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UNIT-I:  

Space curves: Definition of a space curve – Arc length – tangent – normal and binormal – 

curvature and torsion – contact between curves and surfaces- tangent surface- involutes and 

evolutes- Intrinsic equations – Fundamental Existence Theorem for space curves- Helices. 

Chapter 1: Sections 1.1 -1.9. 

 

1.1. Space curves: 

A plane curve is usually specified either by means of single equation or else by a parametric 

representation 

Example: 

A circle with Centre at origin (0,0) and radius 𝑎 is specified in cartesian co-ordinate, (𝑥, 𝑦) 

by single equation 𝑥2 + 𝑦2 = 𝑎2 are else by the parametric representation 

𝑥 = 𝑎cos𝑢, 𝑦 = 𝑎sin𝑢
0 ≤ 𝑢 ≤ 2𝜋

 

Definition: Space curves 

In three-dimensional Euclidian space 𝐸3, 𝐴 Single equation generally represent a surface and 

two equation are need to specify a curve. 

∴ The curve appears as thus intersection of two surfaces represented by the two equations. 

parametrically a curve may specify in Cartesian coordinates by equations 

 

𝑥 = 𝑥(𝑢)
𝑦 = 𝑦(𝑢)

 and 𝑧 = 𝑧(𝑢).
 

where 𝑥, 𝑦, 𝑧 are real valued functions of the real parameter 'u'. which is restricted to some 

interval. 

Alternatively, in vector notation the curves are specified by vector value fiction 

𝑟 = 𝑅⃗⃗(𝑢⃗⃗) 

Remark :1 

A curve is defined by equation 𝐹(𝑥, 𝑦, 𝑧) = 0, 𝐺(𝑥, 𝑦, 𝑧) = 0. if 𝐹,𝐺 have its derivatives and 

if at least one of the Jacobian determinant, 

𝜕(𝐹,𝐺)

𝜕(𝑦,𝑧)
,
𝜕(𝐹,𝐺)

𝜕(𝑧,𝑥)
,
𝜕(𝐹,𝐺)

𝜕(𝑥,𝑦)
 is not zero at a point (𝑥0, 𝑦0, 𝑧0) on the curve. 

It’s known from the theory of implicit function that the equation 𝐹 = 0,𝐺 = 0 Can be solved 

for two of the variables in terms of the 3rd . 
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1.2. Definition of a space curve: 

Function of class 𝑚. 

Let I be a real interval and in a positive integer. A real value function 𝑓 define on I is said to 

be of class 𝑚 (or) to be 𝑐𝑚 function. If 𝑓 has an 𝑚th  derivative at every point of 𝐼 and if this 

derivative is continuous on I. 

Note: 

𝑐𝑚 function as continuous 𝑚th  derivative when a function in infinitely differentiable we say 

it class ∞ or 𝑐∞. 

when a function is analytic we say it is of class 𝑤 (or) 𝑐𝑤 function. 

Definition: 

A vector valued function 𝑅 = (𝑥, 𝑦, 𝑧) defined on 𝐼 is said to be of class 𝑚 if it has on 𝑚th  

derivative at every point and if this derivative is continuous on 𝐼 (or) equivalently if each of 

its components (𝑥, 𝑦, 𝑧) is of class 𝑚. 

Definition: 

A function is frequently specified by the vector equation 𝑅 = (𝑥, 𝑦, 𝑧) (or) equivalently by 

the 3 equation for the Cartesian components 

𝑥 = 𝑥(𝑢)

𝑦 = 𝑦(𝑢)

𝑧 = 𝑧(𝑢).

 

(if the derivative 
𝑑𝑅

𝑑𝑢
= 𝑟̇ ≠ 0 Never vanishes on I or equivalently if 𝑥̇, 𝑦̇, 𝑧̇ never vanishes 

simultaneously. Then the function is said to be regular.  A regular vector valued function of 

class 𝑚 is called a path of class 𝑚 ) 

Definition: 

Two paths 𝑅1, 𝑅2 of the same class 𝑚 on 𝐼1, 𝐼2 are called equivalent if there exists  

a strictly increasing function 𝜙 of class 𝑚 which maps 𝐼1 onto 𝐼2 

(ie) 𝜙: 𝐼1 →
onto

𝐼2   𝑅1 = 𝑅2 ∘ 𝜙 

The condition 𝑅1 = 𝑅2 ∘ 𝜙 is equivalent to the three conditions 

𝑥1(𝑢) = 𝑥2(𝜙(𝑢))

𝑦1(𝑢) = 𝑦2(𝜙(𝑢))

𝑧1(𝑢) = 𝑧2(𝜙(𝑢))

 

Note:  

1. Any equivalence class of paths of class 𝑚 determinds a curve of class 𝑚 Class 𝑚 
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determines a curve of class 𝑚. 

2. Any path 𝑅 determines a unique curve and is called a parametric representati of the curve, 

the variable 𝑢 being 

called the parameter. 

3. The equations, 

 𝑥 = 𝑥 (u) 

𝑦 = 𝑦(𝑢) 

𝑧 = 𝑧(𝑢) are called parametric equation of the curve, 

4. The mapping 𝜙 which relates two equivalent paths is called a change of parameter, It 

produces, the change in the manner of description of the curve the preserving sense 

5.A curve of class 𝑚 in 𝐸3 as a Set of points in 𝐸3 associtated with an equivalence class of 

regular parametric representation of class 𝑚 involving one parameter. 

6. When the function 𝑅(𝑢) is a linear, then equation 𝑟 = 𝑅(𝑢) represent a straight line  

7.Example of two equivalent representation Consider the circular helix is given by                         

𝑟‾ = (𝑎cos 𝑢, 𝑎sin 𝑢, 𝑏𝑢) where 0 ≤ 𝑢 ≤ 𝜋. …… (1) 

Take, v = 𝜙(𝑢) = tan (
𝑢

2
) 

⇒ tan−1 (𝑣) =
𝑢

2
                        ⇒ 2 tan−1(𝑣) = 𝑢                          sub in (1)             

 𝑟‾ = [𝑎 ⋅
1 − tan2 (

𝑢
2)

1 + tan2 (
𝑢
2)
, 𝑎

2tan (
𝑢
2)

1 + tan2 (
𝑢
2)
, 𝑏𝑢] 

        
 𝑟‾ = [𝑎

1−𝑣2

1+𝑣2
,
2𝑎𝑣

1+𝑣2
, 𝑏2tan

−1 (𝑣)]

0 ≤ 𝑢 ≤ ∞
                        ………… (2) 

we note that  𝜙: 𝐼1 → 𝐼2 

[[0,𝜋] →∈ [0,∞]] 

𝑢 = −𝜋 ⇒ 𝑢 = tan 𝜋/2 = ∞ 

Where the function 

𝑉 = 𝜙(𝑢) = tan (
𝑢

2
)  is strictly increasing and onto                                                                                                                    

∴ The representation of equation (1) and (2) are equivalent. 

Theorem 1: 

Equivalence relation of 𝑎 path is a proper equivalent relation on the path of the same class 𝑚. 

Proof: 

𝑅1, 𝑅2, 𝑅3 be any path of the same class 𝑚. 
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(i) Reflexive: 

Define the identity function 𝑖𝛼: 𝐼1 → 𝐼1 is strictly increasing and onto. 

Further, 𝑅1 = 𝑅1𝑖𝛼. 

(i.e.) 𝑅1 is equivalent to itself. 

(ii) Symmetric: 

Let 𝑅1 be equivalent to 𝑅2 

T. P.T: 𝑅2 is equivalent to 𝑅1 

From given 𝑅1 is equivalent to 𝑅2. 

Then there exists a strictly increasing function 

𝜙 from 𝐼1 onto 𝐼2.  

Such that 𝑅1 = 𝑅2 ∘ 𝜙. 

here 𝜙 : 1 − 1, onto and increasing function 

which ⇒ 𝜙−1 exists and 𝜙−1: 𝐼2 → 𝐼1 

which is strictly increasing and onto. 

(ie) 𝑅2 = 𝑅1 ∘ 𝜙
−1. 

(ie) 𝑅2 is equivalent to 𝑅1. 

(iii) Transitive:- 

Given 𝑅1 be equivalent to 𝑅2 and 𝑅2 be equivalent to 𝑅3. 

To prove that:- 𝑅1 be equivalent to 𝑅3. 

From given 𝑅1 is equivalent to 𝑅2 

there exists a strictly increasing function 𝜙 

from 𝐼1 →
 onto  

𝐼2 

Such that 𝑅1 = 𝑅2 ∘ 𝜙.   ……….. (1) 

Also given 𝑅2 is equivalent to 𝑅3.  

⇒ There exists a strictly increasing function. 𝜓: 𝐼2 →
 onto  

𝐼3 ……….. (2) 

Such that, 𝑅2 = 𝑅3 ∘ Ψ 

𝜙 and 𝜓 are strictly increasing function and onto. From 𝐼1 onto 𝐼2 and 𝐼2 to 𝐼3 respectively 

⇒ 𝜓 ∘ 𝜙 is also a strictly increasing Function and onto from 𝐼1 to 𝐼3. 

∴ using (2) in (1). 

(1) ⇒ 𝑅1 = (𝑅3 ∘ 𝜓) ∘ 𝜙 

⇒ 𝑅1 = 𝑅3 ∘ (𝜓 ∘ 𝜙) 

with 𝜓 ∘ 𝜙 is strictly increasing function from 𝐼1 onto 𝐼3. 
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(i.e.) The path 𝑅1 is equivalent to 𝑅3. 

∴ equivalence relation of path is a proper equivalent relation on the path of the same class 𝑚. 

Note: 

(i) Not every property of a path is a property of the curve. 

(ii) The property or the curve are those Which are common to all parametric representation. 

(iii) It the function 𝑅(𝑢) is a linear then the equation 𝑟 = 𝑅(𝑢) represents a straight line. 

1.3. Arc Length: 

1.Distance between two points in Euclidean Space 

The Distance between two points 𝑟‾1 = (𝑥1, 𝑦1, 𝑧1) & 𝑟‾2 = (𝑥2, 𝑦2, 𝑧2) in Euclidean space is 

the number. 

 (i.e) 
|𝑟‾1 − 𝑟‾2| = √(𝑟‾1 − 𝑟‾2)2

 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2
 

This distance in space will be used to define distance along type a curve of class 𝑚 ≥ 1. 

2. Arc  

It given a path 𝑟‾ = 𝑅‾(𝑢), and two numbers 𝑎, 𝑏(𝑎 < 𝑏) in the range of the parameter then the 

path 𝑟‾ = 𝑅 ̅(𝑢)(𝑎 ≤ 𝑢 ⩽ 𝑏) is an arc of the original path Joining the points corresponding to 

𝑎 & 𝑏. 

3. Length of polygon: 

Any subdivision Δ of the interval (a, b) by points 𝑎 = 𝑢0 < 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑛 = 𝑏 

The correspondence the length 

𝐿Δ =∑ 

𝑛

𝑖=1

|𝑅(𝑢𝑖) − 𝑅(𝑢𝑖−1)| 

of the polygon inserted to the arc by joining successive points on it. 

Addition of further points, subdivision increases the length of polygon. Because two sides of 

the triangle of are together greater than 3rd . 

4) The length of are to be trouper bonded of 𝐿Δ taken over all possible sub divisions of (𝑎, 𝑏). 

This upper bound is always Finite. 

∴ 𝐿Δ ⩽ ∑  𝑛
𝑖=1 ∫  

𝑢𝑖→1
𝑢𝑖−1

|𝑅̇(𝑢)|𝑑𝑢. 

Definition: Arc length 

If 𝑎 < 𝑐 < 𝑏 then the arc length from 𝑎 to 𝑏 is some of the arc length From 𝑎 to 𝑐 and from c 

to 𝑏 
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𝑆 = 𝑆(𝑢)

 The arc length from a to any point 𝑢 The are length from 𝑢0 to 𝑢 = 𝑆(𝑢) − 𝑆(𝑢0)

 

 

S is a function of the same class as the curve 

∴ 𝑠 = 𝑆(𝑢) = ∫  
𝑢

𝑎
|𝑅̇(𝑢)|𝑑𝑢  in terms of a cartesian parametric represent  

𝑆 = 𝑆(𝑢) = ∫  
a

𝑎

√(𝑥̇2 + 𝑦̇2 + 𝑧̇2)𝑑𝑢 

Note: 

(i) The equation 𝑠̇ = |(𝑟̅)| in cartesian parametric 

representation is 

𝑠̇ = 𝑥̇2 + 𝑦̇2 + 𝑧̇2  (or) 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2.  

(ii) The function 𝑆 is the change of parametric from 𝑠 to 𝑢 

∴ 𝑢 = 𝜙(𝑠) 

(iii) The curve parametrized with respect to 𝑆 is  𝑟→ = 𝑅→(𝜙(𝑠))    

 Example 1: 

Obtain the equations of the circular helix, 𝑟‾ = (𝑎 cos 𝑢 , 𝑎 sin 𝑢 , 𝑏𝑢),−∞ < 𝑢 ⩽ ∞ where 

a>0 refer to 𝑆 as parameter and show that the length of one complete from turn of the helix 

x is 2𝜋𝐶. Where 𝑐 = √𝑎2 + 𝑏2  

Solution: 

Given, 𝑟‾ = (𝑎cos𝑢, 𝑎sin𝑢, 𝑏𝑢)      ……………(1) 

(i) To find the equation of the circular helix with  

∴ 𝑥 = 𝑎cos 𝑢 ⇒ 𝑥̇ = 𝑑𝑥 = −𝑎sin 𝑢  parameter 𝑠. 

𝑦 = 𝑎sin 𝑢 ⇒ 𝑦̇ = 𝑑𝑦 = 𝑎cos 𝑢 

𝑧 = 𝑏𝑢 ⇒ 𝑧̇ = 𝑑𝑧 = 𝑏 

Arc length = 𝑠 = 𝑆(𝑢) = ∫
𝑛

𝑢
 √𝑥̇2 + 𝑦̇2 + 𝑧̇2𝑑𝑢 (given a>0) 

 = ∫  
4

0

 √𝑎2sin2 𝑢 + 𝑎2cos2 𝑢 + 𝑏2𝑑𝑢

 = ∫  
𝑢

0

 √𝑎2(sin2 𝑢 + cos2 𝑢) + 𝑏2𝑑𝑢

 = ∫  
4

0

 √𝑎2 + 𝑏2𝑑𝑢

 



 

11 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 given 𝑐 = √𝑎2 + 𝑏2

𝑠 = ∫  
𝑢

0

 𝑐𝑑𝑢

 = 𝑐 ∫  
𝑢

0

 𝑑𝑢

 = 𝑐[𝑢]0
𝑢

𝑠 = 𝑐𝑢

⇒
𝑠

𝑐
 = 𝑢               sub in (1) 

 

(1) ⇒ 𝑟̅ = (𝑎cos 
𝛽

𝑐
, 𝑎sin 

𝛽

𝑐
, 𝑏

𝑏

𝑐
). 

To show that the length of one Complete turn of the helix =2𝜋𝑐 

where 𝑐 = √𝑎2 + 𝑏2 

The Range or corresponding to one Complete turn of the helix is 

𝑢0 ≤ 𝑢 ≤ 𝑢0 + 2𝜋 

∴ The Length of one furn to the circular helix equal to 𝑢0 + 2𝜋 

length of the 𝑎𝑟𝑐 = ∫  
𝑢0

𝑢𝑜+2𝜋 √𝑎2 + 𝑏2𝑑𝑢 

= √𝑎2 + 𝑏2[𝑢]𝑢0
𝑢0+2 

 = √𝑎2 + 𝑏2[𝑢]𝑢0
𝑢0+27

 = 𝑐[𝑢0 + 2𝜋 − 𝑢0]
 

= 2𝜋𝑐 

Example :2 

Find the length of the curve given as the intersection of the surfaces. 

𝑥2

𝑎2
−
𝑦2

𝑏2
= 1 & 𝑥 = 𝑎cosh [

𝑧

𝑎
] from the point (𝑎, 0,0) to the point (𝑥, 𝑦, 𝑧) 

Proof: 

given surfaces. 

𝑥2

𝑎2
−
𝑦2

𝑏2
= 1……… . (1) 

𝑥 = a cosh [
𝑧

𝑎
] ………. (2) 

We know that, 

The length of the curve = ∫  
𝑡

𝑎
√𝑥̇2 + 𝑦̇2 + 𝑧̇2𝑑𝑡        ………….(3) 

 put 
𝑧

𝑎
= 𝑡 in (2)  

𝑧 = 𝑎𝑡 
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(2) ⇒ 𝑥 = 𝑎cosh𝑡            sub in (1). 

(2) ⇒
𝑎2cosh2 𝑡

𝑎2
−
𝑦2

𝑏2
= 1 

cosh2𝑡 −
𝑦2

𝑏2
= 1 

⇒ cosh2 𝑡 − 1 = 𝑦2/𝑏2 

⇒ sinh2 𝑡 = 𝑦2/𝑏2 

⇒ 𝑏2sinh2 𝑡 = 𝑦2 

⇒ 𝑦 = 𝑏sinh𝑡   => sinh 𝑡 = 𝑦/𝑏 

𝑥 = 𝑎cosht 𝑥̇ = 𝑎sinh𝑡
𝑦 = 𝑏sinh𝑡 𝑦̇ = 𝑏coshℎ𝑡
𝑧 = 𝑎𝑡 𝑧̇ = 𝑎

} 

Sub in eqn (2). 

The length of the curve = ∫
0

𝑡
 √𝑎2sin ℎ2𝑡 + 𝐵2cos 𝑡 + 𝑎2] 𝑑𝑡 

= ∫
0

𝑡
 √𝑎2(sinh2 𝑡 + 1) + 𝑏2cos ℎ2𝑡𝑑𝑡 

= ∫
0

𝑡
 √𝑎2cos ℎ2𝑡 + 𝑏2cos ℎ2𝑡𝑑𝑡 

=⋅ ∫
0

𝑡
 √𝑎2 + 𝑏2cos ℎ𝑡 ⋅ 𝑑𝑡 

= √𝑎2 + 𝑏2[sinht]0
𝑡  

= √𝑎2 + 𝑏2sin ℎ𝑡. 

= √𝑎2 + 𝑏2 (𝑦/𝑏)  

1.4.Tangent normal and bi-normal: 

𝑟‾ = The position vector of a point on a curve and also as the function Symbol of a path which 

represents the curve a curve represented by the equation. 

𝑟‾ = 𝑟‾(𝑢) 

𝑅‾ = The position vector of a current point in space not necessarily lying on the curve. 

Let 𝑟 be a curve of class ≥ 1 and let (𝑃, 𝑄) be two neighbouring pts of the curve. 

Definition: Unit tangent vector 

Let 𝑟 be represented by the equation 

𝑟‾ = 𝑟‾(𝑢) 

and let 𝑃 and 𝑄 have parameters 𝑢0 and 𝑢 Since 𝑟   has class ≥ 1. 

∴ 𝑟‾(𝑢) = 𝑟‾(𝑢0) + (𝑢 − 𝑢0)𝑟̇(𝑢0) + 0(𝑢 − 𝑢0)    ……………(1) 

where 𝑜(𝑢 − 𝑢0) =
(𝑢−𝑢0)

2

2!

…

𝑟
(𝑢0) +

(𝑢−𝑢0)
3

3!

⋯

𝑟
(u0) +⋯…. 
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∴ lim
𝑢→𝑢0

 
𝑟‾(𝑢) − 𝑟‾(𝑢0)

|𝑟‾(𝑢) − r ̅(𝑢0)|
=
𝑟‾̇(𝑢0)

|𝑟‾̇(𝑢0)|
 

[∵ lim
𝑢→𝑢0

 
𝑟‾(𝑢) − 𝑟‾(𝑢0)

𝑢 − 𝑢0
= 𝑟‾̇(𝑢0)] 

(i.e) The unit vector along the chord 𝑃𝑄 tends to a unit vector at 𝑃 as 𝑄 → 𝑃 

This is called the unit tangent vector to 𝑟 at 𝑃. and it is denoted by 𝑡‾. 

∴ 𝐼‾ =
𝑟‾̇(𝑢0)

|𝑟‾̇(𝑢0)|
 

=
𝑟̇̇

𝑆̇̇
 [∵ 𝑟̇̇(𝑢0) =

𝑑𝑟

𝑑𝑢
  & |𝑟‾̇(𝑢0)| =

𝑑𝑠

𝑑𝑢
] 

=
𝑑𝑟

𝑑𝑠
 

Note: 

(i) 𝑡 ̅ like the curve is oriented in that its points in the direction of increasing 𝑠 ̅ 

(ii) The line through 𝑃 parallel to 𝑡 ̅is called the tangent line to 𝛾 at 𝑃. 

(iii) It 𝑅‾  is any point on this line, the vector from the the vector from the pt of contact, 

𝑃 to 𝑅 is called a tangent vector to 𝜈 at 𝑃. 

(iv) tangent line is a unique line which approximates to the curve to the 1st  order near 𝑃 more 

preciously there is a unique linear function 𝐿(𝑤). 

Such that, 

𝐿(𝑢) = 𝑟‾(𝑢) + 0(𝑢 − 𝑢0) as 𝑢 → 𝑢0 

= 𝑟(𝑢0) + (𝑢 − 𝑢0)𝑟‾̇(𝑢0) 

(v) the unit tangent vector 𝑡‾ = 𝑟‾′. 

Definition: Osculating plane 

Let 𝛾 be a curve of class ≥ 2. and let (𝑃, 𝑄) be two neighbouring 𝑝 ts on 𝜈 then the limiting 

position as 𝑄 → 𝑃. If that plane which contains the tangent line at 𝑝 and the point 𝑄 is called 

the osculating plane of 𝛾 at 𝑃. 

Theorem 1: 

Show that when a curve is analytic we obtain a definite oscillating plane at a point of 

inflection 𝑃 unless the curve is a straight line. 

Proof: 

case (i) 

Let 𝑃 is not a point of inflection 

(ie) 𝑟‾′′ ≠ 0 at  ′𝑃′……… . (1) 
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Let the curve gamma be a parameter 

𝑤. 𝑟 to the are length 𝑠. 

Let 𝑃, 𝑄 be two neighboring points on 𝛾 w.r. to the parameters 0 and 𝑆. 

Consider the plane containing the tangent 

vector to 𝛾 at 𝑃 and the point 𝑄. 

We know that, 𝑃𝑄 = 𝑂𝑄 − 𝑂𝑃 

= 𝑟‾(𝑠) − 𝑟‾(0) 

𝑃𝑄 = 𝑅‾ − 𝑟‾(0) ………. (2) 

𝑝𝑚, 𝑟‾′(0) & 𝑃𝑄 are coplanar. 

(i.e.) The equation of the plane is 

[𝑃𝑄‾, 𝑟‾′(0),𝑃𝑚‾ ] 

(i.e.) [𝑅‾ − 𝑟‾(0), 𝑟‾′(0),𝑟‾(𝑠) − 𝑟‾(0)] = 0, ……….(3) 

We know that, by Taylor’s theorem, 

𝑟‾(𝑠) = 𝑟‾(0) +
𝑠𝑟‾′(0)

1!
+
𝑠2

2!
𝑟‾′′(0) + 0(𝑠) as 𝑠 → 0. 

∴ 𝑟‾(𝑠) − 𝑟‾(0) =
𝑠

1!
𝑟‾′(0) +

𝑠2

2!
𝑟‾′′(0) + 0(𝑠)  as 𝑠 → 0 

∴ (2) ⇒ 

[𝑅‾ − 𝑟‾(0), 𝑟‾′(0),
𝑠

1!
𝑟‾′(0) +

𝑠2

2!
𝑟‾′′(0) + 𝑜(𝑠)] = 0 (ie) [𝑅‾ − 𝑟‾(0), 𝑟‾′(0),

𝑆

1!
𝑟‾′(0)] +

[𝑅‾ − 𝑟‾(0), 𝑟‾′(0 
𝑠2

2!
𝑟′′(0)] 

+[𝑅‾ − 𝑟‾(0), 𝑟‾′(0),0(𝑠)] = 0 as 𝑠 ⟶ 0 

(ie) [0 +
𝑠2

2!
[𝑅‾ − 𝑟‾(0), 𝑟‾′(0), 𝑟‾′′(0)] + 0 = 0 

(ie) [𝑅‾ − 𝑟‾(0), 𝑟‾′(0), 𝑟‾′′(0)] = 0 

is the equation of the required osculating plane provided that, 

𝑟‾′(0), 𝑟‾′′(0) are 𝐿. 𝐼. 

Since |𝑡‾| = 1 

Suppose 𝑡‾ = 𝑟‾′, 

⇒ |𝑟‾′| = 1 

⇒ 𝑟‾′ ⋅ 𝑟‾′ = 1 

Diff w.r. to 's'. 

⇒ 𝑟‾′ − 𝑟‾𝑛 + 𝑟‾′′ − 𝑟‾′ = 0 

⇒ 2𝑟‾′ ⋅ 𝑟‾′′ = 0. 
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⇒ 𝑟‾′ ⋅ 𝑟‾′′ = 0 

(i.e) 𝑟‾′ & 𝑟‾′′ are perpendicular to each other 

(i.e.) 𝑟′ & 𝑟‾′′ are L.I. 

Hence the eqn of the osculating plane 

[𝑅‾ − 𝑟‾(0), 𝑟‾′(0), 𝑟‾′′(0)] = 0  ………….(4) 

Case(ii) 

Let 𝑃 is a point of inflection 

(i.e.) 𝑟′′(0) = 0 at 𝑝…… . (5) 

Let 𝛾 is not a straight line and 𝛾 is analytic. 

Since  |𝑡‾| = 1 ⇒ |𝑟‾′| = 1 

(ie) |𝑟‾′| ⋅ |𝑟‾′| = 1 

(ie) |𝑟‾′|2 = 1 

⇒ 𝑟‾′ ⋅ 𝑟‾′ = 1 

Diff w,r.to ' 𝑠 ' 

⇒ 𝑟‾′ ⋅ 𝑟‾′′ + 𝑟‾′′ ⋅ 𝑟‾′ = 0 

⇒ 2𝑟‾′ ⋅ 𝑟‾′′ = 0 

⇒ 𝑟‾′ ⋅ 𝑟‾′′ = 0 at ' 𝑝 ' 

Again Diff w.r.to 's' 

⇒ 𝑟‾′ ⋅ 𝑟‾′′′ + 𝑟‾′′ ⋅ 𝑟‾′′ = 0…………(6). 

⇒ 𝑟′ ⋅ 𝑟‾′′′ = 0 at 𝑃 

(i.e) 𝑟′ 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑟′′′ 

(i.e) 𝑟‾′ & 𝑟‾′′′ are L.I. 

Again Diff w.r.to 's' 

∴ 𝑟‾′ ⋅ 𝑟‾′′′ + 𝑟‾′′ ⋅ 𝑟‾′′′ = 0 

⇒ 𝜏‾′ ⋅ 𝑟‾′′′ = 0 at  ′𝑝′ 

similarly continuing this process, we get, 

𝑟‾′𝑟‾𝑘 = 0 at 𝑝……… . (7) 

where 𝑟𝑘  represent the non-zero derivative. of 𝑟‾ at 𝑃 for 𝑘 ≥ 2. 

Further, 

given the curve 𝛾 is analytic 

∴ 𝑟′′(𝑠) = 𝑟‾′′(0) +
𝑠

1!
𝑟‾′′′(0) +

𝑠2

2!
𝑟‾′′′′(0) + 𝑑𝑠 as 𝑠 → 0 

∴ 𝑟‾′′′(𝑠) = 0, ∀𝑠. 

http://r.to/
http://w.r.to/
http://w.r.to/
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⇒ 𝑟‾′′(𝑠) = constant 

⇒ γ is a 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡  line 

which is a contradiction. 

∴ from(6), 

𝑟‾(𝑘)(0) ≠ 0, for 𝑘 = 2,3… (𝑘 − 1) 

𝑟‾(𝑠) = 𝑟‾(0) +
𝑠

1!
𝑟‾′(0) +

𝑠2

2!
𝑟‾′′(𝑏) +⋯+

𝑔𝑘

𝑘!
𝑟‾𝑘(0) 

∴ 𝑟‾(𝑠) − 𝑟‾(0) =
𝑠

1!
𝑟‾′(0) +

𝑠2

2!
𝑟‾′′(0) +⋯+

𝑠𝑘

𝑘!
𝑟‾𝑘(𝜃) 

=
s

1!
𝜏′(0) +

𝑠𝑘

𝑘!
𝑟𝑘(0) + 𝑜(𝑠) as 𝑠 → 0 

We know that, the equation of the plane is, 

[𝑅‾ − 𝑟‾(0), 𝑟‾′(0), 𝑟‾′(𝑠) − 𝑟‾′(0)] = 0 

(i.e) [𝑅‾ − 𝑟‾(0), 𝑟‾′(0),
𝑠

1!
𝑟‾′(0) +

𝑠𝑘

𝑘!
𝑟‾𝑘(0) + 0(𝑠)] 

(i.e) [𝑅‾ − 𝑟‾(0), 𝑟‾′(0),
𝑆

1!
𝑟‾′(0)] 

+ [𝑅‾ − 𝑟‾(0), 𝑟‾′(0),
𝑠𝑘

𝑘!
𝑟‾𝑘(0)] 

+[𝑅‾ − 𝑟‾(0), 𝑟‾′(0), 𝑜(𝑠)] = 0 

The eq of the osculating plane become 

[𝑅‾ − 𝑟‾(0), 𝑟‾′(0), 𝑟‾𝑘(0)] = 0 

Example 1: 

Consider the curve 𝛾 is defined by  𝑟‾(𝑢) = (𝑢, 𝑒
−
1

𝑢2 , 0) , 𝑢 < 0, 𝑟‾(𝑢) = (𝑢, 0, 𝑒
−
1

𝑢2) , 𝑢 >

𝑜, 𝑟‾(0) = (0,0,0) ⋅ Show that at a point of inflection even a curve of class infinity need not 

possess an osculating plane. 

Proof: 

We know that osculating plane at all points with parameter 𝑢 < 0. 

(i.e.) 𝑟‾(𝑢) = (𝑢, 𝑒−1/𝑢
2
, 0) 

⇒ 𝑟̇(𝑢) = (1,
2

𝑢3
𝑒−1/𝑢

2
, 0) 

⇒ 𝑟‾̈(𝑢) = (0, [−
6

𝑢4
𝑒−1/𝑢

2
−
4

𝑢6
𝑒−1𝑢

2
] , 0) 

∴ The eq of the osculating plane is if 𝑢 < 0. 
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|

|

𝑥 − 𝑢 𝑦 − 𝑒−1/𝑢
2

𝑧 − 0

1
2

𝑢3
𝑒−1/𝑢

2
0

0
−6

𝑢4
𝑒−1/𝑢

2
−
4

𝑢6
𝑒−1/𝑢

2
0

|

|
= 0

 ⇒ 𝑧 [−
2

𝑢4
𝑒−1/𝑢

2
[3 +

2

𝑢2
]] = 0

 

⇒ 𝑧 = 0 

 
 if u < 0 then z = 0 [The equation of the osculating 

 

plane] 

Similarly, the equation of the osculating plane at all points on 𝛾 with  𝑢 > 0 is 𝑦 = 0 

 To find the limit 𝑟‾̇(0) for 𝑢 < 0.  

∴ 𝑟̇(0) = lim𝑢→0−  
𝑟‾(𝑢) − 𝑟‾(0)

𝑢 − 0
 

= lim𝑢→0−  
(𝑢, 𝑒−1/𝑢

2
, 0) − (0, 0,0)

𝑢
 

= lim𝑢→0−  
(𝑢, 𝑒−1/𝑢

2
, 0)

𝑢
 

= lim𝑢→0−   (1,
𝑒−1/𝑢

2

𝑢
, 0) if 𝑢 < 0 𝑟̇̇(0) = (1,0,0) 

Similarly 𝑟̇(0) = (1,0,0) if 𝑢 > 0. 

Now, To find the limit 𝑟̈(0) for 𝑢 < 0 

𝑟‾̈(0) = lim𝑢→0−
𝑟‾̇(𝑢) − 𝑟‾̇(0)

𝑢 − 0
 

= lim𝑢→0−  
[1,

2
𝑢3
𝑒−1/𝑢

2
, 0] − [1,0,0]

𝑢
 

= lim𝑢→0−  
[0,

2
𝑢3
𝑒−1/𝑢

2
, 0]

𝑢
 

= lim𝑢→0−   [0,
2

𝑢4
𝑒−1/𝑢

2
, 0] 

𝑟̈(0) = (0,0,0) if 𝑢 < 0 

Similarly 𝑟̇(0) = (0,0,0) if 𝑢 > 0. 

∴ we get 𝑟̈(0) exists and 𝑟̈(0) = (0,0,0) 

Hence 𝑢 = 0 is a point of inflection for 𝑘 ≥ 2 

Extending like we get 
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𝑟‾𝑘(0) = 0‾. 

Thus at a point of inflection, even a curve of class infinity need not possess an osculating 

plane. 

Example 2: 

Show that if a curve is given in terms of a general parameter ' 𝑢 ' then the eqn of the 

osculating plane corresponding to 

[𝑅 − 𝑟‾(0), 𝑟‾′(0), 𝑟‾′′(0)] = 0 is [𝑅 − 𝑟‾, 𝑟̇, 𝑟̈] = 0 

Solution: 

𝑡‾ = 𝑟‾′ =
𝑑𝑟‾

𝑑𝑠
 =
𝑑𝑟‾/𝑑𝑢

𝑑𝑠/𝑑𝑢

 =
𝑟‾̇

𝑠̇

∴ 𝑟‾′ =
𝑟̇

𝑠̇
 𝑣
𝑢 =

𝑣𝑑𝑢 − 𝑢𝑑𝑣

𝑣2

 

∴ Diff w.r. to ' 𝑠 ' 

∴ 𝑟‾′′ =
𝑠̇𝑟̈ − 𝑟‾̇𝑠̈

𝑠̇2
𝑑𝑢

𝑑𝑠
 (∵

𝑑𝑢

𝑑𝑠
= 1) 

given,⇒ 𝑟‾′′ =
𝑠̇𝑟̈ − 𝑟̇𝑠̈

(𝑠̇)2
 

[𝑅‾ − 𝑟‾(0), 𝑟‾′′(0), 𝑟‾′′(0)] = 0 

⇒ [𝑅 − 𝑟‾(0),
𝑟‾̇

𝑠̇
,
𝑠̇𝑟̈ − 𝑟̇𝑠̈

𝑠̇2
] = 0 

⇒ [𝑅 − 𝑟‾(0),
𝑟‾̇

𝑠̇
,
𝑠̇𝑟̈

𝑠̇𝑥
] − [𝑅 − 𝑟‾(0),

𝑟̇

𝑠̇
,
𝑟̇𝑠̇

𝑠̇2
] = 0 

⇒ [𝑅 − 𝑟‾(0),
𝑟̇

𝑠̇
,
𝑟̈

𝑠̇
] − [𝑅 − 𝑟‾(0),

𝑟̇

𝑠̇
,
𝑟̇𝑠̈

𝑠̇2
] = 0 

⇒
1

𝑠̇2
[𝑅 − 𝑟‾(0), 𝑟̇, 𝑟̈] − 0 = 0 

⇒ [𝑅 − 𝑟‾(∞), 𝑟̇, 𝑟̈] = 0 in the equation of the osculating plane. 

Example 3: 

Find the equation of the osculating plane at a general paint on the cubic curve 

given by 𝑟‾ = (𝑢, 𝑢2, 𝑢3). 

Show that the osculating plane at any three points 

of the curve meet at a point lying in the plane determined by this three points. 
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Proof: 

We know that, the equation of the osculating plane at any point. 

 [𝑅 − 𝑟‾(0), 𝑟̇, 𝑟̈] = 0  ………. (1) 

𝑔𝑛 . 𝑟 = (𝑢, 𝑢
2, 𝑢3) 

Therefore, 𝑟̇ = (1,2u, 3u2) and 𝑟̈ = (0,2,6u)and R = (X, Y, Z)  sub in eqn(1) 

∴ (1) ⇒ [(𝑥 − 𝑢), (𝑦 − 𝑢2), (𝑧 − 𝑢3)], (1,2𝑢, 3𝑢2 ), (0,2,6𝑢)] = 0. 

|
𝑥 − 𝑢 𝑦 − 𝑢2 𝑧 − 𝑢3

1 2𝑢 3𝑢2

0 2 6𝑢

| = 0
  

 ⇒ (𝑥 − 𝑢)(12𝑢2 − 6𝑢2) − (𝑦 − 𝑢2)[6𝑢 − 0] + (𝑧 − 𝑢3)

(2 − 0) = 0

⇒ (𝑥 − 𝑢)(6𝑢2) − (𝑦 − 𝑢2)(𝑏𝑢) + (𝑧 − 𝑢3)(2) = 0

⇒ 6𝑢2𝑥 − 6𝑢3 − 6𝑢𝑦 + 6𝑦3 + 2𝑧 − 2𝑢3 = 0.

⇒ 6𝑢2𝑥 − 6𝑢𝑦 + 2𝑧 − 2𝑢3 = 0

⇒ 3𝑢2𝑥 − 3𝑢𝑦 + 𝑧 − 𝑢3 = 0.
 equation of the osculating plane to the cubic curve.

 

If 𝑢1, 𝑢2, 𝑢3 are three distinct values of the parameter. 

∴ The osculating plane at this points are linearly Independent and the plane meat at a point 

(𝑥0, 𝑦0, 𝑧0). 

∴ The parameters 𝑢1, 𝑢2, 𝑢3 satisfying the condition, 𝑢3 − 3𝑢2𝑥0 + 3𝑢𝑦0 − 𝑧0 = 0-(2) 

If 𝑙𝑥 +𝑚𝑦 + 𝑛𝑧 + 𝑝 = 0, is a equation of the plane passing through the 3 points 

Then the parameters satisfy the conditions 

𝑙𝑢 +𝑚𝑢2 + 𝑛𝑢3 + 𝑝 = 0 ………. (3)  

Since the equation (3) have 3 distinct roots and we have 𝑛 ≠ 0 

∴ The corresponding coefficient are 

equation (2) and (3) . 

we get. 

1

𝑛
=
−3𝑥0
𝑚

=
3𝑦0
𝑙
=
−𝑧0
𝑝

 

⇒ 𝑙 = 3𝑛𝑦0
⇒ 𝑚 = −3𝑛𝑥0
⇒ 𝑝 = −𝑛𝑧0

}  sub in (3)  

∴ (3) ⇒ 

The eqn of the plane is 
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3𝑛𝑦0𝑥 − 3𝑛𝑥0𝑦 + 𝑛𝑧 − 𝑛𝑧0 = 0 

÷ 𝑛 ⇒ 3𝑦0𝑥 − 3𝑥0𝑦 + 𝑧 − 𝑧0 = 0. 

Definition: Normal plane 

The normal plane at a print 𝑝 on a curve is that plane through 𝑝 which is orthogonal to the 

tangent at 𝑝 

Definition: Principle Normal 

The principle Normal at 𝑝 is a line of intersection of the Normal plane and the osculating 

plane at 𝑃. A unit vector along the principle Normal is denoted by 𝑛‾ . 

Definition: curvature 

The arc rate at which the tangent changes direction as 𝑃 moves along the curve is the 

curvature of the curve, and is denoted by 𝐾 (kappa) 

(ie) |𝜅| = |𝑡 ̅′| = |
𝑑𝑡

𝑑𝑠
| 

(i.e.) Arc rate at which 𝑡 ̅ Exchanges direction 

Theorem 2: 

Prove that  𝑡‾′ = 𝑘𝑛‾ 

Proof: 

We know that 𝑟‾′ = 𝐸‾ &|𝐸| = 1 

𝑟‾′ ⋅ 𝑟‾′′ = 1 

Diff w. 𝑟. to 's'. 

𝑟‾′ ⋅ 𝑟‾′′ + 𝑟‾′′ ⋅ 𝑟‾′′ = 0
 ⇒ 2𝑟‾′ ⋅ 𝑟‾′′ = 0
 ⇒ 𝑟‾′ ⋅ 𝑟‾′′ = 0.
 ⇒ 𝑟‾′ ⋅ 𝑟‾′′ = 0.
 ⇒ 𝑡‾ ⋅ 𝑟‾′′ = 0.
 ⇒ 𝑡‾ perpendicular 𝑟‾′′

 

∴ 𝑟′′ lies in the Osculating plane. 

∴ 𝑟‾′′ is proprotional to 𝑛‾  

∴ 𝑟‾′′ = ±𝑘𝑛‾ 

⇒∣ 𝑟‾′′‖ = +𝑘𝑛‾ . 

⇒ 𝑡‾′ = +𝑘𝑛‾,  𝑡‾ is called the curvature of the vector. 

Theorem 3: 

A Necessary and sufficient condition that A ere curve be a straight line is that 𝜅 = 0 at all 

points (or) Show that a curve is a straight line iff the curvature 𝑘 = 0 

Proof: 
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Necessary part: 

Assume that the curve be a straight line. 

To prove that : The curvature 𝜅 = 0. 

We know that, the vector equation of the straight line is 

𝑟‾ = 𝑎‾ + 𝑠𝑏‾  

where 𝑎‾ & 𝑏‾  are constants 

and 𝑆 is a parameter 

Diff w.r. to ' 𝑠 '. 

 ⇒ 𝑟‾′ = 0 + 𝑏‾

 ⇒ 𝑟‾′ = 𝑏⃗⃗
 ⇒ 𝑡‾ = 𝑏‾

 

Again diff w.r.to 's' 

⇒ 𝑡′ = 0 

⇒ 𝑘𝑛‾ = 0 [𝑡‾′ = 𝑘𝑛‾] 

   𝑘 = 0(∵ 𝑛 ≠ 0). 

Sufficient part : 

Assume that 𝜅 = 0 at all points 

To prove that: a curve in a straight line.  

 As 𝑘 = 0
 ⇒ 𝜅𝑛‾ = 0
 ⇒ 𝑡‾′ = 0
 ⇒ 𝑟‾′′ = 0.

 

Integrate w.r.to 's'. 

⇒ 𝑟‾′ = 𝑏‾  where 𝑏‾ = constant. 

Again Integrate w. 𝑟. to ' 𝑠 ' 

⇒ 𝑟‾ = 𝑠𝑏‾ + 𝑎‾  where 𝑎‾ = constant 

This is represent the eqn of  a straight line. 

Definition: Binormal line 

The Binormal line at 𝐷 is the normal in a direction orthogonal to the osculating plane 

The sense of the unit vector 𝑏‾  along the Binormal is chosen show that 𝑡‾, 𝑛‾ , 𝑏‾  form right hand 

system of axis. 

(i.e.) 𝑏‾ = 𝑡‾ × 𝑛‾  

Definition: Torsion 

As 𝑃 moves along a curve the are rate at which the osculating pane turns above the tangent is 

http://w.r.to/
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called the torsion of the curve and is denote by 𝜏. 𝜏 = |𝑏‾ ′| 

(or) 𝑏⃗⃗′ = −𝜏𝑛‾ . 

Theorem 4: 

Prove that  𝑏′ = −𝜏𝑛‾ . 

Proof: 

We know that, |𝑏‾| = 1 

⇒ 𝑏‾ ⋅ 𝑏‾ = 1 

"Diff w.r.to 's'. 

⇒ 𝑏‾ ′ ⋅ 𝑏‾ + 𝑏‾ ⋅ 𝑏‾ ′ = 0 

⇔ 2𝑏‾ ′ ⋅ 𝑏‾ = 0 

⇒ 𝑏‾ ′ ⋅ 𝑏‾ = 0 

⇒ 𝑏‾ ′ ⊥𝑟 𝑏‾ 

⇒ 𝑏‾ ′& 𝑏‾  are L.I 

⇒ 𝑏‾ ′ lines in the osculating plane  

Also 𝑏‾ ⊥r 𝑡‾ ⇒ 𝑏‾ − 𝑡‾ = 0 

Differentiate with respect to 's'.  

⇒ 𝑏‾ ′ ⋅ 𝑡‾ + 𝑏‾ ⋅ 𝑡‾′ = 0. 

⇒ 𝑏‾ ′ ⋅ 𝑡‾ + 𝑏‾ ⋅ 𝑟‾′′ = 0 

⇒ 𝑏‾ ′ ⋅ 𝑡‾ = 0 

⇒ 𝑏′ ⊥r 𝑡‾  

⇒ 𝑏‾ ′ & 𝑡 are L.I. 

⇒ 𝑏‾ ′ lies in the osculating plane & is proportional to 𝑛 ̅ 

⇒ ℎ‾ ′ is ‖𝑙𝑒  to 𝑛‾  

 (i.e.) 𝑏‾ ′ = ±𝜏𝑛‾  

⇒ 𝑏‾ ′ = −𝜏𝑛‾  

Note: 

(1) Torsion is regarded as positive when the rotation of the osculating plane has 𝑆 increasing 

is in the direction of a Right find travelling in the direction of 𝑡‾. 

(2) A Torsion 𝜏 is determined both in magnitude and sign. 

(3) The curvature 𝜅 is determined only in magnititude.  
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Theorem 𝟓: 

Let 𝛾 be a curve for which 𝑏‾  various differentially with are length then a necessary and 

sufficient condition that a curve 𝛾 be a plane curve is that 𝜏 = 0 at all points. 

Proof: 

Given 𝛾 be a curve for which 𝑏‾  various differentially with arc length. 

Necessary part: 

Assume that 𝛾 = 0 at all points 

To prove that: 𝜏 = 0 at all points. 

from our assumption, the osculating plane at any point is Just the plane containing the curve 

(i.e.) The osculating plane is fixed. 

𝑏‾  is a constant vector. 

⇒ 𝑏‾ ′ = 0. 

 ⇒ −𝜏 𝑛‾ = 0 (𝑛‾ ≠ 0)

 ⇒ −𝜏 = 0
 ⇒ 𝜏 = 0 at all points. 

 

Sufficient part: 

Assume that 𝜏 = 0 at all points. 

To prove that: The curve 𝛼 is plane curve. 

From our assumption, 𝜏 = 0. 

 ⇒ −𝜏𝑛‾ = 0
 ⇒ 𝑏‾ = 0
 Integrate with respect to s 

𝑏‾ =  constant. 

 

We know that, 𝑡 ̅ ⋅ 𝑏‾ = 0 

 (ie) 𝑟‾′𝑏‾ = 0.

 ⇒ 𝑟‾′𝑏‾ + r𝑏‾ ′ = 0      [: 𝑏‾ ′ = 0]

 ⇒ (𝑟‾ ⋅ 𝑏‾)′ = 0.

 ⇒ 𝑟‾ ⋅ 𝑏‾ =  constant. 

 

 (i.e.) 𝑟‾, 𝑏‾ = 𝑐             ……… (1) 

where 𝑏‾ = (𝑏1, 𝑏2, 𝑏3) & 

𝑟‾ = (𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) 

∴ (1)  𝑏1𝑥(𝑠) + 𝑏2𝑦(𝑠) + 𝑏3𝑧(𝑠) = 𝑐 = constant. 

⇒ This condition shows that the pt 

(𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) lies in the plane. 
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∴ 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧 = 𝑐 

∴ γ  is lies in the plane curve. 

Example 4:  

Prove that [𝑟‾′, 𝑟‾′′ , 𝑟‾′′′] = 𝜅2𝜏 

Solution: 

We know that,  𝑡‾ = 𝑟‾′&  𝑡‾′ = 𝑟‾′′. 

∴ 𝑟‾′ × 𝑟‾′′ = 𝑡‾ × 𝑡‾′ 

= 𝑡 × κ𝑛‾‾  

 = 𝜅(𝑡‾ × 𝑛‾)

𝑟‾′ × 𝑟‾′′ = 𝜅𝑏‾

 

 

Differentiate with respect to s 

 

𝑟‾′′ × 𝑟‾′′ + 𝑟‾′ × 𝑟‾′′ = 𝑘′𝑏‾ + 𝑘′𝑏‾ ′

  ′′ × 𝑟‾′′′ − 𝑘′𝑏‾ − 𝑘′𝜏𝑛‾ .

 

0 + 𝑟‾′ × 𝑟‾′′′ = 𝑘′𝑏‾ − 𝑘′𝜏𝑛‾ . 

⇒ 𝑟‾′ × 𝑟‾′′′ = 𝑘′𝑏‾ − 𝑘𝜏𝑛‾  

Multiply both sides Secularly by 𝑟‾′′ ' 

⇒ 𝑟‾′′ . [𝑟‾′ × 𝑟‾′′′] = 𝑟‾′′ . [𝑘′𝑏‾ − 𝑘𝜏𝑛‾] 

 ⇒ −[𝑟‾′, 𝑟‾′′ , 𝑟‾′′′] = 𝐸′ ⋅ [𝑘′𝑏‾ − 𝑘𝜏𝑛‾] 

= 𝑘𝑛‾[𝑘′𝑏 − 𝑘𝜏𝑛‾]. 

−[𝑟‾′, 𝑟‾′′ , 𝑟‾′′′] = 0 − 𝑘2𝜏 

(i.e.) [𝑟‾′, 𝑟‾′′, 𝑟‾′′] = 𝑘2𝜏. 

Example 5:  

Show that [𝑟̇, 𝑟̈, 𝑟̈] = 0 is a necessary and sufficient condition that the curve be a plane curve.  

Proof: 

Necessary part: 

Assumes that the curve be a plane curve. 

To prove that [𝑟̇, 𝑟̈, 𝑟̈] = 0. 

We know that, 𝑟‾′ =
𝑑𝑟‾

𝑑𝑠
 

 =
𝑑𝑟‾

𝑑𝑢
⋅
𝑑𝑢

𝑑𝑠
 

=𝑟‾̇. 𝑑𝑢/𝑑𝑠            ………..(1) 

Diff equation 1 with respect to s, 
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∴ 𝑟‾′′ = 𝑟‾̇𝑢′′ +
𝑑𝑟̇

𝑑𝑠
𝑢′ 

= 𝑟‾̇𝑢′′ +
𝑑𝑟̇

𝑑𝑢
⋅
𝑑𝑢

𝑑𝑠
𝑢′ 

= 𝑟̇𝑢′′ + 𝑟̈𝑢′𝑢′ 

𝑟′ = 𝑟̇𝑢′′ + 𝑟̇(𝑢′)2    …………..(2) 

Diff (2) w.r.to ' 𝑠 '. 

𝑟←′′′ = 𝑟‾̇𝑢′′′ +
𝑑𝑟‾̇

𝑑𝑠
𝑢′′ + 𝑟̈𝑞(𝑤′)(𝑢′′) +

𝑑𝑟̇

𝑑𝑠
(𝑢′)2 

𝑟̃′′′ = 𝑟̂𝑢′′′ +
𝑑𝑟̇

𝑑𝑢
⋅
𝑑𝑢

𝑑𝑠
𝑢′′ + 2𝑟̈𝑢′𝑢′′ +

𝑑𝑟̈

𝑑𝑢

𝑑𝑢

𝑑𝑠
(𝑢 𝑟‾′′′ = 𝑟̇𝑢′′′ + 𝑟̈𝑢′𝑢′′ + 𝛼𝑟̈𝑢′𝑢′′ + 𝑟̈(𝑢′)3. 

𝑟‾′′′ = 𝑟̇𝑢′′′ + 3𝑟̈𝑢′𝑢′′ + 𝑟(𝑢′)3   

consider, 

[𝑟‾′, 𝑟′′ , 𝑟′′′] = {𝑟̇𝑢′, [𝑟̇𝑢′′ + 𝑟̈(𝑢′)2], 

[𝑟‾̇𝑢′′′ + 3𝑟̈𝑢′𝑢′′ + 𝑟(𝑢′)3] 

= [𝑟‾̇𝑢′ ⋅ 𝑟‾̇𝑢′′, [𝑟‾̇𝑢′′′ + 3𝑟̇𝑢′𝑢′′′ + 𝑟̈(𝑢′)3] 

+[𝑟̇𝑢′, 𝑟̈(𝑢′)2, [𝑟‾̇𝑢′′′ + 3𝑟̈𝑢′𝑢′′ + 𝑟(𝑢′)3]] 

= [𝑟‾̇𝑢′, 𝑟‾̇𝑢′′, 𝑟‾̇𝑢′′′] + [𝑟‾̈𝑢′, 𝑟̇𝑢′′, 3𝑟̈𝑢′𝑢′′] 

+[𝑟̇𝑢′, 𝑟̇𝑢′′, 𝑟(𝑢′)3] + [𝑟‾̇𝑢′, 𝑟̇(𝑢′)2, 𝑟̇𝑢′′′] 

+[𝑟̇𝑢′, 𝑟̈(𝑢′)2, 3𝑟̈𝑢′𝑢′′] + [𝑟̇𝑢′, 𝑟̈(𝑢′)2𝑟̈(𝑢′)3] 

= 0 + 0 + 0 + 0 + 0 + (𝑢)𝑏[𝑟̇, 𝑟̈, 𝑟̈] 

[𝑟‾′, 𝑟‾′′ , 𝑟‾′′′] = (𝑢′)6[𝑟̇, 𝑟̈, 𝑟̈] 

𝑘2𝜏 = (𝑢′)6[𝑟‾̇, 𝑟̈, 𝑟] ………….(4) 

From our assumption the curve is plane curve ⇒ 𝜏 = 0 

∴ (4) ⇒ 0 = (𝑢′)6[[𝑟̇, 𝑟̈, 𝑟 ¨ ] 

⇒ [𝑟̇, 𝑟̈, 𝑟̈] = 0 

Sufficient part: 

Assume that [𝑟̈, 𝑟̈, 𝑟̈] = 0   ………….(5) 

To prove that: The curve is a plane curve.  

(i.e.) To prove that 𝜏 = 0. 

Suppose 𝜏 ≠ 0 

from (4) & (3) we get 

𝑘2𝜏 = 0. 

http://w.r.to/
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⇒ 𝑘2 = 0 ⇒ 𝑘 = 0. 

⇒  A curve is a straight line  

This is contradiction to our assumption. 

∴ 𝜏 = 0. 

⇒  The curve is a plane curve. 

Example 6:  

Calculate curvature & torsion of the cubic curve given by 𝑟‾ = (𝑢, 𝑢2, 𝑢3) 

Solution: 

Curvature = 𝜅 =
|𝑟‾̇×𝑟‾̈|

|𝑟‾̇|3
   ……………………….. (1)  

Torsion = 𝜏 =
[𝑟‾̇,𝑟̈̇,𝑟‾]

∣𝑟̇×𝑟|2¨
 or 

[𝑟‾′,𝑟‾′′,𝑟‾′′′]

𝜅2
           …………..(2) 

To find: 𝑟̇, 𝑟̈ & 𝑟‾̈ 

given, 𝑟‾ = (u, 𝑢2, 𝑢3) 

Diff w.r.to ' 𝑢 ', 𝑟̇ = (1,2𝑢, 3𝑢2), 𝑟‾̈ = (0,2𝑢, 6𝑢) and 𝑟‾ = (0,0,6)  

𝑟‾̇ × 𝑟‾̈ = |
𝑖 𝑗 𝑘

1 2𝑢 3𝑢2

0 2 6𝑢

| 

= 𝑖[12𝑢2 − 6𝑢2] − 𝑗[6𝑢 − 0] + 𝑘[2 − 0] 

=6𝑢2𝑖 − 6𝑢𝑗 + 2𝑘 

|𝑟‾̇ × 𝑟̈| = √(36𝑢4 + 6𝑢2 + 4)   

= √4√(9𝑢4 + 9𝑢2 + 1) 

⇒ |𝑟‾̇ × 𝑟̈| = 2√9𝑢4 + 9𝑢2 + 1   ……… (3) 

⇒ |𝑟‾̇ × 𝑟̈|2 = 4(9𝑢4 + 𝑞𝑢2 + 1)           …………… (4) 

[𝑟‾̇, 𝑟̈, 𝑟] = |
1 2𝑢 3𝑢2

0 2 6𝑢
0 0 6

| 

 = 1(12 − 0) − 2𝑢(0 − 0) + 3𝑢2(0 − 0)
 

[𝑟‾̇, 𝑟̈, 𝑟] = 12,           ………. (5) 

∴  Sub (3) in (1) 

 curvature = 𝑘 =
|𝑟̇ × 𝑟̈|

|𝑟̇|3
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=
2√9𝑢4 + 9𝑢2 + 1

(√1 + 4𝑢2 + 9𝑢4)
3 =

2(9𝑢4 + 9𝑢2 + 1)1/2

(1 + 4𝑢2 + 9𝑢4)3/2
. 

Sub (4),(5) in (2) 

Torsion = 𝜏 =
[𝑟‾̇,𝑟̈,𝑟]

|𝑟‾̇×𝑟̈|2
 

                      =
12

4(9𝑢4+9𝑢2+1)
=

3

9𝑢4+9𝑢2+1
 

(OR) 

Given 𝑟̅ = (𝑢, 𝑢2, 𝑢3)            ………..(1) 

Differentiate with respect to u, 

 
𝑑𝑟

𝑑𝑢

̅
=
𝑑𝑟

𝑑𝑠

̅
.
𝑑𝑠

𝑑𝑢
= (1,2𝑢, 3𝑢2) 

𝑖𝑒) 𝑟̇̅ = 𝑟̅′. 𝑠̇ = (1,2𝑢, 3𝑢2) 

𝑖𝑒) 𝑟̇̅ = 𝑡̅. 𝑠̇ = (1,2𝑢, 3𝑢2)     ……. (2) 

Again diff w. 𝑟. to 'u' 

𝑟̈ = 𝑡‾ ⋅ 𝑆̈ + 𝑠̇
𝑑𝑡‾

𝑑𝑢
= (0,2,6𝑢)

 (i.e)𝑟̈̅ = 𝑡‾. 𝑠̈ + 𝑠̇2𝑡‾′ = (0,2,6𝑢) [
𝑑𝑡‾

𝑑𝑢
=
𝑑𝑡

𝑑𝑠
⋅
𝑑𝑠

𝑑𝑢
= 𝑡‾′ ⋅ 𝑠̇] . 

 (i.e) 𝑟̈̅ = 𝑡‾𝑠̈ + 𝑠̇2𝑘𝑛‾ = (0,2,6𝑢)      ……… (3)

 

Taking cross product of (2) & (3), 

𝑟̇̅ × 𝑟̈̅ = (6𝑢2, 6𝑢, 2) 

 Now, (2)2 ⇒ 𝑠̇2𝐹2 = 1 + 4𝑢2 + 9𝑢4

 ⇒ 𝑠̇2 = 1 + 4𝑢2 + 9𝑢4
 

Serret - Frenet Formulae: 

The relations, 

(i) 𝑡‾′ = κ𝑛‾  (Already proves) 

(ii) 𝑛‾ ′ = 𝜏𝑏‾ − 𝑘𝑡‾ 

(iii) 𝑏‾ ′ = −𝜏𝑛‾    are known as the Serret Frenet Formula 

{(ii) proof : 

We know that 𝑛‾ = 𝑏‾ × 𝑡‾ 
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𝑛‾ ′ = 𝑏‾ ′ × 𝑡‾ + 𝑏‾ × 𝑡‾

 = −𝜏𝑛‾ × 𝑡‾ + 𝑏‾ × 𝑘𝑛‾
 = −𝜏(ℎ‾ × 𝑡‾) + 𝑘(𝑏‾ × ℎ‾)

 = −𝜏(−𝑏‾) + 𝑘1(−𝑡‾)

= −𝑘𝑡‾ + 𝜏𝑏‾ = 𝜏𝑏‾ − 𝑘𝑡‾}

 

Theorem 6: [Serret-Frenet Formulae] 

Prove that the behavior of a curve in the neighborhood of one of its pts may be investigated 

by means of relations 𝑡‾′ = κ𝑛‾, 𝑛‾ ′ = 𝜏𝑏‾ − 𝑘𝑡‾  & 𝑏‾ ′ = −𝜏𝑛‾ . 

