (u, v) = ¢ .

Further from (2), Z—ff = —% so that the direction ratios of the tangent to the curves of the
family at the point P is (-Q,P).

Theorem 2:

For a variable direction at P, |%|is maximum in a direction orthogonal to the curve

¢(u, v)=constant through P and the angle between (—¢, , ¢»; ) and the orthogonal direction
in which ¢ is increasing is g

Proof:

Let P (u, v) be any point on the surface. We shall show that ¢ increases most rapidly at P in a
direction orthogonal to the curve of the family passing through P. For this, we prove that %

has the greatest value in such a direction.

Let (I, m) be any direction through P on the surface. Let u be the magnitude of the vector
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T

¢ = (—¢,,P1). Let 8 be the angle betweeriﬁ) and the vector ¢.
Letustake a =lr; + mry, b = =1y + P11,

We shall find a x b expressing sin8 in terms of H and p =|b| where
From the definition |a| = 1.

We have |a X b| = usin@ ....(1)

and a X b = (I, + mep,)(r; X 1) so that

|a><b| =H(l¢1 +m¢)2) .......... (2)

Equating (1) and (2), we obtain

psind = H(lp; + m@y).covennne. (3)

Since (I, m) are the direction coefficient of any direction through P, we have
T

I= o M 4

Using (4) in (3) and simplifying, we get t sinf = H <2

Now u and H are always positive and do not depend on (I, m).

d . . . . .
Hence f has maximum value %When sin 8 has maximum value in which case 8 = % .
.. d .. .
In a similar manner, f has minimum value % , when 8 = —g. Since H>0and u > 0, the

orthogonal direction for which % >0 is such that 6 = g

Hence |%| has maximum in a direction orthogonal to ¢( u, v)=constant.

Orthogonal Trajectories:

For a given family of curves, the always exists a second family trajectories such that at every
point two curves one from each family are orthogonal.

Problems:

()Prove that every family of curves on a Surface possess orthogonal trajectories.

(ii) The parameters on a surfaces can always be chosen such that the curves of a given family
and their orthogonal trajectories between parametric curves.

Proof:

(i) Let the given family is defined by P(u, v)du + Q(u,v)dv =0 .......... (1)

where P and Q are functions of u and v class 1 & P & Q do not vanish together.

du —Q
From (1), W = T

(i.e.) (—Q, P) are the directions of the tangent at (u, v) of a member of the family is given by,
¢ (u, v) = constant.
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Such that ¢, = Ap and ¢, = 1Q

Let (du, dv) be the differential in an orthogonal direction to the tangent at (u, v) for the
curve.

¢ (u, v) = constant

Cos@ = EUl' + F(Im' + I'm) + Gmm'.
% €c0s90° =0 = E(—Q)du + F(—Qdv + Pdv) + GPdv

0 =du(FP—-EQ)+ dv(GP—-FQ) ............ (2)
~ P and Q are functions of class 1.
Further,

(FP — EQ) and (GP — FQ) do not vanish together (2) is integral.
= 3 functions u(u, v) # 0 and Y (u,v) # 0.
Such that u(FP — FQ) =y,
u(GP —FQ) =Y,
= W(u,v) = constant is the equs of the orthogonal frajection of the given family of curve
¢(u, v) = constant .
9¢ 99

. o(@Y) _ lou ov
(ii) We have ) — |ow ow

du dv
_ |41 ¢
Y1 Y,

_ | AP AQ

~ |p(FP—EQ) u(GP—-F(Q)

= Au(GP? — FPQ — FPQ + EQ?].

= A\u[GP%2 —2FPQ + EQ?] # 0

The quadratic GP? — 2FPQ + EQ? is positive, when 1 # 0, u # 0, and as, P, Q do not vanish

together.
u' =¢(u,v)
v =, v)} ............... 3)

(i.e.) ¢(u,v) = constant, = u' = constant

Y (u,v) = constant, = v’ = constant.

Thus by the given family,

¢(u, v) = constant & its orthogonal trajectory curves given by, u’ = constant, v’ =

constant.
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Example 1:

On the parabolic x? — y2 = z ,Find the orthogonal trajectories of the section of the plane z
=constant

Proof:

Letx =u,y=v

we get, x2 —y2 =z

u?—vi=z

= The surface is given by, 7 = (u, v,u? — v?)

Now, z = constant = u? — v? = constant = c? (say).

The differential equations is 2udu — 2vdv = 0

udu = vdv
du_v
dv u

=~ The direction of the tangent to the curve belonging to the family at (u, v) is (v, u) . If
(du, dv) are the differentiable in an orthogonal direction to the direction of f(u, v) then we
have, [(l,m) = (v,u)

Cos90°=0=Ell'+ F(I' + 1" + m) + Gmm/’

0 = Evdu + F(vdv + udu) + Gudv .......(1)
dr
= v (1,0,2u) = 7 = (u,v,u?® —v?)

=7-7=0+0—4uv
From (1) = 0 = (1 + 4u?)vdu + (—4uv)(udu + vdv)t + (1 + 4v*)udv

0 = vdu + 4u?vdu — 4u?vdu — 4uv?dv + udv + 4v?udv
0 = vdu + udv
=d(u,v)

< Uv = constant

Which is the required orthogonal trajectories if the family of curves u? — v? = constant
Example 2:

A helicoid is generated by the skew motion of a straight line. which meets the axis at an angle

a. Find the orthogonal trajectories of the generators. Find the de also metric of the surface
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referred to the generation and their orthogonal trajectories as parametric curves.

Proof:
(i)Let z - axis be the axis of the helicoid.

Let the generating line OA, makes an angle a with Oz.

Any point p on OA has co-ordinates ( u sine, 0, ucos a ) where op=u

Let the line OA be translated through a distance a parallel to Oz and then be rotates through

an angle 'av' about the z-axis.
Let Q be the position of p under the transformation.

. we have,

ZQ=zp+av

= ucosa + av
xQ = ORsin(90° — v)
xQ = usin(a)cos v
yQ = ORcos(90 — v)
yQ = usinasinv

(i.e.) Q has coordinates,
(usinacosv,usinasinv,ucosa + av)

=~ The position vector of a point Q is

7 = (usin @ cos v, u sin & sin v, ucos a + av)
Now the generator of the helicoid is,

v = constant

dv=0

Now the direction of the tangent to the curve belong to the family at (u, v) is given by, (1,0)

If (du, dv ) are differentials, then by the formula,

c0s90°=0=Ell'+ F(Im' + ¢'m) + Gmm'
O=Edu+Fdv ..........()

o

7, = (sina cos v, sin @ sin v, cos @)

7, = (—usin a sin v, usin acos v, a).

E =7 = sin? acos? v + sin asin? v + cos?a = 1
F

F

i

= 7,1, = —usin? a cos vsin v + u sin? a sin v cos v + acos a

=T{-T, = acosda.
From (1) = 0 = 1du + acos adv on integration.

C =u+ acosav
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This is the equations of the orthogonal trajecfaii_e_s of the generated of the helicoid.

(ii) If the generator v = constant

u + acos av = constant are taken as parametric u’ & v’,

u' =u+acosavandv’' =v

from this equations, we have,

u=u —acosav'andv ="v'

In this ways, generators and the orthogonal trajectories become parametric curves u' = v’ =
constant.

The metric referred to this new parametric
ds? = E'(du’)? + 2F'du'dv’ + G'(dv')?
To calculate E'F'G'

=1

_OF _0r w 0F Ov oo
Tl_au’_au ou'  ov av'_“() 2(0)=n

, O0F 0r Ju 2 0y +7,(1)

r, = = — -— =r1,(—acos T .

27 ov T ou av ! 2
2 2

E=7r"=7r"=1, E'=1

r = —>2_—> — =2

F'=r{ ‘7, =1,-1, —acosary

= acosa —acosa-1=0.
G =17,%=a(r, —acosar)?
= 72 — 247, cos ar, + a’cos? ai?
= (u%sina + a?) — 2acos a(acos a) + a®cos? a, 1
= u?sin®? @ + a? — a%cos’ a
= a?sin® a + a®sin® a
G' = (u? + a?)sin’ a
G¢' = ((u' — acosav')? + a?)sin? a
From (2) ds? = 1-du? + 0 - du'dv’ + ((u’ — acos av') + u?sin? adv?
ds? = du? + ((u' — acosvv! + a?)sin? adv?
Double Family of curves:
If P,Q,R are, continuous functions of u & v.
Which do not vanish to getter, the quadratic differential. equations
P(du)? + 2Qdudv + R(dv)> =0 ......... (*)
represents two family of curves on the surfaces provided Q2 — PR > 0.
(ie) in (*) discriminate = 4Q? — 4PR > 0
=Q?—PR>0
For example, du? — 5dudv + 6dv? = 0.= (du — 3dv)(du — 2du) = 0.
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=2>du—3dv=0&du—2dv=0
Thus we get two family of curves
To find the condition that the quadratic equations
P(du)? + 2Qdudv + R(dv)? = 0 .....(1) represents orthogonal family of curves.
Proof:
From equation(1).
du

P( >+2 du+R—0
dv de -

If (4, 1) and (A, 1) are the directions of the tangent of the two family of curves, then the

roots of equations (2) are % & %

Hence sum of the roots = = + 2. = ﬂ} _________ 3)
boou P
product of the roots = % L= g

We know that the condition for orthogonality,
cos90° = 0=EAX + F(Au' + 'u) + Guy’

(A /1’) (A /1’>
0=E(=-=|+F(=+=])+¢G
nop noou

O=EB+F(ﬂ>+G.
P P

0= ER — 2QF + GP
which is the required condition.
Note:
If R = P = 0then from (1), du, dv = 0 then the condition for orthogonality is QF = 0.
F=0.
Example 3:
If 6 is the angle at the point (u, v) between the two directions given by the equations.
P(du)®> +2Qdudv+ R(dv)>* =0  ............. (1)

2H(Q2—PR)1/2

then prove that tan 6 =
ER—2QF+GP

Proof:

Let the roots of equations (1) are % & %

Hence the sum of the roots = % + % = _%Q , product of the roofs =

= |~
==
I E"
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B HQAW' — ')
EAN + FQu' + X'w) + G(uu')

n(i-2)
T

AN (A A

EZ5 +F (5 +

i 1 ?)+G

A v )

H I(ﬁ + W) B 4##’]
ER _ (=2
SrP(F) e
2 [(q* - PRYV?]

ER — QFQ + GP

P

2H(Q* — PR)'/?

= = ER — 2FR — GP =
N6 =FR - 2rQ + GP oF=0

tan @ =

2.8.1sometric Correspondence:
Two surface s and s’ are said to be isometric. If there exists a correspondence, u' = ¢(u, v)

and v’ = Y (u, v) between their parameters, where ¢ & 1 are single valued functions and

(e )
2w * 0.

Such that the metric of S transform into the metric the correspondence itself is an isometry.
Note:

If the two Surface are isometric then the length of the arcs of the corresponding on the
surfaces are equal.

Theorem 1:

To each direction of the tangent to a curve C at P in S, there corresponds a direction of the
tangent C' at P’ in S' and vice-versa.

Proof:

Let C be a curve of a class >1 passing through P and lying on S. Let it be parametrically
represented by u=u(t) and v=v(t). If is the portion corresponding to S under the relation (1) in
the preceding paragraph, then C on S will be mapped onto €’ on S’ passing through P'with the
parametric equations

u' = p{u(®), v(®)},

v =P{u(®),v(®)},

The direction ratios of the tangent at P to C are (u, v )where u = Z—’;, V= Z—:

Now the direction ratios of the tangents at P'to C'are (ﬁ’, v )where
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oodu' 09 . 09
u = EZ%U-I_G_U v
Loadv oY oY
v =E =£u+% v
Solving the above equation for 2 and v, we get ,

(S -v ) v =2(v 22— v 2 Jwhere J = 0
] v v ] ou ou

which shows that a given direction to a curve C' at P'corresponds to a definite direction at P

u=

to C and vice-versa.

Example 1:

Find the Surfaces of the revolution of the right helicoid of pitch 2xa.
Proof:

Let the surface of revolution be given by,

7= (g(u) cosv, g(u) sinv,f(u))

_,_or .

=5, = (g'(w)cosv,g'(uw)sinv, f'(u).
_, or _

m=5= (—g(uw)sinv, g(u) cosv,0).

~E=72=(g9'(wW)?cos?v + g'u®sin® v + f'(u))?
= (g'W)* + (f' (w)?
G =72 = (g(w)?sin? v + (g(u))?cos? v.

G = (g(w))?
F=71 1,=—g)g (w)sinvcosv + g(u)g'(u) sinvcosv
=>F=0

The metric of the surface of revolution is given by,

Edu? + 2Fdudv + Gdv? =
[(g'W)? + (f' (w)?du? + (g(w)?dv? = 0............(1)

The equations of the right helicoid is given by,

7' = (u'cosv',u'sinv’, av’)

—! a? [ ’
n=gn = (cosv'sinv’,0)
u
or
7y = = (—u'sinv’, ucosv’,a)
2 av, ] )

E' =#7%=(cos’v)? + (sinv')? =1
G' =72 =u"?+ad%
G' =u'?+ a2
F'=7# -1, = —u'sinv'cosv’ + u'sinv’cosv’ + 0
F'=0
The metric of the right helicoids is
9
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E'du’? + 2F'du'dv’' + G'dv'? =0
1du)?+ (W) +a?)dv? =0 ........(2)

To find a transformation from (u,v) -» (', v'").
Letv =v' »>dv' =dv

o ,_ 09
u' =¢u) —du —E-du
du'=¢' - du
Subin (2).
(¢)2%du? + ((p(w)? + a®)dv?> =0 ............ (3)
Equation (1) & (2) are identical.
(G2 + (/O = (¢)?% oo (4)
gw)? = (pw)?+a? .o (5)
= (g(u))? = a?sinh? u + a?
= a?(sinh?u + 1)
(g(u))? = a?cosh h?u
g(u) = acoshu

Now, ¢'(u) = acoshu = %.

From (4), a®sinh? u + (f'(u))? = a%cosh h?u

(f'(w))? = a?(cosh? u — sinh? u)
2

=a

flw=a
Integrating, f(u) = au
The rigid helicoid is isometric with the surface obtained by revolving the curves.
x = acosh u, y=0, z= au about z-axis.
2.9. Intrinsic properties:
Statement of Existence Theorem:
If E,F,G are any given single valued functions with E>0 and EG — F2 > 0 in the domain D.
Then every point of D has a neighbourhood D’ in which Edu? + 2 F du dv + G dv? is the
metric of the surface referred to u, v as parameters.
Properties:
()Any two isometric surface have the same metric S, when the corresponding points are
arranged with the
(i.e.) The family of surfaces, having a given metric is the class of surfaces isometric to one
another.
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1) A surface which is reducible from the metric Jéing the vector equations 7 = 7(u, v) applies
to the whole class of isometric surfaces of the same kind with the same properties.

Example 1:

Find the surface of revolution which is isometric with a region of the right helicoid.

Proof:

Two surfaces S, S’ are said to be isometric (or) applicable if there is a correspondence
between the points of s and S’. Such that corresponding arcs of curves have the same length.
The correspondence is called an isometry.

We know that a surface of revolution is given by

r = (g(uw) cos v, g(w)sinv, f(w)) ... ..... (1)

For some function fand g and its metric is (g2 + f2)du? + g?dv?

Where f; = %.

The right helicoid of pitch 2ra is given by

r = (u' cosv’,u’sinv’,av") and its metric is

du'? +(u'? + a?)dv'?

We have to find the transformation (u, v) — (u’,v") which makes two metrics identical.
Taking v’ = v,u’ = ¢(u) then du’ = ¢, du and the metrics are identical.

If g2 = ¢* +a? gi + 17 = ¢7

These are two equations for three functions namely, f, g, and ¢.

If ¢ is eliminated there remains a differentiation equation for f as a function of g.

(or) Simply put ¢(u) = asin hu and g(u) = acoshu to satisfy equation (1),

f2 = a® we can take f(u)=au

Hence, the right helicoid is isometric with the surface obtained by revolving the curve.
X = acoshu

y=0

z = au about z-axis the generating curve is,

X = acos h(i) with the parameter a and directrix to z-axis and the surface of revolution is a

catenoid,

u' = asinhu

vV=v

Shows that the generators v’=constant on the helicoid
And v'= constant on the catenoid
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r= =¥
And the helices u'=constant correspond to the parallel u=constant.

On the helicoid u' and v' can take all values but on the catenoid 0 < v < 27
The correspondence is therefore an isometry only for that region of the helicoid for which
0<v' <2m

Without the limitation to one period of the helicoid the correspondence would be locally
isometric.
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UNIT-III:

Geodesics: Geodesics — Canonical geodesic equations — Normal property of geodesics-
Existence Theorems — Geodesic parallels — Geodesics curvature- Gauss- Bonnet Theorem —
Gaussian curvature- surface of constant curvature.

Chapter 3: Sections 3.1 - 3.8.

3.1. Geodesics:

On any surface there are special intrinsic curves, called geodesics, which are analogous to
straight lines in Euclidean space because they are curves of shortest distance. The problem is,
given any two points A and B on the surface, to find, out of all the arcs joining A and B, those
which give the least arc length. This problem, treated properly, is difficult and beyond the scope
of this book. For example, it is by no means clear that a solution exists, for although the lengths
of the various arcs AB certainly have a non-zero greatest lower bound, it does not follow that
there is an arc of this length. However, the problem does lead to a definite answer in the form
of differential equations for the functions u = u(t), v = v(t) defining the curve. Every curve
given by these equations is called a geodesic, whether it is a curve of shortest distance or not,
and geodesics may be regarded as curves of stationary rather than strictly shortest distance on

the surface.

We shall now derive the geodesic differential equations mentioned above by formulating a

more restricted problem.

Let A, B be any two points, and consider the arcs which join A and B and are given by equations
of the formu = u(t), v = v(t) .where u(t) and v(t) are of class 2 . Without loss of generality
it can be assumed that for everyarc a,t = 0atAandt = 1at B, sothat a isgivenby 0 < t <

1. Then the length of « is
s(a) = J} (E? + 2Fuw + Gv2)adt, ............... (1)

where u(t) and wv(t) are substituted for u and v in E,F, and G.
Suppose now that an are a' is obtained by deforming « slightly, keeping its end points A and

B fixed. Then a’ is given by equations of the form
u=u'(t) =u(t) + eA(t),v =v'(t) = v(t) + eu(t)
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where € is small, and A and u are arbitrary functigns of t ofclass 2in 0 < t < 1 and satisfying
A=u=0att=0andt=1.The length of a’ is s(a’) given by (1) with u’,v" in place of
u, v. The variation in s(a) is s(a’) — s(a) and is in general of order €. If, however, a is such
that the variation in s(x) is at most of order €2 for all small variations in « (i.e. for all A(t) and

u(t) ), then s(a) is said to be stationary and « is a geodesic.

The geodesics given in this way are clearly intrinsic and independent of any particular

parametric representation of the surface.

To find the equations for geodesics, we follow the usual procedure as in the calculus of

variations. Writing f = 1/ (2T)
Where T(w, v,1, %) = (Eu? + 2F v + Gv?2),

Then

s(a") —s(a) = f {(flu+el,v+euu+el,v+epn) — f(uvuv)ldt
0

TR 2
=efo (/1£+ a—f+/16—f+uaf>dt+0(62)

Integrating by parts,

[ v =legl, - [ Haelam)e

and the first term on the right is zero because A = 0 att = 0 and t = 1. Similarly,

[ 55 == [ (G

and
s(a") —s(a) = ef (AL + uM)dt + 0(e?)