Proof: 

At a point ' 𝑝 ' on the curve, Let axis 𝑂𝑥 , 𝑂𝑦, 𝑂𝑧 be taken along 𝑡‾, 𝑛‾  and 𝑏‾  

Let 𝑥, 𝑦, 𝑧 be the co-ordinates 𝑥 of a neighboring point Q of the curve relative to these axis. 

If the curve is of class ⩾ 4.  

 If 's' denotes the small are length 𝑃𝑄. then using Taylorss theorem, 

  𝑟‾(𝑠) = 𝑟‾(0) +
𝑠

1!
𝑟‾′(0) +

𝑠2

2!
𝑟‾′′(0) +

𝑠3

3!
𝑟‾′′′(0) +

𝑠4

4!
𝑟(iv) + o(s) as s → 0  ………..(1) 

 given relations  

𝑡‾′ = κ𝑛‾, 𝑛‾ ′ = 𝜏𝑏‾ − 𝑘𝑡‾  & 𝑏‾ ′ = −𝜏𝑛‾ .       ………... (2) 

Here, 𝑟‾(0)& 𝑟‾(𝑠) respectively denote the position 

vector of the two pts 𝑃 & 𝑄. 

Let 𝑟‾(𝑠) = (𝑥, 𝑦, 𝑧) & 𝑟‾(0) = (0,0,0) 

We know that 𝑟‾′(0) = 𝑡‾ 

 ⇒ 𝑟‾′′(0) = 𝑡‾′ = 𝜅𝑛‾

=> 𝑟‾′′′(0) = 𝜅𝑛‾ ′ + 𝜅′𝑛‾

                         = 𝜅𝜏𝑏‾ − 𝜅2𝑡‾ + 𝜅′𝑛‾
 

𝑟‾𝑖𝑣(0) = −3𝜅𝜅′ + [2𝜅′𝜏 + 𝜅𝜏′]𝑏‾ + [𝜅" − 𝜅𝜏2 − 𝜅3] 𝑛‾  

Therefore (1) ⇒ 

(𝑋, 𝑌, 𝑍) = 𝑠𝑡‾ +
𝑠2

2!
𝜅𝑛‾ +

𝑠3

𝟑!
(𝜅𝜏𝑏‾ − 𝜅2𝑡‾ + 𝜅′𝑛‾) +

𝑠4

4!
(−3𝜅𝜅′𝑡‾ + 𝑏‾(2𝜅′𝜏 + 𝜅𝜏) 

+𝑛‾(𝜅" − 𝜅3 − 𝜅𝜏2) 

equating the respective co-eft of 𝑡‾, 𝑛‾ , 𝑏‾ . 

𝑋 = 𝑠 −
𝑘2𝑠3

6
− 3𝑘𝑘′

𝑠4

24
+ 𝑜(𝑠) 

𝑌 =
𝑠2

2
𝑘 +

𝑘′𝑠3

6
+
𝑠4

24
[𝑘′′ − 𝑘3 − 𝑘𝜏′] + 𝑜(𝑠) 
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𝑍 = 𝜅𝜏
𝑠3

6
+

1

24
(2𝑘′𝜏 + 𝑘𝜏′)𝑠4 + 𝑜(𝑠)     

The co-eff. being evaluated at 𝑃. 

It follows that as a first order approximation the chord 𝑃𝑄 in along the tangent. 

(ie) 𝑟‾(𝑠) = 𝑟‾(0) + 𝑠(𝑡‾) 

𝑟‾(𝑠) − 𝑟‾(0) = 𝑠𝑡‾ 

𝑂𝑄 − 𝑂𝑃 = 𝑆𝑡‾ 

(i.e) The projection on the principal normal is a magnitude of the second order and its 

projection on the binormal is of the third order. 

From eqn. (2) ⇒. 

2𝑌

X2
=

κs2+
𝜅′

3
𝑠3+⋯.

𝑠2(1−
𝑘2𝑠2

𝑡
−⋯)

=
𝜅+

𝜅′

3
𝑠+⋯

(1−
𝜅2𝑠2

6
−⋯ )

2     ~ 𝜅 as 𝑠 → 0 

Similarly,  
3𝑍

𝑋𝑌
≅

𝜅𝜏
𝑠2

2

𝑠(1−
𝜅2𝑠2

6
−⋯..)(

𝜅𝑠2

2
(1+⋯ ))

  ∼ 𝜏 

 

This is similar to Newton's formula for curvature. 

 To find approximate length of the chord 𝑝𝑄 

 (𝑠 −
𝜅2𝑠3

6
+⋯)

2

+ (
𝑘

2
𝑠2 +⋯)

2

+ (
𝑘𝜏

6
𝑠3 +⋯)

2

  

𝑋2 + 𝑌2 + 𝑍2 = 𝑠2 −
2𝑠𝑘2𝑠3

6
+
𝑘2𝑠4

4
+⋯ = 𝑠2[1 −

1

12
𝜅2𝑠2] 

∴ length of 𝑃𝑄 ∼ 𝑆 [1 −
𝑘2𝑠2

12
]  

∴ length of chord 𝑃𝑄 − 𝑆 ∼ −
𝐾2𝑆2

24
  

When 𝑘 ≠ 0 

The are length 𝑃𝑄 differs from the chord 𝑃𝑄 

by terms of the third order in ' 𝑠 '. 

Rectifying plane: 

The plane determined by the tangent and binormal at ' 𝑃 ' as the rectifying plane. 

Example 7: 

Show that the projection of the curve near 𝑃 on the Osculating plane is approximately the 

curve 𝑧 = 0, 

𝑦 =
1

2
𝑘𝑥2, its projection on the rectifying plane is approximately 𝑦 = 0, 𝑧 =

1

6
𝑘𝜏𝑋3  and its 



 

30 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

projection on the normal plane is approximately 𝑥 = 0, 𝑧2 =
2

9
(
τ2

𝜅
) 𝑌3 

Proof: 

We know that, the coordinate 𝑥, 𝑦, 𝑧 of a near point to p are given by, 

𝑋 = 𝑠 −
𝑘2𝑠3

6
− 3𝑘𝑘′

𝑠4

24
+ 𝑜(𝑠) 

𝑌 =
𝑠2

2
𝑘 +

𝑘′𝑠3

6
+
𝑠4

24
[𝑘′′ − 𝑘3 − 𝑘𝜏′] + 𝑜(𝑠) 

𝑍 = 𝜅𝜏
𝑠3

6
+
1

24
(2𝑘′𝜏 + 𝑘𝜏′)𝑠4 + 𝑜(𝑠) 

The eqn of the osculating plane is 𝑧 = 0, 𝑥 = 𝑠, 𝑦 =
κ 

2
𝑠2 nearly, 

(i.e.) 𝑦 =
𝑘

2
𝑥2 

The eau, of the rectifying plane is 𝑦 = 0. 

𝑦 = 0, 𝑥 = 𝑠, 𝑧 =
𝑘𝜏𝑠3

6
⇒ 𝑧 =

𝑘𝜏

6
𝑥3. 

𝑦3

𝑧2
=
(
𝑘
2)
3𝑠6

(
𝑘𝜏
6 )

2

𝑠6
=

𝑘3

8
𝑘2𝜏2

36

=
9

2

𝑘

𝜏2
  

(ie) 
𝑦3

𝑧2
=

9

2

𝑘

𝜏2
⇒ 𝑧2 =

2

9

𝜏2𝑦3

𝑘
 

 in the equation of the normal plane. 

Example 8: 

Show that the length of the common perpendicular '𝑑 ' of the tangent at two near points 

distance 's' apart in approximately given by 𝑑 =
𝑘𝜏𝑠3

12
. 

Proof : 

Let 𝑃, 𝑄 have parameters 𝑂 and 𝑆 repectively. 

The unit tangent vectors at 𝑃 and 𝑄 are 𝑟‾′(0), 𝑟‾′(𝑆) 

∴ The unit vector of the common perpendicular in along 𝑟‾′(𝑠) × 𝑟‾′(0) 

The projection of the vector [𝑟‾(𝑠) − 𝑟‾(0)] in this direction = 𝑑 

∴ 𝑑 = 𝑃𝑄 =
[𝑟‾(𝑠)−𝑟‾(0),𝑟‾′(𝑠),𝑟‾′(0)]

|[𝑟‾′(𝑠)×𝑟‾′(0)]|
………… . . (1)  

We know that (by Taylor’s Theorem),  

𝑟‾(𝑠) = 𝑟‾(0) +
𝑠

1!
𝑟‾′(0) +

𝑠2

2!
𝑟‾′′(0) +

𝑠3

3!
𝑟‾′′′(0) + 0(𝑠) 𝑎𝑠 𝑠 → ∞………… . (2)   

We know that,  𝑟‾′(0) = 𝑡‾ 
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⇒ 𝑟‾′′(0) = 𝑡‾′ 

 𝑟‾′′′(0) = −𝜅2𝑡‾ + 𝜅′𝑟‾ + 𝜅𝜏𝑏‾  

= 𝜅′(𝜏𝑏‾ − 𝜅𝑡‾) + 𝜅′𝑛‾   

= 𝜅(𝜏𝑏‾ − 𝜅𝑡̅) + 𝜅′𝑛‾   

∵ (1) ⇒ 

∴ 𝑟‾(𝑠) − 𝑟‾(0) =
𝑠

1
𝑡‾ +

𝑠2

2
𝜅𝑛‾ +

𝑠3

6
(−𝜅2𝑡‾ + 𝜅′𝑛̃ + 𝜅𝜏𝑏‾) ……… . . (A) 

⇒ 𝑟‾(𝑠) − 𝑟‾(0) = 𝑡‾ [
𝑠

1
−
𝑠2𝑘2

6
] + 𝑛̅ [

𝜅𝑠2

2
+
𝜅′𝑠3

6
] + 𝑏‾ [

𝑘𝜏𝑠3

6
] 

Differentiate (A) with respect to s, 

⇒ 𝑟‾′(𝑠) = 𝑡̅ [1 −
2𝑠𝜅2

6
] + 𝑛‾ [

𝜅

2
⋅ 2𝑠 +

3𝜅′𝑠2

6
] + 𝑏‾ [

3𝜅𝜏𝑠2

6
]………… . . (𝐵)  

⇒ 𝑟‾′(0) = 𝑡̅[1 − 0] + 𝑛‾[0] + 𝑏‾[0]   

⇒ 𝑟‾′(0) = t̅   …………… . (𝐶)  

∴ 𝑟‾′(𝑠) × 𝑟‾′(0) = [𝑡‾ (1 −
𝜅2𝑠2

2
) + 𝑛‾ (𝜅𝑠 +

𝜅′𝑠2

2
) + 𝑏‾ (

𝑠2

2
𝑘𝜏)] × t̅  

= 0 − 𝑏‾ [𝜅 +
𝜅′𝑠2

2
] + 𝑛‾ [

𝑠2

2
𝜅𝜏]

[𝑛‾ × 𝑡‾ = −𝑏‾

𝑏‾ × 𝑡‾ = 𝑛‾]
   

= −𝑏̅ [𝑠𝜅 + 𝜅′
𝑠2

2
] + 𝑛̅ [

𝑠2

2
𝜅𝜏]  

⇒ |𝑟‾′(𝑠) × 𝑟‾′(0)| = |−𝑏‾ [𝑠𝜅 + 𝜅′
𝑠2

2
] + 𝑛‾ [

𝑠2

2
𝜅𝜏]| 

 = √[𝑠𝜅 + 𝜅′
𝑠2

2
]
2

+
𝑠4

4
𝜅2𝜏2

 = [𝑠2𝜅2 + 𝜅′2
𝑠4

4
+ 2𝑠𝜅𝜅′

𝑠2

2
+
𝑠4

4
𝜅2𝜏2]

1/2

 = [𝑠2𝜅2 + 𝜅′
𝑠4

4
+ 𝜅𝜅′𝑠3 +

𝑠4

4
𝜅2𝜏2]

1/2

 = [𝑠2𝜅2 + 𝑠3𝜅𝜅′]1/2  [omit high powers] 

  

 = 𝑠[𝜅2 + 𝑠𝜅𝜅′]1/2

 = 𝑠𝜅 [1 +
𝑠

𝜅
𝜅′]

1/2   

(i.e.) |𝑟‾′(𝑠) × 𝑟‾′(0)| = 𝑠𝜅 [1 +
𝑠

𝜅
𝜅′]

1/2

 (approximation) 

~s𝜅 [1 +
𝑠

2𝑛
𝑛′]  ………… . (3) [∵ (1 + 𝑥)𝑛 = 1 + 𝑛𝑐1𝑥 + ℎ𝑐2𝑥

2 +⋯] 

From (A), (B) & (C)  
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[𝑟̅(𝑠) − 𝑟̅(0), 𝑟̅′(𝑠), 𝑟̅′(0)] = ||

𝑠 −
𝑠2𝜅2

6
𝜅
𝑠2

2
+
𝜅′𝑠3

6

𝜅𝜏𝑠3

6

1 −
s𝑘2

3
𝜅𝑠 +

𝜅′𝑠2

2

𝜅𝜏𝑠2

2

1 0 0

||  

= [𝑠 −
𝑠2𝜅2

6
] [0 − 0] − [

𝜅𝑠2

2
+
𝜅′𝑠3

6
] [0 −

𝜅𝜏𝑠2

2
] + [

𝜅𝜏𝑠3

6
] [0 − 𝜅𝑠 −

𝜅′𝑠2

2
] 

= 0 +
𝜅2𝜏𝑠4

4
+
𝜅𝜅′𝜏𝑠5

12
−
𝜅2𝜏𝑠4

6
−
𝜅𝜅′𝜏𝑠5

12
 

=
𝜅2𝜏4

2
[
1

2
−
1

3
] 

=
𝜅2𝜏𝑠4

12
 …………… (4) 

Sub (3) & (4) in (1), 

∴ (1) ⇒ 𝑑 =
𝜅2𝜏𝑠4

12

𝑠𝜅[1+
𝑠

𝜅
𝜅′]

1/2

 =
𝜏𝑠3𝜅

12[1+
𝑠

2𝜅
𝜅′]

 [omit high powers] 

 =
𝜅𝜏𝑠3

12
[1 +

𝑠

2𝜅
𝜅′]

−1

  

 =
𝜅𝜏𝑠3

12
[1 −

𝑠

2𝜅
𝜅′]

 =
𝜅𝜏𝑠3

12
−
𝜏𝑠4𝜅′𝜅

24𝜅

  

𝑑 ∼
𝑠3𝜅𝜏

12
( nearly )  

1.5. Curvature and torsion of a curve given as the intersection of two surfaces: 

Theorem 1: 

If a curve is given as the intersection of two surfaces, 𝑓(𝑥, 𝑦, 𝑧) = 0, 𝑔(𝑥, 𝑦, 𝑧) = 0 and if a 

set of parametric equations for the curve cannot readily obtained, then explain the method of 

the curvature and torsion of the curve.   

(or) 

Explain the method calculating the curvature and torsion of the curve. Given as the 

intersection of two surfaces. 

Solution: 

Given a curve is the intersection of two surfaces 𝑓(𝑥, 𝑦, 𝑧) = 0, 𝑔(𝑥, 𝑦, 𝑧) = 0. & also 

𝑔𝑖𝑣𝑒𝑛 a set of of parametric eqn's for the curve cannot readily to obtained. 

Let the curve of intersection be represented by the equation 𝑟‾ = 𝑟‾(𝑢) 

Let the two surfaces be given by, 
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𝑓(𝑟‾) = 0, 𝑔(𝑟‾) = 0  

Now, The unit tangent vector to the curve in orthogonal to the normal of both surfaces. Thus, 

if ∇𝑓̅ = [
𝜕𝑓̅

𝜕𝑥
,
𝜕𝑓̅

𝜕𝑦
,
𝜕𝑓̅

𝜕𝑧
]  

& ∇𝑔‾ = [
𝜕𝑔‾

𝜕𝑥
,
𝜕𝑔‾

𝜕𝑦
,
𝜕𝑔‾

𝜕𝑧
]  

∴ 𝑡‾ is parallel to ∇𝑓‾ × ∇𝑔‾ 

Let ∇𝑓‾ × ∇𝑔‾ = ℎ‾  

∴ 𝜆𝑡‾ = ∇𝑓‾ × ∇𝑔‾ = ℎ‾ 

 𝜆𝑟‾′ = ℎ‾ , for some 𝜆 ⟶ (𝐴)  

𝜆
𝑑𝑟‾

𝑑𝑠
= ℎ‾ ⟶ (1)  

then 𝜆𝑥′ = ℎ1, 𝜆𝑦
′ = ℎ2, 𝜆𝑧′‾ = ℎ3  

& 𝜆
𝑑

𝑑𝑠
= [ℎ1

𝜕

𝜕𝑥
+ ℎ2

𝜕

𝜕𝑦
+ ℎ3

𝜕

𝜕𝑧
] = Δ (say) ………..(2) 

[∵ 𝜆
𝑑r̅

𝑑𝑠
= ℎ‾ 

Substituting in (1), 

⇒ 𝜆 [
𝑑𝑟‾

𝑑𝑥
⋅
𝑑𝑥

𝑑𝑠
+
𝑑𝑟‾

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑠
+
𝑑𝑟‾

𝑑𝑧
⋅
𝑑𝑧

𝑑𝑠
] = (ℎ1, ℎ2, ℎ3). 

⇒ 𝜆 [
𝑑𝑟‾

𝑑𝑥
⋅ 𝑥′ +

𝑑𝑟‾

𝑑𝑦
⋅ 𝑦′ +

𝑑𝑟‾

𝑑𝑧
⋅ 𝑧′] = (ℎ1, ℎ2, ℎ3) 

Comparing the coefficients, 

we get, 𝜆𝑥′ = ℎ1 

𝜆𝑦′ = ℎ2  

𝜆𝑧′ = ℎ3  

 ∴ 𝜆
𝑑𝑟‾

𝑑𝑠
= [𝜆𝑥′

𝑑𝑟‾

𝑑𝑥
+ 𝜆𝑦′

𝑑𝑟‾

𝑑𝑦
+ 𝜆𝑧′

𝑑𝑟‾

𝑑𝑧
] 

⇒ 𝜆
𝑑𝑟‾

𝑑𝑠
= [𝜆𝑥′

𝑑

𝑑𝑥
+ 𝜆𝑦′

𝑑

𝑑𝑦
+ 𝜆𝑧′

𝑑

𝑑𝑧
] 𝑟‾  

⇒ 𝜆
𝑑

𝑑𝑠
= 𝜆𝑥′

𝑑

𝑑𝑥
+ 𝜆𝑦′

𝑑

𝑑𝑦
+ 𝜆𝑧′

𝑑

𝑑𝑧
= Δ (let) 

= ℎ1
𝑑

𝑑𝑥
+ ℎ2

𝑑

𝑑𝑦
+ ℎ3

𝑑

𝑑𝑧
= Δ]  

∴ (1) ⇒ 𝜆
𝑑𝑟̅

𝑑𝑠
= ℎ‾  
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 ⇒ Δ𝑟‾ = ℎ‾    ………… . . (3)

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝜆𝑡‾ = ℎ‾  ………… . (4)

 ⇒ 𝜆𝑡‾ ⋅ 𝜆𝑡‾ = ℎ‾ ⋅ ℎ‾

 ⇒ 𝜆2(𝑡‾ ⋅ 𝑡‾) = ℎ‾2

 ⇒ 𝜆2(1) = ℎ2 ⇒ 𝜆2 = ℎ‾2   ……… . . (5)

  

From (4) ⇒ 𝜆𝑡‾ = ℎ‾ → Δ(𝜆𝑡‾) = Δℎ‾  

⇒ 𝜆
𝑑

𝑑𝑠
(𝜆𝑡‾) = Δℎ‾ 

⇒ 𝜆[𝜆′𝑡̅ + 𝜆𝑡̅′] = Δℎ‾     [∵ (2)] 

 

 ⇒ 𝜆[𝜆𝑡̅ + λκn̅] = Δℎ̅    

⇒ λλ′t̅ + 𝜆2𝜅𝑛̅ = Δℎ̅  ………… . . (6)  

Taking cross product of ' 𝜆t ' with (6), 

∴ (5) ⇒ 

𝜆𝑡̅ × (λλ′t̅ + 𝜆2𝜅𝑛̅) = 𝜆𝑡 × Δℎ‾ 

0 + 𝜆3𝜅(𝑡̅ × 𝑛̅) = ℎ̅ × Δℎ̅ 

⇒ 𝜆3𝜅𝑏‾ = ℎ‾ + Δℎ̅ = 𝑘‾( say ) …………(7) 

Equation (7) gives curvature 𝑘̅ 

Taking dot product with itself in equation (7) on both sides, 

equation (7) on both sides, 

(𝜆3κ𝑏‾) ⋅ (𝜆3κ𝑏‾) = κ ⋅ κ 

𝜆6κ2(1) = κ2

⇒ κ2 =
𝑘‾ 2

𝜆6

  

∴ The curvature is κ =
k̅

𝜆3
      …………(8) 

Apply the operator ' Δ ' on equation (7), 

Δ(𝜆3κb̅) = Δ𝑘‾   

⇒ 𝜆
𝑑

𝑑𝑠
(𝜆3κ𝑏‾) = Δ𝑘‾ 

  

⇒ 𝜆[(𝜆3𝜅)′𝑏‾ + (λ3𝜅)𝑏̅′] = Δ𝑘‾   

⇒ 𝜆[𝜆3𝜅]′𝑏‾ + 𝜆4𝜅(−𝜏𝑛‾) = Δ𝑘‾ [𝑏‾ = −𝜏𝑛‾]  

⇒ [𝜆(𝜆3𝜅)′𝑏‾] − 𝜏𝜆4𝜅𝑛‾ = Δ𝑘‾ ………… . (9) 

Taking dot product of (6) with (9), 
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[𝜆𝜆′𝑡‾ + 𝜆2𝜅𝑛̅] ⋅ [[𝜆(𝜆3𝜅)′𝑏‾] − 𝜆2𝜅𝜏𝑛‾] = ℎ‾ ⋅ 𝑘‾  

0 − 0 + 0 − 𝜆6𝜅2𝜏(𝑛̅. 𝑛̅) = Δℎ‾ . Δ𝑘‾  

−𝜆6𝜅2𝜏(𝑛̅. 𝑛̅) = Δℎ‾. Δ𝑘‾ 

Substitute the values ' 𝜆 ' from (3) and 𝜅 from equation (10) 

 we get 𝜏. 

Example 1: 

Obtain the curvature and torsion of the curve of intersection of the two quadric surfaces 

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 1, 𝑎′𝑥2 + 𝑏′𝑦2 + 𝑐′𝑧2 = 1. 

Solution: 

Let 𝑓 =
1

2
(𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 − 1)   and   𝑔 =

1

2
(𝑎′𝑥2 + 𝑏′𝑦2 + 𝑐′𝑧2 − 1) 

So, ∇𝑓 = (
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
) = (𝑎𝑥, 𝑏𝑦, 𝑐𝑧) 

Similarly, ∇𝑔‾ = (𝑎′𝑥, 𝑏′𝑦, 𝑐′𝑧) 

∇𝑓‾ × ∇𝑔‾ = |
𝑖 𝑗 𝑘‾

𝑎𝑥 𝑏𝑦 𝑐𝑧

𝑎′𝑥 𝑏′𝑦 𝑐′𝑧

| 

= 𝑖(𝑏𝑐′ − 𝑐𝑏′)𝑦𝑧 +𝑗(𝑎′𝑐 − 𝑐′𝑎)𝑥𝑧 + 𝑘‾(𝑎𝑏′ − 𝑎′𝑏)𝑥𝑦.
 

= (𝐴𝑦𝑧, 𝐵𝑥𝑧, 𝐶𝑥𝑦) 

∇𝑓‾ × ∇𝑔‾ = 𝑥𝑦𝑧 (
𝐴

𝑥
,
𝐵

𝑦
,
𝐶

𝑧
) 

⇒ 𝜆1𝑟‾
′ = 𝑥𝑦𝑧 (

𝐴

𝑥
,
𝐵

𝑦
,
𝐶

𝑧
).          [∵ ∇𝑓‾ × ∇𝑔‾ = 𝜆𝑟‾ = 𝜆t̅] 

Since, 𝑟‾′ = (𝑥′, 𝑦′, 𝑧′) is parallel to ∇𝑓‾ × ∇𝑔‾ 

∴ we choose, 𝜆1 such that, 

𝜆1(𝑥
′, 𝑦′, 𝑧′) = 𝑥𝑦𝑧 (

𝐴

𝑥
,
𝐵

𝑦
,
𝐶

𝑧
) 

⇒
𝜆1
𝑥𝑦𝑧

(𝑥′, 𝑦′, 𝑧′) = (
𝐴

𝑥
,
𝐵

𝑦
,
𝐶

𝑧
) 

⇒ 𝜆(𝑥′, 𝑦′, 𝑧′) = (
𝐴

𝑥
,
𝐵

𝑦
,
𝑐

𝑧
)           [  ∵  put 

𝜆1
𝑥𝑦𝑧

= 𝜆] 

⇒ 𝜆𝑡‾ = (
𝐴

𝑥
,
𝐵

𝑦
,
𝐶

𝑧
)……. (1).     [∵  𝑡‾ = 𝑟‾′] 

operate Δ on (1) 

(1) ⇒ Δ𝜆𝑡‾ = Δ (
𝐴

𝑥
,
𝐵

𝑦
,
𝑐

𝑧
) 
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𝜆
𝑑

𝑑𝑠
[𝜆𝑡‾] = 𝜆

𝑑

𝑑𝑠
(
𝐴

𝑥
,
𝐵

𝑦
,
𝑐

𝑧
)       [∵ Δ = 𝜆

𝑑

𝑑𝑠
] 

𝜆[𝜆′𝑡‾ + 𝜆‾𝑡′] = [ℎ1
𝜕

𝜕𝑥
+ ℎ2

𝜕

𝜕𝑦
+ ℎ3

𝜕

𝜕𝑧
] (
𝐴

𝑥
,
𝐵

𝑦
,
𝑐

𝑧
)           [∵ 𝜆

𝑑

𝑑𝑠
= ℎ1

𝜕

𝜕𝑥
+ ℎ2

𝜕

𝜕𝑦
+ ℎ3

𝜕

𝜕𝑧
] 

𝜆′𝜆′𝑡‾ + 𝜆2κ𝑛‾ = [(
𝐴

𝑥

𝜕

𝜕𝑥
+
𝐵

𝑦

𝜕

𝜕𝑦
+
𝐶

𝑧

𝜕

𝜕𝑧
) ⋅ (

𝐴

𝑥
,
𝐵

𝑦
,
𝐶

𝑦
)] 

[∵ 𝜆𝑡‾ = ℎ‾ ⇒ (
𝐴

𝑥
,
𝐵

𝑦
,
𝑐

𝑧
) = (ℎ1, ℎ2, ℎ3)] 

⇒ ℎ1 =
𝐴

𝑥
, ℎ2 =

𝐵

𝑦
, ℎ3 =

𝑐

𝑧
 

= [[
𝐴

𝑥

𝜕

𝜕𝑥
(
𝐴

𝑥
) +

𝐵

𝑦

𝜕

𝜕𝑦
(
𝐴

𝑥
) +

𝑐

𝑧

𝜕

𝜕𝑧
(
𝐴

𝑥
)],[

𝐴

𝑥

𝜕

𝜕𝑥
(
𝐵

𝑦
) +

𝐵

𝑦

𝜕

𝜕𝑦
(
𝐵

𝑦
) +

𝐶

𝑧

𝜕

𝜕𝑧
(
𝐵

𝑦
)],[

𝐴

𝑥

𝜕

𝜕𝑥
(
𝑐

𝑧
) +

𝐵

𝑦

𝜕

𝜕𝑦
(
𝑐

𝑧
) +

𝑐

𝑧

𝜕

𝜕𝑧
(
𝑐

𝑧
)] 

= [(
𝐴

𝑥
(−

𝐴

𝑥2
) + 0 + 0) , (0 +

𝐵

𝑦
(−

𝐵

𝑦2
) + 0) , (0 + 0 +

𝐶

𝑧
(
−𝐶

𝑧2
) 

∴ 𝜆′𝜆′𝑡‾ + 𝜆2κ𝑛‾ = [−
𝐴2

𝑥3
, −
𝐵2

𝑦3
, −
𝐶2

𝑧3
]    ……… ..    (2) 

Find (1) cross (2); 

[𝜆𝑡‾] × [𝜆𝜆′𝑡‾ + 𝜆2κ𝑛‾] = |
𝑖 𝑗 𝑘⃗⃗
𝐴/𝑥 𝐵/𝑦 𝑐/𝑧

−𝐴2/𝑥3 −𝐵2/𝑦3 −𝑐2/z3
| 

𝜆𝑡̅ × 𝜆2𝑡̅ + 𝜆𝑡̅ × 𝜆2𝜅𝑛̅ = 𝑖 [−
𝐵𝐶2

𝑦𝑧3
+
𝐶𝐵2

𝑦3𝑧
] + 𝑗 [−

𝐴𝐶2

𝑥𝑧3
+
𝐶𝐴2

𝑥3𝑧
] + 𝑘⃗⃗ [−

𝐴𝐵2

𝑥𝑦3
+
𝐵𝐴2

𝑥3𝑦
] 

𝜆3κb̅ = 𝑖 [
−𝐵𝐶2𝑦2 + 𝐶𝐵2𝑧2

𝑦3𝑧3
] + 𝑗 [

𝑥2𝐴𝐶2 − 𝑧2𝐴2𝑐

𝑥3𝑧3
] + 𝑘‾ [

−𝐴𝐵2𝑥2 + 𝐵𝐴2𝑦2

𝑥3𝑦3
] 

𝜆3κb̅ =  [(
−𝐵𝐶2𝑦2+𝐶𝐵2𝑧2

𝑦3𝑧3
) , (

𝑥2𝐴𝑐2−𝑧2𝐴2𝑐

𝑥3𝑧3
) , (

−𝐴𝐵2𝑥2+𝐵𝐴2𝑦2

𝑥3𝑦3
)] …… . . (3) 

Let −𝐵𝐶2𝑦2 + 𝐶𝐵2𝑧2 = 𝐵𝐶[−𝐶𝑦2 + 𝐵𝑧2]. 

= 𝐵𝐶[(−𝑎𝑏′ + 𝑏𝑎′)𝑦2 − (𝑐𝑎′ + 𝑎𝑐′)𝑧2] 

= 𝐵𝐶[−𝑎𝑏′𝑦2 + 𝑏𝑎′𝑦2 − 𝑐𝑎′𝑧2 − 𝑎𝑐′𝑧2] 

= 𝐵𝐶[−𝑎(𝑏′𝑦2 + 𝑐′𝑧2) + 𝑎′(𝑏𝑦2 − 𝑐𝑧2)] 

= 𝐵𝐶(−𝑎(1 − 𝑎′𝑥2) + 𝑎𝑎′(1 − 𝑎𝑥2)) 

[∵ 𝑎′𝑥2 + 𝑏′𝑦2 + 𝑐′𝑧2 = 1] 

&𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 1] 
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= 𝐵𝐶(−𝑎 + 𝑎𝑎′𝑥2 + 𝑎′ − 𝑎𝑎′𝑥2) 

= 𝐵𝐶(𝑎′ − 𝑎) …………… (4) 

Similarly − 𝐴2𝑐𝑧2 + 𝐴𝑐2𝑥2 = 𝐴𝐶(𝑏′ − 𝑏) …………… (5) 

   𝐴𝐵2𝑥2 + 𝐴2𝐵𝑦 = 𝐴𝐵(𝑐′ − 𝑐) …………. (6) 

 (3) ⇒ 𝜆3κ𝑏‾ = [
𝐶𝐵(𝑎′ − 𝑎)

𝑦3𝑧3
,
𝐴𝐶(𝑏′ − 𝑏)

𝑥3𝑧3
,
𝐵𝐴(𝑐′ − 𝑐)

𝑥3𝑦3
] 

=
𝐴𝐵𝐶

𝑥3𝑦3𝑧3
[
(𝑎′ − 𝑎)𝑥3

𝐴
,
(𝑏′ − 𝑏)𝑦3

𝐵
,
(𝑐′ − 𝑐)𝑧3

𝑐
]………… . . . (7) 

Taking (.) product of ( 7 ) with itself, 

⇒ (𝜆3κ𝑏‾) ⋅ (𝜆3κ𝑏‾) =
𝐴2𝐵2𝑐2

𝑥6𝑦6𝑧6
∑
(𝑎′−𝑎)

2
𝑥6

𝐴2
. 

⇒ 𝜆6κ2(1) =
𝐴2𝐵2𝑐2

𝑥6𝑦6𝑧6
∑
(𝑎′−𝑎)

2
𝑥6

𝐴2
 ………. (8) 

Taking (.) product of (1) with itself, 

(1) ⇒ (𝜆𝑡‾) ⋅ (𝜆𝑡‾) = ∑
𝐴2

𝑥2
 

⇒ 𝜆2(1) = ∑
𝐴2

𝑥2
⇒ 𝜆6 = [∑ (

𝐴2

𝑥2
)]
3

… . (∗) sub in (8) 

∴ (8) ⇒ 

[∑ (
𝐴2

𝑥2
)]
3

κ2 =
𝐴2𝐵2𝑐2

𝑥6𝑦6𝑧6
∑
(𝑎′−𝑎)

2
𝑥6

𝐴2
. 

⇒ κ2 =
𝐴2𝐵2𝑐2

𝑥6𝑦6𝑧6

∑
(𝑎′−𝑎)

2

𝐴2
𝑥6

[∑(
𝐴2

𝑥2
)]
3  …….…..(9) 

(7) ⇒ 𝜆3κ𝑏‾ =
𝐴𝐵𝐶

𝑥3𝑦3𝑧3
[
(𝑎′−𝑎)𝑥3

𝐴
,
(𝑏′−𝑏)𝑦3

𝐵
,
(𝑐′−c)𝑧3

𝐶
] 

put 𝜆3κ
𝑥3𝑦3𝑧3

𝐴𝐵𝐶
= 𝜇 

⇒ 𝜇𝑏‾ = [
(𝑎′ − 𝑎)𝑥3

𝐴
,
(𝑏′ − 𝑏)𝑦3

𝐵
,
(𝑐′ − 𝑐)𝑧3

𝐶
] 

Taking Δ on both sides, [∵ Δ = 𝜆
𝑑

𝑑𝑠
] 

⇒ 𝜆
𝑑

𝑑𝑠
(𝜇𝑏‾) = 𝜆

𝑑

𝑑𝑠
[
(𝑎′ − 𝑎)𝑥3

𝐴
,
(𝑏′ − 𝑏)𝑦3

𝐵
,
(𝑐′ − 𝑐)z

𝑐
] 

⇒ 𝜆[𝜇′𝑏‾ + 𝜇 𝑏̅′] = [
𝐴

𝑥
⋅
𝜕

𝜕𝑥
+
𝐵

𝑦
⋅
𝜕

𝜕𝑦
+
𝑐

𝑧
⋅
𝜕

𝜕𝑧
].[
(𝑎′−𝑎)𝑥3

𝐴
,
(𝑏′−𝑏)𝑦3

𝐵
,
(𝑐′−𝑐)𝑧3

𝑐
] 
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𝜆[𝜇′𝑏‾ − 𝜇𝜏𝑛‾] = [(
𝐴

𝑥

𝜕

𝜕𝑥
+
𝐵

𝑦

𝜕

𝜕𝑦
+
𝑐

𝑧

𝜕

𝜕𝑧
] (
(𝑎′ − 𝑎)𝑥3

𝐴
]

[
𝐴

𝑥
⋅
𝜕

𝜕𝑥
+
𝐵

𝑦
⋅
𝜕

𝜕𝑦
+
𝑐

𝑧
⋅
𝜕

𝜕𝑧
] [
(𝑏′ − 𝑏)𝑦3

𝐵
] ,

[
𝐴

𝑥
⋅
𝜕

𝜕𝑥
+
𝐵

𝑦
⋅
𝜕

𝜕𝑦
+
𝑐

𝑧
⋅
𝜕

𝜕𝑧
] [
(𝑐′ − 𝑐)𝑧3

𝑐
]]

 = [[
𝐴

𝑥

3𝑥2(𝑎′ − 𝑎)

A
+ 0 + 0] , 

[0 +
3𝑦(𝑏′ − 𝑏)

𝐵
+ 0] , 

[0 + 0 +
3𝐶𝑧2(𝑐′ − 𝑐)

C
]]

 

𝜆𝜇′𝑏‾ − 𝜆𝜇𝜏𝑛‾ = [3𝑥(𝑎′ − 𝑎), 3𝑦(𝑏′ − 𝑏), 3𝑧(𝑐′ − 𝑐)] 

Taking ( ⋅ ) product of (2) with (10) 

[𝜆𝜆′𝑡‾ + 𝜆2κ𝑛‾] ⋅ [𝜆𝜇𝑏‾ − 𝜆𝜇𝜏𝑛‾] = [−
𝐴2

𝑥3
,
−𝐵2

𝑦3
,
−𝑐2

𝑧3
] [3𝑥(𝑎′ − 𝑎), 3𝑦(𝑏′ − 𝑏), 3𝑧(𝑐′ − 𝑐)] 

⇒ [0 − 0 + 0 − 𝜆3κ𝜇𝜏] = −∑
3𝐴2(𝑎′ − 𝑎)

𝑥2
 

(ie) 𝜆3𝜇κ𝜏 = ∑
3𝐴2(𝑎′−𝑎)

𝑥2
 

𝜏 =
3

𝜆3𝜇κ
∑  

𝐴2(𝑎′ − 𝑎)

𝑥2
[∵ 𝜇 =

𝜆3κ𝑥3𝑦3z3

𝐴𝐵𝐶
]

 =
3𝐴𝐵𝐶

λ6κκ 𝑥3𝑦3𝑧3
∑ 

𝐴2(𝑎′ − 𝑎)

𝑥2

 

=
3𝐴𝐵𝐶

𝜆6κ2𝑥3𝑦3𝑧3
∑
𝐴2(𝑎′ − 𝑎)

𝑥2
 

=
3𝐴𝐵𝐶

𝜆6𝑥3𝑦3𝑧3
⋅
𝑥6𝑦6𝑧6

𝐴2𝐵2𝐶2
[
∑(𝐴2/𝑥2)3

∑
(𝑎′ − 𝑎)2𝑥6

𝐴2

] ⋅ [∑
𝐴2(𝑎′ − 𝑎)

𝑥2
] 

=
3𝑥3𝑦3𝑧3

𝜆6𝐴𝐵𝐶

∑
𝐴2(𝑎′ − 𝑎)

𝑥2

∑
𝑥6(𝑎1 − 𝑎)2

𝐴2

[∑(𝐴3/𝑥2)3] 

[∵ (∗) ⇒ 𝜆6 = [Σ (
𝐴2

𝑥2
)]

3

] 
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𝜏 =
3𝑥3𝑦3𝑧3

𝐴𝐵𝐶

1

[Σ𝐴2/𝑥2]3
⋅
∑
𝐴2(𝑎1 − 𝑎)

𝑥2

∑[
𝑥6(𝑎′ − 𝑎)2

𝐴2
]

[Σ𝐴2/𝑥2]3 

∴ 𝜏 =
3𝑥3𝑦3𝑧3

𝐴𝐵𝐶

∑
𝐴2(𝑎′−𝑎)

𝑥2

∑[
𝑥6(𝑎′−𝑎)

2

𝐴2
]

  ……….. (11) 

∴ equation (9) is curvature and equation (11) is Torsion. 

1.6. Contact Between Curves and Surfaces: 

Let 𝛾 be a curve of sufficiently high class, given by the equation 𝑟̅ = {𝑓(𝑢), 𝑔(𝑢), ℎ(𝑢)} and 

let S be a surface given by 𝐹(𝑥, 𝑦, 𝑧) = 0. Where the function f has a sufficiently high class 

then ′𝛾′ and ‘s’ are said to be ‘n’ – point contact if 𝐹′(𝑢0) = 𝐹”(𝑢0) = ⋯ = 𝐹(𝑛−1)(𝑢0) = 0 

with 𝐹(𝑛)(𝑢0) ≠ 0. 

Proof: 

Given 𝛾 be a curve of sufficiently high class and equation of the curve, 

 𝑟̅ = {𝑓(𝑢), 𝑔(𝑢), ℎ(𝑢)}  …………… (1) 

Also given ‘s’ be a surface given by 𝐹(𝑥, 𝑦, 𝑧) = 0  …………… . (2) 

where the function F has a sufficiently high class then, the parameters of points of 𝛾.  

Which also lie on S are zero’s of the function 𝐹(𝑢) = 𝐹{𝑓(𝑢), 𝑔(𝑢), ℎ(𝑢)]. 

If 𝑢0 is such zero. Then the function F(u) may be expressed by Taylor’s theorem in the form,  

𝐹(𝑢) = 𝜀𝐹′(𝑢0) +
𝜀2

2!
𝐹′′(𝑢0) +⋯+

𝜀𝑛

𝑛!
𝐹(𝑛)(𝑢0) + 0(𝜀

𝑛+1)  ………… . . (3) as 𝑢 → 𝑢0 

Where 𝜀 = 𝑢 − 𝑢0  

If 𝐹′(𝑢0) ≠ 0, then ′𝑢0
′  is a simple zero of F(u) and in this case 𝛾 and in this case ′𝛾′ and ‘s’ 

have a simple intersection of 𝑟̅(𝑢0). 

If 𝐹′(𝑢0) = 0, but 𝐹′(𝑢0) ≠ 0, then F(u) is of the second order of 𝜀. 

′𝑢0
′  is a double zero of F(u) and 𝛾 and s have two point contact. 

If 𝐹′(𝑢0) = 𝐹
′′(𝑢0) = 0 but 𝐹′′′(𝑢0) ≠ 0, then ′𝑢0′ is a triple zero of F(u) and 𝛾 and s have 

three point contact.  

In general, if 𝐹′(𝑢0) = 𝐹
′′(𝑢0) = 𝐹

′′′(𝑢0) = ⋯ = 𝐹(𝑛−1)(𝑢0) = 0 but 𝐹(𝑛)(𝑢0) ≠ 0, then 𝛾 

nad s are said to have n-point contact of 𝑟̅(𝑢0). 

Example 1: 

Show that the osculating plane at P has in general three point contact with the curve at ‘p’ 

with ‘s’ as parameter measured from p(s=0). 
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Proof: 

We have 𝐹(𝑠) = [𝑟̅(𝑠) − 𝑟̅(0), 𝑟̅′(0), 𝑟̅′′(0)] 

Let 𝑟̅ = 𝑟̅(𝑠) be the equation of the curve with ‘s’ as a parameter. 

Then the equation of the osculating plane [𝑟̅(𝑠) − 𝑟̅(0), 𝑟̅′(0), 𝑟̅′′(0)] = 0. 

We assume that the point with 𝑢 = 0 as the parameter as the point of contact . 

∴ 𝐹(𝑠) = [𝑅 − 𝑟̅(0), 𝑟̅′(0), 𝑟̅′′(0)] 

Where 𝑟̅(𝑠) − 𝑟̅(0) = 𝑠𝑟̅′(0) +
𝑠2

2!
𝑟̅′′(0) +

𝑠3

3!
𝑟̅′′′(0) + 𝑜(𝑠3) 

∴ 𝐹(𝑠) = [𝑠𝑟̅′(0) +
𝑠2

2!
𝑟̅′′(0) +

𝑠3

3!
𝑟̅′′′(0) + 𝑜(𝑠3), 𝑟̅′(0), 𝑟̅′′(0)] 

= [𝑠𝑟̅′(0), 𝑟̅′(0), 𝑟̅′′(0)] + [
𝑠2

2!
𝑟̅′′(0), 𝑟̅′(0), 𝑟̅′′(0)] + [

𝑠3

3!
𝑟̅′′(0), 𝑟̅′(0), 𝑟̅′′(0)] + 𝑜(𝑠3) as 

𝑠 → 0 

= 0 + 0+ [
𝑠3

6
𝑟̅′′(0), 𝑟̅′(0), 𝑟̅′′(0)] + 𝑜(𝑠3) as 𝑠 → 0 

=
𝑠3

6
[𝑟̅′′(0), 𝑟̅′(0), 𝑟̅′′(0)] + 𝑜(𝑠3) as 𝑠 → 0 

[∵ 𝑟̅′(0) = 𝑡̅, 𝑟̅′′(0) = 𝑡̅′ = 𝜅𝑛̅ 

𝑟̅′′′(0) = 𝜅𝑛̅′ + 𝜅′𝑛  ̅

= 𝜅𝜏𝑏̅ − 𝜅2𝑡̅ + 𝜅′𝑛 ̅] 

=
𝑠3

6
[𝜅𝜏𝑏̅ − 𝜅2𝑡̅ + 𝜅′𝑛̅, 𝑡̅, 𝜅𝑛 ̅] + 𝑜(𝑠3) as 𝑠 → 0 

=
𝑠3

6
[[𝜅𝜏𝑏̅, 𝑡̅, 𝜅𝑛̅] − [𝜅2𝑡̅, 𝑡̅, 𝜅𝑛̅] + [𝜅′𝑛̅, 𝑡̅, 𝜅𝑛̅]] + 𝑜(𝑠3) as 𝑠 → 0 

=
𝑠3

6
[[𝜅𝜏𝑏̅, 𝑡̅, 𝜅𝑛̅] − 0 + 0] + 𝑜(𝑠3) as 𝑠 → 0 

=
𝑠3

6
𝜅2𝜏[𝑏̅, 𝑡̅, 𝑛̅] + 𝑜(𝑠3) as 𝑠 → 0 

=
𝑠3

6
𝜅2𝜏 ≠ 0 as 𝑠 → 0 

∵ 𝐹′(𝑠) = 0 = 𝐹′′(𝑠) as  𝑠 → 0 

But 𝐹′′′(𝑠) = −𝜅2𝜏 ≠ 0 

[ provided that 𝜅 and 𝜏 ≠ 0] 

The osculating plane has 3 point of contact with the curve. 

Hence proved 

Note: 

1. The theory of plane curves it is useful to consider the curvature of a curve and the radius of 

curvature at ‘p’. 
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2. The radius of circle which has three-point contact with the curve at ‘p’. 

3. The radius of curvature is the reciprocal of the curvature in plane curve. 

4. The theory of space curves the radius of curvature of 𝛾 at ‘p’ defined as the radius of that 

circle which has three point contact with the curve at ‘p’. 

Example 2: 

To derive the equation of osculating circle, radius of curvature and the cube of curvature. 

[Osculating circle:  

The osculating circle at a point ‘p’ on a curve at ‘p’. It evidently lies in the osculating plane at 

‘p’ and its center ′𝑐̅′ is at some distance ‘p’ along the principal normal at ‘p’. 

(𝑖. 𝑒)𝑐̅ − 𝑟̅ = 𝜌𝑛̅ 

The osculating circle is the section of the sphere (𝑐 − 𝑅)2 − 𝜌2 = 0.] 

Proof: 

We know that (by definition of osculating circle), 

Osculating circle is the circle which has three-point at ‘p’ with the curve. 

We know that, osculating plane has three-point at any point of the curve. 

∴osculating circle lies on the osculating plane.  

(i.e) Osculating circle can be regarded intersects of the osculating plane with the plane curve 

sphere  (𝑐 − 𝑅)2 = 𝑎2   ……… . (1) 

Where,  

𝑅̅ – The general point on the sphere 

𝑐̅ – The center of the sphere 

𝑎 – The radius of the sphere 

Let 𝑅̅ = 𝑟̅(𝑠)    ………… . (2) be the equation of the curve 𝑇0. 

Get the point of intersection of osculating circle and the curve. 

Substituting (2) in (1) 

∴ [𝑐̅ − 𝑟̅(𝑠)]2 = 𝑎2 

Now, the circle will have three-point contact if 𝐹′(𝑠) = 𝐹′′(𝑠) = 0 and 𝐹′′′(𝑠) ≠ 0. 

Where 𝐹(𝑠) = (𝑐̅ − 𝑟̅(𝑠))
2
− 𝑎2 

𝐹′(𝑠) = 2(𝑐̅ − 𝑟̅(𝑠))(−𝑟̅′(𝑠)) = 0 

(𝑐̅ − 𝑟̅(𝑠))(𝑟̅′(𝑠)) = 0 

(i.e) (𝑐̅ − 𝑟̅). 𝑡̅ = 0     ………… (3) 

⇒(3) implies  𝑐̅ − 𝑟̅ lies on the normal plane  



 

42 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

But 𝑐̅ − 𝑟̅ lies on the osculating plane  

∴ 𝑐̅ − 𝑟̅ lies along the normal 𝑛̅ 

∴  𝑐̅ − 𝑟̅ = 𝜇𝑛̅ 

Substituting this in (4), 

𝜇𝑛̅. 𝑛̅ =
1

𝜅
 

𝜇 =
1

𝜅
 ……… . . (5) 

(5) implies 𝑐̅ − 𝑟̅ =
1

𝜅
𝑛̅ 

(i.e) 𝑐̅ − 𝑟̅ = 𝜌𝑛̅    ………… . (6) [∵ 𝜌 =
1

𝜅
] 

Equation (6) is the equation of osculating circle 𝑐̅ in the cube of osculating circle, 𝜌 is the 

radius of osculating circle and 𝑐̅ = 𝑟̅ + 𝜌𝑛̅ gives the cube of curvature. 

Remark: 

Let 𝑐̅ = (𝛼, 𝛽, 𝛾)  

𝑛̅ = (𝑙,𝑚, 𝑛) and 𝑛̅ = (𝑥, 𝑦, 𝑧) 

∴ From equation (5) we get,  

−𝑥 + 𝛼

𝑙
=
(−𝑦 + 𝛽)

𝑚
=
−𝑧 + 𝛾

𝑛
= 𝜌 

∴ 𝛼 = 𝑥 + 𝜌𝑙, 𝛽 = 𝑦 + 𝜌𝑚, 𝛾 = 𝑧 + 𝜌𝑛 in the coordinates of the cube of curvature at (x, y,z). 

Example 3: 

Fins the equation of the plane which have three-point contact at the origin with the curve  

𝑟̅ = 𝑟̅(𝑡4 − 1, 𝑡3 − 1, 𝑡2 − 1)  ……… . . (1)  

Proof: 

Let the equation of the plane be, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0  …………(2) 

Let 𝐹(𝑡) = 𝑎(𝑡4 − 1) + 𝑏(𝑡3 − 1) + 𝑐(𝑡2 − 1) 

Since (1) have three-point contact with (2) at the origin  

∴ 𝐹′(𝑡) = 𝐹′′(𝑡) = 0 at 𝑡 = 0 and 𝐹′′′(𝑡) ≠ 0 at 𝑡 = 0 

∴ 𝐹′(𝑡) = 4𝑎𝑡3 + 3𝑏𝑡2 + 2𝑐𝑡 and 

𝐹′′(𝑡) = 12𝑎𝑡2 + 6𝑏𝑡 + 2𝑐. 

At the origin 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 

∴ 𝑡 = 1, 

𝐹′(𝑡) = 𝐹′′(𝑡) = 0. 

 ∴ 4𝑎 + 3𝑏 + 2𝑐 = 0 
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12𝑎 + 6𝑏 + 2𝑐 = 0 

∴ Equation of the required plane is 3𝑥 + 8𝑦 + 6𝑧 = 0. 

Osculating sphere (or) Sphere of curvature: 

The osculating sphere which has four-point contact with the curve at p. 

If 𝑐 ̅ is its center and 𝑅̅ is radius then the equation of the sphere is (𝑐̅ − 𝑅̅)2 = 𝑅2. 

Remark: 

(𝑐̅ − 𝑟̅). 𝜅𝑛̅ = 1 from which 𝜌 = 𝜅−1 

The radius of the osculating circle is |𝜌| = |𝜅−1| 

𝜌 is called the radius of curvature of the curve at p. Note that ′𝜌′ may be negative. 

The center of curvature is the center of the osculating circle and its position vector is given by  

𝑐̅ = 𝑟̅ + 𝜌𝑛̅. 

𝜎 = 𝜏−1 is called the radius of Torsion. 

Example 4: 

Derive the equation of osculating sphere and its center and radius. 

Solution: 

Let 𝑐̅ = the center of osculating sphere 

And 𝑅̅ = the position vector of a general point of osculating sphere  

𝑅 = the radius of osculating sphere. 

Then its equation is (𝑐̅ − 𝑅̅)2 = 𝑅2   ………… . (1) 

Then let the equation of the curve be 𝑅̅ = 𝑟̅(𝑠)   ………… . (2) 

To get the point of contact of (1) with (2) 

∴ 𝐹(𝑠) = (𝑐̅ − 𝑟̅)2 − 𝑅2 = 0 ……………(3) 

Condition for the point to be four-point contact is  

𝐹′(𝑠) = 𝐹′′(𝑠) = 𝐹′′′(𝑠) = 0 and 𝐹(𝑖𝑣)(𝑠) ≠ 0. 

Differentiate (3) with respect to ‘s’ we get,  

𝐹′(𝑠) = 2(𝑐̅ − 𝑟̅)(−𝑟̅′) = 0 

(𝑐̅ − 𝑟̅). 𝑡̅ = 0  ……………(4) 

𝐹′′(𝑠) = 2[−𝑡̅. 𝑡̅ + (𝑐̅ − 𝑟̅). 𝜅𝑛̅] = 0 

[−1 + (𝑐̅ − 𝑟̅). 𝜅𝑛̅](2) = 0 

[−1 + (𝑐̅ − 𝑟̅)𝜅𝑛̅] = 0 

(𝑐̅ − 𝑟̅)𝜅𝑛̅ = 1 

(𝑐̅ − 𝑟̅). 𝑛̅ =
1

𝜅
= 𝜌 
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(𝑐̅ − 𝑟̅). 𝑛̅ = 𝜌  ……………(5) 

And 𝐹′′′(𝑠) = 0 + [(−𝑡̅)(𝜅𝑛̅) + (𝑐̅ − 𝑟̅)𝜅′𝑛̅ + (𝑐̅ − 𝑟̅)𝜅(𝜏𝑏̅ − 𝜅𝑡̅)] = 0 

[∴ 𝑛̅′ = 𝜏𝑏̅ − 𝜅𝑡̅] 

𝜅′(𝑐̅ − 𝑟̅). 𝑛̅ + 𝜅[𝜏(𝑐̅ − 𝑟̅)𝑏̅ − 𝜅(𝑐̅ − 𝑟̅)𝑡̅] = 0  

𝜅′(𝑐̅ − 𝑟̅). 𝑛̅ + 𝜅𝜏(𝑐̅ − 𝑟̅). 𝑏̅ − 0 = 0 

[∵ (4)] 

(i.e) 𝜅′(𝑐̅ − 𝑟̅). 𝑛̅ + 𝜅𝜏(𝑐̅ − 𝑟̅). 𝑏̅ = 0   ………… . (6) 

(−𝑟̅)𝑏̅ =
𝜅′(𝑐̅ − 𝑟̅)𝑛̅

𝜅𝜏
 

Equation (4) show that (𝑐̅ − 𝑟̅) in perpendicular to 𝑡 ̅ 

It lies on the normal plane. 

𝑐̅ − 𝑟̅ can be expressed as 

𝑐̅ − 𝑟̅ = 𝜆𝑏̅ + 𝜇𝑛̅   ……………(7) 

Taking dot product of (7) with 𝑛̅,  

(𝑐̅ − 𝑟̅). 𝑛̅ = (𝜆𝑏̅ + 𝜇𝑛̅). 𝑛̅ 

𝜌 = 𝜇𝑛̅. 𝑛̅ [∵ (5)] 

𝜌 = 𝜇 

Taking dot product of (7) with 𝑏̅, 

(𝑐̅ − 𝑟̅). 𝑏̅ = (𝜆𝑏̅ + 𝜇𝑛̅). 𝑏̅  

(𝑐̅−𝑟̅).(−𝜅′.𝑛̅)

𝜅𝜏
= 𝜆𝑏̅. 𝑏̅  [∵ 𝑛̅. 𝑏̅ = 0] 

−𝜅′(𝑐̅−𝑟̅)𝑛̅

𝜅𝜏
= 𝜆 [∴ (6)] 

−𝜅′

𝜅𝜏
𝜌 = 𝜆 [∵ (5)]  

Substituting 𝜆 and 𝜇 in (7) we get, 

𝑐‾ − 𝑟‾ =
−𝜅′𝜌

𝜅𝜏
𝑏‾ + 𝜌𝑛‾ [∵  𝜌 =

1

𝜅
]

 = 𝜌𝑛‾ −
𝜅′

𝜅𝜏
𝜌𝑏‾ 

𝑐‾ − 𝑟‾ = 𝜌𝑛‾ + (
−𝜅′

𝜅2
)
1

𝜏
b̅

 = 𝜌𝑛‾ + 𝜎𝑝′𝑏‾   

  

 (ie) 𝑐‾ = 𝑟‾ + 𝜌𝑛‾ + 𝜎𝜌′𝑏‾   

This gives the center of osculating plane (sphere) It is called as center of Spherical Curvature 
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(𝑐‾ − 𝑟‾)2 = (𝑐‾ − 𝑟‾) ⋅ (𝑐‾ − 𝑟‾)

= (ρn̅ + 𝜎𝜌′𝑏‾) ⋅ (ρn̅ + 𝜎𝜌′𝑏‾)

= 𝜌2 + (𝜎𝜌′)2 [∵ (𝑐‾ − 𝑟‾)2 = 𝑅2]
  

Radius of the osculating sphere in 

It is radius of Spherical curvature. 

If 𝜅 is constant, then 𝜌′ = 0 

⇒ 𝑐‾ − 𝑟‾ = 𝜌[∵ 𝑐‾ − 𝑟‾ = 𝑅]  

Note: 

1. Q: Prove that the osculating sphere at a point on a curve & derive the formula for its 

center and radius (or) 

Define osculating sphere and obtain expression for center of curvature and radius of 

curvature. 

(or) 

Prove that the center of curvature of the pt. 𝛾‾ of gen. curve in the pt. 𝑟‾ + ρn̅ + 𝜌′𝑟‾𝑏‾ . 

2.  Center of spherical curvature = 𝑐‾ − 𝑟‾ = 𝜌𝑛‾ + 𝜎𝑝′𝑏‾  

3. position vector 𝑐‾ = 𝑟‾ + 𝑝𝑛‾ + 𝜎ρ′b̅  

4. Radius of Spherical curvature = 𝑅 = (𝜌2 + 𝜎2𝑝′2)
1

2 

Locus of the center of Spherical curvature: 

As the point 𝑝 traces out a curve 𝑐, the corresponding center of spherical curvature traces out 

another curve 𝑐1, whose curvature and torsion are simply related to the curvature and torsion 

of the original curve 𝑐. 

Example 1: 

To obtain the focus of center of spherical curvature. (OR) Relation of 𝑐 & 𝐶 bet'n the 

curvature & Torsion. 

Proof: 

Let 𝑐 be the given curve and 𝑐1 be the locus of center of the osculating sphere. 

Let the suffice unity denote the corresponding quantities for the locus 𝑐. 

Thus 𝑟̅1 denote the position vector of a general point on 𝑐1. 