Where L = Z—i - di (a—f) mM=%2_ di (a—f) N ¢7))

t\ou/’ ov t \ov
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From the definition, therefore, s(«) is stationary and « is a geodesic if and only if u(t) and

v(t) are such that fol AL + uM)dt =0 ......... 3)

e for all admissible A, u, i.e. functions of class 2 in 0 < t < 1 which satisfy A = u = 0 at
t=0andt=1.

It will now Dbe proved that this condition implies L =M =0.

Lemma. If g(t) is continuous for 0 < t < 1 and if fol v(t)g(t)dt =0

for all admissible functions v(t) as definged above, then g(t)=0.
Suppose there is a t, between 0 and 1 such that g(t,) # 0, say g(t,) > 0. Then, since g is
continuous, g(t) > 0 insome interval (a,b ) where 0 < a < t, < b < 1. Now we define v(t)
as follows: v(t) =0 for0 <t <aandforb <t <1,and v(t) = (t —a)3(b—t)3 for a <

t < b. Thenv(t) is admissible, and

1 b
j v(t)g(t)dt = f v(t)g(t)dt >0
0 a

since g > 0 and v > 0 for a < t < b. The supposition that there is a t, such that g(t,) # 0 is

therefore false, and the lemma is proved.

The functions L and M in equation(2) are continuous because E, F, G are assumed to be of class
1 and u(t), v(t) of class 2 . The lemma can therefore be applied to equation(3), first with u =
0 and A,L in place of v,g and then with A =0 and u, M in place of v, g. It follows that
equation(3) is satisfied for all admissible functions A, u if and only if L = M = 0. These, then,
are differential equations for u(t) and v(t). They do not involve the points A and B explicitly

and are therefore the same for all geodesics on the surface.
Substituting f = /(2T) , then

1 9T d( 1 T

= Ta i o)

1 oT d (0T 1 dToT
lou a3

Ity u ~ de\aw)) T @T)? de au’

Jdu dt
with a similar expression for M. The geodesic equations are therefore
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= d (aT) aT_ 1 dTaT\I
T dt\ow du 2T dtou L (®)

, a(h)_ s

dt\ov) odv 2T dt dv|

Where T(w, v,1, %) = > (Eu? + 2Fuv + Gv?2),
and the left-hand members of the equations are denoted by U and V for convenience.

The expressions U and V so defined are important in relation to any curve, whether it is a

geodesic or not. They satisfy the identity uU + vV = Z—: .......... (5)
because
'U+'V—d( 6T+ 6T> aT aT aT 6T
WA=t eatas) Yo Vv o Vaw

) ar _ dr

( ) - dtl

remembering that T is a function of u, v, i, v homogeneous of degree 2 in u, v.

Since also the expressions on the right in (4) satisfy the same identity, i.e.

(1 dTaT) (1 dTOT) 1dT(_(’)T _6T>_dT
2T dt v

2raton) TV wac\laut V) T a

it follows that the two equations in (4) are not independent; they are therefore equivalent to

only one equation for the two unknown functions u(t) and v(t).

This is to be expected because the parameter t has not been defined in any special way; the
reader should verify formally that any transformation t" = ¢(t), where ¢ is of class 2 , would
leave the differential equations unaltered. It is convenient to regard a curve as defined by two
functions u = u(t), v = v(t), but strictly speaking there is only one function of one variable

involved, as in the equation v = f(u).
Eliminating dT /dt between the two equations (4), we obtain UZ—i — VZ—Z =0(6)
This is necessary for a geodesic. To prove that it is also sufficient, suppose that it is satisfied
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somiEar

by functions u(t) and v(t), whose first derivatives do not vanish simultaneously at any point.

Then 9T /ou and AT /dv cannot vanish together since this would imply
Eu+ Fv =0 = Fu+ Gv, and therefore & = v = 0. Hence,

U_eaTV_BaT
T ou T av

for some 6, and from the identity (5),

% =0 (u% + 1‘7%) = 2TO i.e. 6 = (1/2T)(dT/dt). The functions u(t) and v(t) therefore

satisfy equation (4).

Example 1:

Prove that the curves of the family v3 /u? = constant are geodesics on a surface with metric
v2du? — 2uvdudv + 2u?dv? (u > 0,v > 0).

Solution:

Consider v3 /u? = ¢(> 0) and put this into a convenient parametric form

u=ct3,v=ct? Thenu = 3ct? v = 2ct and

oT oT

— = —viv + 2uv? = 2¢3t>, — = vv? —uuw = 3c¢3t°,
ou v

oT oT

— = v — uvv = c3t°, — = —uvi + 2u?v = c3t’,
ou ov

d d
— 346 _ 9,345 — 4345 — 347Y _ 2,346 — 4-3+6
U dt(ct) 2c3t 4¢3t>, 'V dt(Ct) 3c3t 4c3t°.

T oT . . :
Hence Vﬁ — Ua_f; = 0, i.e. the curve is a geodesic for every value of c.

Example 2:
Prove that, on the general surface, a necessary and sufficient condition that the curve

v =cheageodesicis EE, + FE; —2EF;, =0 ......... (7)
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when v = ¢, for all values of u.

On the curve v = ¢, u can be taken as parameter, i.e. the curve isu = t,v = c. Then
u = 1,v = 0, and on substituting these values

(after calculating the partial derivatives of T ),

oT 1 oT _dE 1 1E
ou 27V ou_ T’ Tdt 27t T 27
oT 1 oT _dF 1E e 1E
v 2°% v Tde 2727t 72

The curve is therefore a geodesic if

1 1

when v = c. This is condition (7) which is therefore necessary.

Conversely when (7) is satisfied so is (6) and the curve v = c is a geodesic.

If (7) is satisfied for all values of u and v, the parametric curves v = constant are all geodesics.
Similarly, the curve u = c is a geodesic if and only if

GG, +FG,—2GF,=0........(8)

whenu = c.
In the neighbourhood of a point of a geodesic at which @ # 0, u can be taken as the

parameter, as in Example 2 above. Then 2 = 1,

aT—E Fv d(éT =E + (E, + F)U + F,v? + Fi
%— + U,E @)— 1+ 2+ 1U+ 2U+ v
and

1 1
U:FU-I_(FZ_EG]')UZ-I_EZ‘U-I_EEI.
Also
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oT

—=F :
PE + Gv
I SR . 1
V=Gv+562v +le+F1—§E2
Hence
oT oT
—V —-——U=H?(W+Pv3+Qv*+Rv+YS)
ou ov

where H?P = %(GG1 + FG, — 2GF,), etc. The curve v = v(u) is therefore a geodesic if v

satisfies a second-order differential equation of the form
U+ P13+ QU2+ R +S=0,
where P,Q, R, and S are functions of u and v determined by E, F, G, and their first derivatives.

This gives some idea of the complicated nature of the geodesic equation in general. A form

which is more convenient for theoretical investigations will be given in the next section.

3.2. Canonical geodesic equations:
The parameter t is arbitrary and can conveniently be taken to be the arc length s of the curve

measured from some fixed point on it.

(This could not be done earlier because in the variational problem the limits of the independent

variable were required to be fixed.)

When there is no ambiguity a prime will denote differentiation with respect to s. Then with s

as parameter, u, v are replaced by u’, v' and
T == (Ew? + 2Fu'v' + Gv'?) ...........(1)
Along the curve, u’ and v’ satisfy the identity for direction coefficients.

Hence T = %,dT/ds =0,

the canonical equations for geodesics:
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(2

It must be remembered that in these equations the partial derivatives of T are calculated from
(1) before values for u’ and v" are substituted; T is not equal to % identically for all u,v,u’,v’,

but only along the curve.
uwU+v'vV=0

confirming that equations (2) are not independent. For a curve other than a parametric curve,
u’ # 0,v" # 0, and the conditions U = 0 and V = 0 are equivalent, either being sufficient for
a geodesic. For a parametric curve u = constant, u’ = 0,v' # 0, and VV = 0 for all s, so that
the equation is satisfied automatically; the condition for a geodesic is therefore U = 0.

Similarly, V = 0 is the sufficient condition for a curve v = constant to be a geodesic.
Example 1:

To find the geodesics on a surface of revolution.

ThenT = %{(fl2 + gHu'? + g*v'?},

where f; = df /du, etc., and since dT /dv = 0 the canonical equation V = 0 can be integrated

immediately to give

where «a is an arbitrary constant which can be assumed non-negative, taking the positive
sense along the curve to be that in which v increases. If « = 0, then v is constant and every
meridian is a geodesic. Assume now that « is positive. Then the first order differential
equation can be written

giving

g*dv? = a?ds? = a?{(f? + g?)du? + g*dv?}
a;(f2 +gP)du + gy (g2 —a?)dv = 0

the + being included although « is arbitrary because dv/du may change sign along the same
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geodesic. If g2 # a?, by integration the geodesics are given by an equation of the form

v=apu,a)+p
where «a, 8 are arbitrary constants.

If g2 = a?, then u = constant. However, for curves u = constant the equation V =0 is
automatically satisfied. To see whether u = c isa geodesic it is necessary to apply the condition

U = 0. Since now u’ = 0 and v’ = g~ from the identity for direction coefficients,

aT T g

g1
- Y Y ) U= -
ou’ ou g g

The curve u = c is therefore a geodesic if and only if g,(c) = 0. Since g is the radius of the

parallel u = ¢ on the surface of revolution, a parallel is a geodesic if its radius is stationary.

The method used in the above example can be applied to give the following result which will
be left to the reader to verify. If E, F, and G are functions of only one parameter, u say, the
geodesics can all be found by quadratures. This applies not only to the general surface of

revolution but also to the general helicoid. The geodesics are given by the equation

U=f {—giG(GafHaz)l}du+ﬁ

where a and S are arbitrary constants; and also by the equation u = ¢ where c is any root of

the equation G, = 0. If F2/E is constant, then every curve v = constant is a geodesic.
Example 2:

On a right helicoid of pitch 2ma, a geodesic makes an angle a with a generator at a point
distant ¢ from the axis (O <a< %n, c> 0). Prove that the geodesic meets the axis if ctan a <

a, but that if ctan a > a, its least distance from the axis is

1
(c?sin? @ — a?cos? a)z. Find the equation of the geodesic in the case ctan a = a.
From the equations metric of the right helicoid is

du? + (u? + a?)dv?. As in the above examples, a first integral of the geodesic equations is
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v +k
du ~ {(u2+a?)(u2+u2-k2)}3

where k is an arbitrary positive constant. Further integration in general requires elliptic

functions.

The given point is (c, 0) for a suitable choice of axes, and « is the angle between the directions
(1,0)and (u',v") at this point,

1 1
i.e. tana = Hv' /u' = k(c? + a? — k?)72. This gives k = (c? + a?)zsin a.

There are two geodesics satisfying the given initial conditions, but it will be sufficient to

consider the one for which Z—Z < 0 initially.

From the form of dv/du it appears that there are three cases.

(i) k? > a?, i.e. ctana > a. Since dv/du < 0 initially, u decreases as v increases until u =

1 1
(k? — a?)2 = (c¢?sin®? a@ — a?cos? a)z.

As v continues to increase, the sign of dv/du changes and u increases indefinitely. The least

1
distance from the axis is therefore (c?sin? @ — a?cos? a)z.

(ii) k%2 < a?,i.e. ctana < a. Inthis case dv/du < 0 for all v, and u decreases indefinitely as
v increases. There is a point on the curve at which u = 0, i.e. the curve meets the axis.
(iii) k? = a?, i.e. ctan a = a. In this special case

av —-a

du

1
u(u? + a?)2

and v = —p + sinh~!(a/u) where B = +sinh~!(a/c), since v=0 when u=c. The

geodesic is therefore given by
usinh(v + B) = a, B = sinh™!(a/c)

As v increases, the curve approaches the axis without reaching it. In the opposite sense, u —

o as v — —f3, showing that the generator v = —f is an asymptote.

Exercise:
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1.Prove that for a helicoid of non-zero pitch the sections by planes containing the axis are

geodesics if and only if these sections are straight lines.

3.3. Normal property of geodesics:
The geodesic equations can be expressed in terms of r(w,v) by means of the following

identities which hold for any functions u(t), v(t) of a general parameter t;

6_T . 6_T_-.
73 =r-n af;_r 1'2} ............ (1)
U@ty =t V(=i

where, as before, T = %(Eu2 + 2Fuv + Gv?).

To prove these, consider the relations

1

T=EI"2,I"=I‘111+I‘21'7

Then

oT . or

ou Tow ©h

oT . or . _ _ o d
£=r-%=r-(r11u+r21v)=r-a(rl),

d d
U(t)za(f"ﬁ)—f"a(ﬁ) =r'n

and similarly for T /0v and V (t).
With s as parameter the geodesic equations are U(s) = 0; V(s) = 0. They can therefore be

writtenr” -r; =0,r" - r, =0 ............ (2)

showing that, at every point P of the geodesic, r"’ is perpendicular to the tangent plane at P.

This condition is sufficient as well as necessary. Hence:

A characteristic property of a geodesic is that at every point its principal normal is normal to

the surface. Every curve having this property is a geodesic.

In terms of a general parameter t, equation (6) can be written

ie. (hr)@ ) — (- rp)E ) =0,
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This says that the binomial of the curve is perpendicular to the normal to the surface, from
which it follows that the principal normal is normal to the surface.

An equivalent statement of the above normal property is that at every point of a geodesic the
rectifying plane is tangent to the surface.

The above property often makes it possible to intuit that a curve is a geodesic. For example,
every great circle of a sphere and every meridian of a surface of revolution clearly have the
normal property of geodesics. Again, it is now clear that the only parallels of a surface of
revolution which are geodesics are those whose radii have stationary lengths.

Example 1:

A particle is constrained to move on a smooth surface under no force except the normal

reaction. Prove that its path is a geodesic.

The acceleration is in the direction i which is therefore in the direction of the force, i.e. normal

to the surface. Since r is tangent

to the surface, r.1 = 0 and § = |F| = constant, showing that the speed is constant. It follows

that r”” is in the direction ¥, i.e. is normal to the surface, and the curve is therefore a geodesic.

This problem can also be solved by using the Lagrange equation of dynamics, taking u and v

as generalized coordinates.
Exercise:
Prove that every helix on a cylinder is a geodesic.

The normal property is sometimes taken as the definition of a geodesic. It has the advantage of
simplicity but obscures the intrinsic character of geodesics and could not apply to Riemannian
geometry which is similar to the intrinsic geometry of a surface but with any number of
dimensions. Also, the normal property strictly fails in the case of a straight line on a surface,
for then the principal normal is indeterminate. Such a line is clearly a geodesic according to

the intrinsic definition.
It is instructive to see how the differential equations for geodesics arise out of equations (12),
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and to see how certain Christoffel symbols arise at this stage, although they will arise in
different contexts later in the book.

Differentiating r’ = r;u’ + r,v’, we find
r’ =ru” + v’ +ru'? 4+ 2rpu'v’ + v’

The geodesic equations r'-r =0 and r'-r,=0 thus become

Where Eu” + Fv” + Flllu,2 + Zrllzu’v’ + Flzzvlz = 0},

Fu” + Gv” + F211u,2 + 2F212u'17' + Fzzzvlz =0

The coefficients I;;, are called Christoffel symbols of the first kind and can be expressed in

terms of first derivatives of the fundamental coefficients. It can easily be verified that
1
E{(ri . I})k + (I'i . rk)j — (l'] . rk)i} =1I- rjk = Fijk .............. (4)

1 1 1
[ = 551: Lz =T = 5E2:F122 =F, - 501

Thus L . 2
[0 =F = EEZ'F212 =TI = 561, [50, = EGZ

..(5)

Since EG — F? # 0, equations can be solved for u” and v"’. The resulting equations, which

are equivalent to (12.4), are written
u” 4+ THhu'? + 2T5Lu'v' + T,v'2 = 0}
v +TAU? + 2T5u'v' +T4v'2 =0

where the coefficients I, called the Christoffel symbols of the secend kind, are given by

Ik = H_Z(Grljk - Frzjk)' Iz = H—Z(El"zjk - Fl"ljk) e e e e (7)

3.4. Existence theorems:

With s as parameter the geodesic equations can be written in the form
u' = f(u,v,u,v'),v" =guvu,v) ... (1)

where f and g are quadratic forms in u’, v" with single-valued continuous functions of u and
v as coefficients. These are simultaneous second order differential equations for u and v as

functions of s, and from the theory of such equations, t if f and g are of class > 1, a solution
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exists and is determined uniquely by arbitrary initial values of u, v,u’, and v'. Hence:

A geodesic can be found to pass through any given point and have any given direction at that
point. The geodesic is determined uniquely by these initial conditions.

From the above existence theorem it is to be expected that if a point Q is sufficiently near any
given point P, then it is possible to find a direction at P such that the geodesic through P in this
direction also passes through Q. The following theorem can in fact be proved, assuming merely
that the surface is of class 3.

Every point P of the surface has a neighbourhood N with the property that every point of N

can be joined to P by a unique geodesic arc which lies wholly in N.

This does not, of course, state that if Q is a point of N then the geodesic arc PQ which lies in
N is the only geodesic joining P and Q; there may be other geodesic arcs PQ but they leave N.

Examples of this will be given later in this section.

This theorem gives all that we can say at present about the existence of geodesics joining two
given points; it says that Q can be joined to P if it is sufficiently near P. Nothing more than

that can be said as long as the region of the surface being considered is arbitrary.

Later, however, when a complete surface has been defined, it will appear that any two points

can be joined by at least one geodesic.

A region R is convex if any two points of it can be joined by a geodesic arc lying wholly in R,
and is simple if there is not more than one such geodesic arc. In the Euclidean plane a convex
region is necessarily simple but this is not so for a surface in general. The surface of a sphere,

for example, is convex but not simple.
Every point P of a surface has a neighborhood which is convex and simple.

The difference between this and the previous theorem is that it is no longer just one particular
point which is joined to the others of the neighborhood; every point is joined uniquely to every
other point. Whitehead's theorem is in fact much deeper than the previous theorem and its proof

is beyond the scope of this book. It will not be used in the sequel.

A particular and interesting form of Whitehead's theorem is concerned with a geodesic disk of
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given center P and radius r, defined as the set of points Q such that there is a geodesic arc PQ
of length not greater than r. Whitehead proved that for every point P there is an € > 0 such

that every geodesic disk of centre P and radius r < € is convex and simple.
Exercise:

On a circular cylinder of radius a, find the least upper bound for the radius of a simple convex
geodesic disk, and prove that a geodesic disk of greater radius is convex but not simple.

This section will be concluded with examples of the multiplicity of geodesics joining two
points. They are mostly constructed by using the intrinsic property of geodesics, that if surfaces
Sand S’ are isometric, then the curve on S" which corresponds to a geodesic on S is a geodesic
on S’. In fact, the correspondence need only be locally isometric since a curve is a geodesic if

every small arc is a geodesic arc.

Consider, for example, the mapping of a plane on a circular cylinder obtained by wrapping the
plane round the cylinder. A geodesic on the plane is a straight line, and this corresponds to a
helix (or meridian or circular section) on the cylinder. The helix is therefore a geodesic on the

cylinder.

Conversely, every helix on the cylinder corresponds to a straight line (or strictly to a family

of parallel straight lines) on the plane; thus every helix is a geodesic.