(i.e) 𝑟‾1, is the position vector of center of spherical curvature 

So, 𝑟‾1 = 𝑟‾ + ρn̅ + 𝜌
′𝜎𝑏‾  …………(1)[∵ 𝜌𝜅 = 1 ⇒ 𝜌 =

1

𝜅
 ,𝜏 =

1

𝜎
] 

Differentiate (1) with respect to 's' 
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𝑑𝑟‾1

𝑑s
= 𝑟̅′ + 𝜌𝑛̅′ + 𝜌′𝑛̅ + 𝜎′𝜌′𝑏̅ + 𝜌′′𝜎𝑏̅ + 𝜌′𝜎𝑏̅′  

𝑑𝑟‾1

𝑑𝑠1
⋅
𝑑𝑠1

𝑑𝑠
= 𝑡‾ + 𝜌(𝜏𝑏‾ − 𝜅𝑡̅) + 𝜌′𝑛‾ + (𝜌′𝜎)′𝑏‾ + 𝜌′𝜎(−τn̅)  

𝑑𝑠1

𝑑𝑠
𝑡‾1 = 𝑡‾ + 𝜌𝜏𝑏‾ − 𝜌𝜅𝑡‾ + 𝜌

′𝑛‾ + (𝜌′𝜎)′𝑏‾ − 𝜌′𝜎𝜏𝑛‾   

= 𝑡‾ + 𝜌𝜏𝑏‾ − (1)𝑡‾ + 𝜌′𝑏‾ + (𝜌′𝜎)′𝑏‾ − 𝜌′𝜎
1

𝜎
𝑛‾   

= 𝑡‾ + 𝜌𝜏𝑏‾ − 𝑡‾ + 𝜌′𝑛‾ + (𝜌′𝜎)′𝑏‾ − 𝜌′𝑛̅  

= 𝜌𝜏𝑏‾ + 𝜌′′𝜎𝑏‾ + 𝜌′𝜎′𝑏‾   

𝑠1
′𝑡1̅ = [𝜌𝜏 + ρ

′′σ + ρ′σ′] 𝑏‾  

Squaring (2) on both sides, 

(𝑠1
′ , 𝑡‾1)

2 = [[𝜌𝜏 + ρ′′σ + ρ′σ′]𝑏̅]
2

  

⇒ (𝑠1
′)2 = [𝜌𝜏 + 𝜌′′𝜎 + 𝜌′𝜎′]……… . . (3)

 

Equation (2) shows that 𝑡‾1 is parallel to 𝑏‾ .  

∴ Let 𝑡1 = ρb̅--------- (4) where ρ = ±1. 

Differentiate (4) with respect to ' 𝑠 '. 

𝑑𝑡 ̅1

𝑑𝑠
= 𝜌𝑏‾

⇒
𝑑𝑡̅1

𝑑𝑠1
⋅
𝑑𝑠1

𝑑𝑠
= 𝜌(−𝜏𝑛‾)

⇒(𝜅1𝑛‾1) ⋅ 𝑠1
′ = −𝜌𝜏𝑛‾    …………(5)

  

Equation (5) shows that 𝑛‾1 is parallel to 𝑛‾  

∴ Let 𝑛‾1 = 𝜌1𝑛‾ ……… . . (6) where 𝜌1 = ±1 

Substituting (6) in (5), 

 (5) ⇒ 𝜅1𝜌1𝑠1
′𝑛‾ = −𝜌𝜏𝑛‾.

 ⇒ 𝜅1𝜌1𝑠1
′ = −𝜌𝜏

 ⇒  𝑠1
′ =

−𝜌𝜏

𝜅1𝜌1
 …………(7)

 We  know  that,  𝑏̅1 = t̅1 × 𝑛‾1 [∵ 𝑏‾ = 𝑡‾ × 𝑛‾]

 = ρb̅ × 𝜌1𝑛‾ [ by (4) & (6) ]

 = 𝜌𝜌1(𝑏‾ × 𝑛‾) [∵ 𝑛‾ × 𝑏‾ = 𝐸‾

 (i. e)b̅1 = −𝜌𝜌1𝑡̅   ………… . (8)[∵ 𝑏‾ × 𝑛‾ = −𝑡‾]

   

∴ 𝑏‾1 is parallel to 𝑡‾ 

∴ Differentiate (8) with respect to 's', 

𝑑

𝑑𝑠
(𝑏‾1) = −𝜌𝜌1𝑡‾

′  

𝑑

𝑑𝑠
(𝑏‾1)

𝑑𝑠1

𝑑𝑠
= −𝜌𝜌1(𝜅𝑛‾)  
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𝑏̅1
′𝑠1
′ = −𝜌𝜌1(𝜅𝑛‾)  

−𝜏1𝑛‾1𝑠1
′ = −𝜌𝜌1𝜅𝑛̅  

𝜏1𝜌1𝑛‾𝑠1
′ = 𝜌𝜌1𝜅𝑛‾   

⇒ 𝜏1𝑠1
′ = 𝜌𝜅  

⇒ 𝑠1
′ =

𝜌𝜅

𝜏1
  

From ( 7 ) & (9) we get, 

 −
𝜌𝜏

𝑘1𝜌1
=

𝜌𝜅

𝜏1

 ⇒
−𝜏

𝑘1𝜌1
=

𝜅

𝜏1

 ⇒ 𝜏𝜏1 = −𝑘𝑘1𝜌1

  

if 𝜌1 = −1,  

(i.e) The product of the torsions } = {
 The product of 

 the curvature it 𝜌1 = −1  at corresponding points 
 

then 
𝜅

𝜏1
=

𝜏

𝜅1
 

(ie) 𝜅𝜅1 = 𝜏𝜏1 which is required result  

when 𝜌1 = −1 & 𝜌 = −1 

𝑑𝑠1
𝑑𝑠

= 𝑠1
′ =

𝜅

𝜏1
=
𝜏

𝜅1
 ………… . . (∗) 

Note: 

If 𝜌𝜎−1 + 𝜎′𝜌′ + 𝜎𝜌′′ = 0, then then corresponding point on 𝜌1 in a singular point. 

Theorem 1: 

If the curvature 𝜅 of 𝑐 is constant, then the curvature 𝜅1 of 𝑐𝑖 is also constant. 

Proof: 

Since 𝜅 is constant. 

⇒ 𝜌 =
1

𝜅
 is also constant. 

∴  𝜌′ = 𝜌′′ = 0  

∴ From equation (3) we have, 
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(
𝑑𝑠1

𝑑𝑠
)
2

 = [𝜌𝜏 + (𝜌′𝜎)′]2

 = [𝜌𝜏 + 0]2

 = 𝜌2𝜏2

𝑑𝑠1

𝑑𝑠
 = 𝜌𝜏

 =
𝜏

𝑘
 [∵ 𝜌 =

1

𝜅
]

⇒
𝑑𝑠1

𝑑𝑠
 =

𝜏

𝑘

  

(But from (*)) 

Thus 
𝜏

𝜅
=

𝜏

𝜅1
⇒ 𝜅 = 𝜅1 

(i.e) 𝜅1 is also constant. 

Theorem 2: 

The radius of curvature 𝜌1 & radius of torsion 𝜎1 are given by. 

𝜌1 = 𝜌 + 𝜎
𝑑

𝑑𝑠
(𝜎𝑝′) and 𝜎1 =

𝜌2

𝜎
+ 𝜌

𝑑

𝑑𝑠
(𝜎𝜌′)  

Proof: 

From equation (*) 

𝑑𝑠1

𝑑𝑠
=

𝜏

𝜅1

∴
1

𝜅1
=

1

𝜏
⋅
𝑑s1

𝑑𝑠
  (using eqn (3) ) 

  

 = 𝜎 [
𝜌

𝜎
+ (𝜎𝜌′)′]

𝜌1 = 𝜌 + 𝜎
𝑑

𝑑𝑠
(𝜎𝜌′)

  

Similarly using (*), 

𝜎1 =
𝜌2

𝜎
+ 𝜌

𝑑

𝑑𝑠
(𝜎𝜌′) 

Example 2: 

Prove that the radius of curvature of the locus of the center of curvature of a curve is given 

by, 

[{
𝜌2𝜎

𝑅3
𝑑

𝑑𝑠
(
𝜎𝜌′

𝜌
) −

1

𝑅
}
2

+
𝜌′𝜎4

𝜌2𝑅4
]
−1/2

  

where 𝜌, 𝜎, 𝑅 have the usual meaning. 

Proof: 

Let the suffix unity be used to distinguish quantities belonging to the locus of the center of 

curvature of the given curve. 

∴ If 𝑟‾1 denotes the position vector, the center of curvature then, 
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 𝑟‾1 = 𝑟‾ + 𝜌𝑛‾    ………… (1) 

Differentiate with respect to 's', we get, 

𝑑𝑟‾1

𝑑𝑠1
⋅
𝑑𝑠1

𝑑𝑠
 = 𝑟‾′ + 𝜌′𝑛‾ + 𝜌𝑛̅′

𝑑𝑠1

𝑑𝑠
𝐸1 = 𝑡‾ + 𝜌

′𝑛‾ + 𝜌(𝜏𝑏‾ − 𝜅𝑡‾)

 = 𝑡‾ + 𝜌′𝑛‾ + 𝜌𝜏𝑏‾ − 𝜌𝜅𝑡‾ [∵ 𝜌 =
1

𝜅
]

 = 𝑡‾ + 𝜌′𝑛‾ +
𝜌

𝜎
𝑏‾ − 𝑡‾  [𝜏 =

1

𝜎
]

  

 = 𝜌′𝑛‾ +
𝜌

𝜎
𝑏‾

 ⇒
𝑑𝑠1

𝑑𝑠
𝑡1̅ =

𝜌

𝜎
[
𝜎

𝜌
𝜌′𝑛̅ + 𝑏̅]

 ⇒
𝜎

𝜌
⋅
𝑑𝑠1

𝑑𝑠
𝑡1̅ =

𝜎

𝜌
𝜌′𝑛‾ + 𝑏‾  …………(2)

  

Squaring (2) we get, 

⇒ [
𝜎

𝜌

𝑑𝑠1

𝑑𝑠
𝑡1̅]

2

= [
𝜎

𝜌
𝜌′𝑛‾ + 𝑏]

2

  

⇒
𝜎2

𝜌2
(
𝑑𝑠1

𝑑𝑠
)
2

(1) =
𝜎2

𝜌2
𝜌′2(1) + (1) + 2

𝜎𝜌′

𝜌
⋅ 𝑛̃ ⋅ b̅  

=
𝜎2

𝜌2
𝜌2 + 1 [∵ 𝑛‾2 = 𝑛‾ ⋅ 𝑛‾ = 1 𝑎𝑛𝑑 𝑛‾ ⋅ 𝑏‾ = 0, 𝑡‾2 = 1]  

(i.e) 
𝜎2

𝜌2
(
𝑑𝑠1

𝑑𝑠
)
2

=
𝜎2𝜌′2+𝜌2

𝜌2
  

 ⇒ (
𝑑𝑠1

𝑑𝑠
)
2

=
1

𝜎2
(𝜎2𝜌′2 + 𝜌2) =

𝑅2

𝜎2
[∵ 𝑅2 = 𝜎2𝜌′2 + 𝜌2]  

Where 𝑅 = The radius of the osculating sphere. 

∴
𝑑𝑠1

𝑑𝑠
=
𝑅

𝜎
……………(3)  

Differentiate (2) with respect to 's’ provides, 

𝐿 ⋅ 𝐻 ⋅ 𝑠 =
𝜎

𝜌
⋅
𝑑𝑠1

𝑑𝑠
⋅
𝑑𝑡1

𝑑s
+

𝑑

𝑑𝑠
[
𝜎

𝜌
⋅
𝑑𝑠1

𝑑𝑠
] 𝑡1̅

 =
𝜎

𝜌
⋅
𝑑𝑠1

𝑑𝑠
⋅
𝑑𝑡1

𝑑𝑠1
⋅
𝑑𝑠1

𝑑𝑠
+

𝑑

𝑑𝑠
[
𝜎

𝜌

𝑑𝑠1

𝑑𝑠
] 𝑡‾1

 =
𝜎

𝜌
[
𝑑𝑠1

𝑑𝑠
]
2 𝑑𝑡1

𝑑𝑠1
+

𝑑

𝑑𝑠
[
𝜎

𝜌
⋅
𝑑𝑠1

𝑑𝑠
] 𝑡1̅
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 =
𝜎

𝜌
[
𝑑𝑠1

𝑑𝑠
]
2

κ1𝑛‾1 +
𝑑

𝑑𝑠
[
𝜎

𝜌

𝑑𝑠1

𝑑𝑠
] 𝑡1̅………… . (4)

𝑅 ⋅ 𝐻 ⋅ 𝑆 =
𝜎

𝜌
𝜌′

𝑑𝑛‾

𝑑𝑠
+

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] 𝑛̅ + 𝑏‾ ′

 =
𝜎

𝜌
𝜌′[𝜏𝑏‾ − 𝜅𝑡] +

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] 𝑛̅ − τn̅ 

 =
𝜌′𝜎

𝜌
τ𝑏‾ −

𝜎𝜌′

𝜌
𝜅𝑡̅ +

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] 𝑛‾ − 𝜏𝑛‾

 =
𝜌′𝜎

𝜌
𝜏𝑏 −

𝜎𝜌′

𝜌
𝜅𝑡 + [

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] − 𝜏] 𝑛‾      …………… . . (5)

 ∴
𝜎

𝜌
[
𝑑𝑠1

𝑑𝑠
]
2

𝜅1𝑛‾1 +
𝑑

𝑑𝑠
[
𝜎

𝜌

𝑑𝑠1

𝑑𝑠
] 𝑡1̅ = −

𝜎𝜌′

𝜌
𝜅𝑡 + [

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] − 𝜏] 𝑛‾ +

𝜌′𝜎

𝜌
𝜏𝑏  ………… . . (6)

  

∴ The vector (×) product of (2) and (6), 

𝜎

𝜌

𝑑𝑠1

𝑑𝑠
𝑡 1̅ × [

𝜎

𝜌
[
𝑑𝑠1

𝑑𝑠
]
2

𝜅1𝑛‾1 +
𝑑

𝑑𝑠
[
𝜎

𝜌

𝑑𝑠1

𝑑𝑠
] 𝑡1̅]

 = [
𝜎

𝜌
𝜌′𝑛‾ + 𝑏‾] × [−

𝜎𝜌′

𝜌
𝜅𝑡 + [

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] − 𝜏] 𝑛‾ +

𝜌′𝜎

𝜌
𝜏𝑏]

𝜎2

𝜌2
(
𝑑𝑠1

𝑑𝑠
)
3

𝜅1(𝑏̅) + 0 =
−𝜎2

𝜌2
𝜌′2𝜅(−𝑏‾) + 𝜎 +

𝜎2

𝜌2
𝜌′2𝜏𝑡̅ −

𝜎𝜌′

𝜌
𝜅(𝑛‾) − [

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] − 𝜏] 𝑡‾ +0

 

 = +
𝜎2

𝜌2
𝜌′2𝜅𝑏‾ +

𝜎2

𝜌2
𝜌′2𝜏𝑡̅ −

𝜎𝜌′

𝜌
𝜅𝑛̅ − [

𝑑𝑠

𝑑𝑠
[
𝜎𝜌′

𝜌
] − τ] 𝑡̅

 

  

𝜎2

𝜌2
(
𝑑𝑠1

𝑑𝑠
)
3

𝜅1𝑏‾ =
𝜎2

𝜌2
𝜌′2𝜅𝑏‾ −

𝜎𝜌′

𝜌
𝜅𝑛‾ + [

𝜎2𝜌′2

𝜌2
𝜏 −  

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] + 𝜏] 𝑡‾ 

 
  

Squaring on both sides,   

𝜎4
𝜌4
(
𝑑𝑠1
𝑑𝑠
)
6

𝜅1
2 =

𝜎4

𝜌4
𝜌′4𝜅2 + 𝜎2

𝜌′2

𝜌2
𝜅2 + [

𝜎2𝜌′2

𝜌2
𝜏 −

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] + 𝜏] 

𝑅6

𝜎2𝜌4𝜌1
2 =

𝜎4

𝜌4
𝜌4𝜅2 +

𝜎2𝜌′2

𝜌2
𝜅2 + [

𝜎2𝜌′2

𝜌2
−
1

𝜎
−
𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] +

1

𝜎
]

2

 

=
𝜎4

𝜌4
𝜌′4 ⋅ 𝜅2 +

𝜎2𝜌′2

𝜌2
𝜅2 + [

𝜎2𝜌2 + 𝜌2

𝜎𝜌2
−
𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
]]

2

 

=
𝜌2𝜎4𝜌′4𝜅2 + 𝜌4𝜎2𝜌′2𝜅2

𝜌6
+ [

𝑑

𝑑𝑠
[
𝜎𝜌1

𝜌
] − [

𝜎2𝜌′2 + 𝜌2

𝜌2
]] 

=
𝜌2𝜎2𝜌′2𝜅2[𝜎2𝜌′2 + 𝜌2]

𝜌4
+ [

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] − [

𝜎2𝜌′2 + 𝜌2

𝜎𝜌2
] 

𝑅6

𝜎2𝜌4𝜌1
2 =

𝜎2𝜌′2[𝜎2𝜌′2 + 𝜌2]

𝜌6
+ [

𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
] − [

𝜎2𝜌2 + 𝜌2

𝜎𝜌2
]]

2
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1

𝜌1
2 =

𝜌4𝜎2

𝑅6
[
𝜎2𝑝2[𝜎2𝑝2+𝜌2]

ρ2
] +

𝜌4𝜎2

𝑅6
[
𝑑

𝑑𝑠
[
𝜎𝑝′

𝜌
] −

𝑅2

𝜎𝑝2
]
2

 [∵ 𝑅2 = 𝜎2𝜌′2 + 𝜌2] 

=
𝜎4𝜌′

2

𝜌2𝑅6
[𝑅2] +

𝜌4𝜎2

𝑅6
[
𝑑

𝑑𝑠
[
𝜎𝑝′

𝜌
] −

𝑅2

𝜎𝑝2
]

2

 

1

𝜌1
2 =

𝜎4𝜌2

𝜌2𝑅4
+ [
𝜌2𝜎

𝑅3
[
𝑑

𝑑𝑠
[
𝜎ρ

𝜌2
]] −

𝜌2𝜎

𝑅3
⋅
𝑅2

𝜎𝑝2
]

2

 

1

𝜌1
2 =

𝜎4𝑝′2

𝜌2𝑅4
+ [

𝜌2𝜎

𝑅3
[
𝑑

𝑑𝑠
[
𝜎𝜌′

𝜌
]] −

1

𝑅
]

2

∴ 𝜌1 =
𝜎4𝐶′2

𝑅2𝑅4
+ [

𝜌2𝜎

𝑅3
[
𝑑

𝑑𝑠
[
𝜎𝜌′

𝑃
]] −

1

𝑅
]

−1/2  

Example 3: 

If the radius of spherical curvature is constant, prove that the curve either lies on a sphere or 

has constant curvature. 

Proof: 

We know that Radius of the spherical curvature is given by, 

𝑅2 = 𝜌2 + (𝜌′𝜎)2    ………… (1) 

Given 𝑅 is constant ⇒
𝑑𝑅

𝑑𝑠
= 0. 

Differentiate (1) with respect to '𝑠', 

2𝑅 ⋅
𝑑𝑅

𝑑𝑠
= 2𝜌𝜌′ + 2(𝜌′𝜎)(𝜌′𝜎)′

0 = 2𝜌′ [𝜌 + 𝜎
𝑑

𝑑𝑠
(𝜌′𝜎)]

  

⇒ either 2𝜌′ = 0 (or) 𝜌+𝜎
𝑑

𝑑𝑠
(𝜌′𝜎) = 0. 

If 𝜌′ = 0 ⇒ 𝜌 = constant. 

 ⇒
1

𝑘
=  constant 

  

(i.e) the curve has a constant curvature. 

If 𝜌 + 𝜎
𝑑

𝑑𝑠
[𝜌′𝜎] = 0. 

then 𝜎 [
𝜌

𝜎
+

𝑑

𝑑𝑠
[𝜌′𝜎]] = 0. 

⇒
𝑝

𝜎
+

𝑑

𝑑𝑠
[𝜌′𝜎] = 0  

⇒ A curve lies on a Sphere [ by E𝑥(3)] 
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Example 4: 

If a curve lies on a sphere. Show that 𝜌 & 𝜎 ane related by 
𝑑

𝑑𝑠
[𝜎, 𝜌′] +

𝜌

𝜎
= 0.  (or) 

Show that N and s condition that a curve lies on a sphere is that 
𝜌

𝜎
+

𝑑

𝑑𝑠
[
𝜌′

𝜏
] = 0 at every point 

of the curve. 

Proof: 

Necessary part: 

Assume that the curve lies on a sphere. 

∴ The osculating sphere of every point of the curve is nothing but the given sphere itself  

∴ 𝑅 is the radius of osculating sphere (i.e) The radius of sphere curve is constant 

We know that, 𝑅2 = 𝜌2 + 𝜌′2𝜎2    ……………(1) 

[𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑚𝑝𝑙𝑖𝑒𝑠
𝑑𝑅

𝑑𝑠
= 0]     

Differentiate (1) with respect to ’s’, 

2𝑅
𝑑𝑅

𝑑𝑠
 = 2𝜌𝜌′ + 2𝜌′𝜌′′𝜎2 + 2𝜌′2σ𝜎′

 = 2𝜌′[𝜌′𝜌′′𝜎2 + 𝜌′𝜎′𝜎′]
  

0 = 2𝜌′[𝜌 + 𝜎[𝜌′′𝜎 + 𝜌′𝜎′]]

0 = 2𝜌′ [𝜌 + 𝜎
𝑑

𝑑𝑠
(𝜌′𝜎)]

0 = 2𝜌′𝜎 [
𝜌

𝜎
+

𝑑

𝑑𝑠
(𝜌′𝜎)]

⇒
𝜌

𝜎
 +

𝑑

𝑑𝑠
(𝜌′𝜎) = 0 [∵ 𝜎 ≠ 0]

  

This is required condition. 

Sufficient part: 

 Let 
𝜌

𝜎
+

𝑑

𝑑𝑠
(𝜌′𝜎) = 0 ……………(2)

 ⇒ 𝜎 [
𝜌

𝜎
+

𝑑

𝑑𝑠
(𝜌′𝜎)] = 0 [∵ 𝜎 ≠ 0]

  

(ie) 𝜌 + 𝜎
𝑑

𝑑𝑠
(𝜌′𝜎) = 0. 

 (ie) 2𝜌′ [𝜌′𝜎′
𝑑

𝑑𝑠
(𝜌′𝜎)] = 0.

 (or) 𝜌𝜌′ + (𝜌′𝜎)
𝑑

𝑑𝑠
(𝜌′𝜎) = 0.

 ⇒
𝑑

𝑑𝑠
[𝜌2 + (𝜌′𝜎)2] = 0.

 ⇒ 𝜌2 + (𝜌′𝜎)2 =  constant 

 ⇒ 𝑅2 =  constant. 

  

Where 𝑅 = radius of the osculating sphere. Thus the radius of the osculating sphere is 

constant  
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We know that, 

The cube of osculating sphere is given by, 

𝑐‾ = 𝑟‾ + 𝜌𝑛̅ + 𝜌′𝜎𝑏‾  

Differentiate with respect to ‘s’, 

𝑑𝑐‾

𝑑𝑠
= 𝑟‾′ + 𝜌′𝑛‾ + 𝜌𝑛‾ ′ + (𝜌′𝜎)′𝑏‾ + 𝜌′𝜎𝑏‾ ′.

 
𝑑𝑐‾

𝑑𝑠
= 𝑡‾ + 𝜌′𝑛‾ + 𝜌(𝜏𝑏‾ − 𝜅𝑡‾) + (𝜌′𝜎)′𝑏‾ + (𝜌′𝜎)(−𝜏𝑛̅)

= 𝑡‾ + 𝜌′𝑛‾ + 𝜌𝜏𝑏‾ − 𝜌𝜅𝑡‾ + (𝜌′𝜎)′𝑏‾ + (𝜌′𝜎)(−𝜏𝑛̅)

= 𝑡̅ + +𝜌′𝑛‾ + 𝜌𝜏𝑏‾ − 𝜌 (
1

𝜅
) 𝑡̅ + (𝜌′𝜎)′𝑏‾ + (𝜌′𝜎)(−𝜏𝑛̅)

= 𝜌′𝑛‾ + 𝜌𝜏𝑏‾ + (𝜌′𝜎)′𝑏‾ − 𝜌′𝜎 ⋅
1

𝜎
𝑛‾

 = 𝜌′𝜏𝑏‾ + (𝜌′𝜎)′𝑏‾

𝑑𝑐‾

𝑑𝑠
= [𝜌𝜏 +

𝑑

𝑑𝑠
(𝜌′𝜎)] 𝑏‾ [ by (2)].

 ⇒
𝑑𝑐‾

𝑑𝑠
= 0 ⇒ 𝑐‾ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

  

(i.e) cube of the osculating sphere in constant 

From (3)and (4) 

We conclude that, The osculating sphere is same at every point of the curve. 

∴ The curve lies on a sphere. 

1.7.Tangent Surface, Involutes And Evolutes: 

A tangent space curve 𝐶 determines two infinite systems of curves which are the invoutes and 

evolutes of ‘C’ 

The theory of evolutes of space curves is essentially different from that or plane curve. a 

plane curve has a unique evolute while a space curve has infinitely many, the evolute of a 

plane curve is offer defined as the locus of its center of curvature but it will be seen that 

neither the locus of the center of curvature nor the locus of the center of Spherical curvature 

are evolutes of a space curve. 

A natural generalization to space curves of the concept of involute of a plane curve and once 

an involute of a curve 𝑐̅ has been defined, it is natural to define 𝐶 to be an evolute of 𝒸.̅ 

Tangent Surface:  

The tangent surface of a curve 𝐶 is the surface generated by lines tangent to 𝑐. Any point. 'p' 

on the tangent surface is determined by two parameters ' 𝑠 ' and ' 𝑢 '. 

Where ' 𝑠 ' is the arc length of C measured from some convenient base point on the curve to a 

point where the tangent pass through 𝑃 and ' 𝑢 ' measures the distance of ' 𝑝 ' along this 

tangent. 
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The position vector of ' 𝑝 ' can be written as 

𝑅‾(𝑠, 𝑢) = 𝑟‾(𝑠) + 𝑢𝑡‾(𝑠) 

Additional relation bet ' 𝑛 ' 𝑢 ' and ' 𝑠 ' of the form 𝑢 = 𝜆(𝑠) determines a curve which lies on 

the tangent surface of ' 𝑐 '. 

The class of the curve being the same as the class of 𝜆 (or) 𝐶, whichever in the Smaller. 

Involute: 

An involute of 𝑐 is a curve ' 𝑐1 ' which lies on the tangent surface of 𝑐 and intersects the 

generators orthogonally. 

Example 1: 

To derive the equation of involute of the given curve. 

Solution: 

Let ' 𝑐 ' be a given curve with eqn. 𝑟‾ = 𝑟‾(𝑠). Let ′𝑐1
′  be the involute of ' 𝑐 '. 

we shall use the suffix unity to denote the quantities belonging to 𝑐1 

Let 𝑃1 be an arbitrary 𝑝𝑜𝑖𝑛𝑡 on 𝑐1 then 𝑂𝑃1 = 𝑂𝑃 + 𝑃𝑃1   [𝑅‾ = 𝑟1]. 

𝑟1 = 𝑟‾ + 𝜆(𝑠)𝑡̅ 

Differentiate (1) with respect to ' 𝑠1
′  

𝑑𝑟1

𝑑𝑠1
=

𝑑

𝑑𝑠1
[𝑟1 + 𝜆(𝑠)𝑡]  

=
𝑑

𝑑𝑠
[𝑟‾ + 𝜆(s)𝑡 ̅]

𝑑𝑠

𝑑𝑠1
  

(i.e)
𝑡1̅ = [

𝑑𝑟‾

𝑑𝑠
+ 𝜆′𝑡̅ + 𝜆𝑡‾′]

𝑑𝑠

𝑑𝑠1

𝐼1 = [𝑡‾ + 𝜆
′𝑡 ̅ + 𝜆𝑡 ̅′]

𝑑𝑠

𝑑𝑠1
 ………… . (2)

  

Taking dot product of (2) with 𝑡̅, 

𝑡‾1 ⋅ 𝑡‾ = (1 + 𝜆
′)

𝑑𝑠

𝑑𝑠1
  

But t̅1 is perpendicular to 𝑡̅, 

 ∴ 0 = (1 + 𝜆′)
𝑑𝑠

𝑑𝑠1

 ⇒
𝑑𝑠

𝑑𝑠1
≠ 0 ∴ (1 + 𝜆′) = 0 ⇒ 𝜆′ = −1

𝑑𝜆

𝑑𝑠
= −1

 (or) 𝑑𝜆 = −𝑑𝑠

 ⇒ 𝜆 = −𝑠 + 𝑐 
 where c = constant. 

  

Substituting in (1) 

∴ (1) ⇒ 𝑟‾1 = 𝑟‾ + (𝑐 − 𝑠)𝑡‾ 
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 (i.e) R̅ = 𝑟‾ + (𝑐 − 5)𝑡‾  

This is equation of involute of ' 𝑐 ' 

This equation represents an infinite system of invotutes of ' 𝑐 ', a different curve arising from 

each different choice of the parameter ' 𝑐 '. 

Example 2: 

To derive an expression the curvature & torsion of the involute, (or) Show that the torsion of 

an involute of a curve =
𝜌(𝜎𝜌1−𝜎′𝜌)

(𝜌2+𝜎2)(𝑐−𝑠)
 

Solution: 

We know that the equation of the involute  

𝑟1 = 𝑟‾ + (𝑐 − 𝑠)𝑡‾      ……………(1)  

Differentiate (1) with respect to ' 𝑠1 ', 

𝑑

𝑑𝑠1
(𝑟‾1) =

𝑑

𝑑𝑠1
(𝑟‾ + (𝑐 − 𝑠)𝑡‾] =

𝑑

𝑑𝑠
[𝑟‾ + (𝑐 − 𝑠)𝑡‾]

𝑑𝑠

𝑑𝑠1

𝑡1 = [
𝑑𝑟‾

𝑑𝑠
+ (−1)𝑡‾ + (𝑐 − 𝑠)𝑡‾′]

𝑑𝑠

𝑑𝑠1
 (∵

𝑑𝑟‾

𝑑𝑠
= 𝑟‾′ = 𝑡‾)

𝑡1 = [(𝑐 − 𝑠)𝜅𝑛‾] (
𝑑𝑠

𝑑𝑠1
)…………  (2) 

  

Taking dot product of (2) with itself. 

𝑡‾1 ⋅ 𝑡‾1 = [𝑐(−𝑠)𝜅𝑛‾
𝑑𝑠

𝑑𝑠1
] ⋅ [(𝑐 − 𝑠)𝜅𝑛‾

𝑑𝑠

𝑑𝑠1
] .

1 = (𝑐 − 𝑠)2𝜅2 (
𝑑𝑠

𝑑𝑠1
)
2   

(
𝑑𝑠

𝑑𝑠1
02 =

1

(𝑐−𝑠)2𝜅2
 …………(3)  

(2) shows that 𝑡1̅ is parallel to 𝑛̅. 

Differentiate (2) with respect to 𝑠1
′  

 
𝑑𝑡1

𝑑𝑠1
=

𝑑

𝑑𝑠1
[((𝑐 − 𝑠)𝜅𝑛‾) (

𝑑𝑠

𝑑𝑠
)]

𝑡̅′1 =
𝑑

𝑑𝑠
[(𝑐 − 𝑠)𝜅𝑛‾)]

𝑑𝑠

𝑑𝑠1

  

𝜅1𝑛‾1 = [(−1)𝜅𝑛‾ (
𝑑𝑠

𝑑𝑠1
) + (𝑐 − 𝑠)𝜅𝑛‾′ (

𝑑𝑠

𝑑𝑠1
)]

𝑑𝑠

𝑑𝑠1

𝜅1𝑛‾1 = [−𝜅𝑛‾ + (𝑐 − 𝑠)𝜅(𝜏𝑏‾ − 𝜅𝑡‾)] (
𝑑𝑠

𝑑𝑠1
)
2

𝜅1𝑛‾1 = (𝑐 − 𝑠)𝜅(𝜏𝑏‾ − 𝜅𝑡‾) ⋅
1

(𝑐−𝑠)2𝜅2

𝜅1𝑛‾1 =
𝜏𝑏‾−𝜅𝑡‾

(𝑐−𝑠)𝜅
   ………… . . (4)

  

Taking dot product of (4) with itself, 
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(𝜅1𝑛‾1) ⋅ (𝜅1. 𝑛‾1) = [
𝜏𝑏‾−𝜅𝑡‾

(𝑐−𝑠)𝜅
] ⋅ [

𝜏𝑏‾−𝜅𝑡‾

(𝑐−𝑠)𝜅
]

𝜅1
2 =

𝜏2+𝜅2

(𝑐−𝑠)2𝑘2
 …………(5)

  

We know that,  𝑏1 = 𝑡 1̅ × 𝑛1 

𝑏1 = 𝑛‾ × [
𝜏𝑏‾−𝜅𝑡‾

𝜅𝜅1(𝑐−𝑠)
] [∵ 𝑡1 is parallel to 𝑛‾]

  

(i.e) 𝜅𝜅1(𝑐 − 𝑠)𝑏‾1 = 𝜏(𝑛‾ × 𝑏‾) − 𝜅(𝑛‾ × 𝑡‾) 

𝜅𝜅1(𝑐 − 𝑠)𝑏‾1 = 𝜏t̅ + 𝑘𝑏‾  ………… . (6) 

Differentiate (6) with respect to ' 𝑠 ' 

𝑑

𝑑𝑠1
[𝜅𝜅1(𝑐 − 𝑠)𝑏‾1] =

𝑑

𝑑𝑠1
[𝜏𝑡‾ + 𝜅𝑏‾]

{
𝑑

𝑑𝑠1
[𝜅𝜅1(𝑐 − 𝑠)]} 𝑏‾1 + (𝜅𝜅1)(𝑐 − 𝑠)𝑏‾1

′ =
𝑑

𝑑𝑠
[𝜏𝑓‾ + 𝑘𝑏‾] (

𝑑𝑠

𝑑𝑠1
)

{
𝑑

𝑑𝑠1
[𝜅𝜅1(𝑐 − 𝑠)]} 𝑏‾1 + (𝜅𝜅1)(𝑐 − 𝑠)𝜏1𝑛‾1 = [τ

′𝑡‾ + 𝜏𝑡‾′ + 𝜅′𝑏̅ + 𝜅𝑏 ̅′] (
𝑑𝑠

𝑑𝑠1
)   

  

{
𝑑

𝑑𝑠1
[𝑘𝑘1(𝑐 − 𝑠)]}𝑏‾1 − 𝜅𝜅1(𝑐 − 𝑠)𝜏1𝑛‾1 = [𝜏

′𝑡‾ + 𝜏𝑘𝑛‾+κ′b − 𝑘𝜏𝑛‾] 
𝑑𝑠

𝑑𝑠1

{
𝑑

𝑑𝑠1
[𝑘𝑘1(𝑐 − 𝑠)}𝑏‾1 − 𝜅𝜅1(𝑐 − 𝑠)𝜏1𝑛‾1 = [𝜏

′𝑡‾ + 𝜅′𝑏‾]
𝑑𝑠

𝑑𝑠1
 ……… . . (7)

  

Taking dot product (7) with (4), 

 ∴ [𝜅1𝑛1] ⋅ [[
𝑑

𝑑𝑠1
(𝜅𝜅1(𝑐 − 𝑠))] 𝑏1 − 𝜅1𝜅(𝑐 − 𝑠)𝜏1𝑛‾1 = [

𝜏𝑏‾−𝜅𝑡‾

(𝑐−𝑠)𝜅
] ⋅ [

𝜏′𝑡‾+𝜅′𝑏‾

(𝑐−𝑠)𝜅
]

 

 −𝜅𝜅1
2(𝑐 − 𝑠)𝜏1 =

1

𝜅2(𝑐−𝑠)2
[𝜏𝑘′ − 𝑘𝜏′]

τ1 =
𝜅𝜏′−𝜏𝜅′

𝜅3𝜅1
2(𝑐−𝑠)3

 =
(𝜅𝜏′−𝜏𝜅′)

𝜅3(𝑐−𝑠)3
⋅
𝜅2(𝑐−𝑠)2

(𝜏2+𝜅2)

𝜏1=
(𝜅𝜏′−𝜏𝜅′)

𝜅(𝜏2+𝜅2)(𝑐−𝑠)
  ………… . . . (8)            [∵ (5)]

  

Equation (5) and (8) gives the values of 𝜅1& 𝜏1 of the involute respectively 

Evolute: 

If 𝑐1 in an involute of 𝑐, then 𝑐 is an evolute of 𝑐. 

Example 3: 

To derive the equation of evolute. 

Solution: 

Let 𝑐̃ be the curve & 𝑐 be the evolute of 𝑐̃. 
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Let 𝑃 to the point on 𝑐 corresponding to the point 𝑄 on 𝑐. 

Then 𝑃 must lie in the plane through 𝑄 normal to 𝑐. 

If 𝑅‾, 𝑟‾ denote the position vectors of 𝑃, 𝑄 respectively then the equation of 𝑐 is 

𝑂𝑄 = 𝑂𝑃 + 𝑃𝑄

𝑅‾ = 𝑟‾ + 𝜆𝑏‾ + 𝜇𝑛‾    ………… . . (∗)
 

[∵ 𝑃𝑄 is perpendicular to the tangent at 𝑃. So it lies on the normal plane].  

Differentiate (∗) with respect to ' 𝑠1 '. 

[we use the suffix unity to denote the Quantities belonging to the evolute 𝑐 ] 

𝑑𝑅‾

𝑑𝑠1
=
𝑑

𝑑𝑠
[𝑟‾ + 𝜆𝑏‾ + 𝜇𝑛‾]

𝑑𝑠

𝑑𝑠1
 [𝑅‾ = 𝑟1]

𝑡‾1 = [
𝑑𝑟‾

𝑑𝑠
+ 𝜆′𝑏‾ + 𝜆𝑏‾ ′ + 𝜇′𝑛‾ + 𝜇𝑛‾ ′]

𝑑𝑠

𝑑𝑠1

𝑡1̅ = [𝑡‾ + 𝜆
′𝑏‾ − 𝜏𝑛‾λ + 𝜇′𝑛‾ + 𝜇(𝜏𝑏‾ − 𝜅𝑡̅)]

𝑑𝑠

𝑑𝑠1

 = [𝑡‾ + 𝜆′𝑏‾ − 𝜏𝜆𝑛‾ + 𝜇′𝑛̃ + 𝜇𝜏𝑏‾ − 𝜅𝜇𝑡‾]
𝑑𝑠

𝑑𝑠1

𝑡1̅ = [(1 − μκ)𝑡‾ + (𝜆
′ + 𝜇𝜏)𝑏‾ + (𝜇′ − 𝜏𝜆)𝑛‾]

𝑑𝑠

𝑑𝑠1

 

𝑡1̅ is the tangent to 𝑐 at 𝑄. 

∴ It is parallel to 𝜆𝑏 + 𝜇𝑛‾(∵ 𝑡1 = 𝜆𝑏 + 𝜇𝑛‾) 

Thus we get, coefficients 

1−μκ

0
=
𝜇′−𝜆𝜏

𝜇
=
𝜆′+𝜇𝜏

𝜆
          …………….(1) 

∴ 1 − μκ = 0 ⇒ 1 = μκ ⇒ 𝜇 =
1

κ
= 𝜌  …………(2) 

 (i.e) 𝜇 = 𝜌 

∴ from (2), 

𝜇′−𝜆𝜏

𝜇
=
𝜆′+𝜇𝜏

𝜆
  

𝜇′

𝜇
−
𝜆𝜏

𝜇
=
𝜆′

𝜆
+
𝜇𝜏

𝜆
  

𝜆𝜇′−𝜇𝜆′

𝜆𝜇
=
𝜆2𝜏+𝜇2𝜏

𝜆𝜇
  

𝜆𝜇′ − 𝜇𝜆′ = 𝜏[𝜆2 + 𝜇2] 

⇒ 𝜏 =
𝜆𝜇′ − 𝜇𝜆′

𝜆2 + 𝜇2
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=
𝜆𝜇′ − 𝜇𝜆′

𝜆2 [1 + (
𝜇
𝜆
)
2

]
        [

𝑑

𝑑𝑥
[tan−1 (

𝑥

𝑦
)] 

1

1 + (𝑥/𝑦)2
𝑑

𝑑𝑥
(
𝑥

𝑦
)] 

(i.e)  𝜏 =
(𝜆𝜇′ − 𝜇𝜆′)/𝜆2

[1 + (𝜇/𝜆)2]
 

(𝑖. 𝑒) 𝑐 =
𝑑

𝑑𝑠
[tan−1 (𝜇/𝜆)] 

Integrating on both sides, 

 

 ∫  𝜏𝑑𝑠 + 𝑎 = tan−1 
𝜇

𝜆
                  where 𝑎 =  constant. 

 

  

∫  𝜏𝑑𝑠 + 𝑎 = cot−1 [𝜆/𝜇]  (or) cot [∫ 𝜏𝑑𝑠  + 𝑎] = 𝜆/𝜇  

(i.e) 𝜇cot [∫  𝜏𝑑𝑠 + 𝑎] = 𝜆 

(ie) 𝜌 cot[∫  𝜏𝑑𝑠 + 𝑎] = 𝜆     ………… . . (4)         [∵ (2)] 

Sub the values of 𝜇 & 𝜆 in (*) 

∴ 𝑅‾ = 𝑟‾ + 𝜌𝑛‾ + 𝜌 cot[∫  𝜏𝑑𝑠 + 𝑎]𝑏‾   ………… . (5)  

This is the equation of evolute. where ' 𝑎 ' = constant 

Note: 

From equation (5) we get, 

The locus of the center of curvature of a space curve is not an evolute. 

Example 4: 

Show that the involutes of 𝑎 circular helix are plane curves. 

Solution: 

We know that the equation of the circular helix is 𝑟̅ = (𝑎 − cos 𝑢, asin 𝑢, 𝑏𝑢) and  

𝜅 =
𝑎

𝑎2+𝑏2
, 𝜏 =

𝑏

𝑎2+𝑏2
  

∴ 𝜅′ = 0 and 𝜏′ = 0, 𝜏1 = the torsion of the involute = 0 

⇒ Involute is a plane curve. 

Example 5: 

Find the equation of the tangent surface to the curve 𝑟‾ = 𝑟(𝑢, 𝑢2, 𝑢3)………… . . (1) 

Solution: 

Equation of the tangent surface is, 

𝑅‾(𝑢, 𝑠) = 𝑟‾ + 𝑢𝑡‾(𝑠)    ……………(2) 

Differentiate with respect to ' 𝑢 ', 
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𝑑𝑟‾

𝑑𝑢
= 𝑟‾̇ = (1,2𝑢, 3𝑢2) 

 ∴⋅ 𝑡‾ =
𝑟‾̇

|𝑟‾̇|
=

(1,2𝑢,3𝑢2)

√1+4𝑢2+9𝑢4

  

Equation of the tangent surface, 

∴ 𝑅‾(𝑢, 𝑧) = 𝑟‾ + 𝑢 [
(1,2𝑢,3𝑢2)

√1+4𝑢2+𝑞𝑢4
]

𝑠 = |𝑟̇|,⇒ 𝑠 = |
𝑑𝛾‾

 
|
  

where, 𝑠 = |𝑟‾̇|, ⇒ 𝑆 = |
𝑑𝑟‾

𝑑𝑢
| 

𝑆 = √1 + 4𝑢2 + 9𝑢4  

Example 6: 

Prove that the locus of cube of curvature is an evolute ⇔ when the curve is plane 

Solution: 

We know that the equation of the locus of the cube of curvature is, 

 𝑟1 = 𝛾‾ + ρn̅…………(1) and equation of the evolute is 

𝑅‾ = 𝑟‾ + 𝜌𝑛‾ + ρ cot [∫𝜏𝑑𝑠 + 𝑎] 𝑏 ………… . (2) 

Comparing (1) & (2) we get, 

𝜌cot (𝜓 + 𝑎)𝑏‾ = 0  where 𝜓 = ∫  𝜏𝑑𝑠  

(i.e)  𝜌cot (𝜓 + 𝑎) = 0. (∵ 𝑏̅ ≠ 0) 

(i.e)  cot (𝜓 + 𝑎) = 0 (∵ 𝜌 ≠ 0) 

(i.e) 

𝜓 + 𝑎 = cot−1 0

𝜓 + 𝑎 =
𝑛𝜋

2

𝜓 =
𝑛𝜋

2
− 𝑎

∫  𝜏𝑑𝑠 =
𝑛𝜋

2
− 𝑎

  

Differentiating we get, 𝜏 = 0. 

Thus locus of cube of curvature is an evolute when 𝜏 = 0. 

(ie) when the curve is a plane curve. 
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1.8.Interinsic Equations, Fundamental Existence Theorem for space curves: 

If the same curve be referred to 𝑎 different set of Cartesian axis, then the defining equations 

are quite different and it is by 𝑢0 means obvious that they refer to the same curve. 

Intrinsic Equation (𝒐𝒓) Natural Equations: 

The intrinsic equations or a curve are of the form, 𝜅 = 𝑓(𝑠), 𝜏 = 𝑔(𝑠), which express the 

curvature and the torsion in terms of the arc length. 

Theorem 1: (Uniquiness Theorem for Space Curve) 

Let 𝑐 & 𝑐1 be two curves defined in terms of their respective arc length ' 𝑠 ' and Let points 

With. the same values of ' 𝑠 ' correspond. Then if the curvature and torsion of 𝑐 have the same 

values as the curvature & torsion at the corresponding pis of 𝑐1, then 𝑐 & 𝑐1 ane congruent.             

(or) 

The curve is uniquely determine except as to position in space when the curvature and torsion 

are given functions of its arc length. 

Let 𝑐1 be moved. So that the two pts on 𝑐 and 𝑐1 corresponding to 𝑠 = 0 coincide. 

Suppose that 𝑐1 is suitably oriented so that the two trials (𝑡‾, 𝑛‾ , 𝑏‾), (𝑡1, 𝑛1, 𝑏1) Coincide at 𝑠 =

0, then, we have 
𝑑

𝑑𝑠
(𝑡1, 𝑡1) = 𝑡̅

′ ⋅ 𝑡1̅ + 𝑡̅ ⋅ 𝑡1̅
′  . 

It is possible. 

Let it be two curves 𝑐 and 𝑐1 having equal curvature 𝜅 of equal torsion curve 𝜏, For the Same 

value of s. 

Let the suffix unity le west for quantity belonging to 𝑐1. 

Now 𝑐1 is moved, 

So that the 2 points on 𝑐 & 𝑐1 corresponding to the some value of coincide. 

we have, 

𝑑

𝑑𝑠
(𝑡̅ ⋅ 𝑡1̅) = 𝑡̅

′ ⋅ 𝑡1̅ + 𝑡̅ ⋅ 𝑡1̅
′   

= 𝜅𝑛‾ ⋅ 𝑡‾1 + 𝑡̅ ⋅ 𝜅1𝑛‾1  

= κn̅t̅1 + t ̅ ⋅ 𝜅𝑛̅1 (∵ 𝜅 = 𝜅1)  

𝑑

𝑑𝑠
(𝑡‾. 𝑡1̅) = 𝜅[𝑛‾ . 𝑡1̅ + 𝑡‾. 𝑛‾1]  

𝑑

𝑑𝑠
(𝑛‾ . 𝑛‾1) = 𝑛‾

′ ⋅ 𝑛‾1 + 𝑛‾ ⋅ 𝑛‾1′  

= (𝜏𝑏‾ − 𝜅𝑡 ̅) ⋅ 𝑛‾1 + 𝑛‾‾ ⋅ (𝜏1𝑏‾1 − 𝜅1𝑡1̅)  

= (𝜏𝑏‾ − 𝜅𝑡‾)𝑛‾1 + 𝑛‾(𝜏𝑏1 − 𝜅1𝑡1)  



 

61 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

𝑑

𝑑
(𝑛‾ ⋅ 𝑛‾1) = [𝜏(𝑏‾𝑛‾1 + 𝑏1𝑛‾) − 𝜅(𝑡̅𝑛‾1 + 𝑡1̅. 𝑛̅)]. [∵ 𝜏 = 𝜏1 𝑎𝑛𝑑 𝜅 = 𝜅1] 

Similarly, 
𝑑

𝑑𝑠
(𝑏‾ ⋅ 𝑏‾1) = (−𝜏𝑛‾)𝑏‾1 + 𝑏‾ ⋅ (−𝜏 ⋅ 𝑛‾1) 

𝑑

𝑑𝑠
(𝑏‾, 𝑏‾1) = −𝜏𝑛‾𝑏‾1 + 𝜏𝑏‾𝑛‾1  

= −𝜏(𝑛‾𝑏‾1 + 𝑏̅𝑛̅1) (∵ 𝜏 = 𝜏1)  

∴
𝑑

𝑑𝑠
[𝑡‾ ⋅ 𝑡1 + 𝑛‾ ⋅ 𝑛1 + 𝑏‾ ⋅ 𝑏‾1] = κ[𝑛‾ ⋅ 𝑡1 + 𝑡‾ ⋅ 𝑛1] + 𝜏[𝑏‾ ⋅ 𝑛‾1 + 𝑏‾1 ⋅ 𝑛‾]  

−𝜅[𝑡‾, 𝑛‾1 + 𝐸1, 𝑛‾] − 𝜏[𝑛‾ ⋅ 𝑏1 + 𝑏‾ ⋅ 𝑛‾1] 

𝑑

𝑑𝑠
[𝑡‾ ⋅ 𝑡‾1 + 𝑛‾ ⋅ 𝑛‾1 + 𝑏‾ ⋅ 𝑏‾1] = 0.  

⇒ 𝑡‾ ⋅ 𝑡‾1 + 𝑛‾ ⋅ 𝑛‾1 + 𝑏‾ ⋅ 𝑏‾1 =  constant  …………..(1) 

we move 𝑐1 in such away that at 𝑠 = 0, The two triads (𝑡‾, 𝑛‾ , 𝑏‾)&(𝑡‾1, 𝑛‾1, 𝑏‾1) coincide then,  

𝑡1̅. 𝑡̅ = cos0 = 1
𝑛‾1 ⋅ 𝑛 ‾ = cos 0 = 1

𝑏̅1. 𝑏̅ = cos 0 = 1

} at 𝑠 = 0. 

∴ (1) ⇒ 𝑡‾ ⋅ 𝑡 ̅ 1 + 𝑛‾ ⋅ 𝑛‾1 + 𝑏‾ ⋅ 𝑏‾1 = 3  (when 𝑠 = 0).
 

But the sum of the 3 cosines is equal to ' 𝑠 ' If angle in zero (or) an integral multiple of 2𝜋 (ie) 

𝑡‾ = 𝑡‾1, 𝑛‾ = 𝑛‾1, 𝑏‾ = 𝑏‾1 

Thus gives 𝑟‾′ = 𝑟‾1
′ 

 (ie) 
𝑑

𝑑𝑠
(𝑟‾ − 𝑟‾1) = 0

 ⇒ r̅ − 𝑟‾1 =  constant. 
  

But at 𝑠 = 0, 𝑟‾ = 𝑟‾1 

∴ 𝑟‾ = 𝑟‾1 at all the corresponding points. 

Hence the two curves coincides 

Theorem  2: 

Fundamental Existence Theorem for Space curves. 

If κ(𝑠), 𝜏(𝑠) are cts, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 of the real variable 's', where 𝑠 ≥ 0, then there exists a Space 

curve for which 𝜅 is the curvature, 𝜏 is the torsion, and 's' in the arc length measured from 

some suitable base point Such a curve is uniquely determined to within a Eudidecen motion. 

Proof : 

Using the given functions 𝜅(𝑠) & 𝜏(𝑠). we form the following differential equations, 



 

62 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

𝑑𝛼

𝑑𝑠
= 𝜅𝛽,

𝑑𝛽

𝑑𝑠
= 𝜏𝛾 − 𝜅𝛼,

𝑑𝛼

𝑑𝑠
= −𝜏𝛽 }

 
 

 
 

………..(1) 

We know that the system (1) has a unique solution. 

 (𝛼0, 𝛽0, 𝜈0) for any given initial condition 𝑠 = 𝑠0 = 0 

In particular for the given initial condition 𝛼(𝑠) = 1, 𝛽(𝑆) = 0, γ(𝑆) = 0 at 𝑠 = 0. 

(1) has a unique solution. 

Denoted it by  𝛼1, 𝛽1, γ1  

Similarly for the initial condition, 

(𝑠) = 1, 𝛽(𝑆) = 0, γ(𝑆) = 0 at 𝑠 = 0  

Let the solution of (1) be 𝛼2, 𝛽2, 𝛾2. 

Again for the initial condition, 

  𝛼(𝑠) = 0, 𝛽(𝑠) = 0, 𝛾(𝑠) = 1 at 𝑠 = 0. 

𝑇o prove 𝑡ℎ𝑎𝑡:𝛼1
2 + 𝛽1

2 + 𝛾1
2 = 1

𝛼2
2 + 𝛽2

2 + 𝛾2
2 = 1

𝛼3
2 + 𝛽3

2 + 𝛾3
2 = 1

  

Consider, 
𝑑

𝑑𝑠
[𝛼1
2 + 𝛽1

2 + 𝛾1
2] = 2[𝛼1𝛼1

1 + 𝛽1𝛽1
′ + 𝛾1𝛾1

1] 

= 2[𝛼1(𝜅𝛽1) + 𝛽1(𝜏𝛾1 − 𝛾𝛼1) + 𝛼1(−𝜏𝛽1)] [∵ (1)]      

 = 2[𝛼1𝛾𝛽1 + 𝛽1𝛾1𝜏 − 𝛽1𝜅𝛼1 − 𝛼1𝛽1𝜏] 

= 0.  

⇒ 𝛼1
2 + 𝛽1

2 + 𝛾1
2 =  constant  …………(2) 

But at 𝑠 = 0, 𝛼1 = 1, 𝛽1 = 0, 𝛾1 = 0.  

Substitute in (2). 

(2) ⇒ 1 + 0 + 0 = constant ⇒ constant = 1. 

⇒ 𝛼1
2 + 𝛽1

2 + 𝛾1
2 = 1

 Similarly,  𝛼2
2 + 𝛽2

2 + 𝛾2
2 = 1

𝛼3
2 + 𝛽3

2 + 𝛾3
2 = 1

}  ………… . (3) 

Similarly,

𝛼1𝛼2 + 𝛽1𝛽2 + 𝛾1𝛾2 = 0

𝛼2𝛼3 + 𝛽2𝛽3 + 𝛾2𝛾3 = 0 

𝛼3𝛼1 + 𝛽3𝛽1 + 𝛾3𝛾1 = 0

}  ………… . .(4)  

𝐴 = [
𝛼1 𝛽1 𝜈1
𝛼2 𝛽2 𝜈2
𝛼3 𝛽3 𝜈3

] is orthogonal. 
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(ie) 𝐴𝐴′ = 𝐼 

Where 𝐴′ = The transpose of 𝐴. 

Since the columns of 𝐴 are Linearly independent. 

⇒ 𝐴 is non-singulas. 

(ie) 𝐴−1 exists 

∴ pre-multiply (5) by 𝐴−1. 

(5) ⇒ 𝐴−1𝐴𝐴′ = 𝐴−1𝐼.

 ⇒ 𝐴′ = 𝐴−1𝐼.
  

∴ 𝐴𝐴−1 = 𝐼  

(i.e) [

𝛼1 𝛼2 𝛼3
𝛽1 𝛽2 𝛽3
𝛾1 𝛾2 𝛾3

] [
𝛼1 𝛽1 𝛼1
𝛼2 𝛽2 𝛼2
𝛼3 𝛽3 𝛼3

] = [
1 0 0
0 1 0
0 0 1

]  

 

𝛼1
2 + 𝛼2

2 + 𝛼3
2 = 1

𝛽1
2 + 𝛽2

2 + 𝛽3
2 = 1

𝛾1
2 + 𝛾2

2 + 𝛾3
2 = 1

𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3 = 0
𝛼1𝛾1 + 𝛼2𝛾2 + 𝛼3𝛾3 = 0
𝛽1𝛾1 + 𝛽2𝛾2 + 𝛽3𝛾3 = 0 ]

 
 
 
 
 
 
 

  …………… . . (6) 

It follows that there are three mutually orthogonal unit vectors 

put 𝑡 ̅ = (𝛼1, 𝛼2, 𝛼3) 

𝑛‾ = (𝛽1, 𝛽2, 𝛽3)

𝑏‾ = (𝑥1, 𝑥2, 𝑥3)
  

The relation (6) show that the 3-values 

𝑡̅, 𝑛‾ , 𝑏‾  are unit vectors, and they are 3 mutually perpendicular vectors. 

𝑟‾ = ∫  
𝑆

0

𝑡‾𝑑𝑠 

Then 𝑟̅ = 𝑟̅(𝑠) is the position vector of a point on a curve which has, 

𝑡̅ as tangent vector 

𝑛‾  as principal normal. 

𝑏‾  as binormal,   

𝜅 as curvature, 

𝜏 as torsion. 

𝑠 as arc length 

This proves the existence of the required cure. 
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Example 1: 

Show that the intrinsic equations of the curve given by 

𝑥 = 𝑎𝑒𝑢cos 𝑢, 𝑦 = 𝑎𝑒𝑢sin 𝑢, 𝑧 = 𝑏𝑒𝑢𝑎𝑟𝑒

𝜅 =
√2𝑎

(2𝑎2 + 𝑏2)1/2
⋅
1

𝑠
, 𝜏 =

𝑏

(2𝑎2 + 𝑏2)1/2
⋅
1

𝑠
.
 

Proof: 

Given 𝑥 = 𝑎𝑒ucos 𝑢 

 ⇒ 𝑥̇ = 𝑎𝑒𝑢cos 𝑢 + 𝑎𝑒𝑢(−sin 𝑢)

 ⇒ 𝑥̇ = 𝑎𝑒𝑢[cos 𝑢 − sin 𝑢]
  

𝑔𝑖𝑣𝑒𝑛, 𝑦 = 𝑎𝑒𝑢sin 𝑢 

 ⇒ 𝑦̇ = 𝑎𝑒𝑢sin 𝑢 + 𝑎𝑒𝑢cos 𝑢

 ⇒ 𝑦̇ = 𝑎𝑒𝑢[sin 𝑢 + cos 𝑢]
  

given, 𝑧𝛾 = 𝑏𝑒
u  

 ∴ 𝑟̇̅ = (𝑎𝑒𝑢 cos𝑢, a 𝑒𝑢 sin 𝑢, be 𝑢)

𝑟̇̅ = (𝑎𝑒𝑢[cos𝑢 − sin 𝑢], 𝑎𝑒𝑢[sin𝑢 + cos𝑢], be 𝑢)

 |𝑟̇̅| = √𝑎2(𝑒𝑢)2[cos 𝑢 − sin 𝑢]2 + 𝑎2(𝑒𝑢)2[sin 𝑢 + cos 𝑢]2 + 𝑏2(eu)2

 = 𝑒𝑢√𝑎2[cos2 𝑢 + sin2 𝑢 − 2 cos usin 𝑢 + sin2 𝑢 + cos2 𝑢 + 2cog[usin𝑢] + 𝑏2

 

 = 𝑒𝑢√𝑎2[2(cos2 𝑢 + sin2 𝑢)] + 𝑏2

 |𝑟̇̅| = 𝑒𝑢√2𝑎2 + 𝑏2

 ∴ 𝑠 = [𝑒𝑢√2𝑎2 + 𝑏2]. 