It follows at once that any two points P, Q of the cylinder, not on the same parallel, are joined
by infinitely many geodesic arcs because there are infinitely many helices joining the two
points. When the cylinder is unrolled into a plane there are infinitely many images of Q, and
the geodesics PQ correspond to the straight lines joining all the images of Q to any one image
of P. There is a geodesic arc PQ making any desired number of turns round the cylinder, in

either sense.

A similar result holds for the anchor ring. Joining two points P, Q not on the same meridian
there are infinitely many geodesic arcs; an arc can be found to make any number of turns, in
either sense, of the kind made by the meridian circles, and at the same time any number of
turns, in either sense, of the kind made by the parallel circles. This cannot be proved by the

simple method used for the cylinder because the anchor ring is not locally isometric to a plane.
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The geodesic equations can, however, be integrz;ted by the method of section 3.2.

An example of a surface on which the number of geodesics joining two given points may be
more than one but is strictly limited is a right circular half-cone. Here again the different
geodesic arcs PQ are obtained by taking different numbers of turns round the cone in either

SENSE.

A local isometry can be set up by rolling the cone over the plane. The surface of the cone
corresponds isometrically to a sector of the plane which is reproduced according to the number
of revolutions of the cone, in either sense. The images of Q are points Q,, Q,, ... in one sense
and Q_4, Q_,, ... in the other. If P’ is the first image of P (in the sector between Q, and Q_, ),
then the geodesic arcs PQ which pass round the cone in one sense correspond to the straight
lines P'Q4, P'Q,, ..., and those which pass round the cone in the opposite sense correspond to
the lines P'Q_4, P'Q_,, .... In either sense the number is limited; the lines P'Q, must all be on
one side of P’V and the lines P'Q_,. must all be on the other side of P'V. In Fig. 2 there are

three geodesic arcs in one sense and two in the other.

Clearly, the smaller the solid angle of the cone the greater the number of geodesics. Fig. 3

illustrates the case when there is only one geodesic arc PQ.

It is interesting to note that, on the cone, there may be nontrivial geodesic arcs joining a point

to itself; in the above argument P can coincide  with Q.

Figure. 2
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Pr
Figure. 3

With the cone as a guide it is not difficult to construct other surfaces on which there may be
any finite number of geodesics joining two points, or joining a point to itself. An example is
the paraboloid of revolution, on which the geodesic equation can be integrated by the method.

Again, on the paraboloid

x? 2 2z
<y _2z
a? b2 c

or on one sheet of the hyperboloid

x2 yZ ZZ

a?  b%* c?
the larger c is in comparison with a and b the more geodesics there are joining two points.

Exercise:

1.Prove that, on a right circular cone of semi vertical angle a, every point can be joined to itself
by a geodesic arc if a < %n. If this condition is satisfied prove that the number of geodesic

arcs joining a point to itself is the greatest integer less than (2sin ). Prove also that this is

the number of times a geodesic other than a generator intersects itself.

2. Prove that, on a paraboloid of revolution, every geodesic other than a meridian intersects

itself infinitely often.
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3.5. Geodesic parallels:

Suppose a family of geodesics is given, and that a parameter system is chosen so that the
geodesics of the family are the curves v = constant and their orthogonal trajectories are the
curves u = constant. Then F = 0 and condition for the curves v = constant to be geodesics

becomes E, = 0. The metric is therefore of the form
ds? = E(u)du? + G(u,v)dv? ........ (1)

Consider the distance between any two of the orthogonal trajectories, say u = u; and u = u,,

measured along the geodesic v = ¢. Along v = ¢,dv = 0, and ds = vEdu, so that the distance

is
j " VE (u)du,

a number independent of c. The distance is thus the same along whichever geodesic v =
constant it is measured. Because of this, the orthogonal trajectories are called geodesic

parallels.

In the plane, a family of geodesics is a family of straight lines enveloping some curve C, and
the geodesic parallels are the involutes of C. In particular, when the geodesics are concurrent

straight lines, the parallels are concentric circles.

In the above metric the parameter u can be specialized by taking it to be the distance from some
fixed parallel to the parallel determined by u, the distance being measured along any geodesic
v =c. Then ds = du when dv = 0, i.e. E = 1. Hence: for any given family of geodesics, a
parameter system can be chosen so that the metric takes the form du? + Gdv?. The given
geodesics are the parametric curves v = constant and their orthogonal trajectories are u =

constant, u being the distance measured along a geodesic from some fixed parallel.

The transformation u — u': du’ = vEdu also gives the simplified metric from (1).
Exercise:

If a surface admits two orthogonal families of geodesics, it is isometric with the plane.
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Geodesic polar

A particularly useful system of geodesics and parallels is found by taking the geodesics which
pass through a given point 0. By the second existence theorem there is a neighborhood of O in
which, when the point O itself is excluded, the geodesics constitute a family. Parameters u, v
can therefore be chosen as above. In
particular u can be taken to be the distance measured from O along the geodesics and v can be
taken to be the angle measured at O between a fixed geodesic v = 0 and the one determined
by v. In this way u and v correspond to polar coordinates r and 6 in the plane. The metric is
therefore

du? + Gdv?

where G is such that, when u is small, the metric approximates to the plane polar form with
u, v in place of r, 9, i.e. to du? + u?dv?. Hence G ~ u?, i.e.
VG

lim—=1
u-0 U

In geodesic polar parameters the parallels u = constant are geodesic circles.

3.6. Geodesic curvature:
For any curve on a surface the curvature vector at apoint P isr’’ = kn, where k is the curvature

and n is the principal normal. This can be written
r'=k,N+Ar; +ur, ........(0

where k,, is the normal component of r"’, called the normal curvature. The vector Ar; + ur;,
with components ( A, i ), is zero for a geodesic because then " is normal to the surface. This
suggests that for any curve the vector (4, u) is intrinsic so that its magnitude measures in some
sense the deviation of the curve from a geodesic. The vector (4, i) is, in fact, intrinsic, for from

(20), taking scalar products with r; and r,,
EA+Fu=r"-r,=UFA+Gu=r"-r,=V ...... (2)

where U and V' are calculated with s as parameter. Thus A and u are given by the intrinsic

formulae
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2= H2(GU = FV), = H2(EV — FUY. oo 3)

The vector (4, ) is called the geodesic curvature vector of the curve under consideration. In

the notation introduced at the end of section 3.3 the components A, u are given by
A=u" +THu'? + 2TLu'v' + IT,v'?,

The geodesic curvature vector of any curve is orthogonal to the curve. This follows at once
from (20) since the tangent vector r’ is orthogonal to r’" and to N and therefore also to Ar; +
ury, which is the geodesic curvature vector. It can also be proved intrinsically;

the orthogonality condition for the vectors (u', v’ ) and (4, 1) can be written
W(EA+Fu) +v'(FA+Gu) =0

which from (21) becomes the identity u'U + v'V = 0.

Exercise:

Prove that the components A, u of the geodesic curvature vector are given by the following

formulae, with s as parameter.

1UdT  1Var 1Vor  1Uar

T H2y' 9v' _ﬁfﬁ'“ “HZuwouw  HZv ou

The geodesic curvature, k4, of any curve is defined as the magnitude of the geodesic curvature

vector with a sign attached, positive or negative according as the angle between the tangent
and the geodesic curvature vector is +%n or —%n. The geodesic curvature is therefore

intrinsic. From the sine formula for the angle between the vectors (u’,v' ) and (A, u ) it follows
that k, = H(u'u —v'2)

The geodesic curvature of a geodesic is zero. Conversely, a curve with zero geodesic curvature

at every point has zero geodesic curvature vector and is therefore a geodesic.

Since the unit tangent vector r’ is orthogonal to N, the unit vector which lies in the tangent
plane and makes an angle +%n with r’ is N x r’. The geodesic curvature vector is therefore

kgN X r', and (20) can be written r”" = k, N + kN X r’
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Taking the scalar product with the unit vector N X r’, we have x;, = [N,r’,r"]

In this formula for « it is a simple matter to pass from s to a general parameter t. Since r' =

i/$and r' X r" =¥ x /33 the formula becomes k,; = s73[N, ', ¥]
Substituting N = H™1r; X r,, we have

kg =H1$73(r; X 1) - (F X 1)
=H 1%$73{(r; - B)(ry - ) — (r,. 1) (1. 1)}

and because of the identities (12.1) this can be written x, = H%,s (z—z V(t)— Z—Z U(t))

Example 1:

To find the geodesic curvature of the parametric curve v = c. Taking u as parameter, then
u=1v=0,and

or _

oT 1 1
S =E>==FU=2E,V=F —E,

Also, s = E*. Hence the required curvature is given by
1 1
Ky = EH‘lE‘ (2EF, — EE, — FE,).

t = s can be simplified by means of the identity u'U(s) + v’V (s) = 0. Substituting for either
V or U and using the fact that u'(aT /ou') + v’ (T /dv') = 2T = 1 when s is the parameter,

. = 1U(s) _ 1V(s)
9 Hv T H4W

Exercise:

-HA Hu
u'+Gv' Eu'+H"v'

Prove that if (4, 1) is the geodesic curvature vector, then k, = -

Geodesic curvature may be regarded as the intrinsic generalization of curvature of plane curves,

as can be seen from the following result which will not be proved here.

Let P be a point of a given curve C on a surface and Q the voint of C at a distance §s from P
along C. If the geodesics wnuch are tangent to C at P and Q meet at the point R, let 6y be the

angle between the tangents to these geodesics at R. Then the geodesic curvature of C at P is
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lim —w.
5s—0 0s

For a plane curve, 81 is the angle between the tangents at P and Q and gimo i—‘f IS the curvature
S—

% in the usual notation.

The above would be a satisfactory intrinsic definition of geodesic curvature except for the

difficulty of proving that the tangent geodesics at P and Q do in fact meet at a point, R near P.

A more straightforward intrinsic generalization of curvature is as follows.

Let P be a point of a given curve C on a surface and Q the point of C at a distance § s from P

along C. Let C be the geodesic arc PQ, of length §5. Then if 66 is the angle between C and C

at P and if 5¢ is the angle between C and C at Q, the geodesic curvature of C at P is gim 20+39

s—0 s

(see Fig. 4 ; note that for this figure k, is negative).

There is no difficulty about this construction because of the existence theorem for a geodesic
joining two neighboring points. To prove the result, let (u’, v"), (ug, v4) be unit tangent vectors
to C at Q and P respectively. Let (@', 7"), (iiy, 7) be unit tangent vectors to C at Q and P

respectively. Then

sin 80 = H(ug, vo){ugvy — vougl, sind¢ = H(u, v){a'v' —u'v'}.

Figure. 4
We have
u' = ug + Ssuy + 0(6s2) as 8s - 0,
v' = vy + Ssvy + 0(8s?) as 6s — 0,

Uy + 6Sf (ug, vy, g, Ty) + 0(652) as 65 — 0,
Uy + 659 (ug, vy, Uy, Ty) + 0(852) as 65 — 0,

al

,ﬁl
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where in the last two equations we have useﬁ t éwgeodesic equations. Also we have
55 =68s+ 0(8s?) as6s = 0

We write

H(ugy,vy) = Hy, H(u,v) = Hy + 6H

Where 6H = 0(6s) as 6s = 0

Then we have sin 66 + sin §¢

= HOSS[uZ){v(’)’ - g(uO' vO; a{); 17(,))} - v(’){ué), - f(u()l UO, aé)l a:))}] +
+
SH (v — Tyug) + 0(8s2)

Also, as §s — 0 we have

sin 80 = 60 + 0(6s?), sind¢p = 8¢ + 0(5s?)
iy = uy + 0(6s), Uy = vy + 0(6s)

Then

86 + 8¢ =Hy6s[ug{vy — g(uo, vo, ug, vo)} —
—U('){{ 0 — f(ug, vo, up, v4)} + 0(6s?) as 8s - 0.

From (15.4), the geodesic curvature vector ( A, u ) of C at P is given by

A = ugy — f(ug, vo, Uy, o), tt = vy = g(ug, Vo, Uo, Vo).

50+8¢

Hence s

= Hy(ugu — vyd) + 0(6s).

Thus, proceeding to the limit as §s — 0 and dropping the suffix, we get

80 +6¢ o,
e

Liouville's formula for k. This is an expression for k, involving the angle 8 which the curve

under consideration makes with the parametric curves v = constant. Regarding @ as a function

of s along the curve, then Liouville's formula is

120

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Kg =0"+Pu' + Qv
where

1 1
P =ﬁ(2EF1_FE1 _EEz),Q =ﬁ(EGl _FEz).

The direction coefficients of the curve v = constant and the given curve are (1/vE,0) and
(u',v") so that
1 dT H

0 =VEu' + F o in 6
cosf = U +—v =———,sinf = —v
VE VE ou’ VE

!

Differentiating cos 6,

—sin 8 — EE

d@_ 1 d (6T
ds_\/}}?ds

1 , L oT
)=z B + B

multiplying by VE and substituting
d (0T aT
Lo
ds \ou' Ju

1
—Hv'0' =U + E(Elu’2 + 2Fu'v' + Gv'?) —
1
~5F (Equ' + E;v")(Eu' + Fv')

1
=U+ ﬁ{(ZEFl — FE, — EE,))u'v' 4+ (EG, — FE,)v'%}.
Liouville's formula now appears on dividing by Hv" and substituting U = —k,Hv' from (1).

Example 2:

Prove that if the orthogonal trajectories of the curves v = constant are geodesics, then H? /E is

independent of u.

The orthogonal trajectories satisfy 6 = %n and are geodesics if k, = 0. From Liouville's

formula, Pu' + Qv' = 0. Also cosf8 =0, i.e. Eu'+ Fv' =0, and the trajectories will be

geodesics if
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EQ—FP=0

On substituting for P and Q the condition becomes
F2E, — 2EFF, + E*G, = 0,

i.e. 3(G — F?/E)/0u = 0 as required.

Exercise:

1.Prove that if a curve C on a surface is projected orthogonally on to the tangent plane at a
point P of C, it becomes a plane curve whose curvature at P is the geodesic curvature of C at
P.

3.7. Gauss-Bonnet theorem:

Consider a surface of class 3 , with parameter system u, v, and let a closed curve C be the
boundary of a simply connected region R of the surface. (By simply connected we mean that
every closed curve lying in R can be contracted continuously into a point without leaving R.)

Suppose that C consists of n arcs
ApAy, AjA,, ... Ay 1A, (4, = Ap)

where n is finite, and that each arc is of class 2 . The vertices Ay, 44, ... are taken in order along

C to agree with the positive sense of description of C; this is usually described as the sense
which 'leaves the interior on the left’, i.e. a positive rotation of %n from the tangent gives the

normal which points to the interior region R. At the vertex A,.(r = 1, ...,n) let a,. be the angle
between the tangents to the arcs A,_; A, and A, A, ., measured with the usual convention at
A, so that — < a, < m; at A,,, a,, is the angle between the tangents to 4,,_;A, and A, A;.
Regarding C as a ‘curvilinear polygon', a,,...,a, are the exterior angles at the vertices

A4, ..., A, (see Fig. 5wheren = 6).

The geodesic curvature exists at every point of C except possibly at the vertices, and the line

integral [ ¢ Kgds can therefore be calculated. The excess of C is defined as

n
exC=2n—Z ar—f Kgds
=1 ¢

122

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



This is an invariant, independent of the particular parameter system for the surface. The only
possible effect of a change of parameter system is to reverse at every point the sense in which
angles are measured; this would reverse the sense along C and therefore the description of the

polygon, but k, at each point and a,. at each vertex would remain unchanged.

Fig. 5

For a curvilinear polygon C on the plane, , is the ordinary curvature dy/ds and [ Kgds +

"_, a, isthe total angle through which the tangent turns in describing C. This angle is clearly

2, so that the excess of C is zero. In particular, for a rectilinear polygon, x, = 0 at every point
and ), a, is the sum of the exterior angles, i.e. 27, giving ex C = 0. Since excess, as defined
above, is intrinsic, it follows, that on any surface isometric with the plane, the excess of a

simple closed curve is zero.

This result suggests that for a surface which is not isometric with the plane, the excess of a
simple curve C enclosing a region R is in some sense a measure of the intrinsic difference
between R and a region of the plane. The excess may therefore lead to an intrinsic definition
of the curvature of a surface, based on the convention that a plane has zero curvature. This is
in fact the case, and it will be shown that from the excess can be derived the important invariant

known as the Gaussian curvature of a surface.

From Liouville's formula for Kg,
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f Kyds = f (d6 + Pdu + Qdv),
C c

where 6 is the angle which € makes with the parametric curve v = constant and P and Q are
certain functions of u and v. Since the curves v = constant form a family in the region R

bounded by C, the tangent to C turns through 27 relative to these curves, i.e.

Hence
n
] do + Z a, =21
¢ r=1
ex C = —f (Pdu + Qdv).
c

By Green's theorem, since R is simply connected and P and Q are differentiable functions of u

and v in R,
0Q 0P
-[c (Pdu + Q,dv) = .L (% - %> dudv.
Hence, writing dS = Hdudv for the surface element, exC = fK KdS .......... (1)

where K is a function of u and v, independent of the curve C, given by

K=-1(2-2 . )

Equation (1) shows that there is a certain function K of u and v which is determined by E, F,
and G, and that the excess of any curve C which encloses a simply connected region R is equal
to the surface integral of K over R. We shall now show that the function K is uniquely
determined. Let K be a second function which also satisfies (1) and is independent of C. Then

for every region R,
[, R=K)AS=0 ... 3)

Now suppose K # K at some point P, say K > K. Then since K — K is continuous, there is a

region R which contains P and in which K — K > 0 at every point. For this R, [, (K — K)dS >

0 which contradicts (3). A similar contradiction exists if K < K at P. Hence K = K at every
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point, i.e. K is uniquely determined as a function of u and v.

From this uniqueness property and from the form of (1) it follows that K is an invariant; at
every point the value of K is independent of the parameter system. Also K is intrinsic, since
it can be calculated when the metric is known. Thus K is an intrinsic geometrical invariant; it

is called the Gaussian curvature of the surface.

For any region R, whether simply connected or not, fR KdS is called the total curvature of R.

Equation (1) now gives the Gauss-Bonnet theorem. For any curve C which encloses a simply
connected region R, the excess of C is equal to the total curvature of R.
For a geodesic triangle ABC, formed by geodesic ares AB, BC, CA and enclosing a simply

connected region R, the excess is
2n—(r—A)—(m—B)—(r—C)=A+B+C —m,

where A, B, C are the interior angles of the triangle. Thus the excess is the excessof A + B + C
over its Euclidean value m, a fact which accounts historically for our use of the word 'excess'".
The total curvature of a geodesic triangle ABC is therefore equal to A+ B+ C —m.
More generally, for a geodesic polygon of any number of sides (geodesic arcs) the total
curvature is equal to 2w minus the sum of the exterior angles, i.e. the excess of the sum of the

interior angles over (n — 2 ) m where n is the number of sides.
Exercise:

By first considering the region of the anchor ring of section 3 bounded by two meridians and

the two parallels u = 0, u = m, prove that the total curvature of the whole surface is zero.

3.8. Gaussian curvature:
An historical definition of Gaussian curvature K follows from the Gauss-Bonnet theorem for a

geodesic triangle. If P is a given point and A the area of a geodesic triangle ABC which contains

A+B+C-1

P,thenat P, K = limT ............ (1)

where the limit IS taken as all vertices tend to P.
On a sphere of radius a, for example, the geodesics are great circles, and the area of a geodesic

triangle ABC is a®?(A + B + C — ). The Gaussian curvature at every point is therefore 1/a?.
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That K is constant over the sphere is to be expected from the fact that there is an isometric
mapping of the sphere on itself in which any given point P corresponds to any other given point

Q, so that (K)» = (K), since K is an intrinsic invariant.

The formula K = 1/a? at a point of a sphere of radius a illustrates the fact that the dimensions
of K are (length) 2. This follows more generally from the Gauso-Bonnet equation, in which

the excess of a curve is clearly dimensionless.

The total curvature fR KdS for any region R is dimensionless. On a sphere of radius a, for
example, the total curvature for the whole sphere is area /a? = 4m. It will be seen in a later

chapter that the total curvature of a compact surface depends only upon the topology of the

surface.

The formula for K in terms of E, F, and G is given by (16.2), where P and Q are given by
(15.11). Hence, at any point and in any parameter system,

1 0 (FE;-EG 1 0 (2EF,—FE{—EE
K=12 (Haih) 10 (BA-FRiR) )
Hou 2HE H 0v 2HE

When the parametric curves are orthogonal, F = 0 and the formula for K can be written if the

simpler and symmetric form K = — i{% (%) + aa_v (’;—2)} ............ 3)

where now H = /(EG)

For example, on a sphere of radius a parameters can be chosen as in section 3 so that E =

a’,F = 0,G = a?sin?u. Then H = a?sinu since 0 < u < m, and the above formula gives

1

K=—————
2a?%sinu du

1
(2cosu) = Pel

In Chapter Il a very different kind of formula (non-intrinsic) for K will be given in terms of
the second fundamental coefficients to be defined later. This formula is appropriate when the
position vector r(u, v) for the surface is given and is generaily simpler than the above for the

purpose of calculation. It cannot, however, be applied when only the metric is given.
Exercise:

1.Find the Gaussian curvature at the point (u, v) of the anchor ring of section 3 and verify that
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2. Prove that the Gaussian curvature of the surface given (in Monge form) by z = f(x,y) is

(rt —s?)(1 + p% + q%)~2, where p, q, 1, s, and t denote respectively
0z/0x,0z/dy,d%z/0x?, 0%z/0xdy, and 3%z/dy>.

Geodesic polar form

With geodesic polar parameters the metric takes the form du? + g?dwv?

where for convenience g is written for vG. In section 14 it was shown that g (u, v) satisfies the

condition g = u + O(u?) asu - 0.

The Gaussian curvature at the point (u, v) is given by (3) with E = 1,G = g%, and H = g.

The center (origin) of the geodesic polar parameters is excluded from the domain of u, v
because it is a singularity, but since this is only artificial the Gaussian curvature exists there;
suppose it has the value K, at the origin. Thenas u — 0,g,; ~ —Kyg ~ —K,u; on integrating

twice,
u3
gu,v) ~ u—Kog asu—0
Thus for small u, the parameter v does not enter g(u, v) until terms of order smaller than 3.

Example 1:

To calculate the circumference of a geodesic circle of small radius r and to see how it differs

from the Euclidean formula 27mr.
In geodesic polar the circle is the parallel u = r. Hence ds = gdv and the circumference C is

Hence

21 21 KO KO
C:f g(r,v)dv~f (r——r3>dv:2n(r——r3>
0 0 6 6

to the first significant term, where K, is the Gaussian curvature at the centre of the circle.
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This suggests another intrinsic formula for K. Let C be the circumference of the geodesic circle

of centre P and radius r. Then

2nr — C
(K)p = lim 1
- 3
ng’T
Exercises:

1.Prove that, if A is the area of a geodesic disk of centre P and radius r, then

X | nr?—A
(FOp =lim—=—
ﬁﬂ?"

3.9. Surfaces of constant curvature
If K has the same value K|, at every point of a surface, the surface is said to have constant

curvature K.

Minding's theorem. Two surfaces of the same constant curvature are locally isometric.
Strictly, if P is any point of one of these surfaces and P is any point of the other, then P has a
neighbourhood which is isometric with a neighbourhood of P, the points P and P being

corresponding points. In what follows, 'surface’ means a sufficiently small region.

We prove this theorem by showing that if S is a surface with constant curvature K, then

(1) if K, = 0, S is isometric with a plane;

(2) if K, = 1/a?, S is isometric with a sphere of radius a; and

(3) if K, = —1/a?,S is isometric with a certain surface of revolution, called a pseudo-spkere,
determined by the value of a.

In each case a given point of S can be mapped into a prescribed point of the plane, sphere, or

pseudo-sphere.

The theorem for two surfaces S and S with the same K then follows by mapping each surface
isometrically on to the same plane, or sphere, or surface of revolution, so that given points P
and P correspond to the same point.

Let P be a given point of the surface S of constant curvature K, and let C be a geodesic

through P. Take as parametric curves the geodesics orthogonal to C together with their
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orthogonal trajectories. Let v = ¢ be the geodesic orthogonal to C at a point distance ¢ from

P measured along C, and let u = ¢ be the parallel orthogonal to the curves v = constant and
at a distance c from the parallel C measured along the geodesic. Then u, v is a parameter

system in the neighbourhood of P, and the metric of the surface is of the form du? + g?dv?

for some g(u, v). Since u = 0 is the geodesic C, it follows from (10.8) that dg2/du = 0 when
u = 0. Also, v is the arcual distance along C, i.e. ds = dv when u = 0, so that g = 1 when

u=0.Hence, (u=0=1,G1)u=0=0 .coeerrriri..... (1)

Using now the formula K = —g,,/g proved in section 17, g(u,v) satisfies the partial

differential equation g;; + Kog =0 ........... (2)
with boundary conditions (1) these are sufficient to determine g when K, is given.

Case (1), K, =0
When g,; = 0, g, is a function of v only and therefore g, = 0 since (g;)y=o = 0. From
g1 = 0 it follows that g is a function of v only and is therefore 1 since (g)y=o = 1. With g =

1, the metric is du? + dv?

i.e. the metric of a plane when u, v are taken as Cartesian coordinates. Hence, the surface S in

the neighbourhood of P is isometric with a region of the plane.

This confirms that K is a satisfactory measure of curvature for a surface since its vanishing is

both necessary and sufficient for the surface to be isometric with a plane.

Case (2), K, = 1/a?

Equation (2) integrates to give
u u
gu,v) = A(v)sina + B(v)cosa

Hence (g1)y=0 = (1/a)A(v) =0, and (g)y=¢ = B(v) =1, so that g = cos(u/a) and the

metric is
u
du? + cos? —dv?
a

This is the metric of a sphere of radius a. (The more usual metric is given by the transformation
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u=a Gn - 12) ,v = av.) The surface S in the neighbourhood of P is therefore isometric with

a region of a sphere of radius a.

Case (3), K, = —1/a?
By arguments similar to those for case (2), g = cosh(u/a) and the metric of S in the

neighbourhood of P is

u
du? + cosh? 2 dv?

This form, in which E, F, G are functions of u only, shows that S is isometric with a certain
surface of revolution (cf. Exercise 8.3).

Writing u = ait, v = av, the metric becomes
a?(du? + cosh? udv?)

This is the metric of the surface obtained by revolving the curve

x = acoshit,y =0,z = af(;z\/(l —sinh? 8)d@ (| < log(1 +/2))

about the z-axis.

This completes the proof of the theorem on the isometries of surfaces of constant curvature.
The metrics and surfaces constructed above are special, chosen to prove the theorem as
simply as possible. There are, however, other surfaces of revolution with constant curvature,
since any function g(u) which satisfies (2) (but not the boundary conditions (1)) gives a
metric which can be transformed into the standard metric of a surface of revolution. For
example, when K, = —1/a?, g can be taken to be ae®*/. Writing u = aii, the metric

becomes a?(du? + p?*dv?),

which is therefore the metric of a surface of constant curvature —1/a?.
An important example of a surface of constant zero curvature is the surface generated by the
tangents to any space curve. If r(s) is the position vector of a point on the curve, in terms of
the are s as parameter, then a point on the surface is given by r(s) + vt(s) where s and v are

the parameters. The fundamental coefficients are

E=1+k?v?F =1,G =1,H = |kv|where k, the curvature of the curve, is a function of s

only.
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UNIT IV

Non Intrinsic properties of a surface: The second fundamental form- Principal curvature —

Lines of curvature — Developable - Developable associated with space curves and with curves

on surface - Minimal surfaces — Ruled surfaces.
Chapter 4: Sections 4.1 to 4.8.

4.1. The Second Fundamental Form:
Theorem 1:
Let 7 = 7(u, v) be the eqn of the Surface curvature vector then
7" =k,N+Ar, + ur, ... (1)
where, k,, = normal curvature in the normal component of 7"’
N =Unit vector normal to the surface.
and Ar; + ur, = The vector with components.
- Taking (.) product to equation (1) with N.
2(1)=>7" -N=k,N-N+ A1, - N + p; - N.
SN-7" =kpy o (2)
[- N.N = 1and 7, 7, lies on the tangent plane ]
N-7,=0,and N -7, =0
Also we know that,
,_d
r=—_M
dv

_6 _ du+0 _
_6u(r) ds 6v(r) ds

f, = _1u’ + fzu’ T (3)

=

" =—|ru + vl
[ + 7]

d d _
=+ | )|+ v [ =)
d __dv

—= II_I__ II_I_ I[a(—)du+ ( )
i 2v u ou " ds OJv " ds

d du 0 dv
+v' [— n)—+— (1) - —
(')u(Z) ds 617(2) ds
=ru” + v +u[Fu + v ] v Rl + Tyv']
f” :F]_u” + fo” + fllulz + flzulvl + 772111.’17' + 77221712] e aenas (4’)

Taking (.) product to (4) with N,
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TR

4) N =

7 N=u*r-N+v'rp,-N+u? -7y, -N+uv'r, N
+u'v'fyy - N + v'%7,, - N.

=0+0+u?r, -N+2uv'7, N+v?r,- N

7' .N =Lu'? + 2Mu'v' + Nv'?[N -7, = N -1, = 0]

(&)

WhEI’EL=1711'1\_/,M=f2'1\_/&N=T‘22'1\7

oo, (2) o () (22) on

o
| L(du)? (dw)(dv)  (dv)?
K = Tdsy? @sz TN sy
_ L(du)? + 2Mdudv + N(dv)? ;
" E(dw)? + 2Fdudv + G(dv)2 T ®)

since, (ds)? = E(dw)? + 2Fdudv + G (dv)?
= The Quadratic form (du)? + 2Mdudu + N(dv : is known as the second fundamental
form.
where L=N -r,;,M = N -7;,,N = N - 7, are the second fundamental coefficient.
Note:
1.Alternative Expressions For L, M, N: We know that, N - 7; = 0
Diff () w.r.to"u
N,-73+N-7; =0
>N-1n =—-N1y
=>L= —1\71 -7
Diff (6) w.r.to 'v'
N, -7 +N-F,=0
>N, 15, =—N,-1y
Similarly, we know that N - 7, = 0
Diff (7)w.r.to'u'weget M = —N; - 7,
Diff (7) w.r.to'v'wegetN = —N, - 7,
Thus, L = —-N, -7,N=—N, -7, &
M =—N, -7, = =N, -7,
2. [Fyq, 70, 75] = 714 - (7 X 7)

:fll'HN
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= H(r11, N)

= HL
1.
= L= 7t [711, 71, T2)
1.
M= E [7’12» L&Y Tz]
1

&N= E [7722» T, 772]

Theorem 2: (Meusnier's Theorem)

If' 6 " in the angle between the Surface normal ' N ' & the principal normal ' 2 ' then
k, = k cos 6.

Proof:

Since ' 8 ' in the angle be tween N & 7.

_ _ a-b
~ N -1 =|N||fi|cosf — (A) [ cosf = Cf _l
|al|b|

[But we know that, 7" - N = k,

. Again, 7' = %(f’) = %(ﬂ =t =xn
=>7" =kn subin (1)
2k N =k,
= k(|N||n|cosB) = k,
= K'(cos0) = k,]

Taking (.) with N
=>kn-N=k,N-N+ A7, - N +ur, - N
k|N||f|cos8 =k, + 0+ 0.

[byeqn (A),N-N=1,7,-N =17, -N = 0]
= kcos8 =k, [:|N||a| = 1].

Normal curvature:

Let ' p ' be the point surface ¥ = 7 (u, v) consider a curve r = r(s) through the point 7 "
along the normal to the surface is defined to be normal curvature of the curve at the point. P.
Thusk, =7"-N

Classification of point

We know that, the normal curvature is given by

K. — L(du)?+2Mdudv+N(dv)?)
n T E(du)?2+2Fdudv+G(dv)2

=~ The denominator of the equation (1) R.H.S is positive definite.

So the sign of K,, depends only upon the sign of the Numerator.
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~ Ldu? + 2Mdudv + Ndv? = —[L*du? + 2MLdudv

=

+NLdv?]
1

=1 [[Ldu + Mdv]? — M?dv? + NLdv?]
1

=7 [[Ldu + Mdv]? + (LN — M?)dv?]

Here L > 0. So sign of k,, depends on the sign of LN — M?

D IFLN —M2>0

[(i.e) ifata pt'p ' on the surface this form is definite] then ' P " is called an elliptic point.
[(i.e.) then k,, maintains the same sign for all derivate directions at ' P '].

2) If LN — M? = 0 then' P "is called a parabolic point

[(i.e) x,, retains the same sign for all directions through' ' p ' except one for which the
curvature is zero |.

3) If LN — M? < 0then' P "is called a Hyperbdic point

Positive for directions lying with in a certain angle
(i.e.) K,, = {Negative for directions lying outside this angle
0 for along the directions which form the angle

and the critical directions are called the Asymptotic directions.

Theorem 3:

A Geometrical Interpretation of the second fundamental Form.

Let P(u,v) & Q(u + h, v + k) be near points on a Surface and let ' d ' be the perpendicular
distance from a onto the tangent plane to the surface at P.

If 7, and r are the position vectors of P & Q then

d == [Lh? + 2mhk + Nk2] + 0(h%, k®).

Proof:

i) P(u,v) & Q(u + h, v + k) be two near points on the Surface

ii) d = The perpendicular distance from ' Q ' onto the tangent plane to the surface at ' P '.

If r, = The position vector of P

Yo = The position vector of Q

To prove that d = =[Lh? + 2Mhk + Nk?] + O(h3, k3)

N | =

We know that,
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] T o1
fB) - f@==) =fi@b-a)
k=1
1
t—fM@z-a) ... ()

k=1,fOEE) = z Dif (%) o (2)

k=2,f@@D =)

Taking, b =7 +dr &a =7 in (1)
~ ()=
1 1
f@+dr) = f(7) =3, f (75 dr) +zf(2)(f; ar)

Z Diif bt . (3)
J

= (7 + dF) — 7 = [Dy(F)du + D,(F)du] + % [D11(Pdudu + P, ,(7)dudv]
+D, 1 (r)dvdu + D, ,rdvdv
= rdu + 7odv + % [f1du? + 27 dudv + 7ypdu?] ... ... ... ... (4)
Let r, = the position vector of P =y
&y, = the position vector of Q =7 + dr
then, d = projection of PQ on N
PQ-N
= (0Q —OP) - N.

= [(F+dF)—7] N

1 1
= fldu + deU + E [fllduz + Zflzdudv + fzzdvz] N
using the transformation and negative higher power of second order differential.

_ _ 1 _

o d = I:fl * Ndu + fz * Ndu + E [fll ° ﬁduz + 27712 * Ndudv + T'_22Nd‘l72]]
1

=0+0+ 3 [Ldu? + 2Mdudv + Ndv?]

1
d= 3 [Ldu? + 2Mdudv + vdv?]

= 2d = Ldu? + 2mdudv + vdv?

Thus, 2 X [ length of the perpendicular from @ to the tangent plane at P] = the second

fundamental form.
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Note:
1. At an elliptic point 'd 'retains the same sign.

= The surface wear p lies entirely on one side of the tangent plane at p.
2. At a hyperbolic point the surface crosses over the tangent plane.

3. Any point on an ellipsoidal surface is elliptic
4. Any point on a circular cylinder is parabolic.

5. Any point on the hyperbolic paraboloid [x = u,y = v,z = u? — v?] is hyperbolic

Example 1:

For a helicoid every point is a hyperbolic point.
Proof:

We know that equation of the helicoids is

¥ = (ucosv,usinv,av) ............. (1)

Diff (1) w.rto'u' «. 7, = (cosv,sinv,0) ........ (2)
Diff (1) w.rto'v'

~ 17, = (—usinv,ucosv,a) ........(3)

Diff Q) w.rto'u'(2) = r; =(0,0,0) ... ... ... (4)

Diff 2) w.rto V' (2) = 74, = (—sinv,cosv,0) =75 ...

Diff 3) w.rto'v', (3)7,, = (—ucosv,—usinv,0) .......

~ From (2), (3) & (4) we get,

0 0 0
HL = [r,,7, 73] = | cosv sinv 0
—usinv ucosv a

HL=0=>L=0>M=—
H

Similarly, from (2), (3) & (5) we get, HM = [iy,,71, 7] = —a

and from (2), (3) & (6) we get HN = [fy,, 7y, 75] = 0

2

L LN = M2 = (0)(0) - (=)

a2
2 —
LN —M? = —25<0
Thus all the point of a helicoid is hyperbolic.

7 = (ucos v, usin v, u?) are elliptic.

e (5)

(6)
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4.2.Principal curvatures:

Section of the surface:

A plane drawn through a pt on a surface, cuts It in a curve, called the section of the surface.
Normal section & Oblique section:

If the plane is so drawn that it contains the normal to the surface then the curve is Called
normal section, otherwise the section is called oblique Section.

Normal curvature (Alternative Definition of Normal curvature)

Let p be a pt on a surface ¥ = r(u, v) the normal curvature at p in the direction

(du, dv ) is defined to be the curvature at ' p ' of the normal section parallel to the direction
(du, dv)

Principal section, Principal curvature Mean curvature & Principal Direction:

The normal sections of a Surface which have greatest and least curvature are called "principal
Sections".

The maximum and minimum curvature are called "principal curvature"and denoted by 'x,'
and 'k’ .

Kq+K
Mean curvature = “Tb =pu

The direction of the principal section are called the principal direction & they are mutually
orthogonal.

Gaussian curvature:

Gaussian curvature = K = K, - K,,.

The normal curvature at ' p " in a direction ( K,, now denote post K )

Specified by direction coefficients (I, m) is given by

k =LI1*>+2mlm+ Nm? ... 1)

Where, El? + 2Flm+ Gm? =1 ....(2)

[...’ k.,

As [, m Vary, Subject to E1? + 2Flm + Gm? = 1, the normal curvature will vary.

_ Lu2+2Muv+Nv2]
Eu?+2Fuv+Gv?

To find the extreme values: [using Lagrange's Multiplies].

K = LI 4+ 2MIm + Nm? — A[EI2 + 2FIm + Gm? — 1] ..........(3)
when K is stationary,

Diff (3) w.r.to ' L', (partially)

ok
ST 2LL+ 2mm — A[2El + 2Fm] =0
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Diff (3) w.r.to 'm ' (partially) o = 2ml + 2Nm — A[2F + 2Gm] = 0,

Divided by 2, 5% = ml + Nm — A[FL+ Gm] = 0, .......... 5)

(AxDH+(B)xm) =
LI? + Mml — A[El? + Fml] + [mlm + Nm? — A[Flm + Gm?] =0
= LI2 + Mml — AEI? = AFml + mlm + Nm? — AFlm — AGm? =0

= LI? + 2mml + Nm? — A[EI? + 2Fml + Gm?] = 0

=>K-A1)=0]~ (1) & (2)]

=>K=21
Thus the extreme values of k are obtained when A = k
To find principal curvature from Quadratic equation by elimination of ,m from (4) & (5):
eliminate | & m.