𝑠 = ∫  
𝑢

−∞
  𝑒𝑢(√2𝑎2 + 𝑏2)𝑑𝑢

 = √2𝑎2 + 𝑏2 ∫  
𝑢

−∞
  𝑒𝑢𝑑𝑢

 = √2𝑎2 + 𝑏2𝑒𝑢 = 𝑠̇

  

𝑠 = 𝑠̇    …………(1)  

𝑟‾′ =
𝑟̇̅

|𝑟̇̅|
=
(𝑎𝑒𝑢(cos𝑢−sin 𝑢),𝑎𝑒𝑢(cos 𝑢+sin 𝑢),𝑏𝑒𝑢)

𝑒𝑢√2𝑎2+𝑏2
  

𝑟‾′ =
𝑒𝑢(𝑎(cos 𝑢−sin 𝑢),𝑎(cos 𝑢+sin 𝑢),𝑏)

𝑒𝑢√2𝑎2+𝑏2
  

𝑟‾′ =
(𝑎(cos 𝑢−sin 𝑢),𝑎(cos 𝑢+sin 𝑢),𝑏)

√2𝑎2+𝑏2
  ……………(1)  

∴ 𝑟‾′′ = [
(𝑎(−sin 𝑢−cos 𝑢),𝑎(−sin 𝑢+cos 𝑢),0)

√2𝑎2+𝑏2
]
𝑑𝑢

𝑑𝑠
  

𝜅𝑛‾ =
(−𝑎(sin 𝑢+cos 𝑢),𝑎(cos 𝑢−sin 𝑢),0)

1

𝑠

√2𝑎2+𝑏2
  

 Taking modulus on both sides and squaring, 
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𝜅 =
√2𝑎

√2𝑎2+𝑏2
⋅
1

𝑠
 [𝑠 = 𝑠̇ =

𝑑𝑠

𝑑𝑢
 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑑𝑢

𝑑𝑠
=
1

𝑠̇
=
1

𝑠
]  

 ∴ (3) ⇒ 𝑠𝑟̅′′ =
1

√2𝑎2+𝑏2
(−𝑎(sin 𝑢 + cos 𝑢), 𝑎(− sin 𝑢 + cos), 0)……… . . (4)

  

𝑠2𝑟̅′′′ + r̅′′𝑠 =
1

√2𝑎2+𝑏2
(−𝑎(cos𝑢 − sin 𝑢), (−𝑎(sin 𝑢 + cos 𝑢), 0) ……… . . (5)  

𝑠3 ⋅ (𝑟‾′′ × 𝑟‾′′′) =
1

2𝑎2+𝑏2
(0,0,2𝑎2)   …………… . (𝐵)  

|
𝑖̅ 𝑗 ̅ 𝑘̅

−𝑎(cos 𝑢 + sin 𝑢) 𝑎(cos 𝑢 − sin 𝑢) 0
−𝑎(cos 𝑢 − sin 𝑢) −𝑎(cos 𝑢 + sin 𝑢) 0

|  

= 𝑘̅[𝑎2(cos 𝑢 + sin 𝑢)2 + 𝑎2(cos 𝑢 − sin 𝑢)2]  

= 𝑘̅(𝑎22)  

Taking scalar product of (2) & (B), 

𝑆3[𝑟‾′, 𝑟‾′′, 𝑟‾′′′] =
2𝑎2𝑏

(2𝑎2+𝑏2)3/2

𝑆3(𝜅2𝜏) =
2𝑎2𝑏

(2𝑎2+𝑏2)3/2

𝑆32𝑎2𝜏

(2𝑎2+𝑏2)𝑠2
=

2𝑎2𝑏

(2𝑎2+𝑏2)3/2

 ⇒ 𝜏 =
𝑏

𝑆(2𝑎2+𝑏2)1/2

  

1.9.Helices: 

Cylindrical Helix: 

A cylindrical helix is a space curve which lies on a cylinder and cuts the generators at a 

constant angle. 

Its tangent makes a constant angle ' 𝛼 ' with a fixed line known as the axis of the helix. 

Note: 

1. Helices more general than cylindrical helices. 

2. Helix mean cylindrical helix. (in this book). 

A characteristic property of Helices: 

The ratio of the curvature to the torsion is constant at all points. 

(ie) 
𝑘

𝜏
= constant. 

Proof:  

Let 𝑎‾ = a unit vector in the direction of the axis of the cylinder. 

then, 𝑡‾ ⋅ 𝑎‾ = cos𝛼 ……………(1) 

Where 𝛼 = constant angle. 

Differentiate with respect to ‘s’, 
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𝑡̅′ ⋅ 𝑎‾ + 𝑡‾(0) = 0.

𝑘𝑛‾ ⋅ 𝑎‾ = 0
 ⇒ 𝑛‾ ⋅ 𝑎‾ = 0(∵ 𝑘 ≠ 0) ⇒ n̅ is perpendicular to 𝑎‾.

  

This shows that the principal normal is everywhere perpendicular to 𝑎‾  the generator   But 

principal normal is everywhere perpendicular to the rectrifying plane, 

∴ 𝑎‾  = 𝜆𝑡‾ + 𝜇𝑏‾   ………… . . (3) 

(3), 𝑡‾  ⇒ 𝑎‾ ⋅ 𝑡‾ = 𝜆𝑡‾ ⋅ 𝑡‾ + 𝜇𝑏‾ ⋅ 𝑡‾ 

⇒ cos 𝛼 = 𝜆 

(3) ⋅ 𝑏‾  ⇒ 𝑎‾ ⋅ 𝑏‾ = 𝜆𝑡‾ ⋅ 𝑏‾ + 𝜇𝑏‾ ⋅ 𝑏‾  

⇒ sin 𝛼 = 0 + 𝜇 

⇒ sin 𝛼 = 𝜇 

∴ (3) ⇒ 𝑎‾ = cos 𝛼𝑡‾ + sin 𝛼𝑏‾   

Differentiate with respect to 's', 

𝑎‾ ′ = cos 𝛼𝑡̅′ + sin 𝛼𝑏‾ ′

0 = cos 𝛼(𝜅𝑛‾) + sin 𝛼(−𝜏𝑛‾)

0 = (𝜅cos 𝛼 − 𝜏sin 𝛼)𝑛‾ .

 ⇒ 0 = 𝜅cos 𝛼 − 𝜏sin 𝛼 [∵ 𝑛‾ ≠ 0]

 ⇒ 𝜅cos 𝛼 = 𝜏sin 𝛼

 ⇒
𝜅

𝜏
=

sin 𝛼

cos 𝛼
.

 ⇒
𝜅

𝜏
= tan 𝛼 =  constant 

  

Remark: 

Converse is also true. 

(ie) If 
𝜅

𝜏
= constant for a curve then it should be a helix. 

Proof: 

Given 
𝑘

𝜏
= constant = 𝑐 (say)  

𝜅 = 𝑐𝜏  

We know that 

𝑡̅′ = 𝜅𝑛̅  

= 𝑐𝜏𝑛‾   

= −𝑐𝑏̅′[∴ 𝑏̅′ = −τn̅ ]  

⇒ 𝑡 ̅′ + 𝑐𝑏‾ ′ = 0  

⇒
𝑑𝑡‾

𝑑𝑠
+ 𝑐

𝑑𝑏‾

𝑑𝑠
= 0  

http://diffew.r.to/
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 ⇒
𝑑

𝑑𝑠
[𝑡̅ + 𝑐𝑏̅] = 0

 ⇒ 𝑡̅ + 𝑐𝑏̅ =  constant = 𝑎‾( say )
  

Taking scalar product of each side with 𝑡̅ 

∴ 𝑡̅ ⋅ 𝑡‾ + 𝑐𝑏‾ ⋅ 𝑡̅ = 𝑎‾ ⋅ 𝑡‾

1 + 0 = 𝑎‾ ⋅ 𝑡‾

⇒ 𝑎‾ ⋅ 𝑡‾̅ = 1 =  constant 

  

(i.e) the tangent at every point of the curve makes a constant angle with a fixed vector 𝑄. ∴ 

The curve is a helix 

Circular Helix: 

A circular helix is one which lies on the surface of a circular cylinder, the axis of the helix 

being that of the cylinder. 

It the z-axis is the axis of the helix, the parametric eqn. of the curve is   

𝑥 = 𝑎cos 𝑢, 𝑦 = 𝑎sin 𝑢, 𝑧 = 𝑏𝑢, where 𝑎 > 0 

∴ 𝑟‾ = (𝑎cos 𝑢, 𝑎sin 𝑢, 𝑏𝑢)  

If 𝑏 > 0, then the helix is right hand.  

If 𝑏 < 0, then the helix is left hand. 

In circular helix, both 𝜅 & 𝜏 are constant ⇒
𝜅

𝜏
 is constant. 

[
1

𝜅
= 𝜌 = 𝑎 sec2 𝛼 ,

1

𝜏
= 𝜎 = 𝑎cosec𝛼 sec 𝛼] .  

Note: 

The pitch of the helix = 2𝜋𝑏 = The displacement along the axis corresponding to a complete 

turn round the axis. 

Example 1: 

Prove that the helix at the constant curvature is necessary a circular helix. 

(or) 

For any general helix ' 𝑐 ' there is a simple relation bet' 𝑛 its curvature & that of the plane 

curve 𝑐1 obtained by projecting on a plane orthogonal to its axis. 

Proof: 

Let ' 𝑐 ' be a general helix and ' 𝑐1 ' be the curve obtained by projecting' ' 𝑐 '. on a plane 

orthogonal to 𝑥-axis. 

To prove that: The projection is a circular & hence the helix is a circular helix we use the 

suffix unity to denote the entire belonging to 'c1' 

Let ' 𝑃 ' be a point on 𝑐 and ' 𝑄 ' be a corresponding 𝑝𝑡 of 𝐶1.' 
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𝑂𝑃 = 𝑂𝑄 + 𝑄𝑃

𝑟‾ = 𝑟‾1 + (𝑟‾. 𝑎‾)𝑎‾
  

Differentiate with respect to 's', 

𝑑𝑟‾

𝑑𝑠
=

𝑑𝑟1

𝑑𝑠1
⋅
𝑑𝑠1

𝑑𝑠
+ [

𝑑𝑟‾

𝑑𝑠
⋅ 𝑎‾] 𝑎‾

 (𝑖𝑒)𝑡‾ = 𝑡‾1 ⋅
𝑑𝑠1

𝑑𝑠
+ [𝑡‾ ⋅ 𝑎‾]𝑎‾

 = 𝑡‾1 ⋅
𝑑𝑠1

𝑑𝑠
+ (cos𝛼)𝑎‾     …………(1)

 ∴ 𝑡‾. t̅1 = (𝑡1̅ ⋅
𝑑𝑠1

𝑑𝑠
+ cos 𝛼𝑎‾) ⋅ (𝑡1 ⋅

𝑑𝑠1

𝑑𝑠
+ cos 𝛼𝑎‾)

 = t̅1 ⋅ 𝑡1̅ (
𝑑𝑠1

𝑑𝑠
)
2

+ (𝑎‾ ⋅ 𝑎‾) cos2 𝛼 [∵ 𝑡‾ ⋅ 𝑎‾ = 0]]

1 = (
𝑑𝑠1

𝑑𝑠
)
2

+ cos2 𝛼

 ⇒ 1 − cos2 𝛼 = (
𝑑𝑠1

𝑑𝑠
)
2

 ⇒ sin2 𝛼 = (
𝑑𝑠1

𝑑𝑠
)
2

 ⇒
𝑑𝑠1

𝑑𝑠
= sin 𝛼    ………… . . (2)

  

Substituting in (1), 

𝑡‾ = 𝑡1̅ ⋅ sin 𝛼 + 𝑎‾cos 𝛼  

Differentiate with respect to 's'. 

𝑑𝑡

𝑑𝑠
=

𝑑𝑡1

𝑑𝑠1
sin 𝛼 + 0

𝑑𝑡

𝑑𝑠
=

𝑑𝑡1

𝑑𝑠1
⋅
𝑑𝑠1

𝑑𝑠
⋅ sin 𝛼

𝑡 ̅′ = 𝑡 1̅
′ ⋅

𝑑𝑠1

𝑑𝑠
sin 𝛼          [∵ (2)]

𝜅𝑛‾ ′ = 𝜅1𝑛‾1(sin 𝛼)(sin 𝛼)

𝜅𝑛‾ = 𝜅1𝑛‾1sin
2 𝛼.

  

𝑛̅ is parallel to 𝑛̅1 and 𝜅 = 𝜅1 sin
2 𝛼 

Given that helix ' 𝑐 ' has a constant curvature 𝜅 

∴ 𝜅1sin
2 𝛼 = 𝜅 = is also constant 

⇒ 𝜅1 is also constant. 

Thus the plane curve c1 is such that its curvature 𝜅1 is constant 

∴ 𝑐1 is a circle 

Thus 𝑐 is a circular helix 

Example: 

Definition: Spherical Indicatrices 

[The locus of a point whose position vector in the tangent vector 𝑡‾ to a curve 𝛾 is called the 
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Spherical Indicatrisc of the tangent to 𝛾.]  

Prove that the tangent to the indicatrix is parallel to the principal normal at the corresponding 

point of 𝛾. Show that the curvature 𝜅1 and the torsion 𝜏1 of the indicatrix are given by, 

𝜅1
2 =

(𝜅2 + 𝜏2)

𝜅2
, 𝜏1 =

(𝜅𝜏′ − 𝜅′𝜏)

𝜅(𝜅2 + 𝜏2)
 

Proof: 

From the definition of the Spherical indicatrix. 

We note that "Let ' 0 ' be the center of the unit sphere. Let us dram "o' the unit tangent vectors 

If the different points of 𝛾 in the positives direction of 𝑡‾ then the curve traced on the unit 

sphere by the extrenities of the unit tangent through ' 𝑂 ' is the spherical indicatrix". 

Then, 𝑟‾1 = 𝑡‾ 

Differentiate with respect to ' 𝑠1 '. 

𝑑𝑟1

𝑑𝑠1
=

𝑑𝑡

𝑑𝑠1
  

(i.e) 𝑡‾1 =
dt̅

𝑑𝑠
⋅
𝑑𝑠

𝑑𝑠1
 

 ⇒ 𝑡1̅ = 𝑡̅
′ ⋅

𝑑𝑠

𝑑𝑠1

 ⇒ 𝑡1̅ = κn̅
𝑑𝑠

𝑑𝑠1
 (∵

𝑑𝑠1

𝑑𝑠
= 𝜅)

 ⇒ 𝑡1̅ = 𝑛‾    ……… . . (1) (∴
𝑑𝑠1

𝑑𝑠
= 𝜅)  …………(2)

   

∴ (1) ⇒ The tangent to spherical indicatrix is parallel to 𝑛‾  of 𝛾. 

To find: 𝜅1 

Differentiate (1) with respect to ′𝑠1′, 

𝑑𝑡1

𝑑𝑠1
=

𝑑

𝑑𝑠1
(𝑛‾)  

𝜅1𝑛̅1 =
𝑑

𝑑𝑠
(𝑛̅) (

𝑑𝑠

𝑑𝑠1
)  

𝜅1𝑛̅1 = (𝜏𝑏̅ − 𝜅𝑡̅). (
1

𝜅
)  

Taking dot product of (3) with itself, 

 (𝜅1, 𝑛‾) ⋅ (𝜅1, 𝑛‾) =
1

𝜅2
(𝜏𝑏‾ − 𝜅𝑡‾)(𝜏𝑏‾ − 𝜅𝑡‾)

 ⇒ 𝜅1
2 =

1

𝜅2
(𝜏2 + 𝜅2)

  

To find 𝜏1 : 
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 (1) × (3) ⇒

𝑡‾1 × 𝜅1𝑛‾1 = 𝑛‾ × [
𝜏𝑏‾−𝑘𝑡‾

𝜅
]

𝜅1𝑏‾1 =
𝜏𝑡‾+𝜅𝑏‾

𝜅

  

𝜅𝜅1𝑏‾1= 𝜏𝑡‾ + 𝜅𝑏‾   

Differentiate with respect to ′𝑠1′, 

𝑑

𝑑𝑠1
[𝜅𝜅1]b̅ + κκ1𝐛̅𝟏′ =

d

ds1
[𝜏𝑡̅ + 𝜅𝑏̅]   

𝑑

𝑑𝑠1
[𝜅𝜅1]b̅ + κκ1(−𝜏1𝑛̅1) = [𝜏

′𝑡̅ + 𝜏𝑡̅′ + 𝜅′𝑏̅ + 𝜅𝑏̅′] (
𝑑𝑠

𝑑𝑠1
)  

𝑑

𝑑𝑠1
[𝜅𝜅1]b̅ − 𝜏1𝑛̅1κκ1 = [𝜏

′𝑡̅ + 𝜏𝜅𝑛̅ + 𝜅′𝑏̅ − 𝜅𝜏𝑛̅] (
𝑑𝑠

𝑑𝑠1
)  

𝑑

𝑑𝑠1
[𝜅𝜅1]b̅ − 𝜏1𝑛̅1κκ1 = [𝜏

′𝑡̅ + 𝜅′𝑏̅]    …………… . (4) [∵
𝑑𝑠

𝑑𝑠1
= 𝜅]  

 

Taking dot product of (3) with (4)  

  

 −𝜏1𝜅1
2𝜅 =

(𝜏𝑏‾−𝜅𝑡̅′)

𝜅
⋅ (
𝜏′𝑡̅+𝜅′𝑏‾

𝜅
)

 =
1

𝜅2
(𝜏𝜅′ − 𝜅′𝜏′)

𝜏1 =
𝜅𝜏′−𝜏𝜅′

𝜅3𝜅1
2

  

𝜏1 =
[𝜅𝜏′−𝜅′𝜏]𝜅2

𝜅3(𝜅2+𝜏2)
 ∵ 𝜅1

2 =
𝜏2+𝜅2

𝜅2

∴ 𝜏1 =
(𝜅𝜏′−𝜅′𝜏)

𝜅(𝜅2+𝜏2)

  

Example 1: 

The locus of a point whose position vector in the binormal 𝑏‾  of a curve 𝛾 is called the 

spherical Indicatrix of the Binormal to 𝛾. 

Prove that its curvature 𝜅2 & torsion 𝜏2 are g𝑛. by 

𝜅2
2 =

(𝜅2 + 𝜏2)

𝜏2
,

𝜏2 =
(𝜏𝜅1

′ − 𝜅𝜏′)

𝜏(𝜅2 + 𝜏2)

 

Proof: 

Let 𝛾 be the given curve with equation, 

𝑟‾ = 𝑟‾(𝑠). 

Let 𝑟‾2 be the position vector an any 𝑝+. on the Spherical indicatrix. 

then 𝑟‾2 = 𝑏‾ . 
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Diff wi. to ' 𝑠2 ' 

𝑑𝑟‾2

𝑑𝑠2
=

𝑑𝑏‾

𝑑𝑠2

 (i.e) 𝑡2 =
𝑑𝑏

𝑑𝑠
⋅
𝑑𝑠

𝑑𝑠2

 (ie)  𝑡2 = −𝜏𝑛‾
𝑑𝑠

𝑑𝑠2

  

⇒ 𝑡2̅ = −𝑛‾   ……… . (1) 

𝑑𝑠2
𝑑𝑠

= 𝜏      …………(2) 

 (1) ⇒ the tangent to spherical indicatrix is parallel to 𝑛̅ of 𝛾 , 

To find 𝜅1: 

Differentiate (1) with respect to ' 𝑠2
′  ', 

𝑑𝑡2

𝑑𝑠2
=

𝑑

𝑑𝑠2
[−𝑛‾]  

=
𝑑

𝑑𝑠
[−𝑛̅]

𝑑𝑠

𝑑𝑠2
[∵ 𝑏𝑦 (2)]  

(i.e) 𝑘2𝑛2 = (−𝜏𝑏‾ + κt)
1

𝜏
 ………… . (3)[∵ 𝑛̅′ = 𝜏𝑏‾ − κt ̅] 

Taking dot product of (3) with itself, 

𝜅2
2 =

𝜏2+𝜅2

𝜏2
  

 To find 𝜏2:  

 (1) × (3) ⇒ 𝑡‾2 × 𝜅2𝑛2 = (−n̅) × [
𝜏𝑏‾+𝜅𝑡‾

𝜏
]

𝜅2𝑏‾2 =
𝜏𝑡‾+𝜅𝑏‾

𝜏

  

(or) 𝜏κ𝑏‾2 = 𝜏𝑡‾ + 𝜅𝑏‾1. 

Differentiate with respect to ' 𝑆2
′  '. 

𝑑

𝑑𝑠2
[𝜏𝜅2𝑏‾2] =

𝑑

𝑑𝑠2
[𝜏𝑡‾ + 𝜅𝑏‾]

𝑑

𝑑𝑠2
[𝜏𝜅2]𝑏‾2 + 𝜏𝜅2𝑏‾2

′ = [𝜏′𝑡‾ + 𝜏𝑡‾1
′′ + 𝑏̅𝑘′ + 𝜅𝑏̅′]

𝑑𝑠

𝑑𝑠2

 = [𝜏′𝑡‾ + 𝜏𝜅𝑛‾ + 𝜅′𝑏‾ + 𝜅(−𝜏𝑛‾)]
𝑑𝑠

𝑑𝑠2
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UNIT II 

Intrinsic properties of a surface: Definition of a surface – curves on a surface – Surface of 

revolution – Helicoids – Metric- Direction coefficients – families of curves- Isometric 

correspondence- Intrinsic properties. 

Chapter 2: Sections 2.1 – 2.9 

 

2. Intrinsic properties of a surface 

2.1.Definition of a Surface: 

A surface is a locus of a point' 𝑃 'which satisfies a relation or the form  

𝐹(𝑥, 𝑦, 𝑧) = 0 ………. (1) 

This equation is called the implicit or constrained equation of the surfaces. 

An explicit form in which the coordinate of a point on the surface are expressed interns of 

two parameters. 

The parametric or freedom equation of 𝑎 surface take the form. 

 𝑥 = 𝑓(𝑢, 𝑣), 𝑦 = 𝑔(𝑢, 𝑣). 

𝑧 = ℎ(𝑢, 𝑣)  …………… (2) 

Where u and v are parameters, where 𝑘 is real value on the vary freely in some domain 𝐷. 

The functions g, f, ℎ are single values and continuous to passes continuous partial derivatives 

of rth order. In this case, the surface is said to be of class 𝑟. parameters Such as 𝑢, 𝑣 are 

frequently called linear co-ordinates, The point determined by the pair (𝑢, 𝑣) is referred as a 

point (u,v) itself. 

When the parametric equation of the surface is given, we will find suitable constrained 

equations for example. 

Consider a surface given by the parametric equation 

𝑥 = 𝑢 + 𝑣
𝑦 = 𝑢 − 𝑣 , z = 4𝑢𝑣

}……… (3) where 𝑢 and 𝑣 take real values. 

we see that 𝑥2 − 𝑦2 = (𝑢 + 𝑣)2 − (𝑢 − 𝑣)2 = 4𝑢𝑣𝑡 

𝑧 = 4𝑢𝑧  ………. (4) 

Which represents a certain hyperbolic parabolic. 

The parametric equation are not unique  

Example 1: 

𝑥 = u, 𝑦 = 𝑣, 𝑧 = 𝑢2 − 𝑣2 ………… (5) represents the same equation. Sometimes the 
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constraint equations obtain by eliminating the parameters represents more than one Surface. 

For example:- Consider the surface equations, given by 

x = u coshv
𝑦 = 𝑢 𝑠𝑖𝑛ℎ𝑣

𝑧 = 𝑢2
}………… . (6) 𝑤ℎ𝑒𝑟𝑒 𝑢 𝑎𝑛𝑑 𝑣 are real numbers 

we have 𝑥2 − 𝑦2 = 𝑢2(cosh2 𝑣 − sinh2 𝑣) = 𝑢2 = 𝜏. 

𝑥2 − 𝑦2 = 𝑧 

Which again represents equations of parabolic hyperbola 

Two representation of same surface such as, 

𝑥 = 𝑢 + 𝑣
𝑦 = 𝑢 − 𝑣 

 &  𝑥 = 𝑢    

𝑧 = 4𝑢𝑣       𝑧 = 𝑢2 − 𝑣2 are related by parametric transformation of the form. 

𝑢′ = 𝜙(𝑢, 𝑣)

𝑣′ = 𝜓(𝑢, 𝑣)
}……… . . (7) 

In certain domain 𝐷, 

This transformation is said to be proper in 𝜙 & 𝜓 are single valued & hence they have non-

Vanishing Jacobians. 

(i.e.) 
𝜕(𝜙,𝜓)

𝜕(𝑢,𝑣)
≠ 0 in 𝐷    …………(8) 

The position vector 𝑟 = (𝑥, 𝑦, 𝑧) of a point on the Surface is a funs 𝑢&𝑣 with the Same 

continuity and differentiability property here partial differentiation with respect to u and v 

will be denoted by suffixes, 
𝑟1⃗⃗⃗ ⃗ =

𝜕𝑟

𝜕𝑢′

𝑟2⃗⃗⃗⃗ =
𝜕𝑟

𝜕𝑣′

}…… . . . (9) 

Definition : 

An ordinary point is defined as 1 for which 𝑟1 × 𝑟2 ≠ 0   

(i.e.) (
𝑥1    𝑦1      𝑧1
𝑥2    𝑦2     𝑧2

) = 2. 

Show that the property of being an ordinary point is unaltered by a proper parametric 

transformation. 

Solution: 

 (i.e.) 

𝑢′ = 𝜙(𝑢, 𝑣)

𝑣′ = 𝜓(𝑢, 𝑣)

𝑟1 × 𝑟2 ≠ 0.

𝑑𝑟

𝜕𝑢′
×
𝜕𝑟

𝜕𝑣′
≠ 0.
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By the Jacobian property 
𝜕(𝜙,𝜓)

𝜕(𝑢,𝑣)
≠ 0 and  

𝜕𝑟

𝜕𝑢′
×

𝜕𝑟⃗⃗ ⃗⃗ ⃗

𝜕𝑣′
≠ 0. 

⇒ The ordinary point is unaltered by 𝑎 proper parametric Transformation. 

Note: 

A point which is not an ordinary points called a point of singularity. 

The two parametric curves through the point 𝑃 are orthogonal if 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = 0 at the point 𝑃. 

If this condition is satisfied at every point, then the two system of parametric curve are 

orthogonal. 

2.2. Curves on Surface: 

Let us consider a surface r=r(u, v) defined on a domain D and if u and v are functions at 

single parameter ’t’ then the position vector r becomes function of single parameter t and 

hence it is locus is a curve lying on a surface r=r(u, v). 

Let u=U(t), v=V(t) then r=r(U(t), V(t)) is a curve lying on a surface in D. The equation u=U(t) 

and v=V(t) are called the curvilinear of the curve on the surface.  

Parametric curves: Let r=r (u, v) be the equation of the surface defined on a domain D. 

Now by keeping u=constant (or) v=constant, we get the curves of special importance and are 

called the parametric curves. Thus if v=c(say) then as u varies then the point r=r(u, c) describe 

a parametric curves called u-curve. For u-curve, u is a parameter and determine a sense along 

the curve.  

The tangent to the curve in the sense of u increasing is along the vector. Similarly, the tangent 

to v-curve in the sense v increasing is along the vector. We have two system of parametric 

curves viz. u-curve and v-curve and since we know that 0 The parametric curve of different 

systems can’t touch each other. If =0 at a point p, then two parametric curves through the point 

p are orthogonal. If this condition is satisfied at every point.  

(i.e.) For all values of u and v in the domain D, the two system of parametric curves are 

orthogonal. Tangent plane: Let the equation of the curve be u=u(t), v=v(t) then the tangent is 

parallel to the vector 𝑟 ̇ where 

𝑟 ̇ =
𝑑𝑟

𝑑𝑡
=
𝜕𝑟

𝜕𝑢

𝑑𝑢

𝑑𝑡
+
𝜕𝑟

𝜕𝑣

𝑑𝑣

𝑑𝑡
 

= 𝑟1
𝑑𝑢

𝑑𝑡
+ 𝑟2

𝑑𝑣

𝑑𝑡
 

⟹ 𝑑𝑟 = 𝑟1𝑑𝑢 + 𝑟2𝑑𝑣 

 But 𝑟1 and 𝑟2 are non-zero and independent vectors.  

The tangent to the curve through a point p on the surface lie in the plane. This plane is called 
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the tangent plane at p.  

Tangent line to the surface: Tangent to the any curve drawn on a surface is called a tangent line 

to the surface. 

Definition: 

The normal to the surface at p is a line through p and perpendicular to the tangent plane at p. 

Since  𝑟1 and  𝑟2 lie in the tangent plane at p and passes through  𝑝1the normal is perpendicular 

to both  𝑟1 and  𝑟2 and it is parallel to  𝑟1 × 𝑟2. The normal at p is fixed by the following 

convention.  

If N denotes the unit normal vector at p, then  𝑟1, 𝑟2 and N should form convention, a right 

handed system using this convention, we get 

𝑁 =
 𝑟1 × 𝑟2
|𝑟1 × 𝑟2|

=
 𝑟1 × 𝑟2
𝐻

 𝑤ℎ𝑒𝑟𝑒 𝐻 = |𝑟1 × 𝑟2| 

Since  𝑟1 × 𝑟2 ≠ 0, we have 𝐻 = |𝑟1 × 𝑟2| ≠ 0 

⟹𝑁𝐻 = 𝑟1 × 𝑟2. 

2.3.Surface of Revolution: 

The Sphere:  

Obtain the equation of a sphere and a general surface of revolution about 𝑧-axis. When the 

polar angles that is the colatitude 𝑢 and longitude 𝑣 are take as parameter on a sphere at 

center o. radius 𝑎, The  of any point is given by, 

𝑟 = (𝑎 sin 𝑢 cos 𝑣, 𝑎sin 𝑢sin 𝑣, 𝑎cos 𝑢)   ………….. (1) 

and here the poles 𝑢 = 0 & 𝑢 = 𝜋 are the Singularities and domain of 𝑢 ⋅ 𝑣 is 0 < 𝑢 < 𝜋 and 

0 < 𝑢 ≤ 2𝜋. 

The parametric curves 𝑣 = constant ave the meridians and 𝑢 = constant are the parallel and 

the two systems ane orthogonal. 

𝑟1 = (𝑔
′cos 𝑣, 𝑔′sin 𝑣, 𝑓′)

𝑟2 = (−𝑔sin 𝑣, 𝑔cos 𝑣, 0)
 

For: 

𝑟1⃗⃗⃗ ⃗ = (𝑎cos 𝑢cos 𝑣, 𝑎 sin 𝑣 cos 𝑢,−𝑎sin 𝑢)

𝑟2⃗⃗⃗⃗ = (−𝑎sin 𝑢sin 𝑣, 𝑎sin 𝑢cos 𝑣, 0)

 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = (−𝑎
2 sin 𝑢 cos𝑢 sin 𝑣 cos 𝑣 + 𝑎2 sin 𝑢 cos𝑢 sin 𝑣 cos𝑣)

 = 0
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[

𝑟1⃗⃗⃗ ⃗ 
2 + 𝑟2

2 = 𝑎2cos2 𝑢cos2 𝑣 + 𝑎2 sin2 𝑣 cos2 𝑢 + 𝑎2sin2 𝑢 +

                          𝑎2sin2 𝑢sin2 𝑣 + 𝑎2sin2 𝑢cos2 𝑣
 = 𝑎2cos2 𝑢(1) + 𝑎2sin2 (1) + 𝑎2sin2

= 𝑎2(1) + 𝑎2sin2 𝑢

  = 𝑎[1 + sin2 𝑢)]

 

This show that the Normal, 𝑁⃗⃗⃗ is directed outwards from the sphere. 

The General Surface of Revolution:- 

Taking 𝑧-axis for the axis of revolution, let the generating curve in the 𝑥o𝑧 plane is given by 

the parametric equations 𝑥 = 𝑔(𝑢), 𝑦 = 0, 

𝑧 = 𝑓(𝑢) 

If 𝑣, 𝑢 the angle of rotation about 𝑧 axis the position vector u, v, is given by, 

𝛾 = (𝑔(𝑢) cos 𝑣 , 𝑔(𝑢)sin 𝑣, 𝑓(𝑢)) 

The domain of (𝑢, 𝑣) is 0 ≤ 𝑣 ≤ 2𝜋 as in the case of the sphere 𝑣 = constant are medians 

given by the various positions of the generating curve & 𝑢 = constant are the parallels. 

(i.e.,) Circular planes parallel to 𝑥𝑜𝑦 plane the respective vector 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗  are 

 𝑟1⃗⃗⃗ ⃗ = (𝑔
′cos 𝑣, 𝑔′sin 𝑣, 𝑓′) 

𝑟2⃗⃗⃗⃗ = (−𝑔sin 𝑣, 𝑔cos 𝑣, 0) 

how see that 𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ = 0, ∀𝑢, 𝑣. 

𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ = −𝑔𝑔
′cos 𝑣sin 𝑣 + 𝑔𝑔′cos 𝑣sin 𝑣 − 0 = 0 

(i.e.,) the parameters are orthogonal the normal vector N⃗⃗⃗ is given by 

𝑁⃗⃗⃗ =
𝑟1⃗⃗⃗⃗⃗×𝑟2⃗⃗⃗⃗⃗

𝐻
, where 𝐻 = |𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ |

𝑟1⃗⃗⃗ ⃗ = (𝑔
′cos 𝑣, 𝑔′sin 𝑣, 𝑓′𝑔′cos 𝑣, 𝑔′sin 𝑣, 𝑓′)

 

 𝑟2 = (−𝑔sin 𝑣1, 𝑔 cos v , 0,2sin 𝑣cos 𝑣, 0) 

𝑟1 × 𝑟2 = |
𝑖 𝑗 𝑘⃗⃗

𝑔′cos 𝑣 𝑔′sin 𝑣 𝑓′

−𝑔sin 𝑣 𝑔 cos v 0

| 

= 𝑖(0 − 𝑓′𝑔cos 𝑣) − 𝑗(0 + 𝑓′ gsin 𝑣) + 𝑘⃗⃗(𝑔𝑔′ cos2 𝑣 + 𝑔𝑔′sin2 𝑣) 

𝑟1 × 𝑟2 = (−𝑓
′𝑔 cos𝑣 , −𝑓′𝑔 sin2 𝑣 , 𝑔𝑔′) 

𝑁 =
𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗

𝐻
 

𝑁 =
(−𝑓′ g cosv, −𝑓′𝑔sin 𝑣, 𝑔𝑔1)

𝑔(𝑓12 + 𝑔12)1/2
 

It’s after convenient to take 𝑔(𝑢) = 𝑢. for example the right circular cone of semi-vertical 

angle 𝛼 is given by 𝑔(𝑢) = 𝑢, 𝑓(𝑢) = 𝑢cot 𝛼 
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The Anchor Ring: 

This is obtained by rotating a circle of radius ' 𝑎 ' about a line in its plane at a distance 𝑏 > 𝑎 

from the centre 

Let the axis of rotation be the z-axis let 𝑀 be a point ion the generating curve that lies in the 

𝑥oz plane. If m=g(𝑢), 0, f(u) 

then g(𝑢) = 𝑥 − coordinateof 𝑚 

  𝑠𝑓(𝑢) = 𝑧 - coordinate of 𝑚 

= 𝑎sin 𝑢 

Let 𝑣 denote the angle of rotation. then the position vector of the point 𝑢, 𝑣 is given by, 

𝛾 = (𝑔(𝑢)cos 𝑣, 𝑔(𝑢)sin 𝑣, 𝑓(𝑢))

 = (𝑏 + 𝑎 cos𝑢 cos 𝑣, (𝑏 + 𝑎cos 𝑢)sin 𝑣, 𝑎sin 𝑢)
 

Here the domain of 𝑢, 𝑣 is given by, 0 ⩽ 𝑢 ⩽ 2𝜋, 0 ≤ 𝑣 ≤ 2𝜋. Also the parameter curves 

𝑢 = constant 𝑣 = constant are circles and  

𝑟1⃗⃗⃗ ⃗ =
𝑑𝑟

𝑑𝑢
= (−𝑎 sin 𝑢 cos 𝑣,−𝑎 sin 𝑢 sin 𝑣, a cos u) 

𝑟2⃗⃗⃗⃗ =
𝑑𝛾

𝑑𝑣
= (−(𝑏 + 𝑎cos 𝑢)sin 𝑣, (𝑏 + 𝑎cos 𝑢)cos 𝑣, 0) 

𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = 0 

Hence both the system of parametric curves is orthogonal. 

The normal vector 𝑁⃗⃗⃗ is given by, 

𝑁⃗⃗⃗ =
𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗

|𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ |

𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ = |
𝑖 𝑗 𝑘⃗⃗

−𝑎sin 𝑢cos 𝑣 −𝑎sin 𝑢sin 𝑣 𝑎cos 𝑢
−(𝑏 + 𝑎cos 𝑢)sin 𝑣 (𝑏 + 𝑎cos 𝑢)cos 𝑣 0

|

𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ = (0 − 𝑎 cos𝑢(cos 𝑣) (𝑏 + 𝑎 cos𝑢) − 𝑎 cos 𝑢 sin 𝑣(𝑏 + 𝑎 cos𝑢) − 𝑎sin 𝑢(𝑏 + 𝑎cos 𝑢)

                    

𝑁⃗⃗⃗ = (−cos 𝑢 cos 𝑣, − cos 𝑢 sin 𝑣, −sin 𝑢)

 

2.4.Helicoids: 

A helicoid is a surface, generated by the Screw motion of a curve about a fixed line known as 

the axis. 

The various position of a generating curve are obtained by first translating it through a 

distance 𝜆, parallel to the axis and then rotating through an angle 𝑉 about the axis, and then 

rotating through an angle 𝑣 about the axis, where 
𝜆

𝑣
 has a constant value ' 𝑑 '. 

The distance travelled in one complete revolutions is 2𝜋𝑎. 
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The constant 2𝜋𝑎 is called the pitch of the helicoid. The pitch is positive or negative arc as 

the helicoid is right (or) left handed and the pitch is zero, for a given surface of revolution. 

Equation the General Helicoids: 

The section of the surface by the planes containing the taxis are congruent plane curves and 

the Surface is generated by the Screw motion of anyone of the curves 

There is no loss of generality, if the generating curve is assumed to be plane. which is given 

by the equations of the form, 𝑥 = 𝑔(𝑢), 𝑦 = 0, 𝑧 = 𝑓(𝑢). 

Let Γ be the point on the helicoid that corresponds to (𝑢, 𝑣). where 𝑣 is the angle of rotation. 

Then we have 𝑥𝑝 = 𝑂𝑄. 

 = 𝑔(𝑢)sin (90∘ − 𝑣)

𝑥𝑝 = 𝑔(𝑢)cos 𝑣

𝑦𝑝 = 𝑂𝑅

 = 𝑔(𝑢)cos (90∘ − 𝑣)

𝑦𝑝 = 𝑔(𝑢)sin 𝑣

 

∴ The position vector of any point on the generate helicoid given by, 

𝑟 = (𝑔(𝑢) cos 𝑣 , 𝑔(𝑢) sin 𝑣 , 𝑓(𝑢) + 𝑎𝑣) 

Now the parametric curves, 𝑉𝐸  constant are the various le position of the pic 

𝑢 = constant are the circular helices. 

Diff. with respect to r 'u  

𝑟1⃗⃗⃗ ⃗ = (𝑔
′(𝑢)cos 𝑣, 𝑔′(𝑢)sin 𝑣, 𝑓′(𝑢))  

Diff. with respect to 𝑟 

𝑟2⃗⃗⃗⃗ = (−𝑔(𝑢) sin 𝑢 , 𝑔(𝑢) cos 𝑣 , 𝑎) 

The parametric curves are orthogonal if, 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = 0 ⇒ 𝑎𝑓′(𝑢) = 0. 

𝑎 = 0 ⇒ It is a surface revolution 

𝑓′(𝑢) = 0 ⇒ 𝑓(𝑢) =  constant  

⇒ The helicoid is rigid helicoid. 

Definition: Right Helicoid 

This is helicoid, generated by a screw motion of a curve, straight line which meets the axis at 

right angle. 

Taking the axis as the 𝑧-axis, the position vector of a points is, 𝛾 = (𝑢 cos𝑣 , 𝑢sin 𝑣, 𝑎𝑣) 

where 𝑢 is the distance from the axis and v is the angle of rotation. 

Here the generate being assumed to be to 𝑥-axis when 𝑣 = 0. 
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𝑉𝑀 = 𝑥 = 𝑢sin (90 − 𝑣)

 = 𝑢cos 𝑣
𝑂𝑀 = 𝑦 = 𝑢cos (90 − 𝑣)

 = 𝑢sin 𝑣
𝑁𝑃 = z = 𝜆 = 𝑎𝑣

 

Example 1: 

A helicoid is generated by the Screw motion of a straight line skew to the axis. Find the curve 

coplanar with the axis, which generates the same helicoid. 

Proof : 

Let 𝑐 be the Shortest-distance between the 𝑧-axis and the skew line. 

Let 𝛼 be the angle of relation between the axis and the straight line. 

Then any point the skew line is, 

𝑥 = 𝑐
𝑦 = 𝑢sin 𝛼

𝑧 = 𝑢cos 𝛼

 

Here, 𝑢 is the distance of any point on the Skew line from to 𝑥-axis 

To derive the equations of the helicoid 

Let 𝑃 denote the point on the helicoid obtained by the combination of rotation through an 

angle 𝑣 about the 𝑧-axis and the translation with a distance a parallel to the axis. 

∴ The position vector of any point 𝑝 is given by, 

𝛾 = (𝑐cos 𝑣 − 𝑢 sin 𝛼 sin 𝑣, (sin 𝑣 + 𝑢sin 𝛼cos 𝑣, 𝑢cos 𝛼 + 𝑎𝑣) 

The required plane curve is the section of the Surface by the plane 𝑦 = 0. 

𝑐 sin 𝑣 + 𝑢sin 𝛼cos 𝑣 = 0.
 𝑢sin 𝛼cos 𝑣 = −sin 𝑣, 𝑐

 

𝑢 sin 𝛼 = −𝑐tan 𝑣 

𝑥 cot 𝑟 = 𝑐 cos 𝑣 + 𝑐 tan 𝑣 sin 𝑣 

= 𝑐cos 𝑣 +
𝑐sin2 𝑣

cos 𝑣
=
𝑐(cos2 𝑣 + sin2 𝑣)

cos 𝑣
 

= csec 𝑣 ,  

𝑦 of 𝑟 = 0 

𝑧 of 𝑟 = 𝑎𝑣 + 𝑢cos 𝛼 = 𝑎𝑣 + 𝑢cos 𝛼 ⋅
sin 𝛼

sin 𝛼
 

= 𝑎𝑣 + cot 𝛼 + cot 𝛼 (−𝑐 𝑡an𝑣) 

= 𝑎𝑣 − 𝑐cot 𝛼tan 𝑣 
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2.5. Metric: 

Obtain the expression for 𝑑𝑠 2 where 𝑠 is the arc length of a curve 𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡) on a 

surface 𝑟 = 𝑟(𝑢⃗⃗, 𝑣) 

Proof : 

On a given surface 𝑟 = 𝑟(𝑢, 𝑣) 

consider the curve given by, 

𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡) 

Then 𝑟 is a functions of 𝑡 along the curve and the arc length 𝑠 is related to the parameter. ' 𝑡 ' 

by the equations. 

 

(
𝑑𝑠

𝑑𝑡
)
2

= (
𝑑𝑟

𝑑𝑡
)

2

 = (
𝑑𝑟⃗⃗⃗⃗⃗

𝑑𝑢
⋅
𝑑𝑢

𝑑𝑡
+
𝑑𝑟

𝑑𝑣
⋅
𝑑𝑣

𝑑𝑡
)

2

 = (𝑟1
𝑑𝑢

𝑑𝑡
+ 𝑟2

𝑑𝑢

𝑑𝑡
)
2

 = 𝑟1
2 (
𝑑𝑢

𝑑𝑡
)
2

+ 2𝑟1𝑟2
𝑑𝑢

𝑑𝑡
⋅
𝑑𝑣

𝑑𝑡
+ 𝑟2

2 (
𝑑𝑣

𝑑𝑡
)
2

(
𝑑𝑠

𝑑𝑡
)
2

 = 𝐸 (
𝑑𝑢

𝑑𝑡
)
2

+ 2𝐹 ⋅
𝑑𝑢

𝑑𝑡
⋅
𝑑𝑢

𝑑𝑡
+ 𝐺 (

𝑑𝑣

𝑑𝑡
)
2

…………(1)

 

 where 𝐸 = 𝑟1
2, 𝐹 = 𝑟1𝑟2, 𝐺 = 𝑟2

2 

Equations (1), becomes, 

𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 ……………. (2) 

we consider these quadratic differential For 𝑚 as defined on the surface. 

Geometrically (ds) can be interpreted as the infinite decimal distance from the point (𝑢, 𝑣) to 

the point (𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣), 

we see that, (𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ ) = 𝑟1
2 ⋅ 𝑟2⃗⃗⃗⃗ 2 − (𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ )

2. 

(ie) the co-effi Satisfy the eqns, 

𝐻2 = 𝐸𝐺 − 𝐹2 > 0 

where 𝐻 = (𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ ) 

(i.e.,) 𝐻 = ±√𝐸𝐺 − 𝐹2 

Example 1: 

For the paraboloid 𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑢2 − 𝑣2 find 𝐻. 

Solution: 
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𝑟 = (𝑢, 𝑣, (𝑢2 − 𝑣2))

𝑟1⃗⃗⃗ ⃗ =
𝑑𝑟

𝑑𝑢
= (1,0,2𝑢)

𝑟2⃗⃗⃗⃗ =
𝑑𝑟

𝑑𝑣
= (0,1,−2𝑣).

𝐸 = 𝑟1
2 = 1 + 0 + 4𝑢2 = 1 + 4𝑢2

𝐺 = 𝑟2
2 = 0+ 1 + 4𝑣2 = 1 + 4𝑣2

 

𝐹 = 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = 0 + 0 − 4𝑢𝑣

𝐻 = √𝐺𝐸 − 𝐹2 = √(1 + 4𝑢2)(1 + 4𝑣2) − 16𝑢2𝑣2
 

𝐻 = √1 + 4𝑢2 + 4𝑣2 + 16𝑢2𝑣2 − 16𝑢2𝑣2 

Note: 

when 𝐹 = 0, (i.e.) 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = 0 

This Show that the parametric curves are orthogonal. 

Angle Between parametric curves: 

The parametric directions are given 𝑟1 & 𝑟2⃗⃗⃗⃗  angle 𝑤. where (0 < 𝜔 < 𝜋) between them is 

given by, 

cos 𝜔 =
𝑟1⃗⃗⃗ ⃗ − 𝑟2⃗⃗⃗⃗

|𝑟1⃗⃗⃗ ⃗||𝑟2⃗⃗⃗⃗ |
=

𝐹

(𝐸𝐺)1/2

sin 𝜔 =
𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗

|𝑟1⃗⃗⃗ ⃗||𝑟2⃗⃗⃗⃗ |
=

𝐻

(𝐸𝐺)1/2

 

In general, the angle between the parametric directions varies from point to point. 

Element of Area: 

Consider the figure with four vertices (𝑢, 𝑣), (𝑢 + 𝛿𝑢, 𝑣), (𝑢 + 𝛿𝑢, 𝑣 + 𝛿𝑣), (𝑢, 𝑣 + 𝛿𝑣)𝑗 

joined by, the above figure is approximately a parallelogram with adjacent series 𝑟1𝛿𝑢 and 

𝑟2𝛿𝑣 

The area of the parallelogram 

 

 = |𝑟1⃗⃗⃗ ⃗𝛿𝑢 × 𝑟2⃗⃗⃗⃗ 𝛿𝑣| = |𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ |𝛿𝑢𝛿𝑣

 = 𝐻 𝛿𝑢𝛿𝑣

 

∴ The elementary area of the surface is given by 𝑑𝑠 = H 𝑑𝑣𝑑u. 

Example 2:   

 For the Anchor Ring in section 2.3: 

 𝛾 = (𝑏 + 𝑎cos 𝑢)cos 𝑣, (𝑏 + 𝑎cos 𝑢)sin 𝑣, 𝑎sin 𝑢) os 0 ≤ 𝑢 ≤ 2𝜋, 0 ≤ 𝑣 ≤ 2𝜋. Find the 

surface area of the anchor ring S 
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Solution:  

 We know that, 𝑑𝑠 = 𝐻 dudv. where 𝐻 = |𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ |. 

𝑟1⃗⃗⃗ ⃗ =
𝜕𝑟

𝜕𝑢
= (−𝑎 sin 𝑢 cos 𝑣, −a sinu sin 𝑣, 𝑎cos 𝑢)

𝑟2⃗⃗⃗⃗ =
𝜕𝑟

𝜕𝑣
= (−(𝑏 + 𝑎cos 𝑢)sin 𝑣, (𝑏 + 𝑎cos 𝑢)cos 𝑣, 0)

𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ = |
𝑖 𝑗 𝑘⃗⃗

−𝑎 sin 𝑢 cos 𝑣 −𝑎 sin 𝑢 sin 𝑣 𝑎cos 𝑢
−(𝑏 + 𝑎cos 𝑢)sin 𝑣 (𝑏 + 𝑎cos 𝑢)cos 𝑣 0

|

 = 𝑖(−𝑎(𝑏 + 𝑎 cos 𝑢) cos𝑢 cos 𝑣) − 𝑗(𝑎(𝑏 + 𝑎 cos𝑢) cos 𝑢 sin 𝑣

 +𝑘⃗⃗(−𝑎 sin 𝑢 (𝑏 + 𝑎cos 𝑢)cos2 𝑣 − 𝑎sin 𝑢 (𝑏 + 𝑎 cos 𝑢)sin2 𝑣

𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ = (−𝑎cos 𝑢cos 𝑣(𝑏 + 𝑎cos 𝑢), −𝑎 sin 𝑣 cos𝑢 (𝑏 + 𝑎cos 𝑢) ) 

                   −𝑎(𝑏 + 𝑎cos 𝑢)sin 𝑢

|𝑟1⃗⃗⃗ ⃗ × 𝑟2|
2 = 𝑎2 cos2 𝑢 cos2 𝑣 (𝑏 + 𝑎cos 𝑢)2 + 𝑎2cos2 𝑢)sin2 𝑣

                       (𝑏 + 𝑎cos 𝑣)2 + 𝑎2sin2 𝑢(𝑏 + 𝑎cos 𝑢)2

 = 𝑎2cos2 𝑢(𝑏 + 𝑎cos 𝑢)2 + 𝑎2sin2 𝑢(𝑏 + 𝑎cos 𝑢)2

|𝑟1⃗⃗⃗ ⃗ × 𝑟2|
2 = 𝑎2(𝑏 + 𝑎 cos 𝑢)2

𝐻 = |𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ | = 𝑎(𝑏 + 𝑎 cos 𝑢)

 

∴ Surface area of the anchor ring 

= ∫  
2𝜋

0

∫  
2𝜋

0

𝐻𝑑𝑢𝑑𝑣 

 = ∫  
2𝜋

0

 ∫  
2𝜋

0

  (𝑎(𝑏 + 𝑎) cos 𝑢 𝑑𝑢 𝑑𝑣).

 = ∫  
2𝜋

0

 ∫  
2𝜋

0

  (𝑎𝑏 + 𝑎2cos 𝑢)𝑑𝑢 𝑑𝑣 ⇒ ∫  
2𝜋

0

 𝑎(𝑏2𝜋 + 𝑎(0)𝑑𝑣

 = ∫  
2𝜋

0

 𝑎𝑏2𝜋𝑑𝑣 = 𝑎𝑏 ⋅ 2𝜋 ⋅ 2𝜋 = 4 𝜋2ab

 

Metric is invariant under parametric Transformation: 

Let 𝑢′ = 𝜙(𝑢, 𝑣) and 

𝑣′ = 𝜓(𝑢, 𝑣) be a prove that 

𝑟1
′ =

𝜕𝑟

𝜕𝑢′
 =
𝜕𝑟

𝜕𝑢
⋅
𝜕𝑢

𝜕𝑢′
+
𝜕𝑟

𝜕𝑣

𝜕𝑣

𝜕𝑢′ 

= 𝑟1
𝜕𝑢

𝜕𝑢′
+ 𝑟2⃗⃗⃗⃗

𝜕𝑣

𝜕𝑢′
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𝑟2⃗⃗⃗⃗
′
=
𝜕𝑟

𝜕𝑣′
 =
𝜕𝑟

𝜕𝑢
⋅
𝜕𝑢

𝜕𝑣′
+
𝜕𝑟

𝜕𝑣
⋅
𝜕𝑣

𝜕𝑣′

 = 𝑟1
𝜕𝑢

𝜕𝑣′
+ 𝑟2⃗⃗⃗⃗

𝜕𝑣

𝜕𝑢′

 

In terms of the parameter 𝑢′𝑎𝑛𝑑 𝑣′ 

 

𝐸′(𝑑𝑢′)2 + 2𝐹′𝑑𝑢′𝑑𝑣′ + 𝐺′(𝑑𝑣′)2
 

=𝑟1
′2(𝑑𝑢′)2 + 2(𝑟1

′, 𝑟2⃗⃗⃗⃗ )𝑑𝑢
′ ⋅ 𝑑𝑣′ + 𝑟2

′2(𝑑𝑣′)2
 

= (𝑟1
′𝑑𝑢′ + 𝑟2⃗⃗⃗⃗

′
𝑑𝑣′)

2
 

 = (𝑟1
′𝑑𝑢′ + 𝑟2⃗⃗⃗⃗  

′𝑑𝑣′)

 = {(𝑟1⃗⃗⃗ ⃗
𝜕𝑢

𝜕𝑢′
+ 𝑟2⃗⃗⃗⃗

𝜕𝑣

𝜕𝑢′
) 𝑑𝑢′ + (𝑟1⃗⃗⃗ ⃗

𝜕𝑢

𝜕𝑣′
+ 𝑟2⃗⃗⃗⃗

𝜕𝑣

𝜕𝑣′
) 𝑑𝑣′}

2

 

= {𝑟1 (
𝜕u

𝜕𝑢′
𝑑𝑢′ +

𝜕𝑢

𝜕𝑣′
𝑑𝑣′) + 𝑟2 (

𝜕𝑣

𝜕𝑢′
𝑑𝑢′ +

𝜕𝑣

𝜕𝑣′
𝑑𝑣′)}

2

 

= {𝑟1⃗⃗⃗ ⃗𝑑𝑢 + 𝑟2⃗⃗⃗⃗ 𝑑𝑣}
2 

 = 𝑟1
2(𝑑𝑢)2 + 2(𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ )𝑑𝑢𝑑𝑣 + 𝑟2

2(𝑑𝑣)2

 = 𝐸(𝑑𝑢)2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺(𝑑𝑣)2.
 

∴ The metric is invariant under the parameter transformation but the co-efficient 𝐸, 𝐹, 𝐺 are 

not invariant. 

2.6.Direction Coefficients: 

At a point ' 𝑝 ' of a surface, there are three independent vectors. 𝑁⃗⃗⃗, 𝑟1 and 𝑟2⃗⃗⃗⃗ . Every vector 𝑎⃗ 

at 𝑓 can therefore be expressed as, 

𝑎⃗ = 𝑎𝑛 𝑁⃗⃗⃗ + 𝜆𝑟1⃗⃗⃗ ⃗ + 𝜇𝑟2⃗⃗⃗⃗  

[line of intersection of the plane containing 𝑁⃗⃗⃗ and 𝑎⃗ with the tangent plane at 𝑃] 

Angles in the tangent plane: 

Find the angle between two directions : 

Angle in the tangent plane will be measured in the sense of relation. which carries the 

direction of 𝑟1⃗⃗⃗ ⃗ to the direction of 𝑟2⃗⃗⃗⃗  through an angle between 0 and 𝜋. 

This is also the positive sense of relation about 𝑁⃗⃗⃗ [ If (𝑙,𝑚) and (𝑙′, 𝑚′) are the direction co-

eff of two directions, at the same point the correspond unit vectors are 

𝑎⃗ = 𝑙𝑟1⃗⃗⃗ ⃗ + 𝑚𝑟2⃗⃗⃗⃗

𝑏⃗⃗ = 𝑙′𝑟1⃗⃗⃗ ⃗ + m′𝑟2⃗⃗⃗⃗
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∴ The angle between the direction is given by,  

cos 𝜃 = 𝑎⃗ ⋅ 𝑏⃗⃗  × 𝑁⃗⃗⃗ ⋅ sin 𝜃 = 𝑎⃗ × 𝑏⃗⃗ 

we have, 

𝑎⃗ ⋅ 𝑏⃗⃗ = (𝑙𝑟1⃗⃗⃗ ⃗ + 𝑚𝑟2⃗⃗⃗⃗ ) ⋅ (𝑙
′𝑟1⃗⃗⃗ ⃗ + 𝑚

′𝑟2⃗⃗⃗⃗ )

 = 𝑙𝑙′𝑟1
2 + (𝑙𝑚′ + 𝑙′𝑚)𝑟1⃗⃗⃗⃗⃗⃗ 𝑟2⃗⃗⃗⃗ + 𝑚𝑚

′𝑟2⃗⃗⃗⃗

cos 𝜃 = 𝐸𝑙𝑙′ + 𝐹(𝑙𝑚′ + 𝑙′𝑚) + 𝐺𝑚′  …………(3)

𝑎⃗ × 𝑏⃗⃗ = (𝑙𝑟1⃗⃗⃗ ⃗ + 𝑚𝑟2⃗⃗⃗⃗ ) × (𝑙
′𝑟1⃗⃗⃗ ⃗ + 𝑚

′𝑟2⃗⃗⃗⃗ )

 = 𝑙𝑚′(𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ ) + 𝑙
′𝑚(𝑟2⃗⃗⃗⃗ × 𝑟1⃗⃗⃗ ⃗)

= (𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ )(𝑙𝑚
′ − 𝑙′𝑚)

 |𝑎⃗ × 𝑏⃗⃗| = |𝑟1⃗⃗⃗ ⃗ × 𝑟2⃗⃗⃗⃗ |(𝑙𝑚
′ − 𝑙′𝑚)

 ⇒ |𝑁 ⋅ sin 𝜃| = 𝐻(𝑙𝑚′ − 𝑙′𝑚)

 ∴ sin 𝜃 = 𝐻(𝑙𝑚′ − 𝑙′𝑚)   ………… . (4)

 

Example 1: 

Find the coefficient of the direction which makes an angle 
𝜋

2
 with the direction whose co-

efficients are (𝑙, 𝑚). [ Interms of given direction (𝜆,𝑚)]. 

Solution: 

Let (𝑙′ , 𝑚′ ) be the required direction co-efficient in the direction. which makes an angle 𝜋/2 

with the given direction. 

cos 𝜃 = 𝐸𝑙𝑙′ + 𝐹(𝑙𝑚′ + 𝑙′𝑚) + 𝐺(𝑚′)

sin 𝜃 = 𝐻′(𝑙𝑚′ − 𝑙′𝑚)′.

 

Then from (3) &  (4) 

0 = 𝐸𝑙𝑙′ + 𝐹(𝑙𝑚′ +(n) +𝐺𝑚𝑚′   ……………. (i) 

𝐼 = 𝐻(ℓ𝑚′ − 𝑙′𝑚)      ………… (𝑖𝑖) 

From (i) 

𝑙′(𝐸𝑙 + 𝐹𝑚) + 𝑚′(𝐹𝑙 + 𝐺𝑚) = 0

⇒𝑙′(𝐸𝑙 + 𝐹𝑚) = −𝑚′(𝐹𝑙 + 𝐺𝑚)

⇒
𝑙′

(𝐹𝑙 + 𝐺𝑚) 
−

𝑚′

𝐸𝑙 + 𝐹𝑚
= 𝛼

⇒𝑙′ = −𝛼(𝐹𝑙 + 𝐺𝑚)

𝑚′ = 𝛼(𝐸𝑙 + 𝐹𝑚)

 

Sub (ii) 

1 = 𝐻(𝑙𝛼(𝐸𝑙 + 𝐹𝑚) +𝑚𝛼(𝐹𝑙 + 𝐺𝑚)) 
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1 = 𝛼𝐻(𝐸𝑙2 + 2𝐹𝑙𝑚 + 𝐺𝑚2)

1 = 𝛼𝐻(1)

𝛼 =
1

𝐻

 

𝑙′ = −
1

𝐻
(𝐹𝑙 + 𝐺𝑚) 

[𝑚′ =
1

𝐻
(𝐸𝑙 + 𝐹𝑚)(𝑙′,𝑚′) are indeed directed co-efficient. 

𝐸𝑙′2 + 2𝐹𝑙′𝑚′ + 𝐺𝑚′2 =
𝐸

𝐻2
(𝐹𝑙 + 𝐺𝑚)2 −

2𝐹

𝐻2
(𝐹𝑙 + 𝐺𝑚)(𝐸𝑙 + 𝐹𝑚) +

𝐺

𝐻2
(𝐸𝑙 + 𝐹𝑚)2 

=
1

𝐻2
[𝐸𝐹2𝑙2 + 2𝐸𝐹𝐺𝑙𝑚 + 𝐸𝐺𝐺2𝑚2 − 2𝐸𝐹2𝑙2 − 2𝐹3𝑙 − 2𝐸𝐹𝐺𝑙𝑚 

                   −2𝐹2𝐺𝑚2 + 𝐸2𝐺𝑙2 + 2𝐸𝐹𝐺𝑙𝑚 + 𝐹2𝐺𝑀 

=
1

𝐻2
[𝐸𝑙2(𝐸𝐺 − 𝐹2) + 2𝐹𝑙𝑚 ∈ 𝐸𝐺 − 𝐹2) + 𝐺𝑚2(𝐸𝐺 − 𝐹2) 

=
𝐸𝐺 − 𝐹2

𝐸𝐺 − 𝐹2
[𝐸𝑙2 + 2𝐹𝑙𝑚 + 𝐺𝑚2]      𝐻 = ±√𝐸𝐺 − 𝐹2

=(∵ 𝐻2 = 𝐸𝐺 − 𝐹2)

= 1

 

[∴ ( ℓ′, 𝑚′) direction coefficient      ⇒ 𝐸𝑙′2 + 2𝐹𝑙′𝑚′ + 𝐺𝑚′2 = 1].  

Exercises: 

Find the identity satisfied by direction coefficient in relation to the co-efficient of the metric 

ds 2. Find the angle between two directions obtain (𝑙, 𝑚) in terms of given 

directions ratio (λ, μ) 

(or) 

On a surface 𝑟 = 𝑟 (u, 0) . Let u over line u=u(t), and v = v(t) respectively a curve obtain an 

expression for the angle between them and also find the elemental area in terms of the co-

efficient of the metric ds2. use this to complete the area of whole anchor ring 

g(u) = b + a cos u, f(u) = a sin u 

2.7. Families of Curves: 

Let  𝜙(𝑢, 𝑣) be a single valued function of u,v possessing continuous partial derivative 

 𝜙1 ,  𝜙2 which do not vanish. Then the implicit equation 𝜙(𝑢, 𝑣) = 𝑐  where c is a real 

parameter gives a family of curves on the surface 𝑟 = 𝑟(𝑢, 𝑣) 

Properties:  

i) Through every point (u, v) on the surface there passes one and only member of the 

family. 
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ii) Let  𝜙(𝑢0,  𝑣0) =  𝑐1where  (𝑢0,  𝑣0) is any point on the surface. Then 

 𝜙(𝑢0,  𝑣0) =  𝑐1 is a member of the family passing through  (𝑢0,  𝑣0). Hence 

through every point on the surface, there passes one and only one member of the 

family. 

iii) The direction ratios of the tangent to the curve of the family at (u, v) is 

 (−𝜙2 , 𝜙1 ).  

Theorem 1: 

The curve of the family 𝜙( u, v)=constant are the solution of the differential equation 

 𝜙1du+  𝜙2 dv=0 ......(1) and conversely a first order differential equation of the form  

P(u, v)du + Q(u, v)dv=0 .....(2) where P and q are differential functions which do not vanish 

simultaneously define a family of curves. 

Proof: 

Since  𝜙1 =
𝜕𝜙

𝜕𝑢
 and  𝜙2 =

𝜕𝜙

𝜕𝑣
  , we get from (1), 

𝜕𝜙

𝜕𝑢
 𝑑𝑢 +

𝜕𝜙

𝜕𝑣
 𝑑𝑣 = 0 =0 giving 𝑑𝜙 =0  

Hence we conclude that 𝜙 (u, v)=c. Thus as the constant c varies, the curves of the family are 

the different solutions of the differential equation. 

Conversely let us consider the equation (2). Unless the equation is exact, it is not in general 

possible to find a single function 𝜙 (u, v) such that  𝜙1=P and  𝜙2=Q.  

However we can find integrating factor  𝜆(u ,v) such that  𝜙1 = 𝑃𝜆 and  𝜙2 = 𝑄𝜆. .  

Rewriting the equation (2) in the form 𝜆𝑃 𝑑𝑢 + 𝜆𝑄 𝑑𝑣 = 0, we get  𝜙1du+  𝜙2 dv=0, so that 

the solution of the equation is 𝜙(𝑢, 𝑣) = 𝑐  .  

Further from (2), 
𝑑𝑢

𝑑𝑣
= −

𝑄

𝑃
  so that the direction ratios of the tangent to the curves of the 

family at the point P is (-Q,P). 

Theorem 2: 

 For a variable direction at P, |
𝑑𝜙

𝑑𝑠
|is maximum in a direction orthogonal to the curve 

 𝜙(u, v)=constant through P and the angle between (−𝜙2 , 𝜙1 ) and the orthogonal direction 

in which 𝜙 is increasing is 
𝜋

2
. 

Proof: 

Let P (u, v) be any point on the surface. We shall show that 𝜙 increases most rapidly at P in a 

direction orthogonal to the curve of the family passing through P. For this, we prove that 
𝑑𝜙

𝑑𝑠
 

has the greatest value in such a direction. 

 Let (l, m) be any direction through P on the surface. Let 𝜇 be the magnitude of the vector 
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𝜙 = (−𝜙2 , 𝜙1). Let 𝜃 be the angle between (l, m) and the vector 𝜙. 

Let us take 𝑎 = l𝑟1 +m𝑟2, 𝑏 = −𝜙2𝑟1 +𝜙1𝑟2  

We shall find 𝑎 × 𝑏 expressing sin𝜃 in terms of H and 𝜇 =|b| where  

From the definition |𝑎| = 1. 

 We have |𝑎 × 𝑏| = 𝜇 sin𝜃 ....(1)  

and 𝑎 × 𝑏 = (𝑙𝜙1 +𝑚𝜙2)(𝑟1 × 𝑟2) so that  

|𝑎 × 𝑏| = 𝐻(𝑙𝜙1 +𝑚𝜙2) ….......(2)  

Equating (1) and (2), we obtain  

𝜇 sin𝜃 = 𝐻(𝑙𝜙1 +𝑚𝜙2)............... (3)  

Since (l, m) are the direction coefficient of any direction through P, we have  

l= 
𝑑𝑢

𝑑𝑠
,   m=

𝑑𝑣

𝑑𝑠
 ..............(4)  

Using (4) in (3) and simplifying, we get 𝜇 sin𝜃 = 𝐻
𝑑𝜙

𝑑𝑠
 

Now 𝜇 and H are always positive and do not depend on (l, m).  

Hence 
𝑑𝜙

𝑑𝑠
 has maximum value 

𝜇

𝐻
 when sin 𝜃 has maximum value in which case 𝜃 =

𝜋

2
 .  

In a similar manner, 
𝑑𝜙

𝑑𝑠
 has minimum value -

𝜇

𝐻
 , when 𝜃 = −

𝜋

2
. Since H >0 and 𝜇 > 0, the 

orthogonal direction for which 
𝑑𝜙

𝑑𝑠
>0 is such that 𝜃 =

𝜋

2
. 

 Hence |
𝑑𝜙

𝑑𝑠
| has maximum in a direction orthogonal to 𝜙( u, v)=constant. 

Orthogonal Trajectories: 

For a given family of curves, the always exists a second family trajectories such that at every 

point two curves one from each family are orthogonal. 

Problems: 

(i)Prove that every family of curves on a Surface possess orthogonal trajectories. 

(ii) The parameters on a surfaces can always be chosen such that the curves of a given family 

and their orthogonal trajectories between parametric curves. 

Proof: 

(i) Let the given family is defined by 𝑃(𝑢, 𝑣)𝑑𝑢 + 𝑄(𝑢, 𝑣)𝑑𝑣 = 0    ……….(1) 

where 𝑃 𝑎𝑛𝑑 𝑄 are functions of 𝑢 𝑎𝑛𝑑 𝑣 class 1 & 𝑃 & 𝑄 do not vanish together. 

 From (1), 
𝑑𝑢

𝑑𝑉
=
−𝑄

𝑃
 

(i.e.) (−𝑄, 𝑃) are the directions of the tangent at (𝑢, 𝑣) of a member of the family is given by, 

𝜙(𝑢, 𝑣) = constant. 
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Such that 𝜙1 = 𝜆𝑝 and 𝜙2 = 𝜆𝑄 

Let (du, dv) be the differential in an orthogonal direction to the tangent at (𝑢, 𝑣) for the 

curve. 

 𝜙(𝑢, 𝑣) = constant 

Cos𝜃 = 𝐸𝑙𝑙′ + 𝐹(𝑙𝑚′ + 𝑙′𝑚) + 𝐺𝑚𝑚′.

 ∴ cos 90∘ = 0 = 𝐸(−𝑄)𝑑𝑢 + 𝐹(−𝑄𝑑𝑣 + 𝑃𝑑𝑣) + 𝐺𝑃𝑑𝑣
 

0 = 𝑑𝑢(𝐹𝑃 − 𝐸𝑄) + 𝑑𝑣(GP − F𝑄)     ………… (2) 

∴ 𝑃 and  𝑄 are functions of class 1. 

Further, 

(𝐹𝑃 − 𝐸𝑄) and (𝐺𝑃 − 𝐹𝑄) do not vanish together (2) is integral. 

⇒ ∃ functions 𝜇(𝑢, 𝑣) ≠ 0 and  𝜓(𝑢, 𝑣) ≠ 0. 

Such that 𝜇(𝐹𝑃 − 𝐹𝑄) = 𝜓1 

𝜇(𝐺𝑃 − 𝐹𝑄) = Ψ2 

⇒ Ψ(𝑢, 𝑣) = constant is the equs of the orthogonal frajection of the given family of curve 

𝜙(𝑢, 𝑣) = constant . 

(ii) We have 
𝜕(𝜙,𝜓)

𝜕(𝑢,𝑣)
= |

𝜕𝜙

𝜕𝑢

𝜕𝜙

𝜕𝑣
𝜕𝜓

𝜕𝑢

𝜕𝜓

𝜕𝑣

| 

= |
𝜙1 𝜙2
𝜓1 𝜓2

| 

= |
𝜆𝑃 𝜆𝑄

𝜇(𝐹𝑃 − 𝐸𝑄) 𝜇(𝐺𝑃 − 𝐹(𝑄)
| 

= 𝜆𝜇(𝐺𝑃2 − 𝐹𝑃𝑄 − 𝐹𝑃𝑄 + 𝐸𝑄2].  

= 𝜆𝜇[𝐺𝑃2 − 2𝐹𝑃𝑄 + 𝐸𝑄2] ≠ 0 

The quadratic 𝐺𝑃2 − 2𝐹𝑃𝑄 + 𝐸𝑄2 is positive, when 𝜆 ≠ 0, 𝜇 ≠ 0, and as, P, Q do not vanish 

together. 

𝑢′ = 𝜙(𝑢, 𝑣)

𝑣′ = 𝜓(𝑢, 𝑣)
}       ……………(3) 

(i.e.) 𝜙(𝑢, 𝑣) = constant,  ⇒ 𝑢′ = constant 

𝜓(𝑢, 𝑣) = constant, ⇒ 𝑣′ = constant. 

Thus by the given family, 

𝜙(𝑢, 𝑣) = constant & its orthogonal trajectory curves given by, 𝑢′ = constant, 𝑣′ =

constant. 
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Example 1: 

On the parabolic 𝑥2 − 𝑦2 = 𝑧 ,Find the orthogonal trajectories of the section of the plane 𝑧 

=constant  

Proof: 

Let 𝑥 = 𝑢, 𝑦 = 𝑣 

we get, 𝑥2 − 𝑦2 = 𝑧 

𝑢2 − 𝑣2 = 𝑧 

∴ The surface is given by, 𝑟 = (𝑢, 𝑣, 𝑢2 − 𝑣2) 

Now, 𝑧 = constant ⇒ 𝑢2 − 𝑣2 = constant = 𝑐2 (say). 

The differential equations is 2𝑢𝑑𝑢 − 2𝑣𝑑𝑣 = 0 

𝑢𝑑𝑢 = 𝑣𝑑𝑣
𝑑𝑢

𝑑𝑣
=
𝑣

𝑢

 

∴ The direction of the tangent to the curve belonging to the family at (𝑢, 𝑣) is (𝑣, 𝑢) . If 

(𝑑𝑢, 𝑑𝑣) are the differentiable in an orthogonal direction to the direction of 𝑓(𝑢, 𝑣) then we 

have, 𝑙(𝑙,𝑚) = (𝑣, 𝑢) 

Cos90∘ = 0 = 𝐸𝑙𝑙′ + 𝐹(𝑙′ + 𝑙′ +𝑚) + 𝐺𝑚𝑚′ 

0 = 𝐸𝑣𝑑𝑢 + 𝐹(𝑣𝑑𝑣 + 𝑢𝑑𝑢) + G udv  …… . (1) 

∴  𝑟1⃗⃗⃗ ⃗ =
𝑑𝑟

𝑑𝑢
= (1,0,2𝑢)  ∵ 𝑟 = (𝑢, 𝑣, 𝑢2 − 𝑣2) 

𝛾2 =
𝑑𝑟

𝑑𝑣
= (0,1,−2𝑣) 

𝐸 = 𝑟𝑟
2 = 1 + 4𝑢2 

𝐺 = 𝑟2
2 = 1 + 4𝑣2 

𝐹 = 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = 0 + 0 − 4𝑢𝑣 

From (1) ⇒ 0 = (1 + 4𝑢2)𝑣𝑑𝑢 + (−4𝑢𝑣)(𝑢𝑑𝑢 + 𝑣𝑑𝑣)𝑡 + (1 + 4𝑣2)𝑢𝑑𝑣 

0 = 𝑣𝑑𝑢 + 4𝑢2𝑣𝑑𝑢 − 4𝑢2v𝑑𝑢 − 4𝑢𝑣2𝑑𝑣 + 𝑢𝑑𝑣 + 4𝑣2𝑢𝑑𝑣
0 = 𝑣𝑑𝑢 + 𝑢𝑑𝑣
 = 𝑑(𝑢, 𝑣)

 

∴ 𝑢𝑣 =  constant  

Which is the required orthogonal trajectories if the family of curves 𝑢2 − 𝑣2 = constant 

Example 2: 

A helicoid is generated by the skew motion of a straight line. which meets the axis at an angle 

𝛼. Find the orthogonal trajectories of the generators. Find the de also metric of the surface 
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referred to the generation and their orthogonal trajectories as parametric curves. 

Proof: 

(i)Let 𝑧 - axis be the axis of the helicoid.  

Let the generating line 𝑂𝐴, makes an angle 𝛼 with Oz. 

Any point 𝑝 on OA has co-ordinates ( 𝑢 sin𝛼, 0, 𝑢cos 𝛼 ) where op=u 

Let the line 𝑂𝐴 be translated through a distance 𝑎 parallel to 𝑂𝑧 and then be rotates through 

an angle 'av' about the 𝑧-axis. 

Let 𝑄 be the position of 𝑝 under the transformation. 

∴  we have, 

 

𝑍𝑄 = 𝑧𝑝 + 𝑎𝑣

 = 𝑢cos 𝛼 + 𝑎𝑣
𝑥𝑄 = 𝑂𝑅sin (90∘ − 𝑣)

𝑥𝑄 = 𝑢sin (𝛼)cos 𝑣
𝑦𝑄 = 𝑂𝑅cos (90 − 𝑣)
𝑦𝑄 = 𝑢 sin 𝛼 sin 𝑣

 

(i.e.) 𝑄 has coordinates, 

(𝑢 sin 𝛼 cos 𝑣 , 𝑢 sin 𝛼 sin 𝑣 , 𝑢 cos𝛼 + av) 

∴ The position vector of a point 𝑄 is 

𝑟 = (𝑢 sin 𝛼 cos 𝑣, 𝑢 sin 𝛼 sin 𝑣, 𝑢cos 𝛼 + 𝑎𝑣) 

Now the generator of the helicoid is,  

 v =  constant  

𝑑𝑣 = 0 

Now the direction of the tangent to the curve belong to the family at (𝑢, 𝑣) is given by, (1,0) 

If (𝑑𝑢, dv ) are differentials, then by the formula, 

 

cos 90∘ = 0 = 𝐸𝑙𝑙′ + 𝐹(𝑙𝑚′ + ℓ′𝑚) + 𝐺𝑚𝑚′

0 = 𝐸𝑑𝑢 + 𝐹𝑑𝑣    ……………(1)
 

Now, 𝑟1 =
𝑑𝑟

𝑑𝑢
 

𝑟1⃗⃗⃗ ⃗ = (sin 𝛼 cos 𝑣, sin 𝛼 sin 𝑣, cos 𝛼)

𝑟2⃗⃗⃗⃗ = (−𝑢 sin 𝛼 𝑠𝑖𝑛  𝑣, 𝑢sin 𝛼cos 𝑣, 𝑎).

𝐸 = 𝑟1
2 = sin2 𝛼cos2 𝑣 + sin2 𝛼 sin2 𝑣 + cos2 𝛼 = 1

𝐹 = 𝑟1⃗⃗⃗ ⃗𝑟2⃗⃗⃗⃗ = −𝑢 sin
2 𝛼 cos 𝑣sin 𝑣 + 𝑢 sin2 𝛼 sin 𝑣 cos 𝑣 + 𝑎cos 𝛼

𝐹 = 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = 𝑎 cos 𝛼.

 

From (1) ⇒ 0 = 1𝑑𝑢 + 𝑎cos 𝛼𝑑𝑣 on integration. 

𝐶 = 𝑢 + 𝑎cos 𝛼𝑣 
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This is the equations of the orthogonal trajectories of the generated of the helicoid. 

(ii) If the generator 𝑣 = constant 

𝑢 + 𝑎cos 𝛼𝑣 = constant are taken as parametric 𝑢′ & 𝑣′, 

𝑢′ = 𝑢 + 𝑎cos 𝛼𝑣 and 𝑣′ = 𝑣 

from this equations, we have, 

𝑢 = 𝑢′ − 𝑎 cos𝛼𝑣′ and 𝑣 = 𝑣′ 

In this ways, generators and the orthogonal trajectories become parametric curves 𝑢′ = 𝑣′ = 

constant. 

The metric referred to this new parametric  

𝑑𝑠2 = 𝐸′(𝑑𝑢′)2 + 2𝐹′𝑑𝑢′𝑑𝑣′ + 𝐺′(𝑑𝑣′)2       …………… (2) 

To calculate 𝐸′𝐹′𝐺′ 

𝑟1
′ =

𝜕𝑟

𝜕𝑢′
=
𝜕𝑟⃗⃗⃗⃗⃗

𝜕𝑢
⋅
𝜕𝑢

𝜕𝑢′
+
𝜕𝑟

𝜕𝑣
⋅
𝜕𝑣

𝜕𝑣′
= 𝑟1(1) + 𝑟2⃗⃗⃗⃗ (0) = 𝑟1⃗⃗⃗ ⃗

𝑟2
′ =

𝜕𝑟

𝜕𝑣′
=
𝜕𝑟

𝜕𝑢
⋅
𝜕𝑢

𝜕𝑣′
= 𝑟1(−𝑎cos 𝜃) + 𝑟2(1).

 

𝐸′ = 𝑟1⃗⃗⃗ ⃗
′2
= 𝑟1⃗⃗⃗ ⃗

2
= 1, 𝐸′ = 1

𝐹′ = 𝑟1⃗⃗⃗ ⃗
′
⋅ 𝑟2⃗⃗⃗⃗

2
= 𝑟2⃗⃗⃗⃗ ⋅ 𝑟2⃗⃗⃗⃗ − 𝑎cos 𝛼𝑟1

2

 = 𝑎cos 𝛼 − 𝑎cos 𝛼 ⋅ 1 = 0. 

𝐺 = 𝑟2 
2 = 𝑎(𝑟2⃗⃗⃗⃗ − 𝑎cos 𝛼𝑟1⃗⃗⃗ ⃗)

2

 = 𝑟2
2 − 2𝑎𝑟2⃗⃗⃗⃗

2
cos 𝛼𝑟1⃗⃗⃗ ⃗ + 𝑎

2cos2 𝛼𝑟1
2

 = (𝑢2sin 𝛼 + 𝑎2) − 2𝑎cos 𝛼(𝑎cos 𝛼) + 𝑎2cos2 𝛼, 1

 = 𝑢2sin2 𝛼 + 𝑎2 − 𝑎2cos2 𝛼
 = 𝑎2sin2 𝛼 + 𝑎2sin2 𝛼
𝐺′ = (𝑢2 + 𝑎2)sin2 𝛼

𝐺′ = ((𝑢′ − 𝑎cos 𝛼𝑣′)2 + 𝑎2)sin2 𝛼

 

From (2) 𝑑𝑠2 = 1 ⋅ 𝑑𝑢2 + 0 ⋅ 𝑑𝑢′𝑑𝑣′ + ((𝑢′ − 𝑎cos 𝛼𝑣′) + 𝑢2sin2 𝛼𝑑𝑣2 

𝑑𝑠2 = du2 + ((𝑢1 − 𝑎 cos v 𝑣1 + 𝑎2)sin2 𝛼𝑑𝑣2 

Double Family of curves: 

If 𝑃, 𝑄, 𝑅 are, continuous functions of 𝑢 & 𝑣. 

Which do not vanish to getter, the quadratic differential. equations 

𝑃(𝑑𝑢)2 + 2𝑄𝑑𝑢𝑑𝑣 + 𝑅(𝑑𝑣)2 = 0   ………(*) 

represents two family of curves on the surfaces provided 𝑄2 − 𝑃𝑅 > 0. 

(ie) in (*) discriminate = 4𝑄2 − 4𝑃𝑅 > 0 

= 𝑄2 − 𝑃𝑅 > 0 

For example, 𝑑𝑢2 − 5𝑑𝑢𝑑𝑣 + 6𝑑𝑣2 = 0.⇒ (𝑑𝑢 − 3𝑑𝑣)(𝑑𝑢 − 2𝑑𝑢) = 0. 
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⇒ 𝑑𝑢 − 3𝑑𝑣 = 0 & 𝑑𝑢 − 2𝑑𝑣 = 0 

Thus we get two family of curves 

To find the condition that the quadratic equations 

 𝑃(𝑑𝑢)2 + 2𝑄𝑑𝑢𝑑𝑣 + 𝑅(𝑑𝑣)2 = 0  …..(1) represents orthogonal family of curves. 

Proof: 

From equation(1). 

𝑃 (
𝑑𝑢

𝑑𝑣
)
2

+ 2𝑄
𝑑𝑢

𝑑𝑣
+ 𝑅 = 0 

If (𝜆, 𝜇) and (𝜆′, 𝜇′) are the directions of the tangent of the two family of curves, then the 

roots of equations (2) are 
𝜆

𝜇
  & 

𝜆′

𝜇′
. 

Hence sum of the roots =
𝜆

𝜇
+
𝜆′

𝜇′
=
−2𝑄

𝑃
}    ………(3) 

product of the roots =
𝜆

𝜇
⋅
𝜆′

𝜇′
=
𝑅

𝑃
 

We know that the condition for orthogonality, 

cos 90∘ = 0 = 𝐸𝜆𝜆′ + 𝐹(𝜆𝜇′ + 𝜆′𝜇) + 𝐺𝜇𝜇′

0 = 𝐸 (
𝜆

𝜇
⋅
𝜆′

𝜇′
) + 𝐹 (

𝜆

𝜇
+
𝜆′

𝜇′
) + 𝐺

0 = 𝐸
𝑅

𝑃
+ 𝐹 (

−2𝑄

𝑃
) + 𝐺.

0 = 𝐸𝑅 − 2𝑄𝐹 + 𝐺𝑃

 

which is the required condition. 

Note: 

If 𝑅 = 𝑃 = 0 then from (1), 𝑑𝑢, 𝑑𝑣 = 0 then the condition for orthogonality is QF = 0. 

𝐹 = 0. 

Example 3: 

If 𝜃 is the angle at the point (𝑢, 𝑣) between the two directions given by the equations. 

𝑃(𝑑𝑢)2 + 2𝑄𝑑𝑢𝑑𝑣 + 𝑅(𝑑𝑣)2 = 0         ………….. (1) 

  then prove that tan 𝜃 =
2𝐻(𝑄2−𝑃𝑅)

1/2

𝐸𝑅−2𝑄𝐹+𝐺𝑃
 

Proof: 

Let the roots of equations (1) are 
𝜆

𝜇
 & 

𝜆′

𝜇′
. 

Hence the sum of the roots =
𝜆

𝜇
+
𝜆′

𝜇′
=
−2𝑄

𝑃
 , product of the roofs =

𝜆

𝜇
⋅
𝜆′

𝜇′
=
𝑅

𝑃
      ……(2) 
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=
𝐻(𝜆𝜇′ − 𝜆′𝜇)

𝐸𝜆𝜆′ + 𝐹(𝜆𝜇′ + 𝜆′𝜇) + 𝐺(𝜇𝜇′)
 

=
𝐻 (
𝜆
𝜇 −

𝜆′

𝜇′)

𝐸
𝜆𝜆′

𝜇𝜇′ + 𝐹 (
𝜆
𝜇 +

𝜆′

𝜇′) + 𝐺
 

tan 𝜃 =

𝐻 [(
𝜆
𝜇 +

𝜆′

𝜇′)
2

− 4
𝜆𝜆′

𝜇𝜇′
]

2

𝐸𝑅
𝑃 + 𝐹 (

−2𝑄
𝑃 ) + 𝐺

 =

2𝐻
𝑃
[(𝑄2 − 𝑃𝑅)1/2]

𝐸𝑅 − 𝑄𝐹𝑄 + 𝐺𝑃
𝑃

tan 𝜃 =
2𝐻(𝑄2 − 𝑃𝑅)1/2

𝐸𝑅 − 2𝐹𝑄 + 𝐺𝑃
⇒ 𝐸𝑅 − 2𝐹𝑅 − 𝐺𝑃 = 0

 

2.8.Isometric Correspondence: 

Two surface 𝑠 and s' are said to be isometric. If there exists a correspondence, 𝑢′ = 𝜙(𝑢, 𝑣) 

and 𝑣′ = 𝜓(𝑢, 𝑣) between their parameters, where 𝜙 & 𝜓 are single valued functions and 

𝜕(𝜙,𝜓)

𝜕(𝑢,𝑣)
≠ 0. 

Such that the metric of 𝑆 transform into the metric the correspondence itself is an isometry. 

Note: 

If the two Surface are isometric then the length of the arcs of the corresponding on the 

surfaces are equal. 

Theorem 1: 

To each direction of the tangent to a curve C at P in S, there corresponds a direction of the 

tangent 𝐶′ at 𝑃′ in 𝑆′ and vice-versa. 

Proof: 

Let C be a curve of a class ≥1 passing through P and lying on S. Let it be parametrically 

represented by u=u(t) and v=v(t). If is the portion corresponding to S under the relation (1) in 

the preceding paragraph, then C on S will be mapped onto 𝐶′ on 𝑆′ passing through 𝑃′with the 

parametric equations 

𝑢′ = 𝜙{𝑢(𝑡), 𝑣(𝑡)},   

𝑣′ = 𝜓{𝑢(𝑡), 𝑣(𝑡)},  

The direction ratios of the tangent at P to C are (𝑢̇, 𝑣̇ )where 𝑢̇ =
𝑑𝑢

𝑑𝑡
, 𝑣̇ =

𝑑𝑣

𝑑𝑡
 

Now the direction ratios of the tangents at 𝑃′to 𝐶′are (𝑢′̇ , 𝑣′̇  )where  
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𝑢′̇ =
𝑑𝑢′

𝑑𝑡
=
𝜕𝜙

𝜕𝑢
𝑢̇ +

𝜕𝜙

𝜕𝑣
 𝑣̇ 

𝑣′̇ =
𝑑𝑣′

𝑑𝑡
=
𝜕𝜓

𝜕𝑢
𝑢̇ +

𝜕𝜓

𝜕𝑣
 𝑣̇ 

Solving the above equation for 𝑢̇ and 𝑣̇, we get ,  

𝑢̇ =
1

𝐽
(𝑢′̇

𝜕𝜓

𝜕𝑣
− 𝑣′̇

𝜕𝜙

𝜕𝑣
 ), 𝑣̇ =

1

𝐽
(𝑣′̇

𝜕𝜙

𝜕𝑢
− 𝑣′̇

𝜕𝜓

𝜕𝑢
 )where J ≠ 0   

which shows that a given direction to a curve 𝐶′ at 𝑃′corresponds to a definite direction at P 

to C and vice-versa. 

Example 1: 

Find the Surfaces of the revolution of the right helicoid of pitch 2𝜋𝑎. 

Proof: 

Let the surface of revolution be given by, 

𝑟 = (𝑔(𝑢) cos 𝑣 , 𝑔(𝑢) sin 𝑣 , 𝑓(𝑢))

𝑟1⃗⃗⃗ ⃗ =
𝜕𝑟

𝜕𝑢
= (𝑔′(𝑢) cos 𝑣 , 𝑔′(𝑢) sin 𝑣 , 𝑓′(𝑢).

𝑟2⃗⃗⃗⃗ =
𝜕𝑟

𝜕𝑣
= (−𝑔(𝑢) sin 𝑣 , 𝑔(𝑢) cos 𝑣 , 0).

 

 ∴ 𝐸 = 𝑟1
2 = (𝑔′(𝑢)2cos2 𝑣 + 𝑔′𝑢2sin2 𝑣 + 𝑓′(𝑢))2

 = (𝑔′(𝑢))2 + (𝑓′(𝑢))2

𝐺 = 𝑟2
2 = (𝑔(𝑢))2sin2 𝑣 + (𝑔(𝑢))2cos2 𝑣.

𝐺 = (𝑔(𝑢))2

𝐹 = 𝑟1⃗⃗⃗ ⃗ ⋅ 𝑟2⃗⃗⃗⃗ = −𝑔(𝑢)𝑔
′(𝑢) sin 𝑣 cos 𝑣 + 𝑔(𝑢)𝑔′(𝑢) sin 𝑣 cos𝑣

 ⇒ 𝐹 = 0

 

The metric of the surface of revolution is given by, 

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 = 0
[(𝑔′(𝑢))2 + (𝑓′(𝑢))2𝑑𝑢2 + (𝑔(𝑢)2𝑑𝑣2 = 0……… . (1)

 

The equations of the right helicoid is given by, 

𝑟′ = (𝑢′cos 𝑣′ , 𝑢′sin 𝑣′, 𝑎𝑣′)

𝑟1⃗⃗⃗ ⃗
′
=
𝜕𝑟

𝜕𝑢′
= (cos 𝑣′sin 𝑣′ , 0)

𝑟2
′ =

𝜕𝑟

𝜕𝑣′
= (−𝑢′sin 𝑣′, 𝑢cos 𝑣′ , 𝑎)

𝐸′ = 𝑟1
′2 = (cos′ 𝑣)2 + (sin 𝑣′)2 = 1

𝐺′ = 𝑟2
′2 = 𝑢′2 + 𝑎2.

𝐺′ = 𝑢′2 + 𝑎2.
𝐹′ = 𝑟1

′ ⋅ 𝑟2⃗⃗⃗⃗ = −𝑢
′sin 𝑣′cos 𝑣′ + 𝑢′sin 𝑣′cos 𝑣′ + 0

𝐹′ = 0

 

The metric of the right helicoids is 
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𝐸′𝑑𝑢′2 + 2𝐹′𝑑𝑢′𝑑𝑣′ + 𝐺′𝑑𝑣′2 = 0
1(𝑑𝑢′)2 + ((𝑢′)2 + 𝑎2)𝑑𝑣′2 = 0    …………(2)

 

To find a transformation from (𝑢, 𝑣) → (𝑢′, 𝑣′). 

Let 𝑣 = 𝑣′ → 𝑑𝑣′ = 𝑑𝑣 

𝑢′ = 𝜙(𝑢) ⟶ 𝑑𝑢′ =
𝜕𝜙

𝜕𝑢
⋅ 𝑑𝑢

𝑑𝑢′ = 𝜙′ ⋅ 𝑑𝑢
 

Sub in (2). 

(𝜙′)2du2 + ((𝜙(𝑢))2 + 𝑎2)𝑑𝑣2 = 0  ………… (3) 

Equation (1) & (2) are identical. 

(𝑔′(u))2 + (𝑓′(u))
2
= (𝜙′)2     ………… . (4)

𝑔(𝑢))2 = (𝜙(𝑢))2 + 𝑎2      …………… . (5)
 

∴ (𝑔(𝑢))2 = 𝑎2sinh2 𝑢 + 𝑎2 

= 𝑎2(sinh2 𝑢 + 1) 

(𝑔(𝑢))2 = 𝑎2cosh ℎ2𝑢 

𝑔(𝑢) = 𝑎cosh 𝑢 

Now, 𝜙′(𝑢) = 𝑎cosh 𝑢 =
𝜕𝜙

𝜕𝑢′
. 

From (4), 𝑎2sinh2 𝑢 + (𝑓′(𝑢))2 = 𝑎2cosh ℎ2𝑢 

(𝑓′(𝑢))2 = 𝑎2(cosh2 𝑢 − sinh2 𝑢)

 = 𝑎2

𝑓′(𝑢) = 𝑎

 

Integrating, 𝑓(𝑢) = au 

The rigid helicoid is isometric with the surface obtained by revolving the curves. 

x = acosh 𝑢, y=0, z= au about z-axis. 

2.9. Intrinsic properties: 

Statement of Existence Theorem: 

If E,F,G are any given single valued functions with E>0 and 𝐸𝐺 − 𝐹2 > 0 in the domain D. 

Then every point of D has a neighbourhood D’ in which 𝐸𝑑𝑢2 + 2 𝐹 𝑑𝑢 𝑑𝑣 + 𝐺 𝑑𝑣2 is the 

metric of the surface referred to u, v as parameters. 

Properties: 

(i)Any two isometric surface have the same metric S, when the corresponding points are 

arranged with the  

(i.e.) The family of surfaces, having a given metric is the class of surfaces isometric to one 

another. 
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ii)A surface which is reducible from the metric using the vector equations 𝑟 = 𝑟(𝑢, 𝑣) applies 

to the whole class of isometric surfaces of the same kind with the same properties. 

Example 1: 

Find the surface of revolution which is isometric with a region of the right helicoid. 

Proof:  

Two surfaces S, 𝑆′ are said to be isometric (or) applicable if there is a correspondence 

between the points of s and S’. Such that corresponding arcs of curves have the same length. 

The correspondence is called an isometry. 

We know that a surface of revolution is given by 

 𝑟 = (𝑔(𝑢) cos 𝑣, 𝑔(𝑢)𝑠𝑖𝑛𝑣, 𝑓(𝑢))…… . . (1) 

For some function f and g and its metric is (𝑔1
2 + 𝑓1

2)𝑑𝑢2 + 𝑔2𝑑𝑣2 

Where 𝑓1 = 
𝑑𝑢

𝑑𝑡
. 

The right helicoid of pitch 2𝜋𝑎 is given by  

𝑟 = (𝑢′ cos 𝑣′ , 𝑢′ sin 𝑣′ , a 𝑣′) and its metric is  

𝑑𝑢′2 +(𝑢′2 + 𝑎2)𝑑𝑣′2 

We have to find the transformation (𝑢, 𝑣) ⟶ (𝑢′, 𝑣′) which makes two metrics identical. 

Taking 𝑣′ = 𝑣, 𝑢′ = 𝜙(𝑢) then 𝑑𝑢′ = 𝜙1𝑑𝑢 and the metrics are identical. 

If 𝑔2 = 𝜙2 + 𝑎2,  𝑔1
2 + 𝑓1

2 = 𝜙1
2 

These are two equations for three functions namely, f, g, and 𝜙. 

If 𝜙 𝑖𝑠 eliminated there remains a differentiation equation for f as a function of g.  

(or) Simply put 𝜙(𝑢) = 𝑎 sin ℎ𝑢  𝑎𝑛𝑑 𝑔(𝑢) = 𝑎 cosℎ𝑢    to satisfy equation (1), 

𝑓1
2 = 𝑎2 we can take f(u)=au 

Hence, the right helicoid is isometric with the surface obtained by revolving the curve. 

𝑥 = 𝑎 cosℎ𝑢    

𝑦 = 0 

𝑧 = 𝑎𝑢 about z-axis the generating curve is,   

𝑥 = 𝑎 cosℎ(
𝑧

𝑎
)   with the parameter a and directrix to z-axis and the surface of revolution is a 

catenoid,  

𝑢′ = 𝑎 sin ℎ𝑢    

𝑣′ = 𝑣 

Shows that the generators v’=constant on the helicoid 

And 𝑣′= constant on the catenoid 
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And the helices 𝑢′=constant correspond to the parallel u=constant. 

On the helicoid  𝑢′ and 𝑣′ can take all values but on the catenoid 0 ≤ 𝑣 ≤ 2𝜋 

The correspondence is therefore an isometry only for that region of the helicoid for which  

0 ≤ 𝑣′ ≤ 2𝜋 

Without the limitation to one period of the helicoid the correspondence would be locally 

isometric. 
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UNIT-III:  

Geodesics: Geodesics – Canonical geodesic equations – Normal property of geodesics- 

Existence Theorems – Geodesic parallels – Geodesics curvature- Gauss- Bonnet Theorem – 

Gaussian curvature- surface of constant curvature. 

 Chapter 3: Sections 3.1 - 3.8. 

3.1. Geodesics: 

On any surface there are special intrinsic curves, called geodesics, which are analogous to 

straight lines in Euclidean space because they are curves of shortest distance. The problem is, 

given any two points 𝐴 and 𝐵 on the surface, to find, out of all the arcs joining 𝐴 and 𝐵, those 

which give the least arc length. This problem, treated properly, is difficult and beyond the scope 

of this book. For example, it is by no means clear that a solution exists, for although the lengths 

of the various arcs 𝐴𝐵 certainly have a non-zero greatest lower bound, it does not follow that 

there is an arc of this length. However, the problem does lead to a definite answer in the form 

of differential equations for the functions 𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡) defining the curve. Every curve 

given by these equations is called a geodesic, whether it is a curve of shortest distance or not, 

and geodesics may be regarded as curves of stationary rather than strictly shortest distance on 

the surface. 

We shall now derive the geodesic differential equations mentioned above by formulating a 

more restricted problem. 

Let 𝐴, 𝐵 be any two points, and consider the arcs which join 𝐴 and 𝐵 and are given by equations 

of the form 𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡) .where 𝑢(𝑡) and 𝑣(𝑡) are of class 2 . Without loss of generality 

it can be assumed that for every arc 𝛼, 𝑡 = 0 at 𝐴 and 𝑡 = 1 at 𝐵, so that 𝛼 is given by 0 ⩽ 𝑡 ⩽

1. Then the length of 𝛼 is 

𝑠(𝛼) = ∫  
1

0
  (𝐸𝑢̇2 + 2𝐹𝑢̇𝑣̇ + 𝐺𝑣̇2)

1

2𝑑𝑡, …………… (1) 

where 𝑢(𝑡) and 𝑣(𝑡) are substituted for 𝑢 and 𝑣 in 𝐸, 𝐹, and 𝐺. 

Suppose now that an are 𝛼′ is obtained by deforming 𝛼 slightly, keeping its end points 𝐴 and 

𝐵 fixed. Then 𝛼′ is given by equations of the form 

𝑢 = 𝑢′(𝑡) = 𝑢(𝑡) + 𝜖𝜆(𝑡), 𝑣 = 𝑣′(𝑡) = 𝑣(𝑡) + 𝜖𝜇(𝑡) 
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where 𝜖 is small, and 𝜆 and 𝜇 are arbitrary functions of 𝑡 of class 2 in 0 ⩽ 𝑡 ⩽ 1 and satisfying 

𝜆 = 𝜇 = 0 at 𝑡 = 0 and 𝑡 = 1. The length of 𝛼′ is 𝑠(𝛼′) given by (1) with 𝑢′, 𝑣′ in place of 

𝑢, 𝑣. The variation in 𝑠(𝛼) is 𝑠(𝛼′) − 𝑠(𝛼) and is in general of order 𝜖. If, however, 𝛼 is such 

that the variation in 𝑠(𝑥) is at most of order 𝜖2 for all small variations in 𝛼 (i.e. for all 𝜆(𝑡) and 

𝜇(𝑡) ), then 𝑠(𝛼) is said to be stationary and 𝛼 is a geodesic. 

The geodesics given in this way are clearly intrinsic and independent of any particular 

parametric representation of the surface. 

To find the equations for geodesics, we follow the usual procedure as in the calculus of 

variations. Writing 𝑓 = √(2𝑇)  

Where 𝑇(𝑢, 𝑣, 𝑢̇, 𝑣̇) =
1

2
(𝐸𝑢̇2 + 2𝐹𝑢̇𝑣̇ + 𝐺𝑣̇2), 

Then 

𝑠(𝛼′) − 𝑠(𝛼) = ∫  
1

0

 {𝑓(𝑢 + 𝜖𝜆, 𝑣 + 𝜖𝜇, 𝑢̇ + 𝜖𝜆, 𝑣̇ + 𝜖𝜇̇) − 𝑓(𝑢, 𝑣, 𝑢̇, 𝑣̇)}𝑑𝑡

 = 𝜖 ∫  
1

0

  (𝜆
𝜕𝑓

𝜕𝑢
+ 𝜇

𝜕𝑓

𝜕𝑣
+ 𝜆

𝜕𝑓

𝜕𝑢̇
+ 𝜇̇

𝜕𝑓

𝜕𝑣̇̇
) 𝑑𝑡 + 𝑂(𝜖2).

 

Integrating by parts, 

∫  
1

0

𝜆
𝜕𝑓

𝜕𝑢̇
𝑑𝑡 = [𝜆

𝜕𝑓

𝜕𝑢̇
]
0

1

−∫  
1

0

𝜆
𝑑

𝑑𝑡‾
(
𝜕𝑓

𝜕𝑢̇
) 𝑑𝑡 

and the first term on the right is zero because 𝜆 = 0 at 𝑡 = 0 and 𝑡 = 1. Similarly, 

∫  
1

0

𝜇̇
𝜕𝑓

𝜕𝑣̇
𝑑𝑡 = −∫  

1

0

𝜇
𝑑

𝑑𝑡
(
𝜕𝑓

𝜕𝑣̇
) 𝑑𝑡 

and 

𝑠(𝛼′) − 𝑠(𝛼) = 𝜖∫  
1

0

(𝜆𝐿 + 𝜇𝑀)𝑑𝑡 + 𝑂(𝜖2) 

Where 𝐿 =
𝜕𝑓

𝜕𝑢
−

𝑑

𝑑𝑡
(
𝜕𝑓

𝜕𝑢̇
) ,𝑀 =

𝜕𝑓

𝜕𝑣
−

𝑑

𝑑𝑡
(
𝜕𝑓

𝜕𝑣̇
) …………(2) 
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From the definition, therefore, 𝑠(𝛼) is stationary and 𝛼 is a geodesic if and only if 𝑢(𝑡) and 

𝑣(𝑡) are such that ∫  
1

0
  (𝜆𝐿 + 𝜇𝑀)𝑑𝑡 = 0   ………(3) 

 for all admissible 𝜆, 𝜇, i.e. functions of class 2 in 0 ⩽ 𝑡 ⩽ 1 which satisfy 𝜆 = 𝜇 = 0 at 

𝑡 = 0 and 𝑡 = 1. 

It will now be proved that this condition implies 𝐿 = 𝑀 = 0. 

Lemma. If 𝑔(𝑡) is continuous for 0 < 𝑡 < 1 and if ∫  
1

0
𝜈(𝑡)𝑔(𝑡)𝑑𝑡 = 0 

for all admissible functions 𝜈(𝑡) as definged above, then 𝑔(𝑡) = 0. 

Suppose there is a 𝑡0 between 0 and 1 such that 𝑔(𝑡0) ≠ 0, say 𝑔(𝑡0) > 0. Then, since 𝑔 is 

continuous, 𝑔(𝑡) > 0 in some interval ( 𝑎, 𝑏 ) where 0 < 𝑎 < 𝑡0 < 𝑏 < 1. Now we define 𝜈(𝑡) 

as follows: 𝜈(𝑡) = 0 for 0 ⩽ 𝑡 < 𝑎 and for 𝑏 < 𝑡 ⩽ 1, and 𝜈(𝑡) = (𝑡 − 𝑎)3(𝑏 − 𝑡)3 for 𝑎 ⩽

𝑡 ⩽ 𝑏. Then 𝜈(𝑡) is admissible, and 

∫  
1

0

𝜈(𝑡)𝑔(𝑡)𝑑𝑡 = ∫  
𝑏

𝑎

𝜈(𝑡)𝑔(𝑡)𝑑𝑡 > 0 

since 𝑔 > 0 and 𝜈 > 0 for 𝑎 < 𝑡 < 𝑏. The supposition that there is a 𝑡0 such that 𝑔(𝑡0) ≠ 0 is 

therefore false, and the lemma is proved. 

The functions 𝐿 and 𝑀 in equation(2) are continuous because 𝐸, 𝐹, 𝐺 are assumed to be of class 

1 and 𝑢(𝑡), 𝑣(𝑡) of class 2 . The lemma can therefore be applied to equation(3), first with 𝜇 =

0 and 𝜆, 𝐿 in place of 𝜈, 𝑔 and then with 𝜆 = 0 and 𝜇,𝑀 in place of 𝜈, 𝑔. It follows that 

equation(3) is satisfied for all admissible functions 𝜆, 𝜇 if and only if 𝐿 = 𝑀 = 0. These, then, 

are differential equations for 𝑢(𝑡) and 𝑣(𝑡). They do not involve the points 𝐴 and 𝐵 explicitly 

and are therefore the same for all geodesics on the surface. 

Substituting 𝑓 = √(2𝑇) , then 

𝐿 =
1

√(2𝑇) 

𝜕𝑇

𝜕𝑢
−
𝑑

𝑑𝑡
(

1

√(2𝑇) 

𝜕𝑇

𝜕𝑢̇
)

 =
1

√(2𝑇) 
{
𝜕𝑇

𝜕𝑢
−
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑢̇
)} +

1

(2𝑇)2
𝑑𝑇

𝑑𝑡

𝜕𝑇

𝜕𝑢̇
,

 

with a similar expression for 𝑀. The geodesic equations are therefore 
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𝑈 ≡
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑢̇
) −

𝜕𝑇

𝜕𝑢
=
1

2𝑇

𝑑𝑇

𝑑𝑡

𝜕𝑇

𝜕𝑢̇

𝑉 ≡
𝑑

𝑑𝑡
(
𝜕𝑇̀

𝜕𝑣̇
) −

𝜕𝑇

𝜕𝑣
=
1

2𝑇

𝑑𝑇

𝑑𝑡

𝜕𝑇

𝜕𝑣̇}
 
 

 
 

    ………… . (4) 

Where 𝑇(𝑢, 𝑣, 𝑢̇, 𝑣̇) =
1

2
(𝐸𝑢̇2 + 2𝐹𝑢̇𝑣̇ + 𝐺𝑣̇2), 

and the left-hand members of the equations are denoted by 𝑈 and 𝑉 for convenience. 

The expressions 𝑈 and 𝑉 so defined are important in relation to any curve, whether it is a 

geodesic or not. They satisfy the identity 𝑢̇𝑈 + 𝑣̇𝑉 =
𝑑𝑇

𝑑𝑡
   ……….(5) 

because 

𝑢̇𝑈 + 𝑣̇𝑉 =
𝑑

𝑑𝑡
(𝑢̇
𝜕𝑇

𝜕𝑢̇
+ 𝑣̇

𝜕𝑇

𝜕𝑣̇
) − 𝑢̈

𝜕𝑇

𝜕𝑢̇
− 𝑣̈

𝜕𝑇

𝜕𝑣̇
− 𝑢̇

𝜕𝑇

𝜕𝑢
− 𝑣̇

𝜕𝑇

𝜕𝑣

 =
𝑑

𝑑𝑡
(2𝑇) −

𝑑𝑇

𝑑𝑡
=
𝑑𝑇

𝑑𝑡
,

 

remembering that 𝑇 is a function of 𝑢, 𝑣, 𝑢̇, 𝑣̇ homogeneous of degree 2 in 𝑢̇, 𝑣̇. 

Since also the expressions on the right in (4) satisfy the same identity, i.e. 

𝑢̇ (
1

2𝑇

𝑑𝑇

𝑑𝑡

𝜕𝑇

𝜕𝑢̇
) + 𝑣̇ (

1

2𝑇

𝑑𝑇

𝑑𝑡

𝜕𝑇

𝜕𝑣̇
) =

1

2𝑇

𝑑𝑇

𝑑𝑡
(𝑢̇
𝜕𝑇

𝜕𝑢̇
+ 𝑣̇

𝜕𝑇

𝜕𝑣̇
) =

𝑑𝑇

𝑑𝑡
 

it follows that the two equations in (4) are not independent; they are therefore equivalent to 

only one equation for the two unknown functions 𝑢(𝑡) and 𝑣(𝑡).  

This is to be expected because the parameter 𝑡 has not been defined in any special way; the 

reader should verify formally that any transformation 𝑡′ = 𝜙(𝑡), where 𝜙 is of class 2 , would 

leave the differential equations unaltered. It is convenient to regard a curve as defined by two 

functions 𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡), but strictly speaking there is only one function of one variable 

involved, as in the equation 𝑣 = 𝑓(𝑢).  

Eliminating 𝑑𝑇/𝑑𝑡 between the two equations (4), we obtain 𝑈
𝜕𝑇

𝜕𝑣̇
− 𝑉

𝜕𝑇

𝜕𝑢̇
= 0 (6) 

This is necessary for a geodesic. To prove that it is also sufficient, suppose that it is satisfied 
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by functions 𝑢(𝑡) and 𝑣(𝑡), whose first derivatives do not vanish simultaneously at any point. 

Then 𝜕𝑇/𝜕𝑢̇ and 𝜕𝑇/𝜕𝑣̇ cannot vanish together since this would imply 

 𝐸𝑢̇ + 𝐹𝑣̇ = 0 = 𝐹𝑢̇ + 𝐺𝑣̇, and therefore 𝑢̇ = 𝑣̇ = 0. Hence, 

𝑈 = 𝜃
𝜕𝑇

𝜕𝑢̇
, 𝑉 = 𝜃

𝜕𝑇

𝜕𝑣̇
 

for some 𝜃, and from the identity (5), 

𝑑𝑇

𝑑𝑡‾
= 𝜃 (𝑢̇

𝜕𝑇

𝜕𝑢̇
+ 𝑣̇

𝜕𝑇

𝜕𝑣̇
) = 2𝑇𝜃 i.e. 𝜃 = (1/2𝑇)(𝑑𝑇/𝑑𝑡). The functions 𝑢(𝑡) and 𝑣(𝑡) therefore 

satisfy equation (4). 

Example 1: 

Prove that the curves of the family 𝑣3/𝑢2 = constant are geodesics on a surface with metric 

𝑣2𝑑𝑢2 − 2𝑢𝑣𝑑𝑢𝑑𝑣 + 2𝑢2𝑑𝑣2 (𝑢 > 0, 𝑣 > 0). 

Solution: 

Consider 𝑣3/𝑢2 = 𝑐(> 0) and put this into a convenient parametric form  

𝑢 = 𝑐𝑡3, 𝑣 = 𝑐𝑡2. Then 𝑢̇ = 3𝑐𝑡2, 𝑣̇ = 2𝑐𝑡 and 

𝜕𝑇

𝜕𝑢
= −𝑣𝑖𝑣̇ + 2𝑢𝑣̇2 = 2𝑐3𝑡5,

𝜕𝑇

𝜕𝑣
= 𝑣𝑣̇2 − 𝑢𝑢̇𝑣̇ = 3𝑐3𝑡6,

𝜕𝑇

𝜕𝑢̇
= 𝑣2𝑢̇ − 𝑢𝑣𝑣̇ = 𝑐3𝑡6,

𝜕𝑇

𝜕𝑣̇
= −𝑢𝑣𝑢̇ + 2𝑢2𝑣̇ = 𝑐3𝑡7,

𝑈 =
𝑑

𝑑𝑡
(𝑐3𝑡6) − 2𝑐3𝑡5 = 4𝑐3𝑡5, 𝑉 =

𝑑

𝑑𝑡
(𝑐3𝑡7) − 3𝑐3𝑡6 = 4𝑐3𝑡6.

 

Hence 𝑉
𝜕𝑇

𝜕𝑢̇
−𝑈

𝜕𝑇

𝜕𝑣̇
= 0, i.e. the curve is a geodesic for every value of 𝑐. 

Example 2: 

 Prove that, on the general surface, a necessary and sufficient condition that the curve 

𝑣 = 𝑐 be a geodesic is 𝐸𝐸2 + 𝐹𝐸1 − 2𝐸𝐹1 = 0   ………(7) 
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when 𝑣 = 𝑐, for all values of 𝑢. 

On the curve 𝑣 = 𝑐, 𝑢 can be taken as parameter, i.e. the curve is 𝑢 = 𝑡, 𝑣 = 𝑐. Then  

𝑢̇ = 1, 𝑣̇ = 0, and on substituting these values 

(after calculating the partial derivatives of 𝑇 ), 

𝜕𝑇

𝜕𝑢
=
1

2
𝐸1,

𝜕𝑇

𝜕𝑢̇
= 𝐸, 𝑈 =

𝑑𝐸

𝑑𝑡
−
1

2
𝐸1 =

1

2
𝐸1,

𝜕𝑇

𝜕𝑣
=
1

2
𝐸2,

𝜕𝑇

𝜕𝑣̇
= 𝐹, 𝑉 =

𝑑𝐹

𝑑𝑡
−
1

2
𝐸2 = 𝐹1 −

1

2
𝐸2.

 

The curve is therefore a geodesic if 

𝐸 (𝐹1 −
1

2
𝐸2) − 𝐹 (

1

2
𝐸1) = 0. 

when 𝑣 = 𝑐. This is condition (7) which is therefore necessary.  

Conversely when (7) is satisfied so is (6) and the curve 𝑣 = 𝑐 is a geodesic. 

If (7) is satisfied for all values of 𝑢 and 𝑣, the parametric curves 𝑣 = constant are all geodesics. 

Similarly, the curve 𝑢 = 𝑐 is a geodesic if and only if  

𝐺𝐺1 + 𝐹𝐺2 − 2𝐺𝐹2 = 0 ……… . . (8) 

when 𝑢 = 𝑐. 

In the neighbourhood of a point of a geodesic at which 𝑢̇ ≠ 0, 𝑢 can be taken as the 

parameter, as in Example 2 above. Then 𝑢̇ = 1, 

𝜕𝑇

𝜕𝑢̇
= 𝐸 + 𝐹𝑣̇,

𝑑

𝑑𝑢
(
𝜕𝑇

𝜕𝑢̇
) = 𝐸1 + (𝐸2 + 𝐹1)𝑣̇ + 𝐹2𝑣̇

2 + 𝐹𝑣̈ 

and 

𝑈 = 𝐹𝑣̈ + (𝐹2 −
1

2
𝐺1) 𝑣̇

2 + 𝐸2𝑣̇ +
1

2
𝐸1. 

Also 
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𝜕𝑇

𝜕𝑣̇
= 𝐹 + 𝐺𝑣̇

𝑉 = 𝐺𝑣̈ +
1

2
𝐺2𝑣̇

2 + 𝐺1𝑣̇ + 𝐹1 −
1

2
𝐸2

 

Hence 

𝜕𝑇

𝜕𝑢̇
𝑉 −

𝜕𝑇

𝜕𝑣̇
𝑈 = 𝐻2(𝑣̈ + 𝑃𝑣̇3 + 𝑄𝑣̇2 + 𝑅𝑣̇ + 𝑆) 

where 𝐻2𝑃 =
1

2
(𝐺𝐺1 + 𝐹𝐺2 − 2𝐺𝐹2), etc. The curve 𝑣 = 𝑣(𝑢) is therefore a geodesic if 𝑣 

satisfies a second-order differential equation of the form 

𝑣̈ + 𝑃𝑣̇3 + 𝑄𝑣̇2 + 𝑅𝑣̇ + 𝑆 = 0, 

where 𝑃,𝑄, 𝑅, and 𝑆 are functions of 𝑢 and 𝑣 determined by 𝐸, 𝐹, 𝐺, and their first derivatives. 

This gives some idea of the complicated nature of the geodesic equation in general. A form 

which is more convenient for theoretical investigations will be given in the next section. 

3.2. Canonical geodesic equations: 

The parameter 𝑡 is arbitrary and can conveniently be taken to be the arc length 𝑠 of the curve 

measured from some fixed point on it.  

(This could not be done earlier because in the variational problem the limits of the independent 

variable were required to be fixed.) 

When there is no ambiguity a prime will denote differentiation with respect to 𝑠. Then with 𝑠 

as parameter, 𝑢̇, 𝑣̇ are replaced by 𝑢′, 𝑣′ and 

 𝑇 =
1

2
(𝐸𝑢′2 + 2𝐹𝑢′𝑣′ + 𝐺𝑣′2) … .…… . (1) 

Along the curve, 𝑢′ and 𝑣′ satisfy the identity for direction coefficients. 

 Hence 𝑇 =
1

2
, 𝑑𝑇/𝑑𝑠 = 0,  

the canonical equations for geodesics: 
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𝑈 ≡

𝑑

𝑑𝑠
(
𝜕𝑇

𝜕𝑢′
) −

𝜕𝑇

𝜕𝑢
= 0

𝑉 ≡
𝑑

𝑑𝑠
(
𝜕𝑇

𝜕𝑣′
) −

𝜕𝑇

𝜕𝑣
= 0

} ……… . . (2) 

It must be remembered that in these equations the partial derivatives of 𝑇 are calculated from 

(1) before values for 𝑢′ and 𝑣′ are substituted; 𝑇 is not equal to 
1

2
 identically for all 𝑢, 𝑣, 𝑢′, 𝑣′, 

but only along the curve. 

𝑢′𝑈 + 𝑣′𝑉 = 0 

confirming that equations (2) are not independent. For a curve other than a parametric curve, 

𝑢′ ≠ 0, 𝑣′ ≠ 0, and the conditions 𝑈 = 0 and 𝑉 = 0 are equivalent, either being sufficient for 

a geodesic. For a parametric curve 𝑢 = constant, 𝑢′ = 0, 𝑣′ ≠ 0, and 𝑉 = 0 for all 𝑠, so that 

the equation is satisfied automatically; the condition for a geodesic is therefore 𝑈 = 0. 

Similarly, 𝑉 = 0 is the sufficient condition for a curve 𝑣 = constant to be a geodesic. 

Example 1:  

To find the geodesics on a surface of revolution. 