4)=>Ll+mM—-AEl—2AFm =0
> l[L—AE]+m[M —AF] =0
= l[L — AE] = —m[M — AF]
I —[M—AF]
(5)> ml+ Nm—A[Fl+Gm] =0
>Ml+ Nm—-AFl—Atm =0
> I[m—AF]+m[N —-GA] =0
= l[M — AF] = —m[N — GA]
I  —[N—-GA]

From (6) & (7) L.H.S are equal = R.H.S also equal
[M — AF] [N —GA]

[L—AE] [M — AF]
=[M — KF][M — KF] = [N — G # K][L — KE][+ A = K]
=M? — 2KFM + K?F? = NL — KEN — KGL + K*GE
=M? — 2KFM + K?F? — NL + KEN + K¢ — K — K2GE = 0
=—K2[EG — F?] + K[EN + GL — 2FM] — (LN — M?) = 0.

Multiply by (-1), = K2[EG — F2] — K[EN 4+ GL — 2FM] + (LN — M%) = 0............(8)
This is the quadratic equation in k.

=~ It gives two values for k which correspondence to the extreme value of k.

This two values of k are denoted by k, & k;,. Where k, & k,, are the principal curvature at p

To find mean curvature:
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We know that, Mean curvature = u = = [k, + kj]

N |

[Also we know that, If ax? + bx + ¢ = 0&a, B are two roots then
Sumoftheroots=a + 8 = —b/a

and the product of the roots = aff = c/a]

1
. Mean curvature =y = E K, + Kp]

[ co- effofK]
2 co-eff of K2

M ) _1[EN+GL—2FM]
ean curvature = G —F2

To find Gaussian curvature:
We know that,

Gaussian curvature = k= K, - K,
[ constant ]

~ |co — eff of K2
EN — M?

EG — F?

To find the principal direction by eliminate A :
(or) Elimination of A from (4) and (5).

(4) = Ll +mM = A[El + Fm]

Gaussian curvature = K=

_ Ll +mM 9
= TEl +Fm]""""( )
(5) = Ml + Nm = A[Fl + Gm]
__ MI+Nm
= o e (10)

From (9) & (10) = LHS are equal = R.H S are equal.
[Lf+mM] [M€+ Nm]
[Ef + FM]  [F£+ Gm]

= [Lf + mM][Fl+ Gm] = [Ml+ Nm][El + Fm]
= LFI? + GLIm + MFml + GMm? — MEl?> — MFfm — NElm — NFm? =

= I2[LF — ME] + Im[GL — NE] + m?[GM — NF] = 0
2

l l
= (EM — LF) (E) + (EN - LG) (E) + (FN = GM) = 0. ... .......(11)
=~ The roots of this eqn-gives the direction of the principal direction.
The discriminant of this equation = (EN — LG)? — 4(EM — LF)(FN — GM) .....(12)
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Consider, FN —GM = FN -2 —GM - = -2 4 L
E E E E

F G
= FN = GM = = [EN — GL] — = [~FL + EM] sub in (12).
(12) = The discriminant of egn (11)

=(EN — GL)? — 4(EM — FL) g(EN — GL) —%(—FL + EM)

2(EM — FL)F 4G
=(EN - GL)* = 2(EN — GL) - —————+ — (EM — FL)’
2 2

4F , AF ,
+ 5 (EM = FL)* = — (EM — FL)

4(EM — FL)?

=(EN — GL 2k EM — FL)J? +

If the R.H.S of equation(13) > 0, then the equation (11) has distinct real roots and two

distinct principal directions.
If the R.H.S of equation (13) = 0. Then, the roots will be consider.

when, EN — GL =EN — FL=EM — FL = 0.

(whenZ=2== (1)

Suppose, equation (14) is true at a point.

[—F2 + EG] ......(13)

(i.e.) when L, M, N are proportional to E, F, G then The principal directions are indeterminate

and the normal curvature is the same in all the directions

To prove that the principal directions are orthogonal.

(i.e.) To prove that the angle ' 6 ' between the principal direction = /2.
(ile) T.RP.T: 0 = m/2.

From (11) = The principal directions are given by.

(EM — FL)? (%)2 + (EN — GL) (%) + (FN —GM) = 0

Let the roots of this equation. bei and #

LU (BN -GL))
'%Jrﬁ__(EM—FL)L .
LU a9

m m'~ (EM—FL) |
~ The angle ' 8 ' both the principal direction is,
cos = Ell' + F(Im' + ml") + G(mm')
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e ErlE e

=l lw=ral L=+ o] 09

m [EFN — EGM + FEN + FGL + GEM — GFL]

cosf=0
= 0=cos 10

=60 = % = The principal directions are orthogonal.

Umbilic:

A point at which g = % = % is called an umbilic

Example:

On a Sphere every point is umbilic.

7 = (asinucos v, asin usin v, acos u)

4.3. Lines of curvature:

A curve on a surface whose tangent at each point is along a principal direction is called a line
of curvature. (or)

A line of curvature on any Surface is a curve Such that the tangent at any point is a tangent
line to the principal sections of the Surface at the point.

Theorem 1:

Rodrigues Theorem:

The necessary and sufficient condition for a curve to be a line curvature is that

Kdr + dN = 0 on a surface

Proof:

Necessary part:

Assume that a curve on a Surface be a line of curvature.

=~ The tangent to this curve, at each pt of the curve is along a principal direction

(i.e.) The direction ( du, dv ) of this curve at each point (u,v) is along the principal direction.
To prove that Kd7 + dN = 0

We know that, the principal directions are on by,

[L — KEldu+ [M—KFldv=0 .......(1)

[M — KF]ldu+ [N —KGldv=0 ...... (2)

where k = principal curvature.
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Also we know that,

E=7 -7,F=7 7,G="7, Ty L=—N; -Ty.......... (3)
Sub (3) in (1) and (2)
o (1) = [-N7 — k(7 7)]du+ [N, — 7 — k(7 - 7)]|dv =0
& (2) = [-N, -7, — k(7 - ,)]du + [-N, - 7, — k(7 - 7,)]dv = 0.
(i.e.) (1) = —N, 7 du — k- rydu — Ny - 7idu — k(7q - 7)dv = 0
& (2) = N, - Tpdu — k#y - "pdu — N, - 7pdv — k - 75 - Todv = 0
(i.e) (—1) X (1) > N;7du + N,7,dv + hiy - 7du + k7 - Tdv = 0
&(-1)(2) = N; - "du + N, - "odv + ki - Hpdu + ki, - Todu = 0
(1) = (N,du + n,du) - 7y + k[rdu + 7,duli, = 0.
& (2) = (N,du + N,dv) - 7, + k[fdu + 7,du]7, = 0.
W)= [Edu+Zav] 7+ k [Zdu+Zdv| 7 =0,
&@) = [ZBdu+Zdu| 7, + K [Ldu+Ldu|y, =0
(1)=>dN -7 + kdf -7, =0&
(2)=dN -r,+ Kdr-r, = 0.
(ie) [dN + kd7] -7, =0 ........... 4)
&[dN + kdi] -7, =0. ........... (5)
From equation (4) & (5) we get,
dN + kd7 is perpendiculur to both 7 and 7, .......... (6)
ButN2=N-N=1

=dN-N+N-dN =0

= 2N -dN =0

>N-dN=0
= dN is orthogonal to N
= dN is a tangent vector ........... (7)
Further, d7 = 7, du + 7,du&r;, r, are tangential vectors
= kdr is also a tangential vector.
From (7) & (8)
The vector dN + kdr is a tangential vector
(i.) dN + Kdr is a vector on the tangent plane.
If AN + kdr # 0 then from (4) & (5) dN + kdr is parallel to N.

This is contradiction to (9)
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~dN+ KdF =0
Sufficient part:
Assume that dN + kd7 =0 .......... (10)
along a curve For any some Scalar function' K '.
The along the curve we have
(dN + kdr) -7, =0-7, = 0.
& (dN + kdr) -7, =0-7, =0
~ (du, dv) is the direction of the that cure at the pt (u, v) then by retracing the same Step as

(Ldu + Mdv) — K(Edu + Fdv) = 0 }

Retracing the steps from (4) & (5) to (1) & (2) from (10)
_dN + kdr =0

aNd AL S +afd‘]—
ou Tt o T T

(i.e.) Nydu + N,dv + k(7,du + 7,dv) = 0.
K(rydu + 7,dv) = —N,du — N,dv
post multiply by 73 du + r,dv on both sides

above, we see that

(11)

we get, k(7 du + 7,dv) (7 du + 7,dv) = (=N;du — N,dv) (F{du + 15dv)

k(7 - 7 du? + 271 - fydudv + 7, - 7,dv?] = (=N - 7y )du? + [-N, - 71 — Ny - 13| dudv
+[—N,75]dv?

(i.e.) k[Edu? + 2Fdudv + Gdv?] = Ldu? + 2Mdudv + Ndv?

[Since E = 72,Gy = 74, F = 7y.75,L = —N;7;,, M = =N, — 7,&N = —N, - 75,

Ldu? 4+ 2Mdudv + Ndv?

~ Edu? + 2Fdudv + Gdv?: "
= k is a normal curvature at (u, v)

Hence, the direction (11) at any point of the curve gives the principal directions at (u, v).
The tangent to the curve at each point is along a principal direction at that point.

=~ The curve is a line of curvature

Minimal Surface:

Surface whose mean curvature is zero at all points are called minimal surface.

Theorem:

Lines of curvature as parametric curves
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T

SRS | owen

F = 0,M = 0 is the necessary and sufficient conditions for the lines of curvature to be

parametric curves
(or)
If the parametric curves are lines of curvature the than F = 0, M = 0.
Proof:
Necessary part :
Let ¥ = 7 (u, v) be a gi. Surface then the differential eqn. of the lines of curvature is given by,
[EM — FL](dw)? + [EN — GL])dudu + [FN — GM](dv)? =0 ... ... ... (1)
If the lines of curvature be takes as parametric curves then F = 0,
Since the principal directions are orthogonal u = constant & v = constant are the equations
of parametric curves.
=~ combined differential equations of parametric curves is given by dudv =0 ........... (2)
By hypothesis,
The lines of curvature coincide with the parametric curves at each point ......... 3)

~ (1) & (2) are identical or respect the same curves.

FN—-GM=0........(5

EM=0and GM =0 [+ F = 0]

>M=0["E+#0&G # 0]

Sufficient part:

IfM =0&F = 0then

the eqn (1) = [EN — GL]dudv = 0 but EN — GL # 0.

[[FEN—-GL=0= % = %Which is the condition for umbilic point.]

Hence dudv = 0. which is the diff. equation of the parametric curves.

Theorem: Euler's Theorem

Let the lines of curvature be parametric curves then k,, = k,cos? ¢ + k,sin? ¢
Where k,, = The normal curvature at P along ( du, dv )

K4, Kp = The principal curvatures.

1 = The angle between the direction (du, du) & the principal direction dr = 0. (or)
Let k,, k;, be the principal curvature of a surface at any point p on it, then the normal
curvature k,, at P in the direction making an angle ¥ with the principal direction in which the

normal curvature is k,, and is given by.
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k, = kqcos? + k,sin? i
Proof:
Let the equation of the Surface r = 7(u, v),

If the lines of curvature be taken as parametricthen F = 0& M = 0.

Ldu?+2Mdudv+Ndv?
Edu?+2Fdudv+Gdv?

& the normal curvature k,, =

Let ' p ' be any point on the surface.
Then the principal directions at * P ' are the directions of the parametric curves

v = constant & u = constant.

1

We know that, the direction co-efficient in the direction of V = constant at P is (—E, 0)

and the direction co-eff in the direction of u = constant at p is (0, %)
Let (I, m) be the direction co-eff of the direction in which the normal curvature in x,,.
s cosy= Ell' + F[lm' + I'm] + Gmm'

— EI (i> + 0 + G(m)(0)
VvVE
_H
VE
= cosp= IWE .......(1)

Since the principal directions cut at 90°, the angle between the direction in which the normal

curvature is k, & the direction in which the normal curvature is

w c0s(90 — ) = E(D(0) + 0 + G(m) (J%>

We know that, the normal curvature K,, in the direction with direction co-eff (I, m) is given

by,
B 112 + 2MIm + Nm?
" El2 + 2Flm + Gm?

K,= LI? + 2MIm + Nm? [+ EI? + 2Flm + Gm? = 1]
> K,=LI?+0+Nm? [+M=0]
= K, = L2+ N2 oo (3)

wK, =1 [%] + N(0)

K, =2 4
e = ()

Taklngl—O&m—\/Em(l)
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2

K, = L(0)2 + N (J%>

__cosy
From (1), ! = Nz

siny

from (3), m =

S

From (4) & (5)
L =Ex, &N =Gk,

=~ From (3)
cosy1° siny?
o = B[22+ g [
n a \/E b \/5
2 102
=k, = Eky ¥ s GK, SmG s

= k, = kycos? Y + kysin? Y
For the principal curvature on the Surface of revolution.
7 = (ucos¢,usin ¢, f(u)) is given by.
fll fl

ko =G e = wa
Gaussian curvature = ky = kg - ky, = U(%zz)
Mean curvature (1% curvature)= Ka*Kp
_ llufu + (1 + fl)l

2| u(1+f2)3/2
Corollary:

The sum of the normal curvatures at any point on a surface in two directions of right angle is

constant is equal to the sum of the principal curvatures at the point.

Proof:

Let k, & K}, be the principal curvatures at any ' p ' on the given surface

Consider two directions at p which cut at 90°.

Let x4, i, be the normal curvature in these two direction. Let 1, be the angle between the

directions at P, in which the normal curvatures are k, & k,& 1y, be that of K, & K,

=~ By Euler's theorem,
ki =k, cos? P, + kp cos? Py ... (1)

[Replacing k,,, Y respectively by k4,1, in the Euler's formula]
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T

k, = kycos? P, + kpsin? P, [ P, = 90 + ]
= ky = kacos? (5 + 1y ) + kysin? (5 + 1, )

2 a 2 1 b 2 1
= k, = kgsin? Y, + kpsin? Y,

(D) + (2) = k1 + k= Kglcos? P, + sin? P, ] + Kkp[cos? P, + sin? P, ]
= Kq + Kp.
Ki + K,= constant .

Thus the sum of the normal curvature at p. In any two directions which, at at 90° is the sum
of the principal curvatures at P, a constant.

Elliptic, parabolic & Hyperbolic points:

Suppose k in the Gaussian curvature of a point P(u, v) on a surface.

If k, & K;;, are principal curvatures at P, then

LN — M? _ LN — M?
EG — F? H?

K = Kgkp = , where H2 = EG — F? > 0

Elliptic point:
If a point 'p' at a Gaussian curvature is positive (i.e.) If LN — M2 > 0 then the pt ' p ' is called

an elliptic point.

K>O@LH;22>O=>LN—M2>OsinceH2>O

=~ A point is an elliptic point & the principal curvatures (x, & k) at the point are of the
same signs.

CA Pt, P is an elliptic point.

© k>0 kysk, >0 both k, & kj, are positive (or) negative.

Hyperbolic point:

It a point at a Gaussian curvature is negative. (i.e) If LN — M2 < 0 then the point' P 'is

called a Hyperbolic point.

L _ 2
K<0<:>T<O<:>LN—M2<0,sinceH2 >0
~ A point is a hyperbolic point < the principal curvatures ( k, & kg ) at the points are of
positive signs.
If point ‘p " is a jypthis hyperbolic pt & K < 0

(=4 Ka * Kb < O
& One of them is positive & the orther is negative
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Parabolic point:
A point ' P ' the Gaussian curvature is zero (ie) If LN — M? = 0 then the point is called a
parabolic point.

LN — M?

=~ A point is a parabolic point.

Sk, k=0

& atleast one of the principal curvature is zero.

Variation of normal curvatures with direction at the three types of points:

If x,, is the normal curvatures at a point P(u, v) in the direction (du, v ) then,

3 Ldu? + 2mdudv + vdv?
"~ Edu? + 2Fdudv + Gdv?
Note that,

Kn

Edu? + 2Fdudv + Gdv?= —=[E?du? + 2EFdudv + EGdv?].

&

1
=z [Edu + Fdv]? — F2dv?+EGdv?]

Since E and EG — F?(= H?) are assumed to be positive.
The denominator of the R.H.S of (1) is always positive.
=~ The sign of K,, depends upon the sign of the second fundamental form
Ldu? + 2Mdudv + Ndv?
i) If' P "is an elliptic pointthenat' P'LN — M? >0 =~ L # 0

& Ldu® + 2Mdudv + Ndv? = —[[Ldu + mdv]*+[LN — M?]dv?]

1
L
This shows that,

If LN — M? > 0 then the sign of Ldu? + 2Mdudv + vdv? > 0 (or) < 0 according as L > 0
(or) L<o.

Hence the sign of K,, maintains the same sign at an elliptic point for all directions

ii) If P is a parabolic point then at P, LN — M? = 0 - K,, maintains the Same sign for all
direction that ' p ' excepts when k,, = 0.

iii) If p is a hyperbolic 'P 'thenat' P .
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LN —m?<0

=~ k, 1s positive for directions lying within a certain angle.

[The denominator of the R.H.S of (1) is always positive the second fundamental form du? +
2Mdudv + Ndv? ] negative for directions lying outside the angle & zero along the direction
which form the angle.

Theorem:

Show that at an elliptic point the surface line entirely on outside of the tangent plane & at a
hyperbolic point the surface cross over the tangent plane

Proof:

Let ' P ' be a point (u, v) onthe given Surface & Let' Q 'be a pt (u + du, v + dv) in the
neighborhood of P

If* h'is the length of the perpendicular from Q to the tangent plane to the surface at P then
h =~ [Ldu? + 2Mdudv + Ndv?] ......... (1)

If' P is an elliptic point Then Ldu? + 2Mdudv + vdv? maintains the Same sign for all
direction (du,dv )at'P "

Thus if ' P "is an elliptic from (1), ' h ' has the same sign whether may be the position of Q.
Hence the entire surface lies on one side of the tangent plane at an elliptic point.

IF' P 'is a hyperbolic point, thenat ' P ', then Ldu? + 2Mdudv + Ndv? have ave as well as
negative value.

=~ from (1),

If' P "is a hyperbolic point then ' h ' has positive as well as negative values.

= The surface near 'P ' lies on both sides of the tangent plane at P.

Thus the Surface Crosses over the tangent plane.

The Dupin Indicatrix:

If Ry, R, to be the reciprocals of k,, k;, then the curve of Section is the conic

x%  y2

X+ 2L = 2n,

Ra Rp

z = 2b. This conic is known as Dupin's Indicatrix.

It gives an immediate geometrical interpreter of the variation of normal curvature with
direction.

Theorem:

If x, & K}, are the principal curvature at ' O ' on the surface then the equation of the indicatrix
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is$+2—: =2h.......(1)z=h, where R, = é&Rb = i

Proof:

Suppose, ' O "is a given point on a given Surface.

Let Q be a point in the Dupin's indicatrix then Q is very nearto' O ".

[Then @ is a point on the curve of intersection of the surface & a plane which is parallel to
the tangent plane at ' O ' & which interself The Surface in points very near to 'O’].

If" h'is the distance of D.T from the tangent plane at ' 0 .

(i.e.) If " h " is the length of the perpendicular from a to the tangent plane at ' O .