Then 𝑇 =
1

2
{(𝑓1

2 + 𝑔1
2)𝑢′2 + 𝑔2𝑣′2}, 

where 𝑓1 = 𝑑𝑓/𝑑𝑢, etc., and since 𝜕𝑇/𝜕𝑣 = 0 the canonical equation 𝑉 = 0 can be integrated 

immediately to give 

𝑔2𝑣′ = 𝛼 

where 𝛼 is an arbitrary constant which can be assumed non-negative, taking the positive 

sense along the curve to be that in which 𝑣 increases. If 𝛼 = 0, then 𝑣 is constant and every 

meridian is a geodesic. Assume now that 𝛼 is positive. Then the first order differential 

equation can be written 

giving 

𝑔4𝑑𝑣2 = 𝛼2𝑑𝑠2 = 𝛼2{(𝑓1
2 + 𝑔1

2)𝑑𝑢2 + 𝑔2𝑑𝑣2}

𝛼√′(𝑓1
2 + 𝑔1

2)𝑑𝑢 ± 𝑔√(𝑔2 − 𝛼2)𝑑𝑣 = 0
 

the ± being included although 𝛼 is arbitrary because 𝑑𝑣/𝑑𝑢 may change sign along the same 
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geodesic. If 𝑔2 ≠ 𝛼2, by integration the geodesics are given by an equation of the form 

𝑣 = 𝛼𝜙(𝑢, 𝛼) + 𝛽 

where 𝛼, 𝛽 are arbitrary constants. 

If 𝑔2 = 𝛼2, then 𝑢 = constant. However, for curves 𝑢 = constant the equation 𝑉 = 0 is 

automatically satisfied. To see whether 𝑢 = 𝑐 is a geodesic it is necessary to apply the condition 

𝑈 = 0. Since now 𝑢′ = 0 and 𝑣′ = 𝑔−1 from the identity for direction coefficients, 

𝜕𝑇

𝜕𝑢′
= 0,

𝜕𝑇

𝜕𝑢
=
𝑔1
𝑔
, 𝑈 = −

𝑔1
𝑔

 

The curve 𝑢 = 𝑐 is therefore a geodesic if and only if 𝑔1(𝑐) = 0. Since 𝑔 is the radius of the 

parallel 𝑢 = 𝑐 on the surface of revolution, a parallel is a geodesic if its radius is stationary. 

The method used in the above example can be applied to give the following result which will 

be left to the reader to verify. If 𝐸, 𝐹, and 𝐺 are functions of only one parameter, 𝑢 say, the 

geodesics can all be found by quadratures. This applies not only to the general surface of 

revolution but also to the general helicoid. The geodesics are given by the equation 

𝑣 = ∫  {−
𝐹

𝐺
±

𝛼𝐻

𝐺(𝐺 − 𝛼2)𝟏
} 𝑑𝑢 + 𝛽 

where 𝛼 and 𝛽 are arbitrary constants; and also by the equation 𝑢 = 𝑐 where 𝑐 is any root of 

the equation 𝐺1 = 0. If 𝐹2/𝐸 is constant, then every curve 𝑣 = constant is a geodesic. 

Example 2: 

 On a right helicoid of pitch 2𝜋𝑎, a geodesic makes an angle 𝛼 with a generator at a point 

distant 𝑐 from the axis (0 < 𝛼 <
1

2
𝜋, 𝑐 > 0). Prove that the geodesic meets the axis if 𝑐tan 𝛼 <

𝑎, but that if 𝑐tan 𝛼 > 𝑎, its least distance from the axis is  

(𝑐2sin2 𝛼 − 𝑎2cos2 𝛼)
1

2. Find the equation of the geodesic in the case 𝑐tan 𝛼 = 𝑎. 

From the equations metric of the right helicoid is 

𝑑𝑢2 + (𝑢2 + 𝑎2)𝑑𝑣2. As in the above examples, a first integral of the geodesic equations is 
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𝑑𝑣

𝑑𝑢
=

±𝑘

{(𝑢2+𝑎2)(𝑢2+⋅𝑢2−𝑘2)}3
, 

where 𝑘 is an arbitrary positive constant. Further integration in general requires elliptic 

functions. 

The given point is (𝑐, 0) for a suitable choice of axes, and 𝛼 is the angle between the directions 

( 1,0 ) and ( 𝑢′, 𝑣′ ) at this point, 

 i.e. tan 𝛼 = 𝐻𝑣′/𝑢′ = 𝑘(𝑐2 + 𝑎2 − 𝑘2)−
1

2. This gives 𝑘 = (𝑐2 + 𝑎2)
1

2sin 𝛼.  

There are two geodesics satisfying the given initial conditions, but it will be sufficient to 

consider the one for which 
𝑑𝑣

𝑑𝑢
< 0 initially. 

From the form of 𝑑𝑣/𝑑𝑢 it appears that there are three cases. 

(i) 𝑘2 > 𝑎2, i.e. 𝑐tan 𝛼 > 𝑎. Since 𝑑𝑣/𝑑𝑢 < 0 initially, 𝑢 decreases as 𝑣 increases until 𝑢 =

(𝑘2 − 𝑎2)
1

2 = (𝑐2sin2 𝛼 − 𝑎2cos2 𝛼)
1

2.  

As 𝑣 continues to increase, the sign of 𝑑𝑣/𝑑𝑢 changes and 𝑢 increases indefinitely. The least 

distance from the axis is therefore (𝑐2sin2 𝛼 − 𝑎2cos2 𝛼)
1

2. 

(ii) 𝑘2 < 𝑎2, i.e. 𝑐tan 𝛼 < 𝑎. In this case 𝑑𝑣/𝑑𝑢 < 0 for all 𝑣, and 𝑢 decreases indefinitely as 

𝑣 increases. There is a point on the curve at which 𝑢 = 0, i.e. the curve meets the axis. 

(iii) 𝑘2 = 𝑎2, i.e. 𝑐tan 𝛼 = 𝑎. In this special case 

𝑑𝑣

𝑑𝑢
=

−𝑎

𝑢(𝑢2 + 𝑎2)
1
2

 

and 𝑣 = −𝛽 + sinh−1 (𝑎/𝑢) where 𝛽 = +sinh−1 (𝑎/𝑐), since 𝑣 = 0 when 𝑢 = 𝑐. The 

geodesic is therefore given by 

𝑢sinh (𝑣 + 𝛽) = 𝑎, 𝛽 = sinh−1 (𝑎/𝑐) 

As 𝑣 increases, the curve approaches the axis without reaching it. In the opposite sense, 𝑢 →

∞ as 𝑣 → −𝛽, showing that the generator 𝑣 = −𝛽 is an asymptote. 

Exercise: 
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1.Prove that for a helicoid of non-zero pitch the sections by planes containing the axis are 

geodesics if and only if these sections are straight lines. 

3.3. Normal property of geodesics: 

The geodesic equations can be expressed in terms of 𝐫(𝑢, 𝑣) by means of the following 

identities which hold for any functions 𝑢(𝑡), 𝑣(𝑡) of a general parameter 𝑡; 

𝜕𝑇

𝜕𝑢̇
= 𝐫̇ ⋅ 𝐫1

𝜕𝑇

𝜕𝑣̇
= 𝐫̇ ⋅ 𝐫2

𝑈(𝑡) = 𝐫̈ ⋅ 𝐫1, 𝑉(𝑡) = 𝐫̈ ⋅ 𝐫2
}  …………(1) 

where, as before, 𝑇 =
1

2
(𝐸𝑢̇2 + 2𝐹𝑢̇𝑣̇ + 𝐺𝑣̇2). 

To prove these, consider the relations 

𝑇 =
1

2
𝐫̇2, 𝐫̇ = 𝐫1𝑢̇ + 𝐫2𝑣̇ 

Then 

𝜕𝑇

𝜕𝑢̇
 = 𝐫̇ ⋅

𝜕𝐫̇

𝜕𝑢̇
= 𝐫̇ ⋅ 𝐫1

𝜕𝑇

𝜕𝑢
 = 𝐫̇ ⋅

𝜕𝐫̇

𝜕𝑢
= 𝐫̇ ⋅ (𝐫11𝑢̇ + 𝐫21𝑣̇) = 𝐫̇ ⋅

𝑑

𝑑𝑡
(𝐫1),

𝑈(𝑡) =
𝑑

𝑑𝑡
(𝐫̇ ⋅ 𝐫1) − 𝐫̇ ⋅

𝑑

𝑑𝑡
(𝐫1) = 𝐫̈ ⋅ 𝐫1

 

and similarly for 𝜕𝑇/𝜕𝑣̇ and 𝑉(𝑡). 

With 𝑠 as parameter the geodesic equations are 𝑈(𝑠) = 0; 𝑉(𝑠) = 0. They can therefore be 

written 𝐫′′ ⋅ 𝐫1 = 0, 𝐫
′′ ⋅ 𝐫2 = 0 …………(2) 

showing that, at every point 𝑃 of the geodesic, 𝐫′′ is perpendicular to the tangent plane at 𝑃. 

This condition is sufficient as well as necessary. Hence: 

A characteristic property of a geodesic is that at every point its principal normal is normal to 

the surface. Every curve having this property is a geodesic. 

In terms of a general parameter 𝑡, equation (6) can be written 

i.e. (𝐫̇. 𝐫1)(𝐫̈ ⋅ 𝐫2) − (𝐫̇ ⋅ 𝐫2)(𝐫̈ ⋅ 𝐫1) = 0, 
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This says that the binomial of the curve is perpendicular to the normal to the surface, from 

which it follows that the principal normal is normal to the surface. 

An equivalent statement of the above normal property is that at every point of a geodesic the 

rectifying plane is tangent to the surface. 

The above property often makes it possible to intuit that a curve is a geodesic. For example, 

every great circle of a sphere and every meridian of a surface of revolution clearly have the 

normal property of geodesics. Again, it is now clear that the only parallels of a surface of 

revolution which are geodesics are those whose radii have stationary lengths. 

Example 1:  

A particle is constrained to move on a smooth surface under no force except the normal 

reaction. Prove that its path is a geodesic. 

The acceleration is in the direction 𝐫̈ which is therefore in the direction of the force, i.e. normal 

to the surface. Since 𝐫̇ is tangent 

to the surface, 𝐫̇. 𝐫̈ = 0 and 𝑠̇ = |𝐫̇| = constant, showing that the speed is constant. It follows 

that 𝐫′′ is in the direction 𝐫̈, i.e. is normal to the surface, and the curve is therefore a geodesic. 

This problem can also be solved by using the Lagrange equation of dynamics, taking 𝑢 and 𝑣 

as generalized coordinates. 

Exercise: 

Prove that every helix on a cylinder is a geodesic. 

The normal property is sometimes taken as the definition of a geodesic. It has the advantage of 

simplicity but obscures the intrinsic character of geodesics and could not apply to Riemannian 

geometry which is similar to the intrinsic geometry of a surface but with any number of 

dimensions. Also, the normal property strictly fails in the case of a straight line on a surface, 

for then the principal normal is indeterminate. Such a line is clearly a geodesic according to 

the intrinsic definition. 

It is instructive to see how the differential equations for geodesics arise out of equations (12), 
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and to see how certain Christoffel symbols arise at this stage, although they will arise in 

different contexts later in the book. 

Differentiating 𝐫′ = 𝐫1𝑢
′ + 𝐫2𝑣

′, we find 

𝐫′′ = 𝐫1𝑢
′′ + 𝐫2𝑣

′′ + 𝐫11𝑢
′2 + 2𝐫12𝑢

′𝑣′ + 𝐫22𝑣
′2 

The geodesic equations 𝐫′′ ⋅ 𝐫1 = 0 and 𝐫′′ ⋅ 𝐫2 = 0 thus become 

where 
𝐸𝑢′′ + 𝐹𝑣′′ + Γ111𝑢

′2 + 2Γ112𝑢
′𝑣′ + Γ122𝑣

′2 = 0

𝐹𝑢′′ + 𝐺𝑣′′ + Γ211𝑢
′2 + 2Γ212𝑢

′𝑣′ + Γ222𝑣
′2 = 0

},       ……….(3) 

The coefficients Γ𝑖𝑗𝑘  are called Christoffel symbols of the first kind and can be expressed in 

terms of first derivatives of the fundamental coefficients. It can easily be verified that 

1

2
{(𝐫𝑖 ⋅ 𝐫𝑗)𝑘 +

(𝐫𝑖 ⋅ 𝐫𝑘)𝑗 − (𝐫𝑗 ⋅ 𝐫𝑘)𝑖
} = 𝐫𝑖 ⋅ 𝐫𝑗𝑘 = Γ𝑖𝑗𝑘       ………….. (4) 

Thus 
Γ111 =

1

2
𝐸1, Γ112 = Γ121 =

1

2
𝐸2 , Γ122 = 𝐹2 −

1

2
𝐺1

Γ211 = 𝐹1 −
1

2
𝐸2 , Γ212 = Γ221 =

1

2
𝐺1, Γ222 =

1

2
𝐺2
}………… . (5) 

Since 𝐸𝐺 − 𝐹2 ≠ 0, equations can be solved for 𝑢′′ and 𝑣′′. The resulting equations, which 

are equivalent to (12.4), are written  

𝑢′′ + Γ11
1 𝑢′2 + 2Γ12

1 𝑢′𝑣′ + Γ22
1 𝑣′2 = 0

𝑣′′ + Γ11
2 𝑢′2 + 2Γ12

2 𝑢′𝑣′ + Γ22
2 𝑣′2 = 0

} ………..(6) 

where the coefficients Γ𝑗𝑘
𝑖 , called the Christoffel symbols of the secend kind, are given by 

Γ𝑗𝑘
1 = 𝐻−2(𝐺Γ1𝑗𝑘 − 𝐹Γ2𝑗𝑘), Γ𝑗𝑘

2 = 𝐻−2(𝐸Γ2𝑗𝑘 − 𝐹Γ1𝑗𝑘) …………(7) 

3.4. Existence theorems: 

With 𝑠 as parameter the geodesic equations can be written in the form  

𝑢′′ = 𝑓(𝑢, 𝑣, 𝑢′, 𝑣′), 𝑣′′ = 𝑔(𝑢, 𝑣, 𝑢′, 𝑣′)  ………..(1) 

where 𝑓 and 𝑔 are quadratic forms in 𝑢′, 𝑣′ with single-valued continuous functions of 𝑢 and 

𝑣 as coefficients. These are simultaneous second order differential equations for 𝑢 and 𝑣 as 

functions of 𝑠, and from the theory of such equations, † if 𝑓 and 𝑔 are of class ⩾ 1, a solution 
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exists and is determined uniquely by arbitrary initial values of 𝑢, 𝑣, 𝑢′, and 𝑣′. Hence: 

A geodesic can be found to pass through any given point and have any given direction at that 

point. The geodesic is determined uniquely by these initial conditions. 

From the above existence theorem it is to be expected that if a point 𝑄 is sufficiently near any 

given point 𝑃, then it is possible to find a direction at 𝑃 such that the geodesic through 𝑃 in this 

direction also passes through 𝑄. The following theorem can in fact be proved, assuming merely 

that the surface is of class 3. 

Every point 𝑃 of the surface has a neighbourhood 𝑁 with the property that every point of 𝑁 

can be joined to 𝑃 by a unique geodesic arc which lies wholly in 𝑁. 

This does not, of course, state that if 𝑄 is a point of 𝑁 then the geodesic arc 𝑃𝑄 which lies in 

𝑁 is the only geodesic joining 𝑃 and 𝑄; there may be other geodesic arcs 𝑃𝑄 but they leave 𝑁. 

Examples of this will be given later in this section. 

This theorem gives all that we can say at present about the existence of geodesics joining two 

given points; it says that 𝑄 can be joined to 𝑃 if it is sufficiently near 𝑃. Nothing more than 

that can be said as long as the region of the surface being considered is arbitrary.  

Later, however, when a complete surface has been defined, it will appear that any two points 

can be joined by at least one geodesic. 

A region 𝑅 is convex if any two points of it can be joined by a geodesic arc lying wholly in 𝑅, 

and is simple if there is not more than one such geodesic arc. In the Euclidean plane a convex 

region is necessarily simple but this is not so for a surface in general. The surface of a sphere, 

for example, is convex but not simple.  

Every point 𝑃 of a surface has a neighborhood which is convex and simple. 

The difference between this and the previous theorem is that it is no longer just one particular 

point which is joined to the others of the neighborhood; every point is joined uniquely to every 

other point. Whitehead's theorem is in fact much deeper than the previous theorem and its proof 

is beyond the scope of this book. It will not be used in the sequel. 

A particular and interesting form of Whitehead's theorem is concerned with a geodesic disk of 
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given center 𝑃 and radius 𝑟, defined as the set of points 𝑄 such that there is a geodesic arc 𝑃𝑄 

of length not greater than 𝑟. Whitehead proved that for every point 𝑃 there is an 𝜖 > 0 such 

that every geodesic disk of centre 𝑃 and radius 𝑟 ⩽ 𝜖 is convex and simple. 

Exercise: 

On a circular cylinder of radius 𝑎, find the least upper bound for the radius of a simple convex 

geodesic disk, and prove that a geodesic disk of greater radius is convex but not simple. 

This section will be concluded with examples of the multiplicity of geodesics joining two 

points. They are mostly constructed by using the intrinsic property of geodesics, that if surfaces 

𝑆 and 𝑆′ are isometric, then the curve on 𝑆′ which corresponds to a geodesic on 𝑆 is a geodesic 

on 𝑆′. In fact, the correspondence need only be locally isometric since a curve is a geodesic if 

every small arc is a geodesic arc. 

Consider, for example, the mapping of a plane on a circular cylinder obtained by wrapping the 

plane round the cylinder. A geodesic on the plane is a straight line, and this corresponds to a 

helix (or meridian or circular section) on the cylinder. The helix is therefore a geodesic on the 

cylinder. 

 Conversely, every helix on the cylinder corresponds to a straight line (or strictly to a family 

of parallel straight lines) on the plane; thus every helix is a geodesic. 

It follows at once that any two points 𝑃,𝑄 of the cylinder, not on the same parallel, are joined 

by infinitely many geodesic arcs because there are infinitely many helices joining the two 

points. When the cylinder is unrolled into a plane there are infinitely many images of 𝑄, and 

the geodesics 𝑃𝑄 correspond to the straight lines joining all the images of 𝑄 to any one image 

of 𝑃. There is a geodesic arc 𝑃𝑄 making any desired number of turns round the cylinder, in 

either sense. 

A similar result holds for the anchor ring. Joining two points 𝑃, 𝑄 not on the same meridian 

there are infinitely many geodesic arcs; an arc can be found to make any number of turns, in 

either sense, of the kind made by the meridian circles, and at the same time any number of 

turns, in either sense, of the kind made by the parallel circles. This cannot be proved by the 

simple method used for the cylinder because the anchor ring is not locally isometric to a plane. 
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The geodesic equations can, however, be integrated by the method of section 3.2. 

An example of a surface on which the number of geodesics joining two given points may be 

more than one but is strictly limited is a right circular half-cone. Here again the different 

geodesic arcs 𝑃𝑄 are obtained by taking different numbers of turns round the cone in either 

sense. 

A local isometry can be set up by rolling the cone over the plane. The surface of the cone 

corresponds isometrically to a sector of the plane which is reproduced according to the number 

of revolutions of the cone, in either sense. The images of 𝑄 are points 𝑄1, 𝑄2, … in one sense 

and 𝑄−1, 𝑄−2, … in the other. If 𝑃′ is the first image of 𝑃 (in the sector between 𝑄1 and 𝑄−1 ), 

then the geodesic arcs 𝑃𝑄 which pass round the cone in one sense correspond to the straight 

lines 𝑃′𝑄1, 𝑃
′𝑄2, …, and those which pass round the cone in the opposite sense correspond to 

the lines 𝑃′𝑄−1, 𝑃
′𝑄−2, …. In either sense the number is limited; the lines 𝑃′𝑄𝑟 must all be on 

one side of 𝑃′𝑉 and the lines 𝑃′𝑄−𝑟 must all be on the other side of 𝑃′𝑉. In Fig. 2 there are 

three geodesic arcs in one sense and two in the other. 

Clearly, the smaller the solid angle of the cone the greater the number of geodesics. Fig. 3 

illustrates the case when there is only one geodesic arc 𝑃𝑄. 

It is interesting to note that, on the cone, there may be nontrivial geodesic arcs joining a point 

to itself; in the above argument 𝑃 can coincide with 𝑄. 

 

 

Figure. 2 
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Figure. 3 

With the cone as a guide it is not difficult to construct other surfaces on which there may be 

any finite number of geodesics joining two points, or joining a point to itself. An example is 

the paraboloid of revolution, on which the geodesic equation can be integrated by the method. 

Again, on the paraboloid 

𝑥2

𝑎2
+
𝑦2

𝑏2
=
2𝑧

𝑐
 

or on one sheet of the hyperboloid 

𝑥2

𝑎2
+
𝑦2

𝑏2
−
𝑧2

𝑐2
= −1 

the larger 𝑐 is in comparison with 𝑎 and 𝑏 the more geodesics there are joining two points. 

Exercise: 

1.Prove that, on a right circular cone of semi vertical angle 𝛼, every point can be joined to itself 

by a geodesic arc if 𝛼 <
1

6
𝜋. If this condition is satisfied prove that the number of geodesic 

arcs joining a point to itself is the greatest integer less than (2sin 𝛼)−1. Prove also that this is 

the number of times a geodesic other than a generator intersects itself. 

2. Prove that, on a paraboloid of revolution, every geodesic other than a meridian intersects 

itself infinitely often. 
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3.5. Geodesic parallels: 

Suppose a family of geodesics is given, and that a parameter system is chosen so that the 

geodesics of the family are the curves 𝑣 = constant and their orthogonal trajectories are the 

curves 𝑢 = constant. Then 𝐹 = 0 and condition for the curves 𝑣 = constant to be geodesics 

becomes 𝐸2 = 0. The metric is therefore of the form 

𝑑𝑠2 = 𝐸(𝑢)𝑑𝑢2 + 𝐺(𝑢, 𝑣)𝑑𝑣2  ……..(1) 

Consider the distance between any two of the orthogonal trajectories, say 𝑢 = 𝑢1 and 𝑢 = 𝑢2, 

measured along the geodesic 𝑣 = 𝑐. Along 𝑣 = 𝑐, 𝑑𝑣 = 0, and 𝑑𝑠 = √𝐸𝑑𝑢, so that the distance 

is 

∫  
𝑢2

𝑢1

√𝐸(𝑢)𝑑𝑢, 

a number independent of 𝑐. The distance is thus the same along whichever geodesic 𝑣 = 

constant it is measured. Because of this, the orthogonal trajectories are called geodesic 

parallels. 

In the plane, a family of geodesics is a family of straight lines enveloping some curve 𝐶, and 

the geodesic parallels are the involutes of 𝐶. In particular, when the geodesics are concurrent 

straight lines, the parallels are concentric circles. 

In the above metric the parameter 𝑢 can be specialized by taking it to be the distance from some 

fixed parallel to the parallel determined by 𝑢, the distance being measured along any geodesic 

𝑣 = 𝑐. Then 𝑑𝑠 = 𝑑𝑢 when 𝑑𝑣 = 0, i.e. 𝐸 = 1. Hence: for any given family of geodesics, a 

parameter system can be chosen so that the metric takes the form 𝑑𝑢2 + 𝐺𝑑𝑣2. The given 

geodesics are the parametric curves 𝑣 = constant and their orthogonal trajectories are 𝑢 = 

constant, 𝑢 being the distance measured along a geodesic from some fixed parallel. 

The transformation 𝑢 → 𝑢′: 𝑑𝑢′ = √𝐸𝑑𝑢 also gives the simplified metric from (1). 

Exercise: 

 If a surface admits two orthogonal families of geodesics, it is isometric with the plane. 
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Geodesic polar 

A particularly useful system of geodesics and parallels is found by taking the geodesics which 

pass through a given point 0. By the second existence theorem there is a neighborhood of 𝑂 in 

which, when the point 𝑂 itself is excluded, the geodesics constitute a family. Parameters 𝑢, 𝑣 

can therefore be chosen as above. In 

particular 𝑢 can be taken to be the distance measured from 𝑂 along the geodesics and 𝑣 can be 

taken to be the angle measured at 𝑂 between a fixed geodesic 𝑣 = 0 and the one determined 

by 𝑣. In this way 𝑢 and 𝑣 correspond to polar coordinates 𝑟 and 𝜃 in the plane. The metric is 

therefore 

𝑑𝑢2 + 𝐺𝑑𝑣2 

where 𝐺 is such that, when 𝑢 is small, the metric approximates to the plane polar form with 

𝑢, 𝑣 in place of 𝑟, 𝜃, i.e. to 𝑑𝑢2 + 𝑢2𝑑𝑣2. Hence 𝐺 ∼ 𝑢2, i.e. 

lim
𝑢→0

 
√𝐺

𝑢
= 1 

In geodesic polar parameters the parallels 𝑢 = constant are geodesic circles. 

3.6. Geodesic curvature: 

For any curve on a surface the curvature vector at a point 𝑃 is 𝐫′′ = 𝜅𝐧, where 𝜅 is the curvature 

and 𝐧 is the principal normal. This can be written 

 𝐫′′ = 𝜅𝑛𝐍+ 𝜆𝐫1 + 𝜇𝐫2    ……… . . (1) 

where 𝜅𝑛 is the normal component of 𝐫′′, called the normal curvature. The vector 𝜆𝐫1 + 𝜇𝐫2, 

with components ( 𝜆, 𝜇 ), is zero for a geodesic because then 𝑟′′ is normal to the surface. This 

suggests that for any curve the vector (𝜆, 𝜇) is intrinsic so that its magnitude measures in some 

sense the deviation of the curve from a geodesic. The vector (𝜆, 𝜇) is, in fact, intrinsic, for from 

(20), taking scalar products with 𝑟1 and 𝐫2, 

 𝐸𝜆 + 𝐹𝜇 = 𝐫′′ ⋅ 𝐫1 = 𝑈,𝐹𝜆 + 𝐺𝜇 = 𝐫
′′ ⋅ 𝐫2 = 𝑉  ……… (2) 

where 𝑈 and 𝑉 are calculated with 𝑠 as parameter. Thus 𝜆 and 𝜇 are given by the intrinsic 

formulae 



 

117 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

𝜆 = 𝐻−2(𝐺𝑈 − 𝐹𝑉), 𝜇 = 𝐻−2(𝐸𝑉 − 𝐹𝑈).  ………… (3) 

The vector (𝜆, 𝜇) is called the geodesic curvature vector of the curve under consideration. In 

the notation introduced at the end of section 3.3 the components 𝜆, 𝜇 are given by 

𝜆 = 𝑢′′ + Γ11
1 𝑢′2 + 2Γ12

1 𝑢′𝑣′ + Γ22
1 𝑣′2, 

The geodesic curvature vector of any curve is orthogonal to the curve. This follows at once 

from (20) since the tangent vector 𝐫′ is orthogonal to 𝐫′′ and to 𝐍 and therefore also to 𝜆𝐫1 +

𝜇𝐫2, which is the geodesic curvature vector. It can also be proved intrinsically; 

the orthogonality condition for the vectors ( 𝑢′, 𝑣′ ) and (𝜆, 𝜇) can be written 

𝑢′(𝐸𝜆 + 𝐹𝜇) + 𝑣′(𝐹𝜆 + 𝐺𝜇) = 0 

which from (21) becomes the identity 𝑢′𝑈 + 𝑣′𝑉 = 0. 

Exercise:  

Prove that the components 𝜆, 𝜇 of the geodesic curvature vector are given by the following 

formulae, with 𝑠 as parameter. 

𝜆 =
1

𝐻2
𝑈

𝑣′
𝜕𝑇

𝜕𝑣′
= −

1

𝐻2
𝑉

𝑢′
𝜕𝑇

𝜕𝑣′
, 𝜇 =

1

𝐻2
𝑉

𝑢′
𝜕𝑇

𝜕𝑢′
= −

1

𝐻2
𝑈

𝑣′
𝜕𝑇

𝜕𝑢′
. 

The geodesic curvature, 𝜅𝑔, of any curve is defined as the magnitude of the geodesic curvature 

vector with a sign attached, positive or negative according as the angle between the tangent 

and the geodesic curvature vector is +
1

2
𝜋 or −

1

2
𝜋. The geodesic curvature is therefore 

intrinsic. From the sine formula for the angle between the vectors ( 𝑢′, 𝑣′ ) and ( 𝜆, 𝜇 ) it follows 

that 𝜅𝑔 = 𝐻(𝑢
′𝜇 − 𝑣′𝜆) 

The geodesic curvature of a geodesic is zero. Conversely, a curve with zero geodesic curvature 

at every point has zero geodesic curvature vector and is therefore a geodesic. 

Since the unit tangent vector 𝐫′ is orthogonal to 𝐍, the unit vector which lies in the tangent 

plane and makes an angle +
1

2
𝜋 with 𝐫′ is 𝐍 × 𝐫′. The geodesic curvature vector is therefore 

𝜅𝑔𝐍 × 𝐫
′, and (20) can be written 𝐫′′ = 𝜅𝑛𝐍+ 𝜅𝑔𝐍× 𝐫

′ 
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Taking the scalar product with the unit vector 𝐍 × 𝐫′, we have 𝜅𝑔 = [𝐍, 𝐫
′, 𝐫′′] 

In this formula for 𝜅𝑔 it is a simple matter to pass from 𝑠 to a general parameter 𝑡. Since 𝐫′ =

𝐫̇/𝑠̇ and 𝐫′ × 𝐫′′ = 𝐫̇ × 𝐫̈/𝑠̇3 the formula becomes 𝜅𝑔 = 𝑠̇
−3[𝐍, 𝐫̇, 𝐫̈] 

Substituting 𝐍 = 𝐻−1𝐫1 × 𝐫2, we have 

𝜅𝑔 = 𝐻
−1𝑠̇−3(𝐫1 × 𝐫2) ⋅ (𝐫̇ × 𝐫̈)

 = 𝐻−1𝑠̇−3{(𝐫1 ⋅ 𝐫̇)(𝐫2 ⋅ 𝐫̈) − (𝐫2. 𝐫̇)(𝐫1. 𝐫̈)}
 

and because of the identities (12.1) this can be written 𝜅𝑔 =
1

𝐻𝑠̇3
(
𝜕𝑇

𝜕𝑢̇
𝑉(𝑡) −

𝜕𝑇

𝜕𝑣̇
𝑈(𝑡)) 

Example 1:  

To find the geodesic curvature of the parametric curve 𝑣 = 𝑐. Taking 𝑢 as parameter, then 

𝑢̇ = 1, 𝑣̇ = 0, and 

. 
𝜕𝑇

𝜕𝑢̇
= 𝐸,

𝜕𝑇

𝜕𝑣̇
= 𝐹,𝑈 =

1

2
𝐸1, 𝑉 = 𝐹1 −

1

2
𝐸2. 

Also, 𝑠̇ = 𝐸‡. Hence the required curvature is given by 

𝜅𝑔 =
1

2
𝐻−1𝐸−𝟏(2𝐸𝐹1 − 𝐸𝐸2 − 𝐹𝐸1). 

𝑡 = 𝑠 can be simplified by means of the identity 𝑢′𝑈(𝑠) + 𝑣′𝑉(𝑠) = 0. Substituting for either 

𝑉 or 𝑈 and using the fact that 𝑢′(𝜕𝑇/𝜕𝑢′) + 𝑣′(𝜕𝑇/𝜕𝑣′) = 2𝑇 = 1 when 𝑠 is the parameter, 

𝜅𝑔 = −
1

𝐻

𝑈(𝑠)

𝑣′
=

1

𝐻

𝑉(𝑠)

𝑢′
 

Exercise:  

Prove that if (𝜆, 𝜇) is the geodesic curvature vector, then 𝜅𝑔 =
−𝐻𝜆

𝐹𝑢′+𝐺𝑣′
=

𝐻𝜇

𝐸𝑢′+𝐻′𝑣′
 

Geodesic curvature may be regarded as the intrinsic generalization of curvature of plane curves, 

as can be seen from the following result which will not be proved here. 

Let 𝑃 be a point of a given curve 𝐶 on a surface and 𝑄 the voint of 𝐶 at a distance 𝛿𝑠 from 𝑃 

along 𝐶. If the geodesics wnuch are tangent to 𝐶 at 𝑃 and 𝑄 meet at the point 𝑅, let 𝛿𝜓 be the 

angle between the tangents to these geodesics at 𝑅. Then the geodesic curvature of 𝐶 at 𝑃 is 
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lim
𝛿𝑠→0

 
𝛿𝜓

𝛿𝑠
. 

For a plane curve, 𝛿𝜓 is the angle between the tangents at 𝑃 and 𝑄 and lim
𝛿𝑠→0

 
𝛿𝜓

𝛿𝑠
 is the curvature 

𝑑𝜓

𝑑𝑠
 in the usual notation. 

The above would be a satisfactory intrinsic definition of geodesic curvature except for the 

difficulty of proving that the tangent geodesics at 𝑃 and 𝑄 do in fact meet at a point, 𝑅 near 𝑃. 

A more straightforward intrinsic generalization of curvature is as follows. 

Let 𝑃 be a point of a given curve 𝐶 on a surface and 𝑄 the point of 𝐶 at a distance 𝛿 s from 𝑃 

along 𝐶. Let 𝐶‾ be the geodesic arc 𝑃𝑄, of length 𝛿𝑠‾. Then if 𝛿𝜃 is the angle between 𝐶 and 𝐶‾ 

at 𝑃 and if 𝛿𝜙 is the angle between 𝐶‾ and 𝐶 at 𝑄, the geodesic curvature of 𝐶 at 𝑃 is lim
𝛿𝑠→0

 
𝛿𝜃+𝛿𝜙

𝛿𝑠
 

(see Fig. 4 ; note that for this figure 𝜅0 is negative). 

There is no difficulty about this construction because of the existence theorem for a geodesic 

joining two neighboring points. To prove the result, let ( 𝑢′, 𝑣′), (𝑢0
′ , 𝑣0

′ ) be unit tangent vectors 

to 𝐶 at 𝑄 and 𝑃 respectively. Let ( 𝑢‾ ′, 𝑣‾′), (𝑢‾0
′ , 𝑣‾0

′ ) be unit tangent vectors to 𝐶‾ at 𝑄 and 𝑃 

respectively. Then 

sin 𝛿𝜃 = 𝐻(𝑢0, 𝑣0){𝑢0
′ 𝑣‾0
′ − 𝑣0

′𝑢0
′ }, sin 𝛿𝜙 = 𝐻(𝑢, 𝑣){𝑢‾ ′𝑣′ − 𝑢′𝑣‾ ′}. 

 

Figure. 4 

We have 

𝑢′ = 𝑢0
′ + 𝛿𝑠𝑢0

′′ + 𝑂(𝛿𝑠2)  as 𝛿𝑠 → 0,

𝑣′  = 𝑣0
′ + 𝛿𝑠𝑣0

′′ + 𝑂(𝛿𝑠2)  as 𝛿𝑠 → 0,

𝑢‾ ′ = 𝑢‾0
′ + 𝛿𝑠‾𝑓(𝑢0, 𝑣0, 𝑢‾0

′ , 𝑣‾0
′ ) + 𝑂(𝛿𝑠‾2)  as 𝛿𝑠‾ → 0,

𝑣‾ ′ = 𝑣‾0
′ + 𝛿𝑠‾𝑔(𝑢0, 𝑣0, 𝑢‾0

′ , 𝑣‾0
′ ) + 𝑂(𝛿𝑠‾2)  as 𝛿𝑠‾ → 0,
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where in the last two equations we have used the geodesic equations. Also we have 

𝛿𝑠‾ = 𝛿𝑠 + 𝑂(𝛿𝑠2)  as 𝛿𝑠 → 0 

We write 

𝐻(𝑢0, 𝑣0) = 𝐻0, 𝐻(𝑢, 𝑣) = 𝐻0 + 𝛿𝐻 

Where 𝛿𝐻 = 𝑂(𝛿𝑠)  as 𝛿𝑠 → 0 

Then we have sin 𝛿𝜃 + sin 𝛿𝜙 

= 𝐻0𝛿𝑠[𝑢0
′ {𝑣0

′′ − 𝑔(𝑢0, 𝑣0, 𝑢‾0
′ , 𝑣‾0

′ )} − 𝑣0
′ {𝑢0

′′ − 𝑓(𝑢0, 𝑣0, 𝑢‾0
′ , 𝑢‾0

′ )}] +

 +
𝛿𝐻(𝑢‾0

′ 𝑣0
′ − 𝑣‾0

′𝑢0
′ ) + 𝑂(𝛿𝑠2)

 

Also, as 𝛿𝑠 → 0 we have 

sin 𝛿𝜃 = 𝛿𝜃 + 𝑂(𝛿𝑠2),        sin 𝛿𝜙 = 𝛿𝜙 + 𝑂(𝛿𝑠2)

𝑢‾0
′  = 𝑢0

′ +𝑂(𝛿𝑠),         𝑣‾0
′  = 𝑣0

′ + 𝑂(𝛿𝑠)
 

Then  

𝛿𝜃 + 𝛿𝜙 =𝐻0𝛿𝑠[𝑢0
′ {𝑣0

′′ − 𝑔(𝑢0, 𝑣0, 𝑢0
′ , 𝑣0

′ )} −

 −𝑣0
′ {{ 0

′′ − 𝑓(𝑢0, 𝑣0, 𝑢0
′ , 𝑣0

′ )} + 𝑂(𝛿𝑠2)  as 𝛿𝑠 → 0.
 

From (15.4), the geodesic curvature vector ( 𝜆, 𝜇 ) of 𝐶 at 𝑃 is given by 

𝜆 = 𝑢0
′′ − 𝑓(𝑢0, 𝑣0, 𝑢0

′ , 𝑣0
′ ), 𝜇 = 𝑣0

′′ − 𝑔(𝑢0, 𝑣0, 𝑢0
′ , 𝑣0

′ ). 

Hence 
𝛿𝜃+𝛿𝜙

𝛿𝑠
= 𝐻0(𝑢0

′ 𝜇 − 𝑣0
′𝜆) + 𝑂(𝛿𝑠). 

Thus, proceeding to the limit as 𝛿𝑠 → 0 and dropping the suffix, we get 

lim
𝛿𝑠→0

 
𝛿𝜃 + 𝛿𝜙

𝛿𝑠
= 𝐻(𝑢′𝜇 − 𝑣′𝜆) = 𝜅𝑔    

Liouville's formula for 𝜅𝑔. This is an expression for 𝜅𝑔 involving the angle 𝜃 which the curve 

under consideration makes with the parametric curves 𝑣 = constant. Regarding 𝜃 as a function 

of 𝑠 along the curve, then Liouville's formula is 
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𝜅𝑔 = 𝜃
′ + 𝑃𝑢′ + 𝑄𝑣′ 

where 

𝑃 =
1

2𝐻𝐸
(2𝐸𝐹1 − 𝐹𝐸1 − 𝐸𝐸2), 𝑄 =

1

2𝐻𝐸
(𝐸𝐺1 − 𝐹𝐸2). 

The direction coefficients of the curve 𝑣 = constant and the given curve are (1/√𝐸,0) and 

(𝑢′, 𝑣′) so that 

cos 𝜃 = √𝐸𝑢′ +
𝐹

√𝐸
𝑣′ =

1

√𝐸

𝜕𝑇

𝜕𝑢′
, sin 𝜃 =

𝐻

√𝐸
𝑣′ 

Differentiating cos 𝜃, 

−sin 𝜃
𝑑𝜃

𝑑𝑠
=

1

√𝐵′

𝑑

𝑑𝑠
(
𝜕𝑇

𝜕𝑢′
) −

1

2𝐸𝟏
(𝐸1𝑢

′ + 𝐸2𝑣
′)
𝜕𝑇

𝜕𝑢′
; 

multiplying by √𝐸 and substituting 

𝑑

𝑑𝑠
(
𝜕𝑇

𝜕𝑢′
) = 𝑈 +

𝜕𝑇

𝜕𝑢

−𝐻𝑣′𝜃′ = 𝑈 +
1

2
(𝐸1𝑢

′2 + 2𝐹1𝑢
′𝑣′ + 𝐺1𝑣

′2) −

−
1

2𝐸
(𝐸1𝑢

′ + 𝐸2𝑣
′)(𝐸𝑢′ + 𝐹𝑣′)

= 𝑈 +
1

2𝐸
{(2𝐸𝐹1 − 𝐹𝐸1 − 𝐸𝐸2)𝑢

′𝑣′ + (𝐸𝐺1 − 𝐹𝐸2)𝑣
′2}.

 

Lioùville's formula now appears on dividing by 𝐻𝑣′ and substituting 𝑈 = −𝜅𝑔𝐻𝑣
′ from (1). 

Example 2:  

Prove that if the orthogonal trajectories of the curves 𝑣 = constant are geodesics, then 𝐻2/𝐸 is 

independent of 𝑢. 

The orthogonal trajectories satisfy 𝜃 =
1

2
𝜋 and are geodesics if 𝜅𝑔 = 0. From Liouville's 

formula, 𝑃𝑢′ + 𝑄𝑣′ = 0. Also cos 𝜃 = 0, i.e. 𝐸𝑢′ + 𝐹𝑣′ = 0, and the trajectories will be 

geodesics if 
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𝐸𝑄 − 𝐹𝑃 = 0 

On substituting for 𝑃 and 𝑄 the condition becomes 

𝐹2𝐸1 − 2𝐸𝐹𝐹1 + 𝐸
2𝐺1 = 0, 

i.e. 𝜕(𝐺 − 𝐹2/𝐸)/𝜕𝑢 = 0 as required. 

Exercise: 

1.Prove that if a curve 𝐶 on a surface is projected orthogonally on to the tangent plane at a 

point 𝑃 of 𝐶, it becomes a plane curve whose curvature at 𝑃 is the geodesic curvature of 𝐶 at 

𝑃. 

3.7. Gauss-Bonnet theorem: 

Consider a surface of class 3 , with parameter system 𝑢, 𝑣, and let a closed curve 𝐶 be the 

boundary of a simply connected region 𝑹 of the surface. (By simply connected we mean that 

every closed curve lying in 𝑅 can be contracted continuously into a point without leaving 𝑅.) 

Suppose that 𝐶 consists of 𝑛 arcs 

𝐴0𝐴1, 𝐴1𝐴2, … , 𝐴𝑛−1𝐴𝑛 (𝐴𝑛 = 𝐴0) 

where 𝑛 is finite, and that each arc is of class 2 . The vertices 𝐴0, 𝐴1, … are taken in order along 

𝐶 to agree with the positive sense of description of 𝐶; this is usually described as the sense 

which 'leaves the interior on the left', i.e. a positive rotation of 
1

2
𝜋 from the tangent gives the 

normal which points to the interior region 𝑅. At the vertex 𝐴𝑟(𝑟 = 1,… , 𝑛) let 𝛼𝑟 be the angle 

between the tangents to the arcs 𝐴𝑟−1𝐴𝑟 and 𝐴𝑟𝐴𝑟+1, measured with the usual convention at 

𝐴𝑟 so that −𝜋 < 𝛼𝑟 < 𝜋; at 𝐴𝑛 , 𝛼𝑛 is the angle between the tangents to 𝐴𝑛−1𝐴𝑛 and 𝐴𝑛𝐴1. 

Regarding 𝐶 as a 'curvilinear polygon', 𝛼1, … , 𝛼𝑛 are the exterior angles at the vertices 

𝐴1, … , 𝐴𝑛 (see Fig. 5 where 𝑛 = 6 ). 

The geodesic curvature exists at every point of 𝐶 except possibly at the vertices, and the line 

integral ∫  
𝐶
𝜅𝑔𝑑𝑠 can therefore be calculated. The excess of 𝐶 is defined as 

ex𝐶 = 2𝜋 −∑ 

𝑛

𝑟=1

𝛼𝑟 −∫ 
𝐶

𝜅𝑔𝑑𝑠 
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This is an invariant, independent of the particular parameter system for the surface. The only 

possible effect of a change of parameter system is to reverse at every point the sense in which 

angles are measured; this would reverse the sense along 𝐶 and therefore the description of the 

polygon, but 𝜅𝑔 at each point and 𝛼𝑟 at each vertex would remain unchanged. 

 

 

Fig. 5 

 

For a curvilinear polygon 𝐶 on the plane, 𝜅𝑔 is the ordinary curvature 𝑑𝜓/𝑑𝑠 and ∫ 𝜅𝑔𝑑𝑠 +

∑  𝑛
𝑟=1 𝛼𝑟 is the total angle through which the tangent turns in describing 𝐶. This angle is clearly 

2𝜋, so that the excess of 𝐶 is zero. In particular, for a rectilinear polygon, 𝜅𝑔 = 0 at every point 

and ∑ 𝛼𝑟 is the sum of the exterior angles, i.e. 2𝜋, giving ex 𝐶 = 0. Since excess, as defined 

above, is intrinsic, it follows, that on any surface isometric with the plane, the excess of a 

simple closed curve is zero. 

This result suggests that for a surface which is not isometric with the plane, the excess of a 

simple curve 𝐶 enclosing a region 𝑅 is in some sense a measure of the intrinsic difference 

between 𝑅 and a region of the plane. The excess may therefore lead to an intrinsic definition 

of the curvature of a surface, based on the convention that a plane has zero curvature. This is 

in fact the case, and it will be shown that from the excess can be derived the important invariant 

known as the Gaussian curvature of a surface. 

From Liouville's formula for 𝜅𝑔, 
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∫ 
𝐶

𝜅𝑔𝑑𝑠 = ∫ 
𝐶

(𝑑𝜃 + 𝑃𝑑𝑢 + 𝑄𝑑𝑣), 

where 𝜃 is the angle which 𝐶 makes with the parametric curve 𝑣 = constant and 𝑃 and 𝑄 are 

certain functions of 𝑢 and 𝑣. Since the curves 𝑣 = constant form a family in the region 𝑅 

bounded by 𝐶, the tangent to 𝐶 turns through 2𝜋 relative to these curves, i.e. 

Hence 

∫ 
𝐶

 𝑑𝜃 +∑  

𝑛

𝑟=1

 𝛼𝑟 = 2𝜋

 ex 𝐶 = −∫ 
𝐶

  (𝑃𝑑𝑢 + 𝑄𝑑𝑣).

 

By Green's theorem, since 𝑅 is simply connected and 𝑃 and 𝑄 are differentiable functions of 𝑢 

and 𝑣 in 𝑅, 

∫ 
𝑪

(𝑃𝑑𝑢 + 𝑄1𝑑𝑣) = ∫ 
𝑹

(
𝜕𝑄

𝜕𝑢
−
𝜕𝑃

𝜕𝑣
)𝑑𝑢𝑑𝑣. 

Hence, writing 𝑑𝑆 = 𝐻𝑑𝑢𝑑𝑣 for the surface element, ex𝐶 = ∫  
𝑲
 𝐾𝑑𝑆  ……….(1) 

where 𝐾 is a function of 𝑢 and 𝑣, independent of the curve 𝐶, given by 

 𝐾 = −
1

𝐻
(
𝜕𝑄

𝜕𝑢
−
𝜕𝑃

𝜕𝑣
)   ……….. (2) 

Equation (1) shows that there is a certain function 𝐾 of 𝑢 and 𝑣 which is determined by 𝐸, 𝐹, 

and 𝐺, and that the excess of any curve 𝐶 which encloses a simply connected region 𝑅 is equal 

to the surface integral of 𝐾 over 𝑅. We shall now show that the function 𝐾 is uniquely 

determined. Let 𝐾‾  be a second function which also satisfies (1) and is independent of 𝐶. Then 

for every region 𝑅, 

∫  
𝑅
  (𝐾‾ − 𝐾)𝑑𝑆 = 0   ………. (3) 

Now suppose 𝐾‾ ≠ 𝐾 at some point 𝑃, say 𝐾‾ > 𝐾. Then since 𝐾‾ − 𝐾 is continuous, there is a 

region 𝑅 which contains 𝑃 and in which 𝐾‾ − 𝐾 > 0 at every point. For this 𝑅, ∫  
𝑅
(𝐾‾ − 𝐾)𝑑𝑆 >

0 which contradicts (3). A similar contradiction exists if 𝐾‾ < 𝐾 at 𝑃. Hence 𝐾‾ = 𝐾 at every 
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point, i.e. 𝐾 is uniquely determined as a function of 𝑢 and 𝑣. 

From this uniqueness property and from the form of (1) it follows that 𝐾 is an invariant; at 

every point the value of 𝐾 is independent of the parameter system. Also 𝐾 is intrinsic, since 

it can be calculated when the metric is known. Thus 𝐾 is an intrinsic geometrical invariant; it 

is called the Gaussian curvature of the surface. 

For any region 𝑅, whether simply connected or not, ∫  
𝑅
𝐾𝑑𝑆 is called the total curvature of 𝑅. 

Equation (1) now gives the Gauss-Bonnet theorem. For any curve 𝐶 which encloses a simply 

connected region 𝑅, the excess of 𝐶 is equal to the total curvature of 𝑅. 

For a geodesic triangle 𝐴𝐵𝐶, formed by geodesic ares 𝐴𝐵, 𝐵𝐶, 𝐶𝐴 and enclosing a simply 

connected region 𝑅, the excess is 

2𝜋 − (𝜋 − 𝐴) − (𝜋 − 𝐵) − (𝜋 − 𝐶) = 𝐴 + 𝐵 + 𝐶 − 𝜋, 

where 𝐴,𝐵, 𝐶 are the interior angles of the triangle. Thus the excess is the excess of 𝐴 + 𝐵 + 𝐶 

over its Euclidean value 𝜋, a fact which accounts historically for our use of the word 'excess'. 

The total curvature of a geodesic triangle 𝐴𝐵𝐶 is therefore equal to 𝐴 + 𝐵 + 𝐶 − 𝜋. 

More generally, for a geodesic polygon of any number of sides (geodesic arcs) the total 

curvature is equal to 2𝜋 minus the sum of the exterior angles, i.e. the excess of the sum of the 

interior angles over ( 𝑛 − 2 ) 𝜋 where 𝑛 is the number of sides. 

Exercise: 

By first considering the region of the anchor ring of section 3 bounded by two meridians and 

the two parallels 𝑢 = 0, 𝑢 = 𝜋, prove that the total curvature of the whole surface is zero. 

3.8. Gaussian curvature: 

An historical definition of Gaussian curvature 𝐾 follows from the Gauss-Bonnet theorem for a 

geodesic triangle. If 𝑃 is a given point and Δ the area of a geodesic triangle 𝐴𝐵𝐶 which contains 

𝑃, then at 𝑃, 𝐾 = lim
𝐴+𝐵+𝐶−𝜋

Δ
    …………(1) 

where the limit is taken as all vertices tend to 𝑃. 

On a sphere of radius 𝑎, for example, the geodesics are great circles, and the area of a geodesic 

triangle 𝐴𝐵𝐶 is 𝑎2(𝐴 + 𝐵 + 𝐶 − 𝜋). The Gaussian curvature at every point is therefore 1/𝑎2. 
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That 𝐾 is constant over the sphere is to be expected from the fact that there is an isometric 

mapping of the sphere on itself in which any given point 𝑃 corresponds to any other given point 

𝑄, so that (𝐾)𝑃 = (𝐾)𝑄 since 𝐾 is an intrinsic invariant. 

The formula 𝐾 = 1/𝑎2 at a point of a sphere of radius 𝑎 illustrates the fact that the dimensions 

of 𝐾 are (length)  −2. This follows more generally from the Gauso-Bonnet equation, in which 

the excess of a curve is clearly dimensionless. 

The total curvature ∫  
𝑅
𝐾𝑑𝑆 for any region 𝑅 is dimensionless. On a sphere of radius 𝑎, for 

example, the total curvature for the whole sphere is area /𝑎2 = 4𝜋. It will be seen in a later 

chapter that the total curvature of a compact surface depends only upon the topology of the 

surface. 

The formula for 𝐾 in terms of 𝐸, 𝐹, and 𝐺 is given by (16.2), where 𝑃 and 𝑄 are given by 

(15.11). Hence, at any point and in any parameter system, 

𝐾 =
1

𝐻

𝜕

𝜕𝑢
(
𝐹𝐸2−𝐸𝐺1

2𝐻𝐸
) +

1

𝐻

𝜕

𝜕𝑣
(
2𝐸𝐹1−𝐹𝐸1−𝐸𝐸2

2𝐻𝐸
)   …………. (2) 

When the parametric curves are orthogonal, 𝐹 = 0 and the formula for 𝐾 can be written if the 

simpler and symmetric form 𝐾 = −
1

2𝐻
{
𝜕

𝜕𝑢
(
𝐺1

𝐻
) +

𝜕

𝜕𝑣
(
𝐸2

𝐻
)}   …………(3) 

where now 𝐻 = √(𝐸𝐺) 

For example, on a sphere of radius 𝑎 parameters can be chosen as in section 3 so that 𝐸 =

𝑎2, 𝐹 = 0, 𝐺 = 𝑎2sin2 𝑢. Then 𝐻 = 𝑎2sin 𝑢 since 0 < 𝑢 < 𝜋, and the above formula gives 

𝐾 = −
1

2𝑎2sin 𝑢

𝜕

𝜕𝑢
(2cos 𝑢) =

1

𝑎2
. 

In Chapter III a very different kind of formula (non-intrinsic) for 𝐾 will be given in terms of 

the second fundamental coefficients to be defined later. This formula is appropriate when the 

position vector r(𝑢, 𝑣) for the surface is given and is generaily simpler than the above for the 

purpose of calculation. It cannot, however, be applied when only the metric is given. 

Exercise: 

 1.Find the Gaussian curvature at the point (𝑢, 𝑣) of the anchor ring of section 3 and verify that 



 

127 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

the total curvature of the whole surface is zero.  

2. Prove that the Gaussian curvature of the surface given (in Monge form) by 𝑧 = 𝑓(𝑥, 𝑦) is 

(𝑟𝑡 − 𝑠2)(1 + 𝑝2 + 𝑞2)−2, where 𝑝, 𝑞, 𝑟, 𝑠, and 𝑡 denote respectively 

𝜕𝑧/𝜕𝑥, 𝜕𝑧/𝜕𝑦, 𝜕2𝑧/𝜕𝑥2, 𝜕2𝑧/𝜕𝑥𝜕𝑦,  and  𝜕2𝑧/𝜕𝑦2. 

Geodesic polar form 

With geodesic polar parameters the metric takes the form 𝑑𝑢2 + 𝑔2𝑑𝑣2   

where for convenience 𝑔 is written for √𝐺. In section 14 it was shown that 𝑔(𝑢, 𝑣) satisfies the 

condition 𝑔 = 𝑢 + 𝑂(𝑢2) as 𝑢 → 0. 

The Gaussian curvature at the point (𝑢, 𝑣) is given by (3) with 𝐸 = 1, 𝐺 = 𝑔2, and 𝐻 = 𝑔. 

Hence 𝐾 = −𝑔11/𝑔    

The center (origin) of the geodesic polar parameters is excluded from the domain of 𝑢, 𝑣 

because it is a singularity, but since this is only artificial the Gaussian curvature exists there; 

suppose it has the value 𝐾0 at the origin. Then as 𝑢 → 0, 𝑔11 ∼ −𝐾0𝑔 ∼ −𝐾0𝑢; on integrating 

twice, 

𝑔(𝑢, 𝑣) ∼ 𝑢 − 𝐾0
𝑢3

6
  as 𝑢 → 0      

Thus for small 𝑢, the parameter 𝑣 does not enter 𝑔(𝑢, 𝑣) until terms of order smaller than 𝑢3. 

Example 1:  

To calculate the circumference of a geodesic circle of small radius 𝑟 and to see how it differs 

from the Euclidean formula 2𝜋𝑟. 

In geodesic polar the circle is the parallel 𝑢 = 𝑟. Hence 𝑑𝑠 = 𝑔𝑑𝑣 and the circumference 𝐶 is 

Hence 

𝐶 = ∫  
2𝜋

0

𝑔(𝑟, 𝑣)𝑑𝑣 ∼ ∫  
2𝜋

0

(𝑟 −
𝐾0
6
𝑟3) 𝑑𝑣 = 2𝜋 (𝑟 −

𝐾0
6
𝑟3) 

to the first significant term, where 𝐾0 is the Gaussian curvature at the centre of the circle. 
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This suggests another intrinsic formula for 𝐾. Let 𝐶 be the circumference of the geodesic circle 

of centre 𝑃 and radius 𝑟. Then 

(𝐾)𝑃 = lim
𝑟→0

 
2𝜋𝑟 − 𝐶

1
3𝜋𝑟

3
 

Exercises: 

1.Prove that, if 𝐴 is the area of a geodesic disk of centre 𝑃 and radius 𝑟, then 

(𝐾)𝑃 = lim
𝑟→0

 
𝜋𝑟2 − 𝐴

1
12𝜋𝑟

4
 

3.9. Surfaces of constant curvature 

If 𝐾 has the same value 𝐾0 at every point of a surface, the surface is said to have constant 

curvature 𝐾0. 

Minding's theorem. Two surfaces of the same constant curvature are locally isometric. 

Strictly, if 𝑃 is any point of one of these surfaces and 𝑃‾  is any point of the other, then 𝑃‾  has a 

neighbourhood which is isometric with a neighbourhood of 𝑃, the points 𝑃 and 𝑃‾  being 

corresponding points. In what follows, 'surface' means a sufficiently small region. 

We prove this theorem by showing that if 𝑆 is a surface with constant curvature 𝐾0, then 

(1) if 𝐾0 = 0, 𝑆 is isometric with a plane; 

(2) if 𝐾0 = 1/𝑎
2, 𝑆 is isometric with a sphere of radius 𝑎; and 

(3) if 𝐾0 = −1/𝑎
2, 𝑆 is isometric with a certain surface of revolution, called a pseudo-spkere, 

determined by the value of 𝑎. 

In each case a given point of 𝑆 can be mapped into a prescribed point of the plane, sphere, or 

pseudo-sphere. 

The theorem for two surfaces 𝑆 and 𝑆‾ with the same 𝐾 then follows by mapping each surface 

isometrically on to the same plane, or sphere, or surface of revolution, so that given points 𝑃 

and 𝑃‾  correspond to the same point. 

Let 𝑃 be a given point of the surface 𝑆 of constant curvature 𝐾0, and let 𝐶 be a geodesic 

through 𝑃. Take as parametric curves the geodesics orthogonal to 𝐶 together with their 
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orthogonal trajectories. Let 𝑣 = 𝑐 be the geodesic orthogonal to 𝐶 at a point distance 𝑐 from 

𝑃 measured along 𝐶, and let 𝑢 = 𝑐 be the parallel orthogonal to the curves 𝑣 = constant and 

at a distance 𝑐 from the parallel 𝐶 measured along the geodesic. Then 𝑢, 𝑣 is a parameter 

system in the neighbourhood of 𝑃, and the metric of the surface is of the form 𝑑𝑢2 + 𝑔2𝑑𝑣2 

for some 𝑔(𝑢, 𝑣). Since 𝑢 = 0 is the geodesic 𝐶, it follows from (10.8) that 𝜕𝑔2/𝜕𝑢 = 0 when 

𝑢 = 0. Also, 𝑣 is the arcual distance along 𝐶, i.e. 𝑑𝑠 = 𝑑𝑣 when 𝑢 = 0, so that 𝑔 = 1 when 

𝑢 = 0. Hence, (𝑔)𝑢=0 = 1, (𝑔1)𝑢=0 = 0     …………….(1) 

Using now the formula 𝐾 = −𝑔11/𝑔 proved in section 17, 𝑔(𝑢, 𝑣) satisfies the partial 

differential equation 𝑔11 + 𝐾0𝑔 = 0  ………..(2) 

with boundary conditions (1) these are sufficient to determine 𝑔 when 𝐾0 is given. 

Case (1), 𝐾0 = 0 

When 𝑔11 = 0,𝑔1 is a function of 𝑣 only and therefore 𝑔1 = 0 since (𝑔1)𝑢=0 = 0. From 

𝑔1 = 0 it follows that 𝑔 is a function of 𝑣 only and is therefore 1 since (𝑔)𝑢=0 = 1. With 𝑔 =

1, the metric is 𝑑𝑢2 + 𝑑𝑣2 

i.e. the metric of a plane when 𝑢, 𝑣 are taken as Cartesian coordinates. Hence, the surface 𝑆 in 

the neighbourhood of 𝑃 is isometric with a region of the plane. 

This confirms that 𝐾 is a satisfactory measure of curvature for a surface since its vanishing is 

both necessary and sufficient for the surface to be isometric with a plane. 

Case (2), 𝐾0 = 1/𝑎
2 

Equation (2) integrates to give 

𝑔(𝑢, 𝑣) = 𝐴(𝑣)sin 
𝑢

𝑎
+ 𝐵(𝑣)cos 

𝑢

𝑎
 

Hence (𝑔1)𝑢=0 = (1/𝑎)𝐴(𝑣) = 0, and (𝑔)𝑢=0 = 𝐵(𝑣) = 1, so that 𝑔 = cos (𝑢/𝑎) and the 

metric is 

𝑑𝑢2 + cos2 
𝑢

𝑎
𝑑𝑣2  

This is the metric of a sphere of radius 𝑎. (The more usual metric is given by the transformation 
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𝑢 = 𝑎 (
1

2
𝜋 − 𝑢‾) , 𝑣 = 𝑎𝑣‾.) The surface 𝑆 in the neighbourhood of 𝑃 is therefore isometric with 

a region of a sphere of radius 𝑎. 

Case (3), 𝐾0 = −1/𝑎
2 

By arguments similar to those for case (2), 𝑔 = cosh (𝑢/𝑎) and the metric of 𝑆 in the 

neighbourhood of 𝑃 is 

𝑑𝑢2 + cosh2 
𝑢

𝑎
𝑑𝑣2 

This form, in which 𝐸, 𝐹, 𝐺 are functions of 𝑢 only, shows that 𝑆 is isometric with a certain 

surface of revolution (cf. Exercise 8.3). 

Writing 𝑢 = 𝑎𝑢‾, 𝑣 = 𝑎𝑣‾, the metric becomes 

𝑎2(𝑑𝑢‾2 + cosh2 𝑢‾𝑑𝑣‾2) 

This is the metric of the surface obtained by revolving the curve 

𝑥 = 𝑎cosh 𝑢‾ , 𝑦 = 0, 𝑧 = 𝑎∫
0

𝑢‾
 √(1 − sinh2 𝜃)𝑑𝜃 (|𝑢‾| < log (1 + √2)) 

about the 𝑧-axis. 

This completes the proof of the theorem on the isometries of surfaces of constant curvature. 

The metrics and surfaces constructed above are special, chosen to prove the theorem as 

simply as possible. There are, however, other surfaces of revolution with constant curvature, 

since any function 𝑔(𝑢) which satisfies (2) (but not the boundary conditions (1)) gives a 

metric which can be transformed into the standard metric of a surface of revolution. For 

example, when 𝐾0 = −1/𝑎
2, 𝑔 can be taken to be 𝑎𝑒𝑢/𝑎. Writing 𝑢 = 𝑎𝑢‾ , the metric 

becomes 𝑎2(𝑑𝑢‾2 + 𝜌2𝑢‾𝑑𝑣2), 

which is therefore the metric of a surface of constant curvature −1/𝑎2. 

An important example of a surface of constant zero curvature is the surface generated by the 

tangents to any space curve. If 𝐫(𝑠) is the position vector of a point on the curve, in terms of 

the are 𝑠 as parameter, then a point on the surface is given by 𝐫(𝑠) + 𝑣𝐭(𝑠) where 𝑠 and 𝑣 are 

the parameters. The fundamental coefficients are 

𝐸 = 1 + 𝜅2𝑣2, 𝐹 = 1, 𝐺 = 1,𝐻 = |𝜅𝑣|where 𝜅, the curvature of the curve, is a function of 𝑠 

only.  
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UNIT IV  

Non Intrinsic properties of a surface: The second fundamental form- Principal curvature – 

Lines of curvature – Developable - Developable associated with space curves and with curves 

on surface - Minimal surfaces – Ruled surfaces. 

Chapter 4: Sections 4.1 to 4.8. 

 

4.1. The Second Fundamental Form: 

Theorem 1:  

Let 𝑟 = 𝑟‾(𝑢, 𝑣) be the eqn of the Surface curvature vector then 

 𝑟‾′′ = 𝑘𝑛𝑁‾ + 𝜆𝑟‾1 + 𝜇𝑟2     ……(1) 

where, 𝑘𝑛 = normal curvature in the normal component of 𝑟‾′′  

𝑁‾ =Unit vector normal to the surface. 

and  𝜆𝑟‾1 + 𝜇𝑟‾2 = The vector with components. 

∴ Taking (.) product to equation (1) with 𝑁‾ . 

∴ (1) ⇒ 𝑟‾′′ ⋅ 𝑁‾ = 𝑘𝑛 𝑁⃗⃗⃗ ⋅ 𝑁 + 𝜆𝑟1 ⋅ 𝑁‾ + 𝜇𝑟2 ⋅ 𝑁‾ .  

⇒ 𝑁‾ ⋅ 𝑟‾′′ = 𝑘𝑛 ………… (2) 

[∵ 𝑁‾ .𝑁‾ = 1 and 𝑟‾1, 𝑟‾2 lies on the tangent plane ] 

𝑁‾ ⋅ 𝑟‾1 = 0, 𝑎𝑛𝑑 𝑁‾ ⋅ 𝑟‾2 = 0 

Also we know that,  

𝑟‾′=
𝑑

𝑑𝑠
(𝑟‾)

=
𝜕

𝜕𝑢
(𝑟‾) ⋅

𝑑𝑢

𝑑𝑠
+
𝜕

𝜕𝑣
(𝑟‾)

𝑑𝑣

𝑑𝑠

 

𝑟‾′ = 𝑟‾1𝑢
′ + 𝑟‾2𝑢

′  ……… . . (3) 

𝑟‾′′ =
𝑑

𝑑𝑠
[𝑟‾1𝑢

′ + 𝑟‾2𝑣
′].

=𝑟‾1𝑢
′′ + 𝑟‾2𝑣

′′ + 𝑢′ [
𝑑

𝑑𝑠
(𝑟‾1)] + 𝑣

′ [
𝑑

𝑑𝑠
(𝑟‾2)]

=𝑟‾1𝑢
′′ + 𝑟2𝑣

′′ + 𝑢′ [
𝜕

𝜕𝑢
(𝑟‾1)

𝑑𝑢

𝑑𝑠
+
𝜕

𝜕𝑣
(𝑟‾1)

𝑑𝑣

𝑑𝑠
]

+𝑣′ [
𝜕

𝜕𝑢
(𝑟‾2)

𝑑𝑢

𝑑𝑠
+
𝜕

𝜕𝑣
(𝑟‾2) ⋅

𝑑𝑣

𝑑𝑠
]

=𝑟‾1𝑢
′′ + 𝑟2𝑣

′′ + 𝑢′[𝑟‾11𝑢
′ + 𝑟‾12𝑣

′] + 𝑣′[𝑟‾21𝑢
′ + 𝑟‾22𝑣

′]

𝑟‾′′ =𝑟‾1𝑢
′′ + 𝑟‾2𝑣

′′ + 𝑟‾11𝑢
′2 + 𝑟‾12𝑢

′𝑣′ + 𝑟‾21𝑢
′𝑣′ + 𝑟‾22𝑣1

′2]…… . . (4)

 

Taking (.) product to (4) with 𝑁⃗⃗⃗, 
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 (4) ⋅ 𝑁‾ ⇒

𝑟‾′′ ⋅ 𝑁‾ = 𝑢4𝑟‾1 ⋅ 𝑁‾ + 𝑣
′′𝑟‾2 ⋅ 𝑁‾ + 𝑢

′2 ⋅ 𝑟‾11 ⋅ 𝑁‾ + 𝑢
′𝑣′𝑟‾12 ⋅ 𝑁‾

+𝑢′𝑣′𝑟‾21 ⋅ 𝑁‾ + 𝑣
′2𝑟‾22 ⋅ 𝑁‾ . 

= 0 + 0 + 𝑢′2𝑟‾11 ⋅ 𝑁‾ + 2𝑢
′𝑣′𝑟‾12 ⋅ 𝑁‾ + 𝑣

′2𝑟22 ⋅ 𝑁‾

𝑟‾′′. 𝑁‾ = 𝐿𝑢′2 + 2𝑀𝑢′𝑣′ + 𝑁𝑣′2[𝑁‾ ⋅ 𝑟‾1 = 𝑁 ⋅ 𝑟2 = 0]

 

where 𝐿 = 𝑟‾11 ⋅ 𝑁‾ ,𝑀 = 𝑟‾2 ⋅ 𝑁‾  & 𝑁 = 𝑟22 ⋅ 𝑁‾  

[𝑏𝑦(2)]𝐾𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (
𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)
2

 

𝐾𝑛 =
𝐿(𝑑𝑢)2

(𝑑𝑠)2
+ 2𝑀

(𝑑𝑢)(𝑑𝑣)

(𝑑𝑠)2
+ 𝑁

(𝑑𝑣)2

(𝑑𝑠)2

𝐾𝑛 =
𝐿(𝑑𝑢)2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁(𝑑𝑣)2

𝐸(𝑑𝑢)2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺(𝑑𝑣)2
………(5)

 

Since, (𝑑𝑠)2 = 𝐸(𝑑𝑢)2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺(𝑑𝑣)2 

∴ The Quadratic form (𝑑𝑢)2 + 2𝑀𝑑𝑢𝑑𝑢 + 𝑁(𝑑𝑣 : is known as the second fundamental 

form. 

where 𝐿 = 𝑁‾ ⋅ 𝑟11,𝑀 = 𝑁‾ ⋅ 𝑟‾12, 𝑁 = 𝑁‾ ⋅ 𝑟‾22 are the second fundamental coefficient. 

Note: 

1.Alternative Expressions For L, M, N: We know that, 𝑁‾ ⋅ 𝑟‾1 = 0 

Diff (6) w. 𝑟. to ' 𝑢 ', 

𝑁‾1 ⋅ 𝑟‾1 + 𝑁 ⋅ 𝑟‾11 = 0

⇒ 𝑁‾ ⋅ 𝑟‾1 = −𝑁‾1𝑟‾1

⇒ 𝐿 = −𝑁‾1
‾ ⋅ 𝑟‾1

 

Diff (6) w.r.to 'v' 

𝑁2 ⋅ 𝑟‾1 + 𝑁 ⋅ 𝑟‾12 = 0

⇒ 𝑁‾2 ⋅ 𝑟‾12 = −𝑁‾2 ⋅ 𝑟‾1
 

Similarly, we know that 𝑁‾ ⋅ 𝑟‾2 = 0 

Diff (7) w. r. to ' 𝑢 ' we get 𝑀 = −𝑁‾1 ⋅ 𝑟‾2 

Diff (7) w.r. to ' 𝑣 ' we get 𝑁 = −𝑁‾2 ⋅ 𝑟‾2 

Thus, 𝐿 = −𝑁‾1 ⋅ 𝑟‾1, 𝑁 = −𝑁‾2 ⋅ 𝑟‾2 & 

𝑀 = −𝑁‾2 ⋅ 𝑟‾1 = −𝑁‾1 ⋅ 𝑟‾2 

2. [𝑟‾11, 𝑟‾1, 𝑟‾2] = 𝑟‾11 ⋅ (𝑟‾1 × 𝑟‾2) 

= 𝑟‾11 ⋅ 𝐻𝑁‾  
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= 𝐻(𝑟11, 𝑁‾ )

= 𝐻𝐿

⇒ 𝐿=
1

𝐻
[𝑟‾11, 𝑟‾1, 𝑟‾2]

𝑀=
1

𝐻
[𝑟‾12, 𝑟‾1, 𝑟‾2]

& 𝑁=
1

𝐻
[𝑟‾22, 𝑟‾1, 𝑟‾2]

 

Theorem 2: (Meusnier's Theorem) 

If ' 𝜃 ' in the angle between the Surface normal ' 𝑁‾  ' & the principal normal ' 𝑛‾  ' then 

𝑘𝑛 = 𝑘 cos 𝜃. 

Proof: 

Since ' 𝜃 ' in the angle be tween 𝑁 ‾ & 𝑛‾ . 

∴ 𝑁‾ ⋅ 𝑛‾ = |𝑁‾ ||𝑛‾|cos 𝜃 → (𝐴) [∵ cos 𝜃 =
𝑎‾ ⋅ 𝑏‾

|𝑎‾||𝑏‾|
] 

[But we know that, 𝑟‾′′ ⋅ 𝑁‾ = 𝑘𝑛 

∴  Again, 𝑟‾′′ =
𝑑

𝑑𝑠
(𝑟‾′) =

𝑑

𝑑𝑠
(𝑡‾) = 𝑡‾′ = κ𝑛‾

⇒ 𝑟‾′′ = 𝑘𝑛‾       sub in (1)

∴ 𝑘′ ⋅ 𝑁‾ = 𝑘𝑛
⇒ 𝑘(|𝑁‾ ||𝑛‾|cos 𝜃) = 𝑘𝑛
⇒ 𝐾′(cos 𝜃) = 𝑘𝑛]

 

Taking (.) with 𝑁‾  

⇒ 𝑘𝑛‾ ⋅ 𝑁‾ = 𝑘𝑛𝑁‾ ⋅ 𝑁‾ + 𝜆𝑟‾1 ⋅ 𝑁‾ + 𝜇𝑟‾2 ⋅ 𝑁‾

𝑘|𝑁‾ ||𝑛‾|cos 𝜃 = 𝑘𝑛 + 0+ 0.

[ by eqn (𝐴),𝑁‾ ⋅ 𝑁‾ = 1, 𝑟‾1 ⋅ 𝑁‾ = 𝑟‾2 ⋅ 𝑁‾ = 0]

⇒ 𝑘cos 𝜃 = 𝑘𝑛  [: |𝑁‾ ||𝑛‾| = 1].

 

Normal curvature: 

Let ' 𝑝 ' be the point surface 𝑟‾ = 𝑟‾(𝑢, 𝑣) consider a curve 𝑟 = 𝑟(𝑠) through the point 𝑟‾ " 

along the normal to the surface is defined to be normal curvature of the curve at the point. P. 

Thus 𝑘𝑛 = 𝑟‾
′′ ⋅ 𝑁‾  

Classification of point 

We know that, the normal curvature is given by 

𝐾𝑛 =
𝐿(𝑑𝑢)2+2𝑀𝑑𝑢𝑑𝑣+𝑁(𝑑𝑣)2)

𝐸(𝑑𝑢)2+2𝐹𝑑𝑢𝑑𝑣+𝐺(𝑑𝑣)2
   ……….. (1) 

∴ The denominator of the equation (1) R.H.S is positive definite. 

So the sign of 𝐾𝑛 depends only upon the sign of the Numerator. 



 

134 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

∴ 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 =
1

𝐿
[𝐿2𝑑𝑢2 + 2𝑀𝐿𝑑𝑢𝑑𝑣

+𝑁𝐿𝑑𝑣2]

=
1

𝐿
[[𝐿𝑑𝑢 +𝑀𝑑𝑣]2 −𝑀2𝑑𝑣2 +𝑁𝐿𝑑𝑣2]

=
1

𝐿
[[𝐿𝑑𝑢 +𝑀𝑑𝑣]2 + (𝐿𝑁 − 𝑀2)𝑑𝑣2]

 

Here 𝐿 > 0. So sign of 𝑘𝑛 depends on the sign of 𝐿𝑁 − 𝑀2 

1) If 𝐿𝑁 − 𝑀2 > 0 

[(i.e) if at a pt ' 𝑝 ' on the surface this form is definite] then ' 𝑃 ' is called an elliptic point. 

[(i.e.) then 𝑘𝑛 maintains the same sign for all derivate directions at ' 𝑃 ']. 

2) If 𝐿𝑁 − 𝑀2 = 0 then ' 𝑃 ' is called a parabolic  point 

[(i.e) 𝜅𝑛 retains the same sign for all directions through' ' 𝑝 ' except one for which the 

curvature is zero l. 

3) If 𝐿𝑁 − 𝑀2 < 0 then ' 𝑃 ' is called a Hyperbdic point 

 (i.e.) 𝐾𝑛 = {

 Positive for directions lying with in a certain angle 

Negative for directions lying outside this angle 

0               for along the directions which form the angle

 

and the critical directions are called the Asymptotic directions.  

Theorem 3: 

A Geometrical Interpretation of the second fundamental Form. 

Let 𝑃(𝑢, 𝑣) & 𝑄(𝑢 + ℎ, 𝑣 + 𝑘) be near points on a Surface and let ' 𝑑 ' be the perpendicular 

distance from a onto the tangent plane to the surface at 𝑃. 

If 𝑟𝑃  and rQ are the position vectors of 𝑃 & 𝑄 then 

 𝑑 =
1

2
[𝐿ℎ2 + 2𝑚ℎ𝑘 + 𝑁𝑘2] + 𝑂(ℎ3, 𝑘3). 

Proof: 

i) 𝑃(𝑢, 𝑣) & 𝑄(𝑢 + ℎ, 𝑣 + 𝑘) be two near points on the Surface 

ii) 𝑑 = The perpendicular distance from ' 𝑄 ' onto the tangent plane to the surface at ' 𝑃 '. 

If 𝑟𝑃 = The position vector of P 

𝛾𝑄 = The position vector of 𝑄 

To prove that d =
1

2
[𝐿ℎ2 + 2𝑀ℎ𝑘 + 𝑁𝑘2] + 𝑂(ℎ3, 𝑘3) 

We know that, 



 

135 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

𝑓(𝑏‾) − 𝑓(𝑎‾) == ∑  

𝑚−1

𝑘=1

 
1

𝑘!
𝑓𝑘(𝑎‾; 𝑏 − 𝑎)

 +
1

𝑚!
𝑓𝑚(𝑧; 𝑧‾ − 𝑎‾)      … . . (1)

𝑘 = 1, 𝑓(1)(𝑥‾; 𝑡‾) =∑  

𝑛

𝑖=1

 𝐷𝑖𝑓(𝑥)…… . (2)

𝑘 = 2, 𝑓(2)(𝑥‾, 𝑡‾) =∑  

𝑛

𝑖

 ∑  

𝑛

𝑗

 𝐷𝑖𝑗𝑓(𝑥‾)𝑡𝑖t……… . (3)

 

Taking, 𝑏‾ = 𝑟‾ + 𝑑𝑟‾ & 𝑎‾ = 𝑟‾ in (1) 

∴ (1) ⇒

𝑓(𝑟‾ + 𝑑𝑟‾) − 𝑓(𝑟‾) =
1

1!
𝑓′(𝑟‾; 𝑑𝑟‾) +

1

2!
𝑓(2)(𝑟‾; 𝑑𝑟‾)

⇒ (𝑟‾ + 𝑑𝑟‾) − 𝑟‾ = [𝐷1(𝑟‾)𝑑𝑢 + 𝐷2(𝑟‾)𝑑𝑢] +
1

2
[𝐷1,1(𝑟‾)𝑑𝑢𝑑𝑢 + 𝑃1,2(𝑟‾)𝑑𝑢𝑑𝑣]

                                    +𝐷2,1(𝑟‾)𝑑𝑣𝑑𝑢 + 𝐷2,2r𝑑𝑣𝑑𝑣

= 𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑣 +
1

2
[𝑟‾11𝑑𝑢

2 + 2𝑟‾12𝑑𝑢𝑑𝑣 + 𝑟‾22𝑑𝑢
2] …………(4)

 

Let 𝑟𝑃 = the position vector of 𝑃 = 𝛾‾ 

& 𝛾𝑄 = the position vector of 𝑄 = 𝑟‾ + 𝑑𝑟‾ 

then, 𝑑 = projection of 𝑃𝑄 on 𝑁̅ 

= 𝑃𝑄 ⋅ 𝑁‾

= (𝑂𝑄 − 𝑂𝑃) ⋅ 𝑁‾ .
 

= [(𝑟‾ + 𝑑𝑟‾) − 𝑟‾] ⋅ 𝑁‾

= [𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑣 +
1

2
[𝑟‾11𝑑𝑢

2 + 2𝑟‾12𝑑𝑢𝑑𝑣 + 𝑟‾22𝑑𝑣
2]]

1

𝑁

 

using the transformation and negative higher power of second order differential. 

∴ 𝑑 = [𝑟‾1 ⋅ 𝑁‾𝑑𝑢 + 𝑟‾2 ⋅ 𝑁‾𝑑𝑢 +
1

2
[𝑟‾11 ⋅ 𝑣‾𝑑𝑢

2 + 2𝑟‾12 ⋅ 𝑁‾𝑑𝑢𝑑𝑣 + 𝑟‾22𝑁𝑑𝑣
2]] 

= 0 + 0+
1

2
[𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2] 

𝑑 =
1

2
[𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑣𝑑𝑣2]  

⇒ 2𝑑 = 𝐿𝑑𝑢2 + 2𝑚𝑑𝑢𝑑𝑣 + 𝑣𝑑𝑣2 

Thus, 2 × [ length of the perpendicular from 𝑄 to the tangent plane at 𝑃] = the second 

fundamental form. 
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Note: 

1. At an elliptic point 'd 'retains the same sign. 

⇒ The surface wear 𝑝 lies entirely on one side of the tangent plane at 𝑝. 

2. At a hyperbolic point the surface crosses over the tangent plane. 

3. Any point on an ellipsoidal surface is elliptic  

4. Any point on a circular cylinder is parabolic. 

5. Any point on the hyperbolic paraboloid [𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑢2 − 𝑣2] is hyperbolic 

Example 1: 

For a helicoid every point is a hyperbolic point. 

 Proof: 

We know that equation of the helicoids is 

 𝛾‾ = (𝑢cos 𝑣, 𝑢sin 𝑣, 𝑎𝑣)   ………….(1) 

Diff (1) w.r.to 'u' ∴ 𝑟‾1 = (cos𝑣 , sin 𝑣 , 0) ……… (2) 

Diff (1) w.r.to ' 𝑣 ' 

∴ 𝑟‾2 = (−𝑢sin 𝑣, 𝑢cos 𝑣, 𝑎)    …….. (3) 

Diff (2) w.r.to ' 𝑢 ' (2) ⇒ 𝑟11 = (0,0,0)………(4) 

Diff (2) w.r.to 'v'  (2) ⇒ 𝑟‾12 = (−sin 𝑣 , cos 𝑣 , 0) = 𝑟21……… . (5) 

Diff (3) w.r.to ' 𝑣 ', (3)𝑟‾22 = (−𝑢 cos 𝑣 ,−𝑢 sin 𝑣 , 0)  ……… . (6) 

∴ From (2), (3) & (4) we get, 

𝐻𝐿 = [𝑟‾11, 𝑟‾1, 𝑟‾2] = |
0 0 0

cos 𝑣 sin 𝑣 0
−𝑢sin 𝑣 𝑢cos 𝑣 𝑎

| 

𝐻𝐿 = 0 ⇒ 𝐿 = 0 ⇒ 𝑀 =
−𝑎

𝐻
 

Similarly, from (2), (3) & (5) we get, 𝐻𝑀 = [𝑟‾12, 𝑟‾1, 𝑟‾2] = −𝑎  

and from (2), (3) & (6) we get 𝐻𝑁 = [𝑟‾22, 𝑟‾1, 𝑟‾2] = 0 

∴ 𝐿𝑁 − 𝑀2 = (0)(0) − (
−𝑎

𝐻
)
2

𝐿𝑁 − 𝑀2 = −
𝑎2

𝐻2
< 0

 

Thus all the point of a helicoid is hyperbolic. 

𝑟‾ = (𝑢cos 𝑣, 𝑢sin 𝑣, 𝑢2) are elliptic. 

 

 

 

http://w.r.to/
http://w.r.to/
http://w.r.to/
http://w.r.to/
http://w.r.to/
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4.2.Principal curvatures: 

Section of the surface: 

A plane drawn through a 𝑝𝑡 on a surface, cuts It in a curve, called the section of the surface. 

 Normal section & Oblique section: 

If the plane is so drawn that it contains the normal to the surface then the curve is Called 

normal section, otherwise the section is called oblique Section. 

Normal curvature (Alternative Definition of Normal curvature) 

Let 𝑝 be a pt on a surface 𝑟‾ = 𝑟(𝑢, 𝑣) the normal curvature at 𝑝 in the direction  

(𝑑𝑢, 𝑑𝑣 ) is defined to be the curvature at ' 𝑝 ' of the normal section parallel to the direction 

(du, dv)  

Principal section, Principal curvature Mean curvature & Principal Direction: 

The normal sections of a Surface which have greatest and least curvature are called "principal 

Sections". 

The maximum and minimum curvature are called "principal curvature"and denoted by '𝜅𝑎 ' 

and ′𝜅𝑏′ .  

Mean curvature =
𝐾𝑎+𝐾𝑏

2
= 𝜇 

The direction of the principal section are called the principal direction & they are mutually 

orthogonal. 

Gaussian curvature: 

Gaussian curvature = 𝐾 = 𝐾𝑎 ⋅ 𝐾𝑏. 

The normal curvature at ' 𝑝 ' in a direction ( 𝐾𝑛 now denote post 𝐾 ) 

Specified by direction coefficients (𝑙,𝑚) is given by 

𝑘 = 𝐿𝑙2 + 2𝑚𝑙𝑚 +𝑁𝑚2   …… (1) 

Where, 𝐸𝑙2 + 2𝐹𝑙𝑚 + 𝐺𝑚2 = 1    ….(2) 

 [∵, 𝑘𝑛 =
𝐿𝑢2+2𝑀𝑢𝑣+𝑁𝑣2

𝐸𝑢2+2𝐹𝑢𝑣+𝐺𝑣2
] # 

As 𝑙, 𝑚 Vary, Subject to 𝐸𝑙2 + 2𝐹𝑙𝑚 + 𝐺𝑚2 = 1, the normal curvature will vary. 

To find the extreme values: [using Lagrange's Multiplies]. 

𝐾 = 𝐿𝑙2 + 2𝑀𝑙𝑚 +𝑁𝑚2 − 𝜆[𝐸𝑙2 + 2𝐹𝑙𝑚 + 𝐺𝑚2 − 1]   ……… . (3) 

when 𝐾 is stationary, 

Diff (3) w.r.to ' 𝑙 ', (partially) 

∴
𝜕𝑘

𝜕𝑙
= 2𝐿𝑙 + 2𝑚𝑚− 𝜆[2𝐸𝑙 + 2𝐹𝑚] = 0 
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Divided by 2, 
1

2
 
𝜕𝑘

𝜕𝑙
= 𝐿𝑙 + 𝑚𝑀 − 𝜆[𝐸𝑙 + 𝐹𝑚] = 0    …………(4) 

Diff (3) w.r.to ' 𝑚 ' (partially) 
𝜕𝑘

𝜕𝑚
= 2𝑚𝑙 + 2𝑁𝑚− 𝜆[2𝐹𝑙 + 2𝐺𝑚] = 0, 

Divided by 2, 
1

2

𝜕𝑘

𝜕𝑚
= 𝑚𝑙 + 𝑁𝑚 − 𝜆[𝐹𝑙 + 𝐺𝑚] = 0,  ………..(5) 

 
((4) × 𝑙) + (5) × 𝑚) ⇒

𝐿𝑙2 +𝑀𝑚𝑙 − 𝜆[𝐸𝑙2 + 𝐹𝑚𝑙] + [𝑚𝑙𝑚 + 𝑁𝑚2 − 𝜆[𝐹𝑙𝑚 + 𝐺𝑚2] = 0

⇒ 𝐿𝑙2 +𝑀𝑚𝑙 − 𝜆𝐸𝑙2 − 𝜆𝐹𝑚𝑙 + 𝑚𝑙𝑚 + 𝑁𝑚2 − 𝜆𝐹𝑙𝑚 − 𝜆𝐺𝑚2 = 0

⇒ 𝐿𝑙2 + 2𝑚𝑚𝑙 + 𝑁𝑚2 − 𝜆[𝐸𝑙2 + 2𝐹𝑚𝑙 + 𝐺𝑚2] = 0

⇒ 𝐾 − 𝜆(1) = 0 [∵ (1) & (2)]

⇒ 𝐾 = 𝜆

 

Thus the extreme values of 𝑘 are obtained when 𝜆 = 𝑘 

To find principal curvature from Quadratic equation by elimination of 𝑙,𝑚 from (4) & (5): 

eliminate l & m. 

(4)⇒ 𝐿𝑙 + 𝑚𝑀 − 𝜆𝐸𝑙 − 𝜆𝐹𝑚 = 0

⇒ 𝑙[𝐿 − 𝜆𝐸] + 𝑚[𝑀 − 𝜆𝐹] = 0

⇒ 𝑙[𝐿 − 𝜆𝐸] = −𝑚[𝑀 − 𝜆𝐹]

⇒
𝑙

𝑚
=
−[𝑀 − 𝜆𝐹]

[𝐿 − 𝜆𝐸]
   ……… . . (6)

(5)⇒ 𝑚𝑙 + 𝑁𝑚 − 𝜆[𝐹𝑙 + 𝐺𝑚] = 0

⇒ 𝑀𝑙 + 𝑁𝑚− 𝜆𝐹𝑙 − 𝜆𝐺𝑚 = 0

 

⇒ 𝑙[𝑚 − 𝜆𝐹] + 𝑚[𝑁 − 𝐺𝜆] = 0

⇒ 𝑙[𝑀 − 𝜆𝐹] = −𝑚[𝑁 − 𝐺𝜆]

⇒
𝑙

𝑚
=
−[𝑁 − 𝐺𝜆]

[𝑀 − 𝜆𝐹]
   …………(7)

 

From (6) & (7) L.H.S are equal ⇒ R.H.S also equal 

[𝑀 − 𝜆𝐹]

[𝐿 − 𝜆𝐸]
=
[𝑁 − 𝐺𝜆]

[𝑀 − 𝜆𝐹]

⇒[𝑀 − 𝐾𝐹][𝑀 − 𝐾𝐹] = [𝑁 − 𝐺 ≠ 𝐾][𝐿 − 𝐾𝐸][∵ 𝜆 = 𝐾]

⇒𝑀2 − 2𝐾𝐹𝑀 +𝐾2𝐹2 = 𝑁𝐿 − 𝐾𝐸𝑁 − 𝐾𝐺𝐿 + 𝐾2𝐺𝐸
⇒𝑀2 − 2𝐾𝐹𝑀 +𝐾2𝐹2 −𝑁𝐿 + 𝐾𝐸𝑁 + 𝐾𝐺𝐿 −𝐾 −𝐾2𝐺𝐸 = 0
⇒−𝐾2[𝐸𝐺 − 𝐹2] + 𝐾[𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀] − (𝐿𝑁 − 𝑀2) = 0.

 

Multiply by (-1), ⇒ 𝐾2[𝐸𝐺 − 𝐹2] − 𝐾[𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀] + (𝐿𝑁 −𝑀2) = 0………..(8) 

This is the quadratic equation in 𝑘. 

∴ It gives two values for 𝜅 which correspondence to the extreme value of 𝑘. 

This two values of 𝑘 are denoted by 𝑘𝑎 & 𝑘𝑏. Where 𝑘𝑎 & 𝑘𝑏 are the principal curvature at  𝑝  

To find mean curvature: 
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We know that, Mean curvature = 𝜇 =
1

2
[𝑘𝑎 + 𝑘𝑏] 

[Also we know that, If 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0&𝛼, 𝛽 are two roots then  

Sum of the roots = 𝛼 + 𝛽 = −𝑏/𝑎 

and the product of the roots = 𝛼𝛽 = 𝑐/𝑎] 

∴ Mean curvature = 𝜇 =
1

2
[𝐾𝑎 + 𝐾𝑏]

=
1

2
[−

 co-eff of 𝐾

 co-eff of 𝐾2
]
 

Mean curvature =
1

2
[
𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀

𝐸𝐺 − 𝐹2
] 

To find Gaussian curvature: 

We know that,  

 Gaussian curvature = 𝜅= 𝐾𝑎 ⋅ 𝐾𝑏

= [
constant

co − eff of 𝐾2
]

Gaussian curvature = 𝐾=
𝐸𝑁 −𝑀2

𝐸𝐺 − 𝐹2

 

To find the principal direction by eliminate 𝜆 : 

(or) Elimination of 𝜆 from (4) and (5). 

(4) ⇒ 𝐿𝑙 +𝑚𝑀 = 𝜆[𝐸𝑙 + 𝐹𝑚] 

 

𝜆 =
𝐿𝑙 +𝑚𝑀

[𝐸𝑙 + 𝐹𝑚]
…… . . (9)

 

(5) ⇒ Ml + 𝑁𝑚 = 𝜆[𝐹𝑙 + 𝐺𝑚] 

𝜆 =
Ml+𝑁𝑚

𝐹𝑙+𝐺𝑚
    ………… (10) 

From (9) & (10) ⇒ 𝐿𝐻𝑆 are equal ⇒ R.H S are equal. 

[𝐿ℓ + 𝑚𝑀]

[𝐸ℓ + 𝐹𝑀]
=
[𝑀ℓ + 𝑁𝑚]

[𝐹ℓ + 𝐺𝑚]
 

⇒ [𝐿ℓ + 𝑚𝑀][𝐹𝑙 + 𝐺𝑚] = [𝑀𝑙 + 𝑁𝑚][𝐸𝑙 + 𝐹𝑚]

⇒ 𝐿𝐹𝑙2 + 𝐺𝐿𝑙𝑚+ 𝑀𝐹m𝑙 + 𝐺𝑀𝑚2 −𝑀𝐸𝑙2 −𝑀𝐹ℓ𝑚 −𝑁𝐸𝑙𝑚 −𝑁𝐹𝑚2 = 0.

⇒ 𝑙2[𝐿𝐹 −𝑀𝐸] + 𝑙𝑚[𝐺𝐿 − 𝑁𝐸] + 𝑚2[𝐺𝑀 −𝑁𝐹] = 0

⇒ (𝐸𝑀 − 𝐿𝐹) (
𝑙

𝑚
)
2

+ (𝐸𝑁 − 𝐿𝐺) (
𝑙

𝑚
) + (𝐹𝑁 − 𝐺𝑀) = 0. ……… . (11)

 

∴ The roots of this eqn-gives the direction of the principal direction. 

The discriminant of this equation = (𝐸𝑁 − 𝐿𝐺)2 − 4(𝐸𝑀 − 𝐿𝐹)(𝐹𝑁 − 𝐺𝑀)… . . (12) 
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Consider, 𝐹𝑁 − 𝐺𝑀 = 𝐹𝑁 ⋅
𝐸

𝐸
− 𝐺𝑀 ⋅

𝐸

𝐸
−
𝐹𝐺𝐿

𝐸
+
𝐹𝐺𝐿

𝐸
 

⇒ 𝐹𝑁 − 𝐺𝑀 =
𝐹

𝐸
[𝐸𝑁 − 𝐺𝐿] −

𝐺

𝐸
[−𝐹𝐿 + 𝐸𝑀] sub in (12).  

(12) ⇒ The discriminant of eqn (II) 

=(𝐸𝑁 − 𝐺𝐿)2 − 4(𝐸𝑀 − 𝐹𝐿) [
𝐸

𝐸
(𝐸𝑁 − 𝐺𝐿) −

𝐺

𝐸
(−𝐹𝐿 + 𝐸𝑀)]

=(𝐸𝑁 − 𝐺𝐿)2 − 2(𝐸𝑁 − 𝐺𝐿) ⋅
2(𝐸𝑀 − 𝐹𝐿)𝐹

𝐸
+
4𝐺

𝐸
(𝐸𝑀 − 𝐹𝐿)2

       +
4𝐹2

𝐸2
(𝐸𝑀 − 𝐹𝐿)2 −

4𝐹2

𝐸2
(𝐸𝑀 − 𝐹𝐿)2

=(𝐸𝑁 − 𝐺𝐿) −
2𝐸

𝐸
(𝐸𝑀 − 𝐹𝐿)𝐽2 +

4(𝐸𝑀 − 𝐹𝐿)2

𝐸2
[−𝐹2 + 𝐸𝐺]……(13)

 

If the R.H.S of equation(13) > 0, then the equation (11) has distinct real roots and two 

distinct principal directions. 

If the R.H.S of equation (13) = 0. Then, the roots will be consider. 

when, 𝐸𝑁 − 𝐺𝐿 = 𝐸𝑁 − 𝐹𝐿 = 𝐸𝑀 − 𝐹𝐿 = 0. 

(ie) when 
𝐸

𝐿
=

𝐺

𝑁
=

𝐹

𝑚
      ……..(14) 

Suppose, equation (14) is true at a point. 

(i.e.) when L, M, N are proportional to 𝐸, 𝐹, 𝐺 then The principal directions are indeterminate 

and the normal curvature is the same in all the directions 

To prove that the principal directions are orthogonal. 

(i.e.) To prove that the angle ' 𝜃 ' between the principal direction = 𝜋/2.  

(i.e.) T.P.T: 𝜃 = 𝜋/2. 

From (11) ⇒ The principal directions are given by. 

(𝐸𝑀 − 𝐹𝐿)2 (
𝑙

𝑚
)
2

+ (𝐸𝑁 − 𝐺𝐿) (
𝑙

𝑚
) + (𝐹𝑁 − 𝐺𝑀) = 0 

Let the roots of this equation. be 
𝑙

𝑚
 𝑎𝑛𝑑 

𝑙′

𝑚′ 

∴
𝑙

𝑚
+
𝑙′

𝑚′
= −

(𝐸𝑁 − 𝐺𝐿)

(𝐸𝑀 − 𝐹𝐿)

&
𝑙

𝑚
⋅
𝑙′

𝑚′
=
(𝐹𝑁 − 𝐺𝑀)

(𝐸𝑀 − 𝐹𝐿) }
 
 

 
 

……… . (15) 

∴ The angle ' 𝜃 ' both the principal direction is, 

 cos 𝜃 = 𝐸𝑙𝑙′ + 𝐹(𝑙𝑚′ +𝑚𝑙′) + 𝐺(𝑚𝑚′) 
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∴ cos 𝜃 = 𝑚𝑚′ [𝐸
𝑙

𝑚
⋅
𝑙′

𝑚′
+ 𝐹 [

𝑙

𝑚
+
𝑙′

𝑚′
] + 𝐺] 

= 𝑚′ [𝐸 [
𝐹𝑁 − 𝐺𝑀

𝐸𝑀 − 𝐹𝐿
] + 𝐹 [

−𝐸𝑁 + 𝐺𝐿

𝐸𝑀 − 𝐹𝐿
] + 𝐺] [∵ (15)] 

=
𝑚𝑚′

𝐹𝑀 − 𝐹𝐿
[𝐸𝐹𝑁 − 𝐸𝐺𝑀 + 𝐹𝐸𝑁 + 𝐹𝐺𝐿 + 𝐺𝐸𝑀 − 𝐺F𝐿]

cos 𝜃= 0
⇒ 𝜃= cos−1 0

 

⇒ 𝜃 =
𝜋

2
⇒ The principal directions are orthogonal. 

Umbilic: 

A point at which 
𝐿

𝐸
=
𝑀

𝐹
=
𝑁

𝐺
 is called an umbilic 

 Example: 

On a Sphere every point is umbilic. 

𝑟‾ = (𝑎sin 𝑢cos 𝑣, 𝑎sin 𝑢sin 𝑣, 𝑎cos 𝑢) 

4.3. Lines of curvature: 

A curve on a surface whose tangent at each point is along a principal direction is called a line 

of curvature.       (or) 

A line of curvature on any Surface is a curve Such that the tangent at any point is a tangent 

line to the principal sections of the Surface at the point. 

Theorem 1:  

Rodrigues Theorem: 

The necessary and  sufficient condition for a curve to be a line curvature is that 

𝐾𝑑𝑟 + 𝑑𝑁‾ = 0 on a surface  

Proof: 

Necessary part: 

Assume that a curve on a Surface be a line of curvature. 

∴ The tangent to this curve, at each pt of the curve is along a principal direction 

(i.e.) The direction ( 𝑑𝑢, 𝑑𝑣 ) of this curve at each point (u,v) is along the principal direction. 

To prove that 𝐾𝑑𝑟‾ + 𝑑𝑁‾ = 0 

We know that, the principal directions are on by,  

[𝐿 − 𝐾𝐸]𝑑𝑢 + [𝑀 − 𝐾𝐹]𝑑𝑣 = 0   ……… . (1) 

[𝑀 − 𝐾𝐹]𝑑𝑢 + [𝑁 − 𝐾𝐺]𝑑𝑣 = 0    ……… (2) 

where 𝑘 = principal curvature. 
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Also we know that,  

𝐸 = 𝑟‾1 ⋅ 𝑟‾1, 𝐹 = 𝑟‾1 ⋅ 𝑟‾2, 𝐺 = 𝑟‾2 ⋅ 𝑟‾2, 𝐿 = −𝑁‾1 ⋅ 𝑟‾1………. (3) 

Sub (3) in (1) and (2) 

∴ (1) ⇒ [−𝑁‾1𝑟‾1 − 𝑘(𝑟‾1, 𝑟‾1)]𝑑𝑢 + [−𝑁2 − 𝑟‾1 − 𝑘(𝑟‾1 ⋅ 𝑟‾2)]𝑑𝑣 = 0 

& (2) ⇒ [−𝑁‾1 ⋅ 𝑟‾2 − 𝑘(𝑟‾1 ⋅ 𝑟‾2)]𝑑𝑢 + [−𝑁‾2 ⋅ 𝑟‾2 − 𝑘(𝑟‾2 ⋅ 𝑟‾2)]𝑑𝑣 = 0. 

(i.e.) (1) ⇒ −𝑁1𝑟‾1𝑑𝑢 − 𝑘𝑟‾1 ⋅ 𝑟1𝑑𝑢 − 𝑁2 ⋅ 𝑟1𝑑𝑢 − 𝑘(𝑟1 ⋅ 𝑟‾2)𝑑𝑣 = 0 

& (2) − 𝑁1 ⋅ 𝑟2𝑑𝑢 − 𝑘𝑟‾1 ⋅ 𝑟‾2𝑑𝑢 − 𝑁‾2 ⋅ 𝑟‾2𝑑𝑣 − 𝑘 ⋅ 𝑟2 ⋅ 𝑟2𝑑𝑣 = 0 

(i.e.) (−1) × (1) ⇒ 𝑁‾1𝑟‾1𝑑𝑢 + 𝑁‾2𝑟‾1𝑑𝑣 + ℎ𝑟‾1 ⋅ 𝑟‾1𝑑𝑢 + 𝑘1𝑟‾2 ⋅ 𝑟‾2𝑑𝑣 = 0 

&(−1)(2) ⇒ 𝑁‾1 ⋅ 𝑟‾2𝑑𝑢 + 𝑁‾2 ⋅ 𝑟‾2𝑑𝑣 + 𝑘𝑟‾1 ⋅ 𝑟‾2𝑑𝑢 + 𝑘𝑟‾2 ⋅ 𝑟‾2𝑑𝑢 = 0 

(1) ⇒ (𝑁‾1𝑑𝑢 + 𝑛‾2𝑑𝑢) ⋅ 𝑟‾1 + 𝑘[𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑢]𝑟‾1 = 0. 

& (2) ⇒ (𝑁‾1𝑑𝑢 + 𝑁‾2𝑑𝑣) ⋅ 𝑟‾2 + 𝑘[𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑢]𝑟‾2 = 0. 

(1) ⇒ [
𝜕𝑁

𝜕𝑢
𝑑𝑢 +

𝜕𝑁

𝜕𝑣
𝑑𝑣] ⋅ 𝑟‾1 + 𝑘 [

𝜕𝛾‾

𝜕𝑢
𝑑𝑢 +

𝜕𝑟‾

𝜕𝑣
𝑑𝑣] 𝑟‾1 = 0. 

& (2) ⇒ [
𝜕𝑁

𝜕𝑢
𝑑𝑢 +

𝜕𝑁

𝜕𝑣
𝑑𝑢] ⋅ 𝛾‾2 +𝐾 [

𝜕𝛾‾

𝜕𝑢
𝑑𝑢 +

𝜕𝛾‾

𝜕𝑣
𝑑𝑢] 𝛾‾2 = 0 

(1) ⇒ 𝑑𝑁 ⋅ 𝑟‾1 + 𝑘𝑑𝑟‾ ⋅ 𝑟‾1 = 0 & 

(2) ⇒ 𝑑𝑁 ⋅ 𝑟2 + 𝐾𝑑𝑟 ⋅ 𝑟2 = 0. 

(ie) [𝑑𝑁‾ + 𝑘𝑑𝑟‾] ⋅ 𝑟‾1 = 0   ………..(4) 

& [𝑑𝑁‾ + 𝑘𝑑𝑟‾] ⋅ 𝑟‾2 = 0.   ……….. (5) 

From equation (4) & (5) we get,  

𝑑𝑁‾ + 𝑘𝑑𝑟‾ is perpendiculur to both 𝑟‾1 and 𝑟‾2 ……….(6) 

But 𝑁‾ 2 = 𝑁‾ ⋅ 𝑁‾ = 1 

⇒ 𝑑𝑁‾ ⋅ 𝑁‾ + 𝑁‾ ⋅ 𝑑𝑁‾ = 0
⇒ 2𝑁‾ ⋅ 𝑑𝑁‾ = 0
⇒ 𝑁‾ ⋅ 𝑑𝑁‾ = 0

 

⇒ 𝑑𝑁‾  is orthogonal to 𝑁‾  

⇒ 𝑑𝑁‾  is a tangent vector   ………..(7) 

Further, 𝑑𝑟‾ = 𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑢&𝑟‾1, 𝑟2 are tangential vectors 

⇒ κ𝑑𝑟‾ is also 𝑎 tangential vector. 

From (7) & (8) 

The vector 𝑑𝑁‾ + 𝑘𝑑𝑟‾ is a tangential vector 

(i.e) 𝑑𝑁‾ + 𝐾𝑑𝑟‾ is a vector on the tangent plane. 

If 𝑑𝑁‾ + 𝑘𝑑𝑟 ≠ 0 then from (4) & (5) 𝑑𝑁‾ + 𝑘𝑑𝑟‾ is parallel to 𝑁‾ . 

This is contradiction to (9) 
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∴ 𝑑𝑁‾ + 𝐾𝑑𝑟‾ = 0 

Sufficient part: 

Assume that 𝑑𝑁‾ + 𝑘𝑑𝑟‾ = 0 ……….(10)  

along a curve For any some Scalar function ' 𝐾 '. 

The along the curve we have 

(𝑑𝑁‾ + 𝑘𝑑𝑟‾) ⋅ 𝑟‾1 = 0 ⋅ 𝑟‾1 = 0.

& (𝑑𝑁‾ + 𝑘𝑑𝑟‾) ⋅ 𝑟‾2 = 0 ⋅ 𝑟‾2 = 0
 

∴ (𝑑𝑢, 𝑑𝑣) is the direction of the that cure at the pt (𝑢, 𝑣) then by retracing the same Step as 

above, we see that, 
(𝐿𝑑𝑢 +𝑀𝑑𝑣) − 𝐾(𝐸𝑑𝑢 + 𝐹𝑑𝑣) = 0
&(𝑀𝑑𝑢 + 𝑁𝑑𝑣) − 𝐾(𝐹𝑑𝑢 + 𝐺𝑑𝑣) = 0

}…… . . (11) 

Retracing the steps from (4) & (5) to (1) & (2) from (10) 

𝑑𝑁‾ + 𝑘𝑑𝑟‾ = 0

∴ [
𝜕𝑁‾

𝜕𝑢
𝑑𝑢 +

𝜕𝑁‾

𝜕𝑣
𝑑𝑣] + 𝑘 [

𝜕𝑟‾

𝜕𝑢
𝑑𝑢 +

𝜕𝑟‾

𝜕𝑣
𝑑𝑣‾] = 0

 

(i.e.) 𝑁‾1𝑑𝑢 + 𝑁‾2𝑑𝑣 + 𝑘(𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑣) = 0. 

𝐾(𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑣) = −𝑁‾1𝑑𝑢 − 𝑁‾2𝑑𝑣 

post multiply by 𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑣 on both sides 

we get, 𝜅(𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑣)(𝑟‾1𝑑𝑢 + 𝑟‾2𝑑𝑣) = (−𝑁‾1𝑑𝑢 − 𝑁2𝑑𝑣)(𝑟1𝑑𝑢 + 𝑟2𝑑𝑣) 

κ[𝑟‾1 ⋅ 𝑟‾1𝑑𝑢
2 + 2𝑟1 ⋅ 𝑟‾2𝑑𝑢𝑑𝑣 + 𝑟‾2 ⋅ 𝑟‾2𝑑𝑣

2] = (−𝑁1 ⋅ 𝑟‾1)𝑑𝑢
2 + [−𝑁2 ⋅ 𝑟1 −𝑁1 ⋅ 𝑟2]𝑑𝑢𝑑𝑣 

                                                                         +[−𝑁2𝑟2]𝑑𝑣
2 

 (i.e.) 𝜅[𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2] = 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 

[Since 𝐸 = 𝑟‾1
2, 𝐺𝑇 = 𝑟‾2

2, 𝐹 = 𝑟‾1. 𝑟‾2, 𝐿 = −𝑁‾1𝑟‾1, 𝑀 = −𝑁‾2 − 𝑟‾1&𝑁 = −𝑁‾2 ⋅ 𝑟‾2] 

∴𝜅 =
𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2
= 𝜅𝑛

 

⇒ 𝑘 is a normal curvature at (𝑢, 𝑣) 

Hence, the direction (11) at any point of the curve gives the principal directions at (𝑢, 𝑣). 

The tangent to the curve at each point is along a principal direction at that point. 

∴ The curve is a line of curvature 

Minimal Surface: 

Surface whose mean curvature is zero at all points are called minimal surface. 

Theorem:  

Lines of curvature as parametric curves 
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𝐹 = 0,𝑀 = 0 is the necessary and sufficient conditions for the lines of curvature to be 

parametric curves 

                                                            (or) 

If the parametric curves are lines of curvature the than 𝐹 = 0,𝑀 = 0. 

Proof: 

Necessary part : 

Let 𝑟‾ = 𝑟‾(𝑢, 𝑣) be a gi. Surface then the differential eqn. of the lines of curvature is given by, 

[𝐸𝑀 − 𝐹𝐿](𝑑𝑢)2 + [𝐸𝑁 − 𝐺𝐿]𝑑𝑢𝑑𝑢 + [𝐹𝑁 − 𝐺𝑀](𝑑𝑣)2 = 0……… . (1) 

If the lines of curvature be takes as parametric curves then 𝐹 = 0, 

Since the principal directions are orthogonal 𝑢 = constant & 𝑣 = constant are the equations 

of parametric curves. 

∴ combined differential equations of parametric curves is given by 𝑑𝑢𝑑𝑣 = 0 ………..(2) 

By hypothesis, 

The lines of curvature coincide with the parametric curves at each point ………(3) 

∴ (1) & (2) are identical or respect the same curves. 

 ∴ 𝐸𝑀 − 𝐹𝐿 = 0 ………(4) 

𝐹𝑁 − 𝐺𝑀 = 0……… . . (5) 

𝐸𝑀 = 0 and 𝐺𝑀 = 0 [∵ 𝐹 = 0] 

⇒ 𝑀 = 0 [∵ 𝐸 ≠ 0 & 𝐺 ≠ 0] 

Sufficient part: 

If 𝑀 = 0 & 𝐹 = 0 then 

the eqn (1) ⇒ [𝐸𝑁 − 𝐺𝐿]𝑑𝑢𝑑𝑣 = 0 but 𝐸𝑁 − 𝐺𝐿 ≠ 0. 

[IF 𝐸𝑁 − 𝐺𝐿 = 0 ⇒
𝐸

𝐿
=

𝐺

𝑁
 which is the condition for umbilic point.] 

Hence 𝑑𝑢𝑑𝑣 = 0. which is the diff. equation of the parametric curves. 

Theorem: Euler's Theorem 

Let the lines of curvature be parametric curves then 𝑘𝑛 = 𝑘𝑎cos
2 𝜓 + 𝑘𝑏sin

2 𝜓 

Where 𝑘𝑛 = The normal curvature at 𝑃 along ( 𝑑𝑢, 𝑑𝑣 )  

𝜅𝑎 , 𝜅𝑏 = The principal curvatures. 

𝜓 = The angle between the direction (du, du) & the principal direction 𝑑𝑟 = 0. (or) 

Let 𝜅𝑎 , 𝜅𝑏 be the principal curvature of a surface at any point 𝑝 on it, then the normal 

curvature 𝑘𝑛 at 𝑃 in the direction making an angle 𝜓 with the principal direction in which the 

normal curvature is 𝑘𝑛 and is given by. 
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𝑘𝑛 = 𝑘𝑎cos
2 𝜓 + 𝑘𝑏sin

2 𝜓 

Proof: 

Let the equation of the Surface 𝑟‾ = 𝑟‾(𝑢, 𝑣), 

If the lines of curvature be taken as parametric then 𝐹 = 0 & 𝑀 = 0. 

& the normal curvature 𝜅𝑛 =
𝐿𝑑𝑢2+2𝑀𝑑𝑢𝑑𝑣+𝑁𝑑𝑣2

𝐸𝑑𝑢2+2𝐹𝑑𝑢𝑑𝑣+𝐺𝑑𝑣2
 

Let ' 𝑝 ' be any point on the surface. 

Then the principal directions at ' 𝑃 ' are the directions of the parametric curves 

𝑣 = constant & 𝑢 = constant. 

We know that, the direction co-efficient in the direction of 𝑉 = constant at 𝑃 is (
1

√𝐸
, 0) 

and the direction co-eff in the direction of 𝑢 = constant at 𝑝 is (0,
1

√𝐺
) 

Let (𝑙, 𝑚) be the direction co-eff of the direction in which the normal curvature in 𝜅𝑛. 

∴ cos 𝜓= 𝐸𝑙𝑙′ + 𝐹[𝑙𝑚′ + 𝑙′𝑚] + 𝐺𝑚𝑚′

= 𝐸𝑙 (
1

√𝐸
) + 0 + G(𝑚)(0)

=
𝐸𝑙

√𝐸

⇒ cos 𝜓= 𝑙√𝐸   …… . . . (1)

 

Since the principal directions cut at 90∘, the angle between the direction in which the normal 

curvature is 𝜅𝑎 & the direction in which the normal curvature is 𝜅𝑏 

∴ cos (90 − 𝜓) = 𝐸(𝑙)(0) + 0 + 𝐺(𝑚) (
1

√𝐺
) 

We know that, the normal curvature 𝐾𝑛 in the direction with direction co-eff (𝑙, 𝑚) is given 

by, 

𝐾𝑛=
1𝑙2 + 2𝑀𝑙𝑚 + 𝑁𝑚2

𝐸𝑙2 + 2𝐹𝑙𝑚 + 𝐺𝑚2

𝐾𝑛= 𝐿𝑙
2 + 2𝑀𝑙𝑚 + 𝑁𝑚2              [∵ 𝐸𝑙2 + 2𝐹𝑙𝑚 + 𝐺𝑚2 = 1]

⇒ 𝐾𝑛= 𝐿𝑙
2 + 0 + 𝑁𝑚2     [∵ 𝑀 = 0]  

 

⇒ 𝐾𝑛 = 𝐿𝑙
2 +𝑁𝑚2  …………(3) 

∴ 𝐾𝑎 = 𝐿 [
1

𝐸
] + 𝑁(0)  

𝑘𝑎 =
𝐿  

𝐸
   …………(4) 

Taking 𝑙 = 0 & 𝑚 =
1

√𝐺
 in (1) 
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𝐾𝑏 = 𝐿(0)
2 +𝑁 (

1

√𝐺
)
2

 

From (1), 𝑙 =
cos 𝜓

√𝐸
 

from (3), 𝑚 =
sin 𝜓

√𝐺
 

From (4) & (5) 

𝐿 = 𝐸𝜅𝑎 & 𝑁 = 𝐺𝜅𝑏 

∴ From (3) 

𝑘𝑛 = 𝐸𝜅𝑎 [
cos 𝜓

√𝐸
]
2

+ 𝐺𝜅𝑏 [
sin 𝜓

√𝐺
]
2

⇒ 𝑘𝑎 = 𝐸𝑘𝑎
cos2 𝜓

𝐸
+ 𝐺𝐾𝑏

sin2 𝜓

𝐺
⇒ 𝑘𝑛 = 𝑘𝑎cos

2 𝜓 + 𝑘𝑏sin
2 𝜓

 

For the principal curvature on the Surface of revolution. 

𝑟‾ = (𝑢 cos𝜙 , 𝑢 sin 𝜙 , 𝑓(𝑢)) is given by. 

𝑘𝑎 =
𝑓11

(1 + 𝑓1
2)3/2

, 𝑘𝑏 =
𝑓1

𝑢(1 + 𝑓1
2)1/2

 

Gaussian curvature = 𝑘1 = 𝑘𝑎 ⋅ 𝑘𝑏 =
𝑓1𝑓11

𝑈(1+𝑓1
2)

 

Mean curvature (1st curvature)=
𝐾𝑎+𝐾̇𝑏

2
 

=
1

2
[
𝑢𝑓11 + 𝑓1(1 + 𝑓1)

𝑢(1 + 𝑓1
2)3/2

] 

Corollary: 

The sum of the normal curvatures at any point on a surface in two directions of right angle is 

constant is equal to the sum of the principal curvatures at the point. 

Proof: 

Let 𝜅𝑎 & 𝜅𝑏 be the principal curvatures at any  ' 𝑝 ' on the given surface 

Consider two directions at 𝑝 which cut at 90∘. 

Let 𝜅1, 𝜅2 be the normal curvature in these two direction. Let 𝜓1 be the angle between the 

directions at 𝑃, in which the normal curvatures are 𝑘𝑎 & 𝑘1& 𝜓2 be that of 𝐾𝑏 & 𝐾2 

∴ By Euler's theorem, 

 𝑘1 = 𝑘𝑎 cos
2𝜓1 + 𝑘𝑏 cos

2𝜓1……… . . (1) 

 [Replacing 𝜅𝑛 , 𝜓 respectively by 𝜅1, 𝜓, in the Euler's formula] 
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 𝑘2 = 𝑘𝑎cos
2 𝜓2 + 𝑘𝑏sin

2 𝜓2[∵ 𝜓2 = 90 + 𝜓1]

⇒ 𝑘2 = 𝑘𝑎cos
2 (
𝜋

2
+ 𝜓1) + 𝑘𝑏sin

2 (
𝜋

2
+ 𝜓1)

⇒ 𝑘2 = 𝑘𝑎sin
2 𝜓1 + 𝑘𝑏sin

2 𝜓1

 

(1) + (2) ⇒ 𝜅1 + 𝜅2= 𝜅𝑎[cos
2 𝜓1 + sin

2 𝜓1] + 𝜅𝑏[cos
2 𝜓1 + sin

2 𝜓1]

= 𝜅𝑎 + 𝜅𝑏.
𝜅1 + 𝜅2=  constant .

 

Thus the sum of the normal curvature at 𝑝. In any two directions which, at at 90∘ is the sum 

of the principal curvatures at 𝑃, a constant. 

Elliptic, parabolic & Hyperbolic points: 

Suppose 𝑘 in the Gaussian curvature of a point 𝑃(𝑢, 𝑣) on a surface. 

If 𝜅𝑎 & 𝜅𝑏  are principal curvatures at 𝑃, then 

𝜅 = 𝜅𝑎𝜅𝑏 =
𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2
=
𝐿𝑁 − 𝑀2

𝐻2
, where 𝐻2 = 𝐸𝐺 − 𝐹2 > 0 

 

Elliptic point: 

If a point 'p' at a Gaussian curvature is positive (i.e.) If 𝐿𝑁 −𝑀2 > 0 then the 𝑝𝑡 ' 𝑝 ' is called 

an elliptic point. 