Then, 2h = Ldu? + 2Mdudv + Ndv? ............. ()

If we take the lines of curvature at ' O ' as parametric curves, then F = 0,M = 0.
~(2)=

2h = Ldu® + Ndv? ............ (3)

The Necessary condition. x,, in the direction (du, dv ) is given by,

Ldu? + 2Mdudv + Ndv?

= Fdu? + 2Fdudv + Gdv?
Ldu?® + Ndv?

~ Edu® + Gdv?
The direction ratios of the parametric curves v = constant, u = constant are (1,0)&(0,1)

Since the line of curvature has been taken as the parametric curves from (4)

2 2
— LOPNOR L e Ly

The principal curvature k,k, are given by, K, = E1G(0)? &

Similarly, K, = % .......... (5)

[ For: -when (du,dv) = (1,0) = k, = k,

ill y when (du, dv) = (0,1) = k,, = k).

Using (5) in (3) we take, 2h = kK Edu? + k;, Gdv? ... ..... (6)

If ds; & ds, are alts. Of the arc length of the parametric curves v = constant & u = constant
at0

Then ds; = Edu?& ds, = Gdv?.

[+ ds? = Edu? + 2Fdudv + Gdv? on v = constant
= dv = 0]

Therefore, (6) => 2h = k,ds? + k,ds3
Take ' O ' as the 'origin
Let OX & OY of along the principal directions at ‘0’'& 0z along the normal to the surface.
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Let the co-ord of Q be (x,y, z) then x = ds;;y - ds,&z = h.

=~ from (7)
The equation of indicatrix is z = h, 2h = k,x? + Kkpy? ... ... .. ... (8) (OF)
x2 y2
2 = — B =
h R, + R, ,Z=h
1
where, Ra = K—a,Rb = k_b

Radius of curvature at' 0 ".

Note:

1) If K,, K;, have the same sign the conic is an ellipse with semi axis of length

[2hR,]'/?& [2hR,]/?& is real (or) imaginary according to the sign of ' h .

2.) If k, & k;, have different signs of the conic is one of two conjugate hyperbolas.

In this case the directions of the asymptotes at * O ' are called the asymptote directionsat ' O .
Example:

Prove that at any point ' P ' on a Surface there is a parabolic Such that the normal curvature of
the Surface at ' P ' in any direction in the same as that of the paraboloid.

Proof:

2 2
We know that, the equation of the indicatrix is :— + 3};— =2h&z=h...... (1)
a b

The equation to the surface for which (1) in the Coincide is obtained by eliminating ' R ".

2 2

X

Y =22 i (2)

Re  Rp

(2) can be put in the parametric form as,
L _ 1x®  »°
r=(x,y2)= x,y,2 R TR,

‘_—(10 x>&_ —<01 y)
e ] = ))Ra rZ_ :in

_ __ 0r _ or
oy

2 2
So,E=1+5,F="2&G=1+-"2-.
Rg RqRp Rp

o 1
[7y1,71,72] = HL = R_a
[7712:7”_1»E] =HM =0
1
&[fZZJFIJFZ] == HN = -
b
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Hence,

Ldu? + 2Mdudv + Ndv?
ds?

1 du]2 N dv]2
~H " ds b [ ds
Result:
The lines of curvature are in conjugate directions at every points.

K=

Proof:
The directions of lines of curvature are given by,

x? X
[EM = FL] — + [EN — GL] —+ [FN = GM] = 0

ThusL[lllz]+M[l1 ]+N

B {FN GM} GL — EN
EM — LF EM —FL

_ LFN — LGM + MGL — MEN + NEM — NFL

B [EM — LF]

=0
(ie) ELL, + F[lymy + myl,] + Gmym, = 0.
=~ The lines of curvature are orthogonal.
Asymptotic Directions:
If Duplin indicatrix at ' 0 ' is a hyperbola, the direction of the asymptotic at ' 0 ' are called
Asymptotic directions.
Asymptotic Lines:
An asymptotic line on a Surface is a curve whose direction at every pt on it is asymptotic

equation of the asymptotic lines is,

7 dN 2l iy V, &
Consider, d—d— = [ ot ][Nl as TNz E]
Cdw? __ _ du du N
= 1N1(ds) + [N, + 7, N, E'ds”_zNZ(E)
2 2dv?
_ Ldu +2MZI:;1”+N W (1)

But the direction at every point on the asymptotic lines is along the asymptotic direction the
normal curvature at each pt. of the asymptotic lines is zero as
Edu? + 2Fdudv + Gdv? # 0 But k,, = 0.

~= Ldu® + 2Mdudv + N?dv? =0
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di dN _ 0
ds ds
Asymptotic lines are self-conjugate Two directions (l,,m,) & (l,, m,) are conjugate if

a (1) =

L, + M[lym, + myl,] + Gmym, = a
But along the asymptotic lines the direction ratio are (du, dv).
o Ldu? + 2Mdudv + Ndv? = 0. (by the above result).
Asymptotic lines are self-conjugate.
4.4. Developable:
A developable is a Surface enveloped by a one-parameter family of planes
A family ( 1-parameter family) is given by the equation - a = p
where a - represents the normal vector to the plane p - The length of the perpendicular from
the origin' 0 .
Both a & p are functions of a real parameter " u ".
Characteristic Line:
Letr.a=p .......... 1)
be a family of planes & The planes u, v(u < v) will intersect in a line provided they are not
parallel.
Let f(u) =7 - a(u) — p(u). then the eqn of the line of intersection is
f@) = 0&f(v) =0.
= from Roller's Theorem, there exists a value v,2, such that u < u; < v with f(u;) = 0 as
v - u,u; — u. and the equation of the limiting position of the character line in,
Fr—a=pr-a=p....(2)
This line is also called the generators of the developable.
Characteristic points:
Consider the three planes u, v,w (u < v < w) then there planes will generatly intersects with
one pt & the limiting position of this pts as v — u and u — v independently is the

characteristic points co responding to ' u ".

~ By Rolle's the,

The equation determined is points are,
r-a=p

T-a=p¢....(3)

T-a=p

If @,a,a are L - D, then these eqn's either have no solution or else the solution is

153

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



indeterminate

Edge of Regression:

Consider the planes u, v, w be the chou. Pts corresponding to these three planes determine a
curve on the developable this curve is called an edge of regression.

(i.e.) The char-pts corresponding to planes of the Family determine a curve on the
developable called the edge of regression, with equation is given by,

|
Q- Qr QI
||

=i
Il
s =T~ Tl

F-a=P,

Result:

here 7 is regarded as a function of u.

The tangent line to the edge of representation is parallel to the characteristic line

Proof:

The equation of the edge of regressionis, 7-a =p .......... (1)
T A=D uroen o (2)

Fed=p.u..(3)

Lett be the tangent vector to the edge of regression
Diff (1) with respectto ' u '

St-a+p = plby(2)]
= (St)-a=0
> ta=0......(4)

Diff 2) w.r.to'u'
[d N P
ds(r)du a+r-d=p
St-a+7-a=p
= St-a+p = p[by(3)]
>st-a=0
>t-a=0 ...... (5
From (4) & (5) we get
t is perpendicularto @ & a
tisparalleltoaxa ............ (6)
We know that, the line intersection of (1) & (2) is the characteristic line.
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~ltisparalleltoaxa ............ (7)

From (5) & (7) we get

t is parallel to the characteristic line

Result :

A developable consists of two sheets which are tangent to the edge of the regression along a
sharp edge.

Proof :

Let ' ¢ ' be the edge of regression

& Let' O 'be a pt on the edge of regression at which s = 0.

Let ox, oy & oz be a set of orthogonal traid [rectangular Cartesian axis] chosen respectively
along t,m,& b at' 0. then,

Any point on the develpatle has position vector given by R = 7 + vt

R also can be written as,

R=0"P=0'Q+QP =7y(s) + vi(s)

(on extending R in powers of ' s )

R =7(s) + vi(s)
s? s3
=7(0) + s7'(0) + Zf” 0) + if”’(O) + o(s*)

2 3

+v lt(O) + st’(0) + %E”(O) + %t"'(O) + o(s%)

_ _ s s3 _
~R= lo +st+—[ka] +—= [k’ + k(zb — k)| + o(s*)

2

+v If + ski + % [k’ + k(th — kE) + o(s®)]]

= S3k2+ vs k- t+ Szk+53k’+ k+52k’ +53k{+52k b
Y VT 2 76 VST T | T Ty

The normal plane x = 0, meets the developable surface where,
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53k2+ vszkz_O
% VT T

szkzl s3k?

=>v|l-—

2 |6 °

s?k? . s?k? .
N

s3k? s?k?
G —-sll1-+ >
s3k?  s3k?  s°k*
— Tt T2
2s3k?

>V =

l[-.- QI-x)t=1+x+x>4-]

=—5 — + o(s*)

V=-5- % Sub in (2) & then comparing with (1)
-1
y = 71{52 + 0(s?)
1
z= —gkrs3 + o(s*)

eliminating ' s ' between these eqns

—8712
2 __°° 3
2 =9 %Y

From this equation it follows that, the developable cuts the normal plane to the edge of
regression in a cusp whose tangent is along the principal normal.
The two sheets of the developable are thus tangent to the edge of regression along a Sharp
edge.
Result:
The tangent plane is same all the pts of the generators of a developable surface
Proof:
Let ¥ = 7(s) be the eq. of the edge of regression & t be the unit tangent vector at any pt of
the edge of regression .
We know that, the equation, of the developable is,
0Q =8P +PQ
R=7 () +vE(S) .coorrnnn. (1)
Diff (1) w.r. to V&S (partial)

OR

ov 1
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oR _  _ _

as
o R1 X R2= EX [E+ UKT_l]
= 0+ VK(Ex 7))
(ie) HN = Vih
=>N=bh

= N is a function of 's' only '

= N is independent of v.

= N is Some at every point along a curve where ' s ' is fixed.

= N is Some at every pt of char line

= N is Some at every pt generator of the developable.

= Tangent plane at every pt generator of the developable.

Result:

The osculating plane of the edge of regression at any point ' p ' in the tangent plane to the
developable Surface at P.

Proof:

The equation of the edge of regression is

T—aA=D .coevnn.n. (1)
F Q=D .oeevnnn. (2
T-Ad=pP ccovvnnn. 3)

Diff (L) w.r.to'u'
Fead+7-a=p

(ile)r,a=0 .......... 4)

Diff (2) w.r.to ' u'.

Fd+ 7 d=pP

r+a+p=p(by(3))

Diff (4) w.r.to 'u'

Foa+r—a=0
(ie)#-a+0=0 by(5)

Fea=0 ... (6)
From (4) & (6) we get,

ra=20

a O} = @ is parallel to 7 X 1
Fa =

But 7 x 7 paralleltot x 7 = b
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So a is parallel to b
= a is perpendicular to the plane  ........ .(7)
But a is normal to the corresponding plane t in the Family.
Thus the tangent to the developable surface is Same as the plane of edge of regression.
4.5.Developables associated with space curves:
Osculating Developable:
The one-parameter family of osculating planes at pts on a skew curve form the "osculating
developable™ of the curve.
Result:
The edge of regression in the curve itself of the osculating developable. (or)
The generators of osculating developable of a space curve are the tangent to the curve & the
edge of regression of the osculating developable of a space curve in the curve itself.
Proof:
Let ¥ = 7(s) be the given curve.
The family of osculating planes has equation [R —7#(s)]-h =0 ....... (1)
where, R is the position vector of an arbitrary point on the plane.
& 7 in the point on the curve
Differentiate w.r.to 'S".
(R-7) b+ (-7")-b=0
(ie)(R—7) - (-0)+ (=) -b=0.[T#0]
(ie)(R—7)-n=0........ (2)
Diff (2) w.rto's"
(-7")a+R-7)-a' =0.
~t—7+(R-7)(th—ki) =0
(R-—7)-th—(R-7)kt=0
0—(R—Dkt=0 [+ by(l) T+ 0&k # 0]

(R—DKE=0 .......... 3)
From (1), (2), (3) we see that, (R — ) is L" to £, 7, b
~“R—-7=0

R=7

= The edge of regression is the curve itself.
Polar Developable:

The family of normal planes to a skew curve form the "polar Developable™ of the given curve
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Result :
The edge of regression of the polar developable in the locus of centers Spherical curvature of
the given curve.
Proof :
Let the equation of the curve to ¥ = 7(s)
The equation of the family of normal planes, (R —7) - 1=0 ......... (1)
Differentiate w.r.to 's '
(R-7)t' + (-7t =0.
(R-7)(kn)—t-t=0
(R-Pkn—-1=0
(ie)(R—Mra=1
(le)(R-PA=-=p ... )
Diff 2) w.r.to's'
(R-—P)a' +(-r)n=p
(R—7)(th—kt)—t-n=p'
T(R—7T)b—k(R—7T)t—0=p'
Tt(R—7)b—0—-0=p'[by (1)].
(ie) t((R—7)b=p’
(i) R=PMb=2=0p" oo 3)
- from eqn (1) we see that, (R — 7) is perpendicular to ' £ ".
~ (R—7) liesonthe normalplane . R—7=Ab +pun .......... (4)
Taking (.) product to (4) with b,
4W>R-7)-b=Ab-b+un-b
>(R-7)-b=21+0
=>o0p =LA ... (*)[by3]
Taking (.) product to (4) with 71, (4)
>(R—-r)a=Ab-n+un-n
(R=71)n=0+p
(le)p=p ..(*>x)(by (2))
Sub (*) & (**) in (4)
~(4)>R-7=0pb+pn
(o)R =7+ ap'b + pnt
= R in the position vector of the centre of Spherical curvature.
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(ie) which is the locus of cube of Spherical ci-jurﬂvﬂa:ture.

Rectifying Developable:
The rectifying planes to a Skew curve determine the "Rectifying developable” of the given
curve.
Result:
The curve is a geodesic in the rectifying developable.
Proof:
Let ¥ = 7(s) be the given curve
then the char line of the rectifying developable isinby (R —7) -7 =0 ......... (1)
Diffw.to's "
(R—7)a' +(-7)-a=0.
(R—7)(b—kt)—t—-n=0
R-—7)(th—kt) =0 .o (2)
Let R, denote the diff of R w.r. to p.
& R, denote the diff of Rw.7.t0''s"
~Ri=tt+kb
&R,=t(1+ t'y) + pk'n
~ Ry X Ry= (tf + kP) + x(1 + pt")t + pk'n)
=0+utk'(txn)+k(1+ut')(bxt)+xuk'(bx'
=utk'b — k(14 ut')n — k'uk't

=1
=k(1+ 7' wn — utk'n

R; X R, = HN is parallel to 1
= The curve is a geodesic on rectifying developable.
Note:

1. Any developable, which is not cylinder (or) a cone, may be regarded as the osculating
developable of its edge of regression.

2. The equation of principal planes namely osculating plane, normal plane & rectifying
plane of a space curve at a point P contains only a single parameter, which is usually
taken as arc length.

Therefore, Their envelopes are developable & They are Osculating developable, polar
developable & rectifying developable.
The generators of polar & rectifying developable are called polar and rectifying lines

respectively.
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Example 1:
Prove that the edge of regression of the rectifying developable has egn.

(or)

The Rectifying plane to a skew curve determine the rectifying developable of the given

[tE+kb]
[k't—kT]

R=r+k

curve. Prove that the edge of regression of the rectifying developable has equation,

p oy Mt kb]
~ T Tkt — k]

Proof:

Let the equation of the curve be ¥ = 7 (s) equation of the rectifying plane is,

(R-7r)-n=0

Diff (1) w.rto's .

(R-=7)-a'+(—F)n=0

Diff (2) w.rto 's'.

(=) (zh — kt) + (R —P)[th’ +t'b — k't' — k't]
—t'n—n't=0

(i.e) (D) (zb — k) + (R — M)[r(—i) + v'(b) — k(kn) — k']

—(kn) -n—(th—kt)-t=0

(ie)0+k+R-P)|[-t?a+1tb—k?’n—k't] -x—0+k=0

(ie)k+R-P)|[-G@*+kDn+1'b—k't]=0

k—R-7)@2+k)n+ k-7 ('b-k't)=0

k+(R-7)(z'b—k't)=0-(4) [+ (R—7)-7=0]

- eqn (1) & (2) Shows that R — 7 is parallel to both 7 & (b — kt)

R — 7 is parallel to 1 X (b — kt)

(i.e.) ltis parallel to tt + kb

= (R —7) = u(tt + kb) (5), u is a scalar.

Sub the values of R — 7 from (5) in (4).

“ (@) =>k+u(tt+xb) - (r'b—k't) =0

k+u(0—k't+kt'—0)=0
k+utkt" —k’'t) =0

-k

(le)n=crros

. _ k .
(ie) u = O sub in (5)
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Theorem 1:

A necessary and sufficient condition for a surface to be a developable is that its Gaussian

curvature be zero.

Proof :

Necessary part:

Let the surface be a developable

To prove that the Gaussian curvature k = 0

If the developable surface is a cylinder (or) a Cone, then the Gaussian curvature is evidently

zero. If these cases are excluded, then the developable may be regarded as the osculating

developable of its edge of regression & its equation may be written as,

R = 7(s) + vi(s)
(ie)R=7+V(@) ........ (1)
Let the Suffices 1 & 2 denote the diff w.r. to 'S' & V' respectively.

we know that

—_ M2
Gaussian curvature k = =22 (A)
EG-F?
L — N * éll\
= R1XR,
where VPere N = H ¥ .......... (B)
M = N . RlZ I
N = N . Rzzj
[ R = T']
Diff (1) w.r.to 's".
Rl = f’ + UE’

Rl = E+ U’k’ﬁ. = Rll = E, + Uk,ﬁ + Uk,ﬁ,
(ie) Ry, = kil + k'l + vk(zh — ki)
Dift(1)wr.to'v'& Ry, =0+ kn= R, =kn

R2:O+E
ﬁEZZEﬁ _22:O
&RZJ_:E’:kﬁ:}RZl:kﬁ
o Vkb _
B) L =N-Ry=———[kit +Vk i + Vk(zh — k)]

H
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H —
M= Ry = 2 (k] =
H
M=0
N =R Ry = 02 (0) =
H
>N=0
LN — M?
(A):K=ﬁ
()0 -0
a EG — F?

Gaussian curvature = k=0
Sufficient part:
Assume that k = 0

To prove that: The surface is developable.

LN—-M?
EG—F?2

= LN —_M2 =0 ~
= (- N (@ - Np) — (rN,) (7 - N) = 0
= (7, Xx7)(N; xN,) =0

HN(N, x N,) = 0

N(W, x N,) = 0 [+ H % 0]

(ie) [N,N;,N,] =0 .......... (1)

from (1), we have any one of the following possibility,

=0.

given,k =0 =

i) N,N;, N, are coplanar.

i) N; =0
i) N, =0
iv) N, = uN,
Case (i):

Since N is a vector of unit length of N - N = 1 we have 2N; - N, (or) N; - N = 0
Similarly, N, - N =0

(ie) N is perpendicular to both N, &N,

(ie) N, N;, N, cant be coplanar.

Case (ii): N; = 0.
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The eqn. of the tangent plane at any point ofw
7(u, v) is given by (R — 7)N; = 0. isithue

~ we have,

%ﬁm—4wﬁ=—ﬁﬁ+(ﬁ—ﬂﬁl

=0+0=0
= (R — )N depends only on V the surface is the envelope of one parameters family of
planes.
Hence it is developable.
Case (iii):
N,=0
proceeding similarly as in (ii) we see that the egn of the tangent plane contains only one
parameter 'u .
Hence in this case also the surface is developable
Case (iv):
N, = uN,
Let us change the parameter (u, v) to (u’, v") by the transformation
u=u+v'&v=u —uv
then we obtain,
ON ou ON ov

= 9u ow v ow
=N -1+N,-1
Nj= N, + I,

e ON B ON odu +81\7 ov
270y du v dv v
= 1\:/1 1 +_N2(_li)

= Ny — uN,

N;=0

These relation shows that N, the surface normal depends on only one parameter
Hence by case (iii)

The surface is developable.
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4.6.Developable Associated with curves on Surfaces:

Theorem 1:Monge's Theorem

A necessary and sufficient condition that a curve on a surface roving be a line of curvature
is that the surface normal along the curve form a developable.

Proof:

We consider the surface formed by the normal along the curve 7 = 7(s)

Any point on this surface will have the position Vector, R = 7#(s) + vN(s) ........... (1)
where ' S "and ' v ' are the parameters

Let the suffixes 1 & 2 denote diff w.r. to 's' & 'v' respectively.

From (1), we have,

R, =7 +vN' (Diff w.r. to 's")
(ie) Ry = T + vN’
&Plz = 1\_], = R21 (lefWI‘ to ! U’ )

R, = N (Diff w.r. to V)
&Ry, =0 (wr. to'v')

_ Ry xR,
& N =
H
 [RxA]
'.'M=R12'N=R12'T

(ie) HM = Ryy[R; X Ry]
(Ie) HM = [R_12) R_ll éZ]
Similarly, HN = [Ry,, Ry, R,
=[t+vN',N',N] =0
= [E)N_’) N_] + [UN,IN,I N]
HM=[E,N,N] .......... (3)

M2 —_Mm2
Hence the Gaussian curvature ' k " is given by, K = % = iz ........... 4)
H H

We know that, the surface is developable,

S M = O_
 [t,N,N'] =0.

Hence it is enough if we prove The curve 7 = 7(s) is a line of curvature (or) the surface r =
7(u,v) © [t,N,N'] = 0.

Necessary part :
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Let[t, N,N']=0 ........... (%)

T.P.T: The curve ¥ = 7°(s) a line of curvature on the surface © = 7 (u, v)
2 (5)= (ExN)-N=0

Here N # 0.

&t x N’ is not perpendicular to N

~EXN' =0

(ie.) Fis || to N’

= N' = —kt for some function k
dN de

= —=—-K—
ds ds

(i.e)dN + kdr =0

= The given curve is a line of curvature

(by Rodrisue's formula)

Sufficient part:

Let the curve © = 7(s) be a line of curvature
Then dN + kd7 =0

(ie) ‘;—” = k<
(i) N' = —kf oo (6)
[t N,N']=[E, N, —kt]
—0

Theorem 2:

Let ¥ = 7 (u,v) be a Surface &7 = 7(s) be a curve ' ¢ ' on it. The tangent planes at point on ¢
lying on a Surface form a developable. Then the char. line of the developable at any point ' p
‘on' ¢ 'is in a direction conjugate to that of the tangentto 'c 'at "'p ".

Proof :

We know that, the equation of the families of tangent plane is (R —7) N =0 .......... (1)

Diff (1) w.r.to 's ' we get

— _dN
(R - r)d—’sv =0 e (2)
Let (I, m) be the direction co-eff of the char line at P then

(R-7)=Ilry+mry .......(3)
~2)= Uy +mry)(Nu' +1,v") =0
sLlu' +m(v' + mu') + Nmv' = 0 is the
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direction (1, m) is conjugate to the direction( u ,v" ) ofthe tangentto 'c'at'p ".
4.7.Minimal Surface:

Surfaces whose mean curvatures is zero at all the points are called the minimal surfaces.
Theorem 1:

If there is a surface of minimum area com passing through a closed curve it is necessary a
minimal surface that is a surface of zero mean curvature.

Proof:

Let ¢ be a surface bounded by a closed curve ' ¢ ' and let € ' be another surface normal

let £; and &, the both small.

(i) e, =0(e) e, = a(e) ase — 0.

Then if R denotes the position vector of the displaced surface we have

R=7+eN

9] _ _ .
%lez 1+61N+EN1
oR  _ .
%=R2=T2+EZN+EN2

Lot E*, F*, G* denote the first fundamental Coefficients of E’

Then E* =R, - R,
=Ry R,
= (7, + €N +eN,) - (7, + €N + eNy)
=7 +eN+eN,) (7 +e N+ eNy)
= (7, + &N + eN,) (7, + &N + eN;)
=F — 2eL0(e?)

F*=R, ‘R,
= (7, + &N + eN,)(7, + €,N + €N,)
=7, -7+ (7 + Ny + 7,N;)e + 0(€?)
=7 1,4+ (7 - N, + 75 - N)e + o(€?)
=F 4+ (—M,—M)e + o(e?)
=F — 2Me + 0(e?)

G*=R, R,
= (7, + ;N + eN,)(7, + €;,N + €N,)
=7, —7Ty,+ (- Ny + N, - 7)€ + 0(€?)
=G+ (—N-—N)e+o0(e?)ase >0
=G —2Ne+o0(e?)ase - 0.

Then H*? = E*G* — F*2,
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=[E — 2eL + 0(€3)][G — 2eN + o(€?)]

[F — 2Me + 0(€?)]?
=EG — F2 — 2¢[EN + GL — 2FM] + o(e?)
=(EG — F?)[1 — 2e- 2u] + o(€?)
where ¢ = mean curvature.
_ EN + GL — 2FM
~ 2(EG-F?)
(i) H?2=H?*(1-4€e M)+ 0(e?)ase » 0
H'=H(1 —4ep)? + 0(e?) ase - 0

=H(1+2ue) +0(€?)ase—>0 ........(1)
Let A = [ Hdudv

€

where A is the area of the surface enclosed by ' ¢ .
So,

A= f H*dudv
€

= f [H(1 — 2ue) + 0(e?)]dudv

€

= f Hdudv — f 2epHdudv + 0(€?) ..o .. (2)

€ €

Since A is stationary in the R.H.S of (2) there should no term containing €

(ie) 2u J_ Hdudv = 0.

> u=0

Mean curvature is zero.

Problem 1:

Prove that the asymptotic lines on a maximal surface are orthogonal.

Solution:

We know that, If the two directions are given by, Pdu? + 2Qdudv + Rdv? = 0
are orthogonal if ER —2FQ+ GP =0 ............ (1)

Let us the Surface be minimal the differential equations giving the asymptotic directions are
Ldu? + QMdudv + Ndv? = 0.

These direction are orthogonal

S EN—-2FM+GL=0

EN-2FM+GL
—aery 0
2(EG-F?)

< mean curvature = 0
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< the surface is minimal.
4.8.Ruled Surfaces:
A Ruled surface is generated by the motion of the straight line moving with one degree of
freedom. The varies position of the line are called generating lines or ruling.
Example:
Cones, cylinder, coincides are spherical forms of Ruled surfaces.
To find the equation of the Ruled Surfaces
Let C be a base curve on a given ruled surface then the surface is determined by,
(i) the base curve
(i) The direction of the generator at the point of the meeting with the curve.
Let g(u) be the unit vector along the generate at a curved point Q and C and r(u) be the
position vector of Q.
Then R be the position vector of the general Pt P is given by R = 7 + vg.
where V is the parameter which measures the directed distance along the generator from C.
To find the metric, unit, normal and the 10™ Second fundamental form to a ruled Surface:
Equation of the Ruled Surface is
R=7+v§ ............ (1)
R, =7+vg
Diff w.r.to u is denoted by the suffix 1
Diff (1) with r aspect to v
R =4
E=R, R,
= (r, +vg) - (+vg)
= it + 2vgr + ggv®
G=R, R,=g-g=1
F=R,-R,=({+vg)(r+vg).[Diff §g=0]
yg+v
=79 — f du? + 2rjdudv + dv?

Thus the metric is
ds? =
unit norm: —(F + vg) X § .......... )

Second Fundamental co-efficients:
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HL = [Ry1, Ry, Ry

= [/ + vgy + vgd]

= [yvgl +vigygl + viyv 4]

+v*[gggl

HM = [R12»R1;R2]

= [g,v +vgdl

g — = = A

= [;g] t+v[g.9,9]

= [gyg] +0
HN =[Ry;; Ry R,]=0
Since R,, = 0.
= N =0 Since H # 0.
Note:
(1) The Gaussian curvature for a ruled Surface is given by
_ LN — M?
~ EG —F?
_ —lgvgr®

H?(EG — F?)

—[gv4])?

H4—
= Gaussian curvature for a Ruled Surface is < 0. "The Necessary and Sufficient condition

for a ruled Surface to be developable is [g7§] = 0 " parameter of distribution:-
A function P(w) defined by,

p(u) = [fggg] ........... (1) is called the parameter of distribution of a ruled surface properties

of parameter of distribution:
(ii) The parameter of distribution P(u) is independent of the particular base curve chosen.

By Replacing y by ¥ + wg then parameter of distribution

parameter of distribution w.r.to new base curve} = [F'Jr(v;%ﬂ
_[Pg4] I, g-g']
T T
_[744]
=5
=pW)

(1ii) The parameter of distribution is independent of choice of the parameter wu.
Let I be taken as parameter instead of u so the new p. 0. DD(t) is given by
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dF . dg

ac’ 9 de
P(t) =———
dq
4
_ [dr du Adgdu] [dg duy®
= dudt'g'du dt dt
/[du' 'du
=p(uw)
' |daf

In particular are length S is taken as parameter than the parameter of distribution of a
generator, g(S) through the point r(s) is given by,
_[7.g-91_t4g
(g")? (g")?

(iv)P vanishes identically on a developable Surface, we know that,

The Gaussian curvature for a Ruled Surface is given by,

p o 1. gl°
=8
—_n2 54
M

H4

Thus k is always negative except along those generators P = 0 since k = 0 for a developable

surface we see that p vanishes identically on a developable surface.
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UNIT V

Differential Geometry of Surfaces: Compact surfaces whose points are umbilics- Hilbert’s
lemma — Compact surface of constant curvature — Complete surface and their characterization
— Hilbert’s Theorem — Conjugate points on geodesics.

Chapter 5: Sections 5.1 t0 5.7

5.1. Compact Surfaces Whose Points are Umbilics:

Theorem 1:

The only compact surfaces of class = 2 for which every point is an umbilic are spheres.
Proof:-

Let s be a compact surface of class > 2 for which every point is an umbilic

. R R L
(i.e.,)points at which =TT

Let P be any pointon's".

Let V be a co-ordinate neighbourhood of 's' containing ' P '. in which part of S in represented
parametrically by ¥ = 7 (u, v)

Since every point of ' v ' is an umbilic.

= Every curve is lying in v must be a line of curvature,

Hence, from Rodrigue's formula, atall pts of v is, kd¥ + dN =0 .............. (1
Where, K = normal curvature of ' S ' in the direction dr.
From (1)

= d_[\_/ = —kdf

= Nl = _k'Fl &NZ = _kfz

= [\_/12 = —k2T1 - kflz and 1\_/21 = _klfz - k7_'21

BU'[ we have that, [\_/12 = NZl & 7712 = 7_'21
o _szl - kle = _klfz - kf21
= —koty = —kyry  [v T = T4l
= szl - k1T2 =0

Since ry, 1, are L.I
>k =k, =0
= k is constant.
Integrate (1), (for k #0)
(1)= [ (dN + kd7) = 0.
d) [ dN+k[ dFr=0
(ie) [ dN=—k [ dF (= k #0)
(ie)—k™1[ dN = [ dF
(ie)-kIN+a=y
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where @ = a constant vector (or) y = a — k‘ll\‘l” ........ 2)

= 'V ' lies on the surface of a sphere of center ' a ' and radius k1.
Integrate (1), for (k = 0)

= [ dN +kdF =0

= [ dN=0

SN=b .o, (3)

@)

= 'v'lies on a plane.

~from@2Q & QB)=>7F=a—k~'bh

The neighborhood of any point the surface is spherical (or) plane local pant of the theorem.

Associate with each point ' p ' on the surface a neighbourhood ' v ' having the above property.

The set of all neighbourhood 's vp covers s & from the compactness we deduce that ' s ' is covered by
a finite sub-cover formed by v;, i = 1,2 ... N.

consider two over lapping neighbourhood’s v;, v;

from the previous local argument,

= k is constant in v; and also in v;.

By considering the value of ' k " at pt's in v; N v;.

= k takes the same value over the whole of the surface.

Moreover, this value can't be zero. Otherwise, the surface would contain a

Straight line & would not be compact.

Hence the surface must be a sphere

5.2. Hilbert’s Lemma:

In a closed region R of a Surface of Constant tue Gaussian curvature without umbilics, the principal
curvatures take their extreme values at the boundary.

Lemma 1:

If at a point ‘P, ' of any Surface, the principal curvatures k,, k;, are such that either (i) k, > k. "k, '
has a maximumat ' P, ' & ' K, ' has a minimum at P,.

(on) (ii) k,; < kp, "k, "has minimumat ' P, ' & ' K3, ' has a maximum at P,.

Then the Gaussian curvature k cannot be tue at ' P, .

Proof:

Suppose that the lemma is false

(i.e.) Assume that there is a point, ' p, ' at which the principal our value, have distinct extreme. values,
one maximum and the other minimum with k at ' p,, ' is strictly true.

Taking the lines of curvature as parametric curves, we know that, the principal curvatures are,

kg =— e (D)
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= =
N

& Kb:G ............ (2)

Also we know that , when the lines of curvature are chosen as parametric curves, the Codazzi

relations expressed in terms of E, G, L, N & their derivatives are.

L =SB [5+5] 3)
Ny =26 B+ o
Now,

Diff (1) with respect to ' v ' (partially)

dka 0 (L

v ov (E)

EL, — LE,
EZ

_EF@

1[5+ ]

EYC
EZ

E,L EE,N

=2 T2 Lk

EZ

EE,N 1
¢ 7Lk

- =
aKaz%[%—L]
or E?

_ E, [EN—GL
_ﬁ[ G ]
_ E, [EN —GL
“2El EG

ok, E,
S =22l —Kal e (5)

— LE,[ by equation (3)]

N
G

L
[ Ka _ Kb — E

oK, G,

Similarly,% =5 Ko — Kpl i e (6)

Since, the principal curvatures, k, and k; have extreme value at' P, ',
we have,

ok, oky

—=0& ——=0at'P;

av ou at o

Sub in (5) & (b)
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E;
(5) 5= 52 [ky — ko)
= E3[Ky — kgl =0, (kg # kp).

= E, = 0[k, — kg # 0].

G,
& (6)=>0= Q[K —Kpl.
= Gl[ a kb] =0 ( ka * kb)
= Gl =0
Diff equation (5) with respectto’ v .
0%k, 1
502 —E[Kb—Ka]Ezz'i'd [ZE K)]Ez
1
== ﬁ [Kb - ka] . E22 fen nee we e (7) ['-' EZ == O]
Similarly, — ik K” = 210 [Ky —KplGi1 oo 8)

= There are now two possibilities, either (i) k, has a maximum (k, > k).

thenk, —k, >0
_, 9%Kq 92K
S S0& 220, )
(or) (ii) K, has a minimum (k, < Kj,)
9%k, %k
thenk, —K, >0=—"2%>0 and auz”so ............ (10)
. . 9%k,
=~ using (10) in (7) [kb —k,>0& Tz = 0]
we get,
(7)=>E»;, =20
& using (9) in (2) [+ ko — ky = > 0]

B)=6G;1=0

The Gaussian curvature K is.

K_—l d (Gl L9 d (E2>}
~ 2H ou ) ov '

“1¢ 1 9 /1 1 9 /1
=apltug T oigy (>+&2 +&a( »

-1 1 1
K= SH Gllﬁ"’ E>; E} [+ G1&G, = 0].
K = SH2 {Gll + Gzz} at' PO ............ (11)

We know that G;; = 0 & E,, > 0.
= k = negative (or) zero.
This is contraction to our assumption.

~ kcannot betieat' Py, .
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5.3.Compact Surfaces of constant Gaussian or Mean Curvature:

Remarks:

1. A compact surface must passes a 'highest point’ and at this point the curvature is necessarily

non-negative.

= A compact surface cannot have constant negative curvature.

2. A compact surface cannot have constant zero curvature, for otherwise it would contain

straight lines which would contradict the compactness
Theorem 1:
The only compact surface with constant Gaussian curvature are spheres.
Proof:
Let ' s ' be a compact surface with constant positive Gaussian curvature ' k '.
Since' S ' is compact.
=~ There is a point ' p, ' at which the maxi value of the principal curvature is attained.

Since the product of the principal curvatures (ii) The Gaussian (curvature) is constant.

= The principal curvatures have respectively a maximum & a minimum value at ' p, ' with the

maximum not loss than the minimum.

=~ from Hilbert's Lemma,

The two principal curvature must be equal

(i.e.) At point does either principal curvature exceed vk

Hence every point of S is an umbilic .

[The only compact surfaces of class > 2 for Which every pt is an umbilic are spheres].
= The only compact Surfaces with constant Geaussian curvature are sphere.

Theorem 2:

The only compact surfaces whose Gaussian curvature is positive and mean curvature constant are

spheres

Proof :

Let S be a compact surface of positive Gaussian curvature and constant mean curvature.
Denote K, & K;, be large and smaller principal curvatures respectively,

Since ' K, 'is continuous & ' S ' is compact.

There is a P, ' at which K, attains its maxi value.

Since the mean curvature is constant.

= k; attains its minimum value at P,,.

[ If there is a point P different from ' P, ' Such that k;, at P is Smaller than Kj, at P, then
K, at P is greater than k, at P,.

Since the mean curvature is a constant
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This is contraction to the maximality of K, at

Now, we have the relation M, > M, everywhere.

If k, >k, at' Py 'then K < 0.

(by Hilbert's Lemma).

This is contraction to our assumption that the Gaussian curvature k is tie.
o kg =ky at Py

Kq+Kp

~ The mean curvalue (u) = >

=k, (or) k;,

kqtkp

Hence at every point 'S’ the mean curvature given by u = .

[ If thereisa point' P 'on'S ' different from P, Suchthat K, at' P ' > k,, at P.

thenu =k, at'Py' >k, at'P'> k, atP

=KyatPy=pu

This is contraction.]

- The Gaussian curvature k = k, - k;, = u? a constant.

Hence 'S" is a compact Surface with constant the Gaussian curvature

=~ by know theorem = 'S ' is a sphere.

5.4.Complete Surfaces:

Metric Space

A set of points ' S ' carries the structure of a metric space when there is a real-valued f,.
p:S X S — R, with the properties.

() p(A,B)=0 A=B

(i) P(4, B) = P(B,A)

(iii) p(A,C) < p(4,B) + p(B,C),VA,B,C of S.

Note:-

If S is connected then any two points can be joined by arc-wise connected paths.
Remark:-

The surface can be regarded as a metric space.

Proof:

Assume that the surface S is connected.

= any two pts. can be joined by arc-wise connected paths.

If y is any path joining A to B, then this path can be divided into a finite no. of segments
- Each segment lies entiverly in one co-ordinate neighbourhood & adjacent co-ordinate

neighbourhood is
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~ The length of } = [VEU? + 2Fuv + Gv2dt
The segment

where the co-ordinate are u = u(t) & v = v(t)

=~ The length of y = the sum of the lengths of its segments.