[𝐾 > 0 ⇔
𝐿𝑁 −𝑀2

𝐻2
> 0 ⇔ 𝐿𝑁 −𝑀2 > 0 since 𝐻2 > 0] 

∴ A point is an elliptic point ⇔ the principal curvatures (𝜅𝑎 & 𝜅𝑏) at the point are of the 

same signs. 

𝐶𝐴 Pt, 𝑃 is an elliptic point. 

⇔ 𝑘 > 0 ⇔ 𝑘𝑎𝑘𝑏 > 0 ⇔  both 𝑘𝑎 & 𝑘𝑏 are positive (or) negative.  

Hyperbolic point: 

It a point at a Gaussian curvature is negative. (i.e) If 𝐿𝑁 − 𝑀2 < 0 then the point ' 𝑃 ' is 

called a Hyperbolic point. 

[𝐾 < 0 ⇔
𝐿𝑁 −𝑀2

𝐻2
< 0 ⇔ 𝐿𝑁 −𝑀2 < 0, since 𝐻2 > 0] 

∴ 𝐴 point is a hyperbolic point ⇔ the principal curvatures ( 𝜅𝑎 & 𝜅𝐵 ) at the points are of 

positive signs. 

If point ‘𝑝 ' is a jypthis hyperbolic 𝑝𝑡 ⇔ 𝐾 < 0 

⇔ 𝐾𝑎 ⋅ 𝐾𝑏 < 0

⇔  One of them is positive & the orther is negative
 

 



 

148 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

Parabolic point: 

A point ' 𝑃 ' the Gaussian curvature is zero (ie) If 𝐿𝑁 −𝑀2 = 0 then the point is called 𝑎 

parabolic point. 

[𝐾 = 0,⇔
𝐿𝑁 − 𝑀2

𝐻2
= 0 ⇔ 𝐿𝑁 −𝑀2 = 0 ∵ 𝐻2 > 0]. 

∴ A point is a parabolic point. 

⇔ 𝑘𝑎 ⋅ 𝑘𝑏 = 0 

⇔ atleast one of the principal curvature is zero.  

Variation of normal curvatures with direction at the three types of points: 

If 𝜅𝑛 is the normal curvatures at a point 𝑃(𝑢, 𝑣) in the direction (du, 𝑣 ) then, 

𝜅𝑛 =
𝐿𝑑𝑢2 + 2𝑚𝑑𝑢𝑑𝑣 + 𝑣𝑑𝑣2

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2
 

Note that, 

 

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2=
1

𝐸
[𝐸2𝑑𝑢2 + 2𝐸𝐹𝑑𝑢𝑑𝑣 + 𝐸𝐺𝑑𝑣2].

=
1

𝐸
[𝐸𝑑𝑢 + 𝐹𝑑𝑣]2 − 𝐹2𝑑𝑣2+𝐸𝐺𝑑𝑣2]

 Since 𝐸 𝑎𝑛𝑑 𝐸𝐺 − 𝐹2(= 𝐻2) are assumed  to be positive.

 

The denominator of the R.H.S of (1) is always positive. 

∴ The sign of 𝐾𝑛 depends upon the sign of the second fundamental form 

 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 

i) If ' 𝑃 ' is an elliptic point then at ' 𝑃 ' 𝐿𝑁 − 𝑀2 > 0 ∴ 𝐿 ≠ 0 

∴ 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 =
1

𝐿
[[𝐿𝑑𝑢 +𝑚𝑑𝑣]2+[𝐿𝑁 − 𝑀2]𝑑𝑣2] 

This shows that, 

If 𝐿𝑁 − 𝑀2 > 0 then the sign of 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑣𝑑𝑣2 > 0 (or) < 0 according as 𝐿 > 0 

(or) L<o. 

Hence the sign of 𝐾𝑛 maintains the same sign at an elliptic point for all directions 

ii) If 𝑃 is a parabolic point then at 𝑃, 𝐿𝑁 − 𝑀2 = 0 ∴ 𝐾𝑛 maintains the Same sign for all 

direction that ' 𝑝 ' excepts when 𝑘𝑛 = 0. 

iii) If  𝑝 is a hyperbolic ′𝑃 'then at ' 𝑃 '. 
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𝐿𝑁 −𝑚2 < 0 

∴ 𝑘𝑛 is positive for directions lying within a certain angle. 

[The denominator of the R.H.S of (1) is always positive the second fundamental form 𝑑𝑢2 +

2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2  ] negative for directions lying outside the angle & zero along the direction 

which form the angle. 

Theorem: 

Show that at an elliptic point the surface line entirely on outside of the tangent plane & at a 

hyperbolic point the surface cross over the tangent plane 

Proof: 

Let ' 𝑃 ' be a point (𝑢, 𝑣) on the given Surface & Let ' 𝑄 ' be a pt (𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣) in the 

neighborhood of 𝑃 

 If ' ℎ ' is the length of the perpendicular from 𝑄 to the tangent plane to the surface at P then  

ℎ =
1

2
[𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2]  ………..(1) 

If ' 𝑃 ' is an elliptic point Then 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑣𝑑𝑣2  maintains the Same sign for all 

direction ( 𝑑𝑢, 𝑑𝑣 ) at ' 𝑃 '. 

Thus if ' 𝑃 ' is an elliptic from (1), ' ℎ ' has the same sign whether may be the position of 𝑄. 

Hence the entire surface lies on one side of the tangent plane at an elliptic point. 

IF ' 𝑃 ' is a hyperbolic point, then at ' 𝑃 ', then 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 have ave as well as 

negative value. 

∴ from (1), 

If ' 𝑃 ' is a hyperbolic point then ' ℎ ' has positive as well as negative values. 

∴ The surface near ′𝑃 ' lies on both sides of the tangent plane at 𝑃. 

Thus the Surface Crosses over the tangent plane. 

The Dupin Indicatrix: 

If 𝑅𝑎 , 𝑅𝑏  to be the reciprocals of 𝜅𝑎 , 𝜅𝑏 then the curve of Section is the conic 

 
𝑥2

𝑅𝑎
+
𝑦2

𝑅𝑏
= 2ℎ,    

𝑧 = 2𝑏. This conic is known as Dupin's Indicatrix. 

It gives an immediate geometrical interpreter of the variation of normal curvature with 

direction. 

Theorem: 

If 𝜅𝑎 & 𝜅𝑏 are the principal curvature at ' 𝑂 ' on the surface then the equation of the indicatrix 
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is 
𝑥2

𝑅𝑎
+
𝑦2

𝑅𝑏
= 2ℎ……… . (1)𝑧 = ℎ, where 𝑅𝑎 =

1

𝑘𝑎
 & 𝑅𝑏 =

1

𝑘𝑏
 

Proof: 

Suppose, ' O ' is a given point on a given Surface. 

Let 𝑄 be a point in the Dupin's indicatrix then 𝑄 is very near to ' 𝑂 '. 

[Then 𝑄 is a point on the curve of intersection of the surface & a plane which is parallel to 

the tangent plane at ' 𝑂 ' & which interself The Surface in points very near to 'O']. 

If ' ℎ ' is the distance of D.T from the tangent plane at ' 0 '. 

(i.e.) If ' ℎ ' is the length of the perpendicular from a to the tangent plane at ' 𝑂 '. 

Then, 2ℎ = 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2  ………….(2) 

If we take the lines of curvature at ' 𝑂 ' as parametric curves, then 𝐹 = 0,𝑀 = 0. 

∴ (2) ⇒ 

2ℎ = 𝐿𝑑𝑢2 + 𝑁𝑑𝑣2    ………… (3) 

The Necessary condition. 𝜅𝑛 in the direction (du, 𝑑𝑣 ) is given by, 

𝜅𝑛=
𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2

=
𝐿𝑑𝑢2 +𝑁𝑑𝑣2

𝐸𝑑𝑢2 + 𝐺𝑑𝑣2
 ……….(4) [∵ 𝐹 = 𝑚 = 0]

 

The direction ratios of the parametric curves 𝑣 = constant, 𝑢 = constant are (1,0)&(0,1) 

Since the line of curvature has been taken as the parametric curves from (4) 

The principal curvature 𝑘𝑎𝑘𝑏 are given by, 𝐾𝑎 =
𝐿(1)2+𝑁(0)2

𝐸(1)2+𝐺(0)2
=

𝐿

𝐸
⇒ 𝐾𝑎 =

𝐿

𝐸
#(4) 

Similarly, 𝐾𝑏 =
𝑁

𝐺
   ……….(5) 

[ For: -when (𝑑𝑢, 𝑑𝑣) = (1,0) ⇒ 𝑘𝑛 = 𝑘𝑎 

ill y when (𝑑𝑢, 𝑑𝑣) = (0,1) ⇒ 𝜅𝑛 = 𝜅𝑏]. 

Using (5) in (3) we take, 2ℎ = 𝜅𝑎𝐸𝑑𝑢
2 + 𝜅𝑏G𝑑𝑣

2 …… . . (6) 

If 𝑑𝑠1 & 𝑑𝑠2 are alts. Of the arc length of the parametric curves 𝑣 = constant & 𝑢 = constant 

at 0 

Then 𝑑𝑠1 = 𝐸𝑑𝑢
2& 𝑑𝑠2 = 𝐺𝑑𝑣

2. 

[∵ 𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 on 𝑣 = constant 

 ⇒ 𝑑𝑣 = 0]
 

Therefore, (6) => 2ℎ = 𝜅𝑎𝑑𝑠1
2 + 𝜅𝑏𝑑𝑠2

2 

Take ' 𝑂 ' as the 'origin 

Let OX & OY of along the principal directions at  ‘𝑂′& oz along the normal to the surface. 
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Let the co-ord of 𝑄 be (𝑥, 𝑦, 𝑧) then 𝑥 = 𝑑𝑠1, 𝑦 = 𝑑𝑠2&𝑧 = ℎ. 

∴ from (7) 

The equation of indicatrix is 𝑧 = ℎ, 2ℎ = 𝜅𝑎𝑥
2 + 𝜅𝑏𝑦

2 …………(8) (or) 

2ℎ =
𝑥2

𝑅𝑎
+
𝑦2

𝑅𝑏
, 𝑧 = ℎ 

where, 𝑅𝑎 =
1

𝐾𝑎
, 𝑅𝑏

⏟        
=
1

𝑘𝑏
 

Radius of curvature at ' 0 '. 

Note: 

1) If 𝐾𝑎 , 𝐾𝑏 have the same sign the conic is an ellipse with semi axis of length 

[2ℎ𝑅𝑎]
1/2& [2ℎ𝑅𝑏]

1/2& is real (or) imaginary according to the sign of ' ℎ '. 

2.) If 𝑘𝑎 & 𝑘𝑏 have different signs of the conic is one of two conjugate hyperbolas. 

In this case the directions of the asymptotes at ' 𝑂 ' are called the asymptote directions at ' 𝑂 '. 

Example: 

Prove that at any point ' 𝑃 ' on a Surface there is a parabolic Such that the normal curvature of 

the Surface at ' 𝑃 ' in any direction in the same as that of the paraboloid. 

Proof: 

We know that, the equation of the indicatrix is 
𝑥2

𝑅𝑎
+
𝑦2

𝑅𝑏
= 2ℎ & 𝑧 = ℎ ……….(1) 

The equation to the surface for which (1) in the Coincide is obtained by eliminating ' 𝑅 '. 

 
𝑥2

𝑅𝑎
+
𝑦2

𝑅𝑏
= 2𝑧  ……………(2) 

 (2) can be put in the parametric form as, 

𝑟‾ = (𝑥, 𝑦, 𝑧) = (𝑥, 𝑦,
1

2
[
𝑥2

𝑅𝑎
+
𝑦2

𝑅𝑏
])

∴ 𝑟1 = (1,0,
𝑥

𝑅𝑎
)&𝑟‾2 = (0,1,

𝑦

𝑅𝑏
)

 

Here 𝑟‾1 =
𝜕𝑟‾

𝜕𝑥
 & 𝑟‾2 =

𝜕𝑟‾

𝜕𝑦
. 

So, 𝐸 = 1 +
𝑥2

𝑅𝑎
2 , 𝐹 =

2𝑦

𝑅𝑎𝑅𝑏
&𝐺 = 1 +

𝑦2

𝑅𝑏
2. 

[𝑟‾11, 𝑟‾1, 𝑟‾2] = 𝐻𝐿 =
1

𝑅𝑎
[𝑟‾12, 𝑟1, 𝑟2] = 𝐻𝑀 = 0

&[𝑟‾22, 𝑟‾1, 𝑟‾2] = 𝐻𝑁 =
1

𝑅𝑏
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Hence, 

𝜅=
𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝑑𝑠2

=
1

𝐻
{𝜅𝑎 [

𝑑𝑢

𝑑𝑠
]
2

+ 𝜅𝑏 [
𝑑𝑣

𝑑𝑠
]
2

}

 

Result: 

The lines of curvature are in conjugate directions at every points. 

Proof: 

The directions of lines of curvature are given by, 

[𝐸𝑀 − 𝐹𝐿]
𝑥2

𝑚2
+ [𝐸𝑁 − 𝐺𝐿]

𝑥

𝑚
+ [𝐹𝑁 − 𝐺𝑀] = 0 

Thus 𝐿 [
𝑙1𝑙2

𝑚1𝑚2
] + 𝑀 [

𝑙1

𝑚1
+

𝑙2

𝑚2
] + 𝑁 

= 𝐿 {
𝐹𝑁 − 𝐺𝑀

𝐸𝑀 − 𝐿𝐹
} + 𝑀 [

𝐺𝐿 − 𝐸𝑁

𝐸𝑀 − 𝐹𝐿
] + 𝑁

=
𝐿𝐹𝑁 − 𝐿𝐺𝑀 +𝑀𝐺𝐿 −𝑀𝐸𝑁 + 𝑁𝐸𝑀 − 𝑁𝐹𝐿

[𝐸𝑀 − 𝐿𝐹]

 

   = 0 

(i.e.) 𝐸𝑙1𝑙2 + 𝐹[𝑙1𝑚2 +𝑚1𝑙2] + 𝐺𝑚1𝑚2 = 0. 

∴ The lines of curvature are orthogonal. 

Asymptotic Directions: 

If Duplin indicatrix at ' 0 ' is a hyperbola, the direction of the asymptotic at ' 0 ' are called 

Asymptotic directions. 

Asymptotic Lines: 

An asymptotic line on a Surface is a curve whose direction at every pt on it is asymptotic 

equation of the asymptotic lines is, 

 Consider, 
𝑑𝑟‾

𝑑𝑠

𝑑𝑁‾

𝑑𝑠
= [𝑟‾1

𝑑𝑢

𝑑𝑠
+ 𝑟‾2

𝑑𝑣

𝑑𝑠
] [𝑁‾1

𝑑𝑢

𝑑𝑠
+𝑁‾2

𝑑𝑣

𝑑𝑠
] 

= 𝑟‾1𝑁‾1 (
𝑑𝑢

𝑑𝑠
)
2

+ [𝑟‾1𝑁‾2 + 𝑟‾2𝑁‾1]
𝑑𝑢

𝑑𝑠
⋅
𝑑𝑢

𝑑𝑠 + 𝑟‾2𝑁
‾
2 (
𝑑𝑣

𝑑𝑠
)
2

 

=
𝐿𝑑𝑢2+2𝑀𝑑𝑢𝑑𝑣+𝑁2𝑑𝑣2

𝑑𝑠2
    ……….(1) 

But the direction at every point on the asymptotic lines is along the asymptotic direction the 

normal curvature at each 𝑝𝑡. of the asymptotic lines is zero as 

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 ≠ 0 But 𝑘𝑛 = 0. 

∴⇒ 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁2𝑑𝑣2 = 0 
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∴  (1) ⇒
𝑑𝑟‾

𝑑𝑠
⋅
𝑑𝑁‾

𝑑𝑠
= 0 

Asymptotic lines are self-conjugate Two directions (𝑙1,𝑚1) & (𝑙2, 𝑚2) are conjugate if 

        𝐿𝑙1𝑙2 +𝑀[𝑙1𝑚2 +𝑚1𝑙2] + 𝐺𝑚1𝑚2 = 𝑎 

But along the asymptotic lines the direction ratio are (𝑑𝑢, 𝑑𝑣). 

∴ 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 = 0. (by the above result). 

Asymptotic lines are self-conjugate. 

4.4. Developable: 

A developable is a Surface enveloped by a one-parameter family of planes 

A family ( 1-parameter family) is given by the equation 𝑟‾ ⋅ 𝑎‾ = 𝑝 

where 𝑎‾  - represents the normal vector to the plane 𝑝 - The length of the perpendicular from 

the origin ' 𝑂 '. 

Both 𝑎‾  & 𝑝 are functions of a real parameter ' 𝑢 '. 

Characteristic Line: 

Let 𝑟‾. 𝑎‾ = 𝑝   ……….(1) 

 be a family of planes & The planes 𝑢, 𝑣(𝑢 < 𝑣) will intersect in a line provided they are not 

parallel. 

Let 𝑓(𝑢) = 𝑟‾ ⋅ 𝑎‾(𝑢) − 𝑝(𝑢). then the eqn of the line of intersection is 

 𝑓(𝑢) = 0 &𝑓(𝑣) = 0. 

∴ from Roller's Theorem, there exists a  value 𝑣1
2, such that 𝑢 < 𝑢1 < 𝑣 with 𝑓(𝑢1) = 0 as 

𝑣 → 𝑢, 𝑢1 → 𝑢. and the equation of the limiting position of the character line in, 

 𝑟‾ − 𝑎‾ = 𝑝 𝑟‾ ⋅ 𝑎̇ = p……… . (2) 

This line is also called the generators of the developable. 

Characteristic points: 

Consider the three planes 𝑢, 𝑣, 𝑤 (𝑢 < 𝑣 < 𝑤) then there planes will generatly intersects with 

one pt & the limiting position of this pts as 𝑣 → 𝑢 and 𝑢 → 𝑣 independently is the 

characteristic points co responding to ' 𝑢 '. 

∴ By Rolle's the, 

The equation determined is points are, 

𝑟‾ ⋅ 𝑎‾ = 𝑝

𝑟‾ ⋅ 𝑎‾̇ = 𝑝̇

𝑟‾ ⋅ 𝑎‾̈ = 𝑝̈

}……… . (3) 

If 𝑎‾, 𝑎‾̇ , 𝑎‾̈  are 𝐿 ⋅ 𝐷, then these eqn's either have no solution or else the solution is 
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indeterminate 

Edge of Regression: 

Consider the planes 𝑢, 𝑣, 𝑤 be the chou. Pts corresponding to these three planes determine a 

curve on the developable this curve is called an edge of regression. 

(i.e.) The char-pts corresponding to planes of the Family determine a curve on the 

developable called the edge of regression, with equation is given by, 

𝑟‾ ⋅ 𝑎‾ = 𝑝

𝑟‾ ⋅ 𝑎‾̇ = 𝑝̇

𝑟‾ ⋅ 𝑎̇ = 𝑝̇

 

𝑟‾ ⋅ 𝑎̇ = 𝑃̇, where 𝑟‾ is regarded as a function of u. 

Result: 

The tangent line to the edge of representation is parallel to the characteristic line 

Proof:  

The equation of the edge of regression is, 𝑟‾ ⋅ 𝑎‾ = 𝑝 ……… . (1) 

 𝑟‾ ⋅ 𝑎̇ = 𝑝̇ ………(2) 

𝑟‾ ⋅ 𝑎̈ = 𝑝̈ ……… . (3) 

Let𝑡 be the tangent vector to the edge of regression 

Diff (1) with respect to ' 𝑢 ' 

[
𝑑

𝑑𝑠
(𝑟‾) ⋅

𝑑𝑠

𝑑𝑢
] ⋅ 𝑎‾ + 𝑟‾ ⋅ 𝑎̇ = 𝑝̇

  [𝑆̇t] ⋅ 𝑎‾ + 𝑇‾ ⋅ 𝑎̇ = 𝑝̇

𝑆̇𝑡 ⋅ 𝑎‾ + 𝑝̇ = 𝑝‾[by(2)]

⇒ (𝑆̇𝑡‾) ⋅ 𝑎‾ = 0

⇒ 𝑡‾. 𝑎‾ = 0………… . (4)

 

Diff (2) w.r. to ' 𝑢 ' 

[
𝑑

𝑑𝑠
(𝑟‾)

𝑑𝑠

𝑑𝑢
] 𝑎̇ + 𝑟‾ ⋅ 𝑎̈ = 𝑝̈

𝑆̇𝑡‾ ⋅ 𝑎‾̇ + 𝑟‾ ⋅ 𝑎‾̇ = 𝑝̈

⇒ 𝑆̇𝑡‾ ⋅ 𝑎‾̇ + 𝑝 = 𝑝̈[𝑏𝑦(3)]

⇒ 𝑠̇𝑡‾ ⋅ 𝑎‾̇ = 0
⇒ 𝑡‾ ⋅ 𝑎‾̇ = 0 ………(5)

 

From (4) & (5) we get 

𝑡‾ is perpendicular to 𝑎 ‾  & 𝑎̇ 

𝑡‾ is parallel to 𝑎‾ × 𝑎‾̇     …………(6) 

We know that, the line intersection of (1) & (2) is the characteristic line. 
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∴ It is parallel to 𝑎‾ × 𝑎‾̇    …………(7) 

From (5) & (7) we get 

𝑡̅ is parallel to the characteristic line 

Result : 

A developable consists of two sheets which are tangent to the edge of the regression along a 

sharp edge. 

Proof : 

Let ' 𝑐 ' be the edge of regression 

& Let ' 𝑂 ' be a pt on the edge of regression at which 𝑠 = 0. 

Let ox, oy & 𝑜𝑧 be a set of orthogonal traid [rectangular Cartesian axis] chosen respectively 

along 𝑡‾, 𝑛‾ , & 𝑏‾  at ' 0 '. then, 

Any point on the develpatle has position vector given by 𝑅‾ = 𝑟‾ + 𝑣𝑡‾ 

𝑅‾  also can be written as, 

𝑅‾ = 𝑂′𝑃 = 𝑂′𝑄 + 𝑄𝑃 = 𝛾‾(𝑠) + 𝑣𝑡‾(𝑠) 

(on extending 𝑅‾  in powers of ' 𝑠 ') 

𝑅‾ =𝑟‾(𝑠) + 𝑣𝑡‾(𝑠)

=𝑟‾(0) + 𝑠𝑟‾′(0) +
𝑠2

2!
𝑟‾′′(0) +

𝑠3

3!
𝑟‾′′′(0) + 𝑜(𝑠4)

+ 𝑣 [𝑡(0) + 𝑠𝑡‾′(0) +
𝑠2

2!
𝑡‾′′(0) +

𝑠3

3!
𝑡′′′(0) + 𝑜(𝑠4)] 

                                                                                 ……….. (2) 

∴ 𝑅‾ = [0 + 𝑠𝑡̅ +
𝑠2

2
[𝑘𝑛‾] +

𝑠3

6
[𝑘′𝑛‾ + 𝑘(𝜏𝑏‾ − 𝑘𝑡‾)] + 𝑜(𝑠4)

+𝑣 [𝑡‾ + 𝑠𝑘𝑛‾ +
𝑠2

2
[𝑘′𝑛‾ + 𝑘(𝜏𝑏‾ − 𝑘𝑡‾) + 𝑜(𝑠3)]]

= [𝑠 −
𝑠3

6
𝑘2 + 𝑣 −

𝑣𝑠2𝑘2

2
] t̅ + [

𝑠2𝑘

2
+
𝑠3

6
𝑘′ + 𝑣𝑠𝑘 +

𝑠2

2
𝑘′] 𝑛 + [

𝑠3𝑘𝜏

6
+
𝑠2

2
𝑘𝜏] 𝑏‾

‾

 

The normal plane 𝑥 = 0, meets the developable surface where, 



 

156 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

𝑠−
𝑠3

6
𝑘2 + 𝑣 −

𝑣𝑠2𝑘2

2
= 0

⇒𝑣 [1 −
𝑠2𝑘2

2
] =

𝑠3𝑘2

6
− 𝑠

⇒𝑣 = [
𝑠2𝑘2

6
− 𝑠] [1 −

𝑠2𝑘2

2
] − 1

=[
𝑠3𝑘2

6
− 𝑠] [1 +

𝑠2𝑘2

2
] [∵ (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 +⋯]

=−𝑠 −
𝑠3𝑘2

2
+
𝑠3𝑘2

6
+
𝑠5𝑘4

12

=−𝑠 −
2𝑠3𝑘2

6
+ 𝑜(𝑠4)

 

𝑉 = −𝑆 −
𝑆3𝑘2

6
 Sub in (2) & then comparing with (1) 

𝑦 =
−1

2
𝑘𝑠2 + 𝑜(𝑠2)

𝑧 = −
1

3
𝑘𝜏𝑠3 + 𝑜(𝑠4)

 

eliminating ' 𝑠 ' between these eqns 

𝑧2 =
−8

9

𝜏2

𝑘
𝑦3 

From this equation it follows that, the developable cuts the normal plane to the edge of 

regression in a cusp whose tangent is along the principal normal. 

The two sheets of the developable are thus tangent to the edge of regression along a Sharp 

edge. 

Result: 

The tangent plane is same all the pts of the generators of a developable surface 

Proof: 

Let 𝑟‾ = 𝑟‾(𝑠) be the eq. of the edge of regression & 𝑡̅ be the unit tangent vector at any pt of 

the edge of regression . 

We know that, the equation, of the developable is, 

𝑂𝑄 = 𝛿𝑃 + 𝑃𝑄 

𝑅̅= 𝑟̅ (𝑠) + 𝑣 𝑡̅(𝑠)   …………(1) 

Diff (1) w.r. to 𝑉&𝑆 (partial) 

𝜕𝑅

𝜕𝑣
= 𝑅1 = t‾ 
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&
𝜕𝑅‾

𝜕𝑆
= 𝑅‾2= 𝑡‾ + 𝑣𝑘𝑛‾

∴ 𝑅1 × 𝑅2= 𝑡‾ × [𝑡‾ + 𝑣𝜅𝑛‾]

= 0 + 𝑉𝑘(𝑡‾ × 𝑛‾)

 

(i.e.) 𝐻𝑁‾ = 𝑉𝜅𝑏‾  

⇒ 𝑁‾ = 𝑏‾  

⇒ 𝑁‾  is a function of 's' only ' 

⇒ 𝑁‾  is independent of 𝑣. 

⇒ 𝑁‾  is Some at every point along a curve where ' 𝑠 ' is fixed. 

⇒ 𝑁‾  is Some at every pt of char line 

⇒ 𝑁‾  is Some at every pt generator of the developable. 

⇒ Tangent plane at every pt generator of the developable. 

Result: 

The osculating plane of the edge of regression at any point ' 𝑝 ' in the tangent plane to the 

developable Surface at 𝑃. 

Proof: 

The equation of the edge of regression is 

 𝑟‾ − 𝑎‾ = 𝑝    ……….. (1) 

𝑟‾ ⋅ 𝑎‾̇ = 𝑝̇   ……….. (2) 

𝑟‾ ⋅ 𝑎̈ = 𝑝̈  ……….. (3) 

Diff (1) w. r. to ' 𝑢 ' 

𝑟̇ ⋅ 𝑎‾ + 𝑟‾ ⋅ 𝑎‾̇ = 𝑝̇ 

(i.e.) 𝑟̇, 𝑎‾ = 0     ……….(4) 

Diff (2) w.r.to ' 𝑢′. 

𝑟̇𝑎‾̇ + 𝑟̇ ⋅ 𝑎̈= 𝑝̈
𝑟̇ + 𝑎̇ + 𝑝̈= 𝑝̈( by (3) )

 

Diff (4) w.r.to 'u' 

𝑟̈ ⋅ 𝑎‾ + 𝑟̇ − 𝑎̇ = 0
 (ie) 𝑟̈ ⋅ 𝑎‾ + 0 = 0  by (5) 

 

𝑟̈ ⋅ 𝑎‾ = 0    …………. (6) 

From (4) & (6) we get, 

𝑟‾̇𝑎‾ = 0
𝑟̈𝛼‾ = 0

} ⇒ 𝑎‾  is parallel to 𝑟‾ × 𝑟‾̈ 

But 𝑟‾ × 𝑟‾̈  parallel to 𝑡‾ × 𝑛‾ = 𝑏‾  

http://w.r.to/
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So 𝑎‾  is parallel to 𝑏‾  

⇒ 𝑎‾  is perpendicular to the plane      …….. .(7) 

But 𝑎‾  is normal to the corresponding plane 𝑡̅ in the Family. 

Thus the tangent to the developable surface is Same as the plane of edge of regression. 

4.5.Developables associated with space curves: 

Osculating Developable: 

The one-parameter family of osculating planes at pts on a skew curve form the "osculating 

developable" of the curve. 

Result: 

The edge of regression in the curve itself of the osculating developable. (or)  

The generators of osculating developable of a space curve are the tangent to the curve & the 

edge of regression of the osculating developable of a space curve in the curve itself. 

Proof: 

Let 𝑟‾ = 𝑟‾(𝑠) be the given curve. 

The family of osculating planes has equation [𝑅‾ − 𝑟‾(𝑠)] ⋅ 𝑏‾ = 0‾    …….(1) 

where, 𝑅‾  is the position vector of an arbitrary point on the plane. 

& 𝑟‾ in the point on the curve 

Differentiate w.r.to 'S'. 

(𝑅‾ − 𝑟‾)′ ⋅ 𝑏‾ ′ + (−𝑟‾′) ⋅ 𝑏‾ = 0 

(i.e.) (𝑅‾ − 𝑟‾) ⋅ (−𝜏‾) + (−𝑡‾) ⋅ 𝑏‾ = 0. [∵ 𝜏 ≠ 0 ] 

(ie)(𝑅‾ − 𝑟‾) ⋅ 𝑛‾ = 0 ……..(2) 

Diff (2) w.r.to ' 𝑠 ' 

(−𝑟‾′)𝑛‾ + (𝑅‾ − 𝑟‾) ⋅ 𝑛‾ ′ = 0. 

−𝑡‾ − 𝑛‾ + (𝑅‾ − r̅)(𝜏𝑏‾ − 𝑘𝑡‾) = 0

(𝑅‾ − 𝑟‾) ⋅ 𝜏𝑏‾ − (𝑅‾ − 𝑟‾)𝑘𝑡‾ = 0

0 − (𝑅‾ − r̅)𝑘𝑡‾ = 0     [∵  by (1)  𝜏 ≠ 0&𝑘 ≠ 0]

 

(𝑅‾ − r̅)𝑘𝑡‾ = 0     ……….(3) 

From (1), (2), (3) we see that, (𝑅‾ − 𝑟‾) is ⊥𝑟 to 𝑡‾, 𝑛‾ , 𝑏‾  

∴ 𝑅‾ − 𝑟‾= 0
𝑅‾= 𝑟‾

 

⇒ The edge of regression is the curve itself. 

Polar Developable: 

The family of normal planes to a skew curve form the "polar Developable" of the given curve 
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Result : 

The edge of regression of the polar developable in the locus of centers Spherical curvature of 

the given curve. 

Proof : 

Let the equation of the curve to 𝑟‾ = 𝑟‾(𝑠) 

The equation of the family of normal planes, (𝑅‾ − 𝛾‾) ⋅ t‾ = 0‾   ………(1) 

Differentiate w.r.to ' 𝑠 ' 

(𝑅‾ − 𝑟‾)𝑡‾′ + (−𝑟‾′)𝑡‾ = 0. 

(𝑅‾ − 𝑟‾)(𝑘𝑛‾) − 𝑡‾ ⋅ 𝑡‾ = 0

(𝑅‾ − 𝑟‾)𝑘𝑛‾ − 1 = 0
 

(i.e.) (𝑅‾ − 𝑟‾)𝜅𝑛‾ = 1 

(i.e.) (𝑅‾ − 𝑟‾)𝑛‾ =
1

𝜅
= 𝜌   ……….(2) 

Diff (2) w.r. to ' 𝑠 ' 

(𝑅‾ − 𝑟‾)𝑛‾ ′ + (−𝑟‾′)𝑛‾ = 𝜌′

(𝑅‾ − 𝑟‾)(𝜏𝑏‾ − 𝑘𝑡‾) − 𝑡‾ ⋅ 𝑛‾ = 𝜌′

𝜏(𝑅‾ − 𝑟‾)𝑏‾ − 𝑘(𝑅‾ − 𝑟‾)𝑡‾ − 0 = 𝜌′

𝜏(𝑅‾ − 𝑟‾)𝑏‾ − 0 − 0 = 𝜌′ [ by (1)].

 

(ie) 𝜏(𝑅‾ − 𝑟‾)𝑏‾ = 𝜌′ 

(ie) (𝑅‾ − 𝑟‾)𝑏‾ =
𝜌′

𝜏
= 𝜎𝜌′   ……….(3) 

∴ from eqn (1) we see that, (𝑅‾ − 𝑟‾) is perpendicular to ' 𝑡‾ '. 

∴ (𝑅‾ − 𝑟‾) lies on the normal plane ∴ 𝑅‾ − 𝑟‾ = 𝜆𝑏‾ + 𝜇𝑛‾    ……….(4) 

Taking (.) product to (4) with 𝑏‾ , 

(4) ⇒ (𝑅‾ − 𝑟‾) ⋅ 𝑏‾ = 𝜆𝑏‾ ⋅ 𝑏‾ + 𝜇𝑛‾ ⋅ 𝑏‾

⇒ (𝑅‾ − 𝑟‾) ⋅ 𝑏‾ = 𝜆 + 0

=> 𝜎ρ′ = λ     …… (∗)[𝑏𝑦3]

 

Taking (.) product to (4) with 𝑛‾ , (4) 

⇒(𝑅‾ − 𝑟‾)𝑛‾ = 𝜆𝑏‾ ⋅ 𝑛‾ + 𝜇𝑛‾ ⋅ 𝑛‾

(𝑅‾ − 𝑟‾) ⋅ 𝑛‾ = 0 + 𝜇
 

(i.e.) 𝜌 = 𝜇    …… . (∗∗)( by (2)) 

Sub (*) & (**) in (4) 

∴ (4) ⇒ 𝑅‾ − 𝑟‾ = 𝜎𝜌′𝑏‾ + 𝜌𝑛‾  

(or) 𝑅‾ = 𝑟‾ + 𝜎𝜌′𝑏‾ + ρ𝑛‾  

∴ 𝑅‾  in the position vector of the centre of Spherical curvature. 

http://w.r.to/
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(ie) which is the locus of cube of Spherical curvature. 

Rectifying Developable: 

The rectifying planes to a Skew curve determine the "Rectifying developable" of the given 

curve. 

Result: 

The curve is a geodesic in the rectifying developable. 

Proof: 

Let 𝑟‾ = 𝑟‾(𝑠) be the given curve 

then the char line of the rectifying developable is in by (𝑅‾ − 𝑟‾) ⋅ 𝑛‾ = 0   ………(1) 

Diff w. to ' 𝑠 '. 

(𝑅‾ − 𝑟‾)𝑛‾ ′ + (−𝑟‾) ⋅ 𝑛‾ = 0.

(𝑅‾ − 𝑟‾)(𝜏𝑏‾ − 𝑘𝑡‾) − 𝑡‾ − 𝑛‾ = 0
 

(𝑅‾ − 𝑟‾)(𝜏𝑏‾ − 𝑘𝑡‾) = 0………… . (2) 

Let 𝑅1 denote the diff of 𝑅‾ 𝑤. 𝑟. to 𝜇. 

&  𝑅2 denote the diff of 𝑅‾ 𝑤. 𝑟. to 's'. 

∴ 𝑅‾1= 𝜏𝑡‾ + 𝑘𝑏‾

&𝑅‾2= 𝑡‾(1 + 𝜏
′𝜇) + 𝜇𝑘′𝑛‾

∴ 𝑅1 × 𝑅2= (𝜏𝑡‾ + 𝑘
𝑏‾) + 𝑥(1 + 𝜇𝜏′)𝑡‾ + 𝜇𝑘′𝑛‾)

= 0 + 𝜇𝜏𝑘′(𝑡‾ × 𝑛‾) + 𝑘(1 + 𝜇𝜏′)(𝑏‾ × 𝑡‾) + κ 𝜇𝑘′(𝑏‾ × ′

= 𝜇𝜏𝜅′𝑏‾ − 𝑘(1 + 𝜇𝜏′)𝑛‾ − 𝑘′𝜇𝑘′𝑡‾

= 1
= 𝜅(1 + 𝜏′𝜇)𝑛‾ − 𝜇𝜏𝑘′𝑛‾

 

𝑅1 × 𝑅2 = 𝐻𝑁‾  is parallel to 𝑛‾  

⇒ The curve is a geodesic on rectifying developable. 

Note: 

1. Any developable, which is not cylinder (or) a cone, may be regarded as the osculating 

developable of its edge of regression. 

2. The equation of principal planes namely osculating plane, normal plane & rectifying 

plane of a space curve at a point 𝑃 contains only a single parameter, which is usually 

taken as arc length.   

Therefore, Their envelopes are developable & They are Osculating developable, polar 

developable & rectifying developable. 

The generators of polar & rectifying developable are called polar and rectifying lines 

respectively. 
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Example 1:  

Prove that the edge of regression of the rectifying developable has eqn. 

𝑅‾ = 𝑟‾ + 𝑘
[𝜏𝑡‾+𝑘𝑏‾]

[𝑘′𝜏−𝑘𝜏]
        (or) 

The Rectifying plane to a skew curve determine the rectifying developable of the given 

curve. Prove that the edge of regression of the rectifying developable has equation, 

𝑘‾ = 𝑟‾ +
𝑘[𝜏𝑡‾ + 𝑘𝑏‾]

[𝑘′𝜏 − 𝑘′]
 

Proof: 

Let the equation of the curve be 𝑟‾ = 𝑟‾(𝑠) equation of the rectifying plane is, 

(𝑅‾ − 𝑟) ⋅ 𝑛‾ = 0 

Diff (1) w.r.to ' 𝑠 '. 

(𝑅‾ − 𝑟‾) ⋅ 𝑛‾ ′ + (−𝑟‾′)𝑛‾ = 0 

Diff (2) w.r.to 's'. 

(−𝑟‾′)(𝜏𝑏‾ − 𝑘𝑡‾) + (𝑅‾ − 𝑟‾)[𝜏𝑏‾ ′ + 𝜏′𝑏‾ − 𝑘′𝑡‾′ − 𝑘′𝑡‾]

−𝑡‾′𝑛‾ − 𝑛‾ ′𝑡‾ = 0
 

(i.e.) (−𝑡‾)(𝜏𝑏‾ − 𝑘𝑡‾) + (𝑅‾ − 𝑟‾)[𝜏(−𝜏𝑛‾) + τ′(𝑏‾) − 𝑘(𝑘𝑛‾) − 𝑘′𝑡‾] 

−(𝑘𝑛‾) ⋅ 𝑛‾ − (𝜏𝑏‾ − 𝑘𝑡‾) ⋅ 𝑡‾ = 0 

(i.e.) 0 + 𝑘 + (𝑅‾ − 𝑟‾)[−𝜏2𝑛‾ + 𝜏′𝑏‾ − 𝑘2𝑛‾ − 𝑘′𝑡‾] − κ − 0 + 𝑘 = 0 

(i.e.) 𝑘 + (𝑅‾ − 𝑟‾)[−(𝜏2 + 𝑘2)𝑛‾ + 𝜏′𝑏‾ − 𝑘′𝑡‾] = 0 

𝑘 − (𝑅‾ − 𝑟‾)(𝜏2 + 𝑘2)𝑛‾ + (𝑘‾ − 𝑟‾)(𝜏′𝑏‾ − 𝑘′𝑡‾) = 0 

 𝑘 + (𝑅‾ − 𝑟‾)(𝜏′𝑏‾ − 𝑘′𝑡‾) = 0 - (4)  [∵ (𝑅‾ − 𝑟‾) ⋅ 𝑛‾ = 0] 

∴ eqn (1) & (2) Shows that 𝑅‾ − 𝑟‾ is parallel to both 𝑛‾ & (𝜏𝑏‾ − 𝑘𝑡‾) 

𝑅‾ − 𝑟‾  is parallel to 𝑛‾ × (𝜏𝑏‾ − 𝑘𝑡‾)  

(i.e.) It is parallel to 𝜏𝑡‾ + 𝑘𝑏 

⇒ (𝑅‾ − 𝑟‾) = 𝜇(𝜏𝑡‾ + 𝑘𝑏‾) (5), 𝜇 is a scalar. 

Sub the values of 𝑅‾ − 𝑟‾ from (5) in (4). 

∴ (4) ⇒𝑘 + 𝜇(𝜏𝑡‾ + κ𝑏‾ ) ⋅ (𝜏′𝑏‾ − 𝑘′𝑡‾) = 0

𝑘 + 𝜇(0 − 𝑘′𝜏 + 𝑘𝜏′ − 0) = 0

𝑘 + 𝜇(𝑘𝜏′ − 𝑘′𝜏) = 0

 

(i.e.) 𝜇 =
−𝑘

(𝑘𝜏′−𝑘′𝜏)
 

(ie) 𝜇 =
𝑘

(𝜅′𝜏−𝜅𝜏′)
 sub in (5) 
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∴ (S) ⇒ 𝑅‾ − 𝑟‾ =
𝑘

(𝑘′𝜏−𝑘𝜏′)
(𝜏𝑡‾ + 𝑘𝑏‾) 

(ie) 𝑅‾ = 𝑟‾ +
𝑘[𝜏𝑡‾+𝑘𝑏‾]

[𝑘1𝜏−𝑘𝜏′]
 

Theorem 1: 

A necessary and sufficient condition for a surface to be a developable is that its Gaussian 

curvature be zero. 

Proof : 

Necessary part: 

Let the surface be a developable 

To prove that the Gaussian curvature 𝑘 = 0 

If the developable surface is a cylinder (or) a Cone, then the Gaussian curvature is evidently 

zero. If these cases are excluded, then the developable may be regarded as the osculating 

developable of its edge of regression & its equation may be written as, 

𝑅‾ = 𝑟‾(𝑠) + 𝑣𝑡‾(𝑠) 

 (i.e.) 𝑅‾ = 𝑟‾ + 𝑉(𝑡‾)  ………(1) 

Let the Suffices 1 & 2 denote the diff w.r. to 'S' & 'V' respectively. 

we know that 

Gaussian curvature 𝑘 =
𝐿𝑁−𝑀2

𝐸𝐺−𝐹2
   ……….(A) 

where 

𝐿 = 𝑁‾ ⋅ 𝑅‾11

 where 𝑁‾ =
𝑅‾1×𝑅‾2

𝐻

𝑀 = 𝑁‾ ⋅ 𝑅‾12
𝑁 = 𝑁‾ ⋅ 𝑅‾22}

 
 

 
 

  ……….(B) 

[∵ 𝑅 = 𝑟] 

Diff (1) w.r.to 's'. 

𝑅‾1 = 𝑟‾
′ + 𝑣𝑡‾′

𝑅1 = 𝑡‾ + 𝑣
′𝑘′𝑛‾ ⇒ 𝑅11 = 𝑡‾

′ + 𝑣𝑘′𝑛‾ + 𝑣𝑘′𝑛‾ ′

 (ie) 𝑅11 = 𝑘𝑛‾ + 𝑘
′𝑛‾ + 𝑣𝑘(𝜏𝑏‾ − 𝑘𝑡‾)

 Dift (1) w.r. to 'v ' &  𝑅12 = 0 + 𝑘𝑛‾ ⇒ 𝑅12 = 𝑘𝑛‾

 

𝑅‾2 = 0+ 𝑡‾

⇒ 𝑅‾2 = 𝑡‾ ⇒ 𝑅‾22 = 0

& 𝑅‾21 = 𝑡‾
′ = 𝑘𝑛‾ ⇒ 𝑅‾21 = 𝑘𝑛‾

 

 (B) ⇒∴ 𝐿 = 𝑁‾ ⋅ 𝑅‾𝐻 = −
𝑉𝑘𝑏‾

𝐻
[𝑘𝑛‾ + 𝑉𝑘 ⋅ 𝑛‾ + 𝑉𝑘(𝜏𝑏‾ − 𝑘𝑡‾)] 

http://w.r.to/
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𝐿 =
−𝑣2𝑘2𝜏

𝐻
.

∴ 𝑀 = 𝑁‾ ⋅ 𝑅‾12 =
−𝑣𝑘𝑏‾

𝐻
[𝑘𝑛‾] = 0

 

𝑀 = 0 

∴ 𝑁 = 𝑁‾ ⋅ 𝑅‾22 =
−𝑉𝑘𝑏‾

𝐻
(0) = 0

⇒ 𝑁 = 0

 

(𝐴) ⇒ 𝐾=
𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2

=
(
−𝑉2𝐾2𝜏
𝐻 ) (0) − 02

𝐸𝐺 − 𝐹2

 

Gaussian curvature ⇒ 𝑘 = 0 

Sufficient part: 

Assume that 𝑘 = 0 

To prove that: The surface is developable. 

given, 𝑘 = 0 ⇒
𝐿𝑁−𝑀2

𝐸𝐺−𝐹2
= 0. 

⇒ 𝐿𝑁 −𝑀2 = 0
⇒ (𝑟‾1 ⋅ 𝑁‾1)(𝑟‾2 ⋅ 𝑁‾2) − (𝑟1𝑁2)(𝑟‾2 ⋅ 𝑁‾1) = 0

⇒ (𝑟‾1 × 𝑟‾2)(𝑁‾1 × 𝑁‾2) = 0

 

𝐻𝑁‾(𝑁1 × 𝑁‾2) = 0 

 𝑁‾(𝑁‾1 × 𝑁‾2) = 0 [∵ 𝐻 ≠ 0] 

(ie) [𝑁‾ ,𝑁‾1, 𝑁‾2] = 0  ……….(1) 

from (1), we have any one of the following possibility, 

i) 𝑁‾ ,𝑁‾1, 𝑁‾2 are coplanar. 

ii) 𝑁‾1 = 0 

iii) 𝑁‾2 = 0 

iv) 𝑁‾1 = 𝜇𝑁‾2 

Case (i): 

Since 𝑁‾  is a vector of unit length of 𝑁‾ ⋅ 𝑁‾ = 1 we have 2𝑁‾1 ⋅ 𝑁‾2 (or) 𝑁‾1 ⋅ 𝑁‾ = 0 

Similarly, 𝑁‾2 ⋅ 𝑁‾ = 0 

(ie) 𝑁‾  is perpendicular to both 𝑁‾1&𝑁‾2 

(ie) 𝑁‾ ,𝑁‾1, 𝑁‾2 cant be coplanar. 

Case (ii): 𝑁‾1 = 0. 
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The eqn. of the tangent plane at any point of 

𝑟‾(𝑢, 𝑣) is given by (𝑅‾ − 𝑟‾)𝑁‾1 = 0. isithue 

∴  we have, 

𝜕

𝜕𝑢
{(𝑅‾ − 𝑟‾)𝑁‾ }= −𝑟‾1𝑁‾ + (𝑅‾ − 𝑟‾)𝑁‾1

= 0 + 0 = 0

 

⇒ (𝑅‾ − 𝑟‾)𝑁‾  depends only on 𝑉 the surface is the envelope of one parameters family of 

planes. 

Hence it is developable. 

Case (iii): 

 𝑁‾2 = 0 

proceeding similarly as in (ii) we see that the eqn of the tangent plane contains only one 

parameter ' 𝑢 '. 

Hence in this case also the surface is developable 

Case (iv): 

 𝑁‾1 = 𝜇𝑁‾2 

Let us change the parameter (𝑢, 𝑣) to (𝑢′, 𝑣′) by the transformation 

𝑢 = 𝑢′ + 𝑣′& 𝑣 = 𝑢′ − 𝜇𝑣′ 

then we obtain, 

𝑁‾1
′=
𝜕𝑁‾

𝜕𝑢
⋅
𝜕𝑢

𝜕𝑢′
+
𝜕𝑁‾

𝜕𝑣
⋅
𝜕𝑣

𝜕𝑢′

= 𝑁‾1 ⋅ 1 + 𝑁‾2 ⋅ 1

𝑁‾1
′= 𝑁‾1 +𝑁‾2

&𝑁‾2
′=
𝜕𝑁‾

𝜕𝑣′
=
𝜕𝑁‾

𝜕𝑢
⋅
𝜕𝑢

𝜕𝑣′
+
𝜕𝑁‾

𝜕𝑣
⋅
𝜕𝑣

𝜕𝑣′

 

= 𝑁‾1 ⋅ 1 + 𝑁‾2(−𝜇)

= 𝑁‾1 − 𝜇𝑁‾2
𝑁‾2
′ = 0

 

These relation shows that N, the surface normal depends on only one parameter 

Hence by case (iii) 

The surface is developable. 
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4.6.Developable Associated with curves on Surfaces: 

Theorem 1:Monge's Theorem 

A necessary and sufficient condition that a curve on a surface roving be a line of curvature 

is that the surface normal along the curve form a developable. 

Proof: 

We consider the surface formed by the normal along the curve 𝑟‾ = 𝑟‾(𝑠) 

Any point on this surface will have the position Vector, 𝑅‾ = 𝑟‾(𝑠) + 𝑣𝑁‾(𝑠) ………..(1) 

where ' 𝑆 ' and ' 𝑣 ' are the parameters 

Let the suffixes 1 & 2 denote diff w.r. to 's' & 'v' respectively. 

 From (1), we have, 

𝑅‾1 = 𝑟‾1
′ + 𝑣𝑁‾ ′  (Diff w.r. to 's') 

(i.e.) 𝑅‾1 = 𝑡‾ + 𝑣𝑁‾
′  

& 𝑅‾ 12 = 𝑁‾
′ = 𝑅21  (Diff w.r. to ' 𝑣′ ) 

𝑅2 = 𝑁‾  (Diff w.r. to 'v')  

&𝑅‾22 = 0 ( w.r. to ' 𝑣′ ) 

∴ 𝑁‾ =
𝑅‾1 × 𝑅‾2
𝐻

∴ 𝑀 = 𝑅‾12 ⋅ 𝑁‾ = 𝑅‾12 ⋅
[𝑅1 × 𝑅‾2]

𝐻

 

(i.e.) 𝐻𝑀 = 𝑅12[𝑅1 × 𝑅2] 

(ie) 𝐻𝑀 = [𝑅12, 𝑅1, 𝑅‾2] 

Similarly, 𝐻𝑁 = [𝑅22, 𝑅1, 𝑅2] 

= [𝑡‾ + 𝑣𝑁‾ ′, 𝑁‾ ′, 𝑁‾ ] = 0

= [𝑡‾,𝑁‾ ′, 𝑁‾ ] + [𝑣𝑁‾ ′, 𝑁‾ ′, 𝑁‾ ]

𝐻𝑀= [𝑡‾,𝑁‾ , 𝑁‾ ]  ………..(3)

 

Hence the Gaussian curvature ' 𝑘 ' is given by, 𝐾 =
𝐿𝑁−𝑀2

𝐻2
=
−𝑀2

𝐻2
   ………..(4) 

We know that, the surface is developable, 

⇔ 𝐾 = 0

⇔
−𝑀2

𝐻2
= 0

⇔ 𝑀 = 0
⇔ [𝑡‾,𝑁‾ ,𝑁‾ ′] = 0.

 

Hence it is enough if we prove The curve 𝑟‾ = 𝑟‾(𝑠) is a line of curvature (or) the surface 𝑟‾ =

𝑟‾(𝑢, 𝑣) ⇔ [𝑡‾,𝑁‾ , 𝑁‾ 𝑙] = 0. 

Necessary part : 
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Let[𝑡‾, 𝑁‾ , 𝑁‾ ′] = 0    ………..(5) 

T.P.T: The curve 𝑟‾ = 𝑟‾(s) a line of curvature on the surface 𝑟‾ = 𝑟‾(𝑢, 𝑣) 

∴ (5) ⇒ (𝑡‾ × 𝑁‾ ′) ⋅ 𝑁‾ = 0 

Here 𝑁‾ ≠ 0. 

&𝑡‾ × 𝑁‾ ′ is not perpendicular to 𝑁‾  

∴ 𝑡‾ × 𝑁‾ ′ = 0 

(i.e.) 𝑡‾ is ‖el  to 𝑁‾ ′ 

⇒ 𝑁‾ ′ = −𝑘𝑡‾ for some function k 

⇒
𝑑𝑁‾

𝑑𝑠
= −𝐾

𝑑𝑟‾

𝑑𝑠
 

(i.e.) 𝑑𝑁‾ + 𝑘𝑑𝑟‾ = 0 

⇒ The given curve is a line of curvature 

(by Rodrisue's formula) 

Sufficient part: 

Let the curve 𝑟‾ = 𝑟‾(𝑠) be a line of curvature 

Then 𝑑𝑁‾ + 𝑘𝑑𝑟‾ = 0 

(ie) 
𝑑𝑁‾

𝑑𝑠
= −𝑘

𝑑𝑟‾

𝑑𝑠
 

(ie) 𝑁‾ ′ = −𝑘𝑡‾    …………(6) 

∴ [𝑡‾, 𝑁̃, 𝑁′]= [𝐸‾, 𝑁̅, −𝑘𝑡‾]

= 0
 

Theorem 2: 

Let 𝑟‾ = 𝑟‾(𝑢, 𝑣) be a Surface &𝑟‾ = 𝑟‾(𝑠) be 𝑎 curve ' 𝑐 ' on it. The tangent planes at point on 𝑐 

lying on a Surface form a developable. Then the char. line of the developable at any point  ' 𝑝 

' on ' 𝑐 ' is in a direction conjugate to that of the tangent to ' 𝑐 ' at ' 𝑝 '. 

Proof : 

We know that, the equation of the families of tangent plane is (𝑅‾ − 𝑟‾)𝑁‾ = 0  ……….(1) 

Diff (1) w.r.to ' 𝑠 ' we get 

(𝑅‾ − 𝑟‾)
𝑑𝑁‾

𝑑𝑠
= 0    ………… (2) 

Let (𝑙, 𝑚) be the direction co-eff of the char line at 𝑃 then 

(𝑅‾ − 𝑟‾) = 𝑙𝑟1 +𝑚𝑟2  ……… . (3)

∴(2) ⇒ (𝑙𝑟1 +𝑚𝑟2)(𝑁1𝑢
′ + 𝑟2𝑣

′) = 0

⇒𝐿𝑙𝑢′ +𝑚(𝑙𝑣′ +𝑚𝑢′) + 𝑁𝑚𝑣′ = 0 is the 
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direction (𝑙, 𝑚) is conjugate to the direction( 𝑢′, 𝑣′ ) of the tangent to ' 𝑐 ' at ' 𝑝 '. 

4.7.Minimal Surface: 

Surfaces whose mean curvatures is zero at all the points are called the minimal surfaces. 

Theorem 1:  

If there is a surface of minimum area com passing through a closed curve it is necessary a 

minimal surface that is a surface of zero mean curvature. 

Proof: 

Let 𝜀 be a surface bounded by a closed curve ' 𝑐 ' and let 𝜀 ' be another surface normal 

let 𝜀1 and 𝜀2 the both small. 

(ie) 𝜀1 = 𝑂(𝜀) 𝜖2 = 𝛼(𝜖) as 𝜖 ⟶ 0. 

Then if 𝑅‾  denotes the position vector of the displaced surface we have 

𝑅‾ = 𝑟‾ + 𝜖𝑁̂
𝜕𝑅‾

𝜕𝑢
= 𝑅‾1 = 𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1

𝜕𝑅‾

𝜕𝑣
= 𝑅‾2 = 𝑟‾2 + 𝜖2𝑁̂ + 𝜖𝑁‾2

 

Lot 𝐸∗, 𝐹∗, 𝐺∗ denote the first fundamental Coefficients of 𝐸′ 

Then 𝐸∗ = 𝑅1 ⋅ 𝑅‾1 

= 𝑅‾1 ⋅ 𝑅‾1
= (𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1) ⋅ (𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1)

 

= 𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1) ⋅ (𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1)

= (𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1)(𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1)

= 𝐸 − 2𝜖𝐿0(𝜖2)

𝐹∗= 𝑅‾1 ⋅ 𝑅‾2
= (𝑟‾1 + 𝜖1𝑁̂ + 𝜖𝑁‾1)(𝑟‾2 + 𝜖2𝑁̂ + 𝜖𝑁‾2)

= 𝑟‾1 ⋅ 𝑟‾2 + (𝑟‾1 + 𝑁‾2 + 𝑟‾2𝑁‾1)𝜖 + 𝑜(𝜖
2)

= 𝑟‾1 ⋅ 𝑟2 + (𝑟‾1 ⋅ 𝑁‾2 + 𝑟‾2 ⋅ 𝑁‾1)𝜖 + 𝑜(𝜖
2)

= 𝐹 + (−𝑀,−𝑀)𝜖 + 𝑜(𝜖2)

= 𝐹 − 2𝑀𝜖 + 0(𝜖2)

𝐺∗ = 𝑅‾2 ⋅ 𝑅‾2
= (𝑟‾2 + 𝜖2𝑁̂ + 𝜖𝑁‾2)(𝑟‾2 + 𝜖2𝑁̂ + 𝜖𝑁‾2)

= 𝑟‾2 − 𝑟‾2 + (𝑟‾2 ⋅ 𝑁‾2 +𝑁2 ⋅ 𝑟‾2)𝜖 + 𝑂(𝜖
2)

= 𝐺 + (−𝑁 ⋅ −𝑁)𝜖 + 𝑜(𝜖2) as 𝜖 → 0

= 𝐺 − 2𝑁𝜖 + 𝑜(𝜖2) as 𝜖 → 0.

 

Then 𝐻∗2 = 𝐸∗𝐺∗ − 𝐹∗2. 
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=[𝐸 − 2𝜖𝐿 + 𝑜(𝜖2
2)][𝐺 − 2𝜖𝑁 + 𝑜(𝜖2)]

[𝐹 − 2𝑀𝜖 + 𝑜(𝜖2)]2

=𝐸𝐺 − 𝐹2 − 2𝜖[𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀] + 𝑜(𝜖2)

=(𝐸𝐺 − 𝐹2)[1 − 2𝜖 ⋅ 2𝜇] + 𝑜(𝜖2)

 

where 𝜇 = mean curvature. 

=
𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀

2(𝐸𝐺 − 𝐹2)
 

(i.e.) 𝐻∗2 = 𝐻2(1 − 4 ∈ 𝑀) + 𝑂(𝜖2) as 𝜖 → 0 

𝐻∗= 𝐻(1 − 4𝜖𝜇)1/2 + 𝑂(𝜖2) as 𝜖 → 0

= 𝐻(1 + 2𝜇𝜖) + 𝑂(𝜖2) as 𝜖 → 0   ……… . . (1)
 

Let 𝐴 = ∫  
𝜖
𝐻𝑑𝑢𝑑𝑣 

where 𝐴 is the area of the surface enclosed by ' 𝑐 '. 

So, 

𝐴∗= ∫ 
𝜖

 𝐻∗𝑑𝑢𝑑𝑣

= ∫ 
𝜖

  [𝐻(1 − 2𝜇𝜖) + 𝑂(𝜖2)]𝑑𝑢𝑑𝑣

= ∫ 
𝜖

 𝐻𝑑𝑢𝑑𝑣 −∫ 
𝜖

 2𝜖𝜇𝐻𝑑𝑢𝑑𝑣 + 𝑂(𝜖2) …………(2)

 

Since 𝐴 is stationary in the R.H.S of (2) there should no term containing 𝜖 

(ie) 2𝜇 ∫  
𝜖
𝐻𝑑𝑢𝑑𝑣 = 0. 

⇒  𝜇 = 0 

Mean curvature is zero. 

Problem 1: 

Prove that the asymptotic lines on a maximal surface are orthogonal. 

Solution: 

We know that, If the two directions are given by, 𝑃𝑑𝑢2 + 2𝑄