Now, we define,

distance function p = p(4, B) = The greatest lower bound of the lengths of all arc-wise connected C
'paths joining A to B.

This p(4; B) Satisfies the conditions (i) (ii) & (iii)

= The surface can be regarded as is positive definite a metric space.

Cauchy Sequence:

A sequence of point’s {x,} on the surface is said to form a Cauchy sequence if

given a positive real no. ' e ' an integer ' n, ".

Such that p(x,, x,) < & p, q both exceed n,.

If {x,,} converges to a limit ' x ' then the sequence. {x,,} is a Cauchy sequence.

Complete metric space:

If the surface is such that "Every Cauchy sequence converges". Then the metric space is said to be
complete.

Example:

Give an example to shows that not all surfaces are complete.

Solution:

Let the surface formed by the two-dimensional Cartesian plane of pairs of real no.'s (x, y). when the
origin is removed.

The distance function ‘p ' is the Euclidean distance function defined by,

p(A,B) = /(xs — x5)2 + (4 — yp)?

When (x4, v4), (x5, yg) are the rectangular, co-ordinate of point's A&B.

The sequence of points {(% 0)} is seen to be a cauchy seg. Which does not converge in the Surface.

=~ Surface is not complete.

Note that, the two points (a, 0), (—a, 0), (a > 0) Cannot be joined by a geodesic (Straight line) lying
entirely on this surface.

5.5.Characterization of Complete Surfaces:

Theorem 1:

To prove that the following properties are equivalent.

a.) Every Cauchy sequence of points of s is convergent.

b) Every geodesic can be prolonged indefinitely in either direction or else it forms a closed curve

178

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



c) Every bounded set of points of ' s ' is relatively compact.
Proof:

v
Xn
Figure 1.
To prove that (a) = (b)
given (a) every Cauchy sequence of points of s is convergent. ........... €))

To prove that

Every geodesic can be prolonged indefinitely in either direction (or) else it forms a closed curve.

If y is a closed curve, then every geodesic can be prolonged indefinitely in either direction (or) it
forms closed curve.

If ¥ is not a closed curve and if p(x) is some pointony .

then there is same no ' [ ' such that v can be prolonged for distance (measured along y) <1 But, cannot

be prolonged for distances > ¢
Now, consider the sequence of points {x,} lying on y at distance from p( along y) is [ [1 — %]

Evidently {x,,} is a Cauchy sequence (by (1)) converges to some point Q on y whose distance from
P is precisely ' [

If {x,,} in another Cauchy sequence, such that p(x;, x;,) = € then {x;,} - Q".

Now, the sequence x4, x1, x5, X5, X3, x5 -+ is also a Cauchy sequence, tending to both Q&Q’
~Q=0Q

= their exist a unique and point Q distant [ from P along y .

Now, Consider a coordinate need of S which contains Q

At Q, there is uniquely determined a direction ' t ' which is the direction of the geodesic - y which
starts at Q.

In this coordinate neighbourhood. There is a unique geodesic at @ which has the direction (-t)

= a continuation to our hypothesis (equation (1))

179

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



=~ Our assumption is wrong.

= y is closed curve.

: (@) = (b)

To prove that (b) = (c).

Given every geodesic can be prolonged indefinitely in either direction or else it forms a closed curve

To prove that : Every bounded set of points of ' S " in relatively compact.

Consider a point ' a’ of ' s ",

and geodesic arcs which startat' a '

Now we define, Initial vector of a geodesic arc starting at ' a ' to be the tangent vector to tr'sarc at ' a
'. which has the Same Sense as the geodesic & whose length is equal to the length of the geodesic arc.
Since ' S ' has the property (b),

= Every tangent vector to S at ' a ', its length is the initial vector of some geodesic arc Startingat'a '
which is uniquely determined.

=~ This arc may eventually cut itself (or) if it forms port of a closed geodesic, may ever cover part
itself.

Let S, be the set of points x of S,- which distance from ' a 'does not exceed r.

(i.e) p(x,a) <r.

and let E, be the set of points ' x ' of S, which can joined to 'a' by a geodesic are whose length is
actually equal to P(x, a).

(i) To prove that : The set of points E, is compact.

Let {x,},h = 1,2 ... be a sequence of points of E,

& Let Ty, be the initial vector of a geodesic an of length P(a, x;,) joining'a 'to "' xj, ".

Then the sequence of vectors {T}, } regarded as a sequence of points in two-dimension Euclidean space
admits at least one vector of accumulation T More over,

This vector ' T " is the initial vector of a geodesic arc whose extremity € E, & is a F accumulation of
the sequence {x;}.

= E, is compact

(ii) To prove that : E, = S,

E, =S, istruewhenr =0

Also E,. = S, is true for r = R > 0, then it is certainly true for r < R.

Now, every pt of S, is the limit of a sequence of ft* whose distance from' a ' < R.

By equation, these points € E and since Ej is closed

= Their limit € E,,

~ E, =S8, isvalid forr = R.
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~ E, = S, completely, it is merely to show that it holds for » = R, then it still holds for r = R + §,
S>0

= Because it would then be possible to extend The range of validity of E, = S, to an arbitrary extent
by an appropriate no. of extensions of the range by an amount ' S '.

To prove that : to any point ' y ' such that x(a, y) > R There is a pt x such that

pla,x)=R& P(a,y) =R+ P(y,x)

we define,

P(a,y) = The lowest bound of the lengths of arcs from'a "'to'y .

= We can join a to y by a curve y whose length is less than p(a,y) + A%, foranyint' h'. Let x;, =
The last point of this curvee Ex(= Sg)

[We know that, P(A,c) < p(A,B) + p(B, )]
~ P(a,y) < pla,x,) + pley,y)

(i.e) P(a,y) <R+ P(xp,y)

Since p(a,x,) =R

= P(xn,¥) Z p(a,y) —R— (%)

Since, the arc length of y from'a'to ¢ y ' = arc length from a to x,, t arc length from x; toy . we
have,

P(xp,y) < arc(xy,,y)

p(x,,v) < arc(a,y) — arc(a, x,,)
(i.e.) < p(a,y) + h™1 —arc(a, x,)
<P(a,y)+h'1—R

Now let, h - o

~ {x;, } will have at least one point of accumulate x with the property.

p(x,y) < p(a,y) —R — (**)

Comparing (*) & (**) we get,

P(a,y) =R+ P(y,x)

= The existence of a point 'x 'satisfying p(a, x) = R.

p(a,y) =R+ p(y,x)

To prove that: Every bounded set of points of s is relatively compact.

we know that, the two points x, y are not for apart, then the point ' y ' in the extremity of one end only
one geodesic arc of origin x and length of p(x, y).

= their exist a continuous function s(x) > 0 such that if P(x,y) < s(x)

the point ' y ' is the extremity of the unique geodesic arc of length p(x, y) joining x to y. Moreover,
the continuous function s(x) attains a tie mini value on the compact set E and we take ' s ' to be this
minimum

If £, =S, istrue forr =R

181

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



= e

and if R < p(a,y) < R + s, then their existsag € ER
Such that p(a,x) = R, and p(x,y) = p(a,y) — R < S.

Consequently,

their exists a geodesic arc L’ of lengthp(a, x) joining a to x.

and a geodesic arc L" of length p(x, y) joining x to y.

The composite arc formed by L' & L" joins 'a' to ' y "and has as its length p(a, y).

= This composite arc is a geodesic arc & y is joined to ' a ' by a geodesic arc whose length is equal to
the distance of 'y ' from ' a .

~Y € Epys

and the range of validity of E,. = S, is extended from E to Eg,s.

= Any two points of 's' can be joined by a geodesic are whose length is equal to their distance.
Suppose, we use given, a bounded set of pts M on s

5.6.Hilbert's Theorem:

Theorem 1:

A complete analytic surface, free from singularities, with constant negative Gaussian curvature cannot
exist in three-dimensional Euclidean Space.

Proof:

Figure. 2

Let'p 'bea pointonthe surface'S ' & Let' Q ' be the Set of all paths of ' S ' which beginat'p .

we divide the set Q into classes, putting into each class the totality of paths that arc homotopically
equivalent.

Let S” is an equivalence class of path on S .Define a natural mapping ¢ of the set S’ on the S. (ie)
¢:S—-S").

If' A'isapointon S, then all the equivalent paths in S belonging to A must end in the Same point ' a
'&a = ¢(A).

[Note: The set of points S’ can be considered as forming a surface called the "universal covering
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Surface”]
"The universal covering surface = S’ has the following properties.
1. The natural mapping of S’ on S is a continuous open mapping. Moreover, ¢ is a locally

homeomorphic mapping. (i.e.) for every point A of S’, their exist a neighbourhood e u*

Such that the mapping p is homeomorphic on the neighbourhood u*.

[The universal covering surface S’ of a Surface S is always simply connected.

(i) = S &S’ are locally homeomorphic.

=~ All the local properties of the spaces are automatically true for the Space S']

2. The differential geometric structure on S induces a differential geometric structure on S’

we assume that, a surface 'S' exists having the required properties. Consider an arbitrary geodesic line
on the surface S and take an arbitrary point 'o0' on as origin. this geodesic If ‘S' denotes the arc length of
this geodesic measured from '0'. The completeness of 's' ensures that the geodesic can be continued in
both directions from - o to +oo. It is possible that the geodesic will ultimately cross itself have the same
point on 'S" will have two different S — values.
5.7. Conjugate points on geodesics:
Theorem 1:
If P and Q are two points of a geodesic which can be embedded in a field of geodesic, then the
arc PQ of the geodesic is shorter than any other arc which joins P to Q and lies entirely in that
region of the surface covered by the field.
Proof:
The geodesics of the family are the curves v=constant , with v = v, as the geodesic, and let the
curves u=constant be geodesic parallels orthogonal to them, so chosen that the metric reduces
to the form
ds? = du® + A%ds?.
If the coordinates of P and Q are (uq, vy), (U, vy) With u, > uy, the length of the geodesic
arc PQ is (u; — uy).
Let C be an arbitrary curve passing through P and Q, is given by the equation v = ¢(u)
where ¢ (u,) = vy, p(u,) = v,. Then the arc length of C is

- N
lzf {1+/12(—¢>} du

u du

1

Evidently [ exceeds u, — u4, unless d¢p/du = 0 when C is the given geodesic.
However, it is most unlikely that the region R of the geodesic field extends over the entire

surface S, so the previous argument is in general inapplicable to complete surfaces. For
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example, the surface of a sphere cannot be covém;ed by a geodesic field because ny two great
circles intersect in two points of the sphere. Moreover, if A, B are any two non-antipodal points,
that geodesic arc which is he longer part of the great circle joining A, B is evidently not the
hortest distance from A to B.
Theorem 2:
When the surface S has negative curvature every. where, the length of a geodesic which joins
any two points 4, B is aluays less than the lengths of neighbouring curves through A and B.
Proof:
Let one system of parametric curves be the geodesics normal to the given geodesic AB, and the
ther system be the orthogonal trajectories. Let u denote the ength of the geodesic normal PQ
from P to AB, and let v denote the length AQ. The line element of the surface becomes

ds? = du? + 1*dv?,
where A(0,v) =1,4,(0,v) = 0.
In terms of these parameters the Gaussian curvature is given by
K = —141/4, sothat 1;; = —AK.

The function A may thus be expanded as a power series in u in the form
uZ
2
where K and K; are evaluated with u = 0.

3
u
Kl ? + 0(u4)

A=1-K
A neighbouring curve APB which differs very little from AB will have an equation of the

form u = ¢(v), where u will be small. The length of this curve will be

1

I = fAI (¢ + 22} dv = fAB {1 +¢2 - K¢? —%Kldﬁ’} dv

where terms of the fourth order are neglected. We now assume that ¢’ never becomes infinito
and is thus of the same order of smallness as u. With this assumption the difference between [

and the geodesic are length s may be written

1 (8 1
l—s= —f {qb’z — K¢? ——K1¢3}dv
2, 3
Now the sign of the variation of the are length will be given by the sec? nd-order terms,
provided that these do not vanish identically. If only these terms are retained the equation
1 (B ,
becomes [ — s = EfA (@2 —Kp>dv ............... (1)

Now, if K is always negative, the integrand is always positive and so [ > s. This proves the

required result.
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o

The remainder of this section will consider the analogous problem when K is not always

negative. Since the metric is of the form ds? = du? + A2dv?, it follows that the arc length of
the orthogonal trajectory taken between the geodesics v and v + év is given by Adv.
Alternatively, Aév is the length of the segment of the normal from a typical point of the
geodesic v cut off by the geodesic v + dv. If v and v + Sv are regarded as constants, then the
arc length A8v will vary with the arc length u of the geodesic v. If p = A6v, from

A1 = —KA it follows that p;; = —Kp, (i.e.) d?p/du? + Kp =0

a differential equation which was first obtained by Jacobi in 1836. Consider the solution of this
differential equation which vanishes at the point A4, and suppose that this solution vanishes
again at the point A; on the geodesic, while maintaining a constant sign in the interval AA;,.
Then all the geodesics which leave A in a direction infinitesimally near to the direction of AB
will intersect AB again in the point A; or in points infinitesimally near A;. Now if B lies
between A and A,, it follows that the geodesic segment AB is shorter than any neighbouring
curves joining A and B. The point A, is called a conjugate point of A along the geodesic A, B.
Theorem 3:

In order that the geodesic distance AB should be the shorlest distance, it is necessary and
sufficient that B lics between A and its conjugate point A4,.

The sufficiency has been proved above. We now outline a proof of the necessity using a
lemma due to Erdmann.

consider the problem of finding a curve y = y(x), which pasees hrough two pints

(x1,v1), (x4, 25), has a discontinuity of slope on the lome x = x5, and is stact that the integral

Ty

I = fQx,y,y)dx

X1

assumes an extreme value (see Fig. 3).
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Fig.3
Let yi = (lsi_r)réy’(x3 +6); y. = (lsi_r)réy’(xg, )]

where § is positive. Then Erdmann's lemma states that for an cxtreme value, in addition to the

equation of Euler, it is necessary that

fay =foy

where o = i1 (x3,¥3,¥4), f—yr = fyr(x3,¥3,¥0).

To prove the lemma, we note that the variation of the integral over the curves y(x) and y +

en(x), where n(x;) = 0,n(x,) = 0, is given by
X2 X2

J(c) = f f,y+eny +en)dx + f fx,y+en,y +en)dx
X1 Z1

it being assumed that the ‘corner’ still moves along the line x = x5. In the usual manner, it
follows that a necessary condition is J'(0) = 0. This reduces to

[} (o gr iz |

X1
X2

d
(5 = 2 Fo )z + 03 yr = fayr) =
From this it follows that, in addition to Euler’s equation
fy — df;,dx = 0, it is necessary to have f,,» = f_,, and the lemma is proved.
We now return to the proof of Theorem 3. From equation (1). it follows that the geodesic
distance s is a manimum provided that

5%(s) = !f (u'? — Ku?)du

is non-negative. Now, if §2(s) = 0 for all w, it follows that the curve u = 0 must make the

integral
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B
f (w'? — Ku®)dv
A

minimum. It is easily verified that, except for notation, the Euler equation corresponding to
this is Jacobi's differential equation.

Assume now that the geodesic distance AB still gives the shortest distance with B lying
beyond A4, i.e. §2(s) > 0, and we hope to arrive at a contradiction. By hypothesis there is a
solution of Jacobi's differential equation (and therefore of Euler's equation) which vanishes at
A, and has its next zero at A,. If u = ¢ (v) is such a solution, then, of course, so is u =

e (v) for an arbitrary constant €.

Now define a new function & which coincides with u = ¢(v) from A to A,, and is identically
zero from A; to B. The next step in the argument is to prove that such a function i is a

'corner’ solution of the problem of giving 62 (s) an extreme value.

Since f;l uu"dv = [uu']y* — f;l u'?dv = —f;l u'?dv,

where u = ¢(v), it follows that

f: (n'? —K'u?)dv = f;l (u'? — Ku®)dv = —f:! u(u" + Ku)dv = 0,

sinceu’ + Ku = 0.

Since 1 satisfies the condition §2(s) = 0, and can be chosen as near to the curve u = 0 as we
please since € is arbitrary, it follows that u = 0 gives §2(s) its minimal value. Moreover, u
must be a 'corner' solution of the problem of finding a minimum of §2(s). From Erdmann's
lemma, u/, = u_ = 0. But this is impossible because there is no non-trivial solution of the
equation u” + Ku =0

which vanishes simultaneously with its derivative. This gives Ifg required contradiction, and
the theorem is completely proved.

Jacobi's theorem will now be used to prove the following interesting theorem due to Bonnet.
Theorem 4:

If along a geodesic the Gaussian curvature exceeds a positive constant 1/a?, then the curve
cannot be the shortest distance between its extremities along an are length exceeding ma.
The main lemma used in the proof of this result is a standard theorem from the theory of
differential equations due to Sturm This theorem is stated below without proof, but a very
simple and elegant proof can be found in Darboux (1896).

STURM'S Theorem.

Consider the two distinct differential equations
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Vw2

dx? " dx?

where for all values of x in the range considered, H' (x) > H(z). Then, if ¢»(x) is a solution
of the first equation hating two consecutive zeros at x, and x,, a solution of the second
equation which has a zero at x,, cannot hate another zero in the closed interval [x,, x,].

As a corollary we have:

If for all values of x in the range considered, H' (x) < H(x), and if ¢(x) is a solution of the
first equation having two consecutive zers at x, and x,, then any solution of the second
equation which has a zero at x, must hare at least one other zero in the inverval [x,, x,].
Consider Jacobi's differential equation (d?p/dv?) + Kp = 0, which is of the type considered
by Sturm. Let p be a solution of thas equation, and let r,, v; be two consecutive zeros
corresponding to the points A and A, . It follows from Jacobi's theorem that the arc AB will be
the shortest distance between A and B if and only if B lies between A and A;.

Suppose now that the Gaussian curvature along the line AA, always exceeds the positive
constant 1/a?, so that K > 1/a?. The solution of the equation

cp__»

dv? a?

which vanishes for v = v, is

v — 1,

Csin

and its next zero after v, is just v, + ma. It follows that if the are length AB exceeds a, then
B will not lie between A and A, and the theorem is proved.
An analogous result is the following:
Theorem 5:

If at all points of a geodesic the Gaussian curvature is less than 1/b?, the curve is necessarily
of shorter length than neighbouring curves along an are length at least equal to 7b.

The proof follows easily from the hypothesis K < 1/b?, and the fact that the interval between
consecutive roots of the equation d?p/dv? = —p/b? is mh. As this cannot be smaller than the
interval between consecutive roots of the previous equation, it follows in this case that if they
are length AB is less than b, then B will certainly lie between A and A, thus giving the
required result.

Suppose now the surface S is compact, and has the property that K > 1/a? everywhere. If A

and B are any two points on S, there is a geodesic joining A to B which is of shorter length than
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the neighboring curves.

It follows from Theorem 4. that the maximum distance between A and B cannot exceed ra.
This proves the following:

Theorem 6:

If on a compact surface S the curvature everywhere exceeds 1/a?, the maximum distance
between any two points cannot exceed ra.

Exercise 1:

2 2 2
Prove that the Gaussian curvature at any point on the ellipsoid = + 2 + = =1
b c

a

- - p4
IS given by m

where p is the distance of the centre from the tangent plane.

Show thatif a > b > c, every geodesic arc of length greater than ab/c cannot be the shortest
distance between its extremities; but every geodesic arc of length less than hc/a is necessarily

shorter than the neighbouring curves joining its extremities.
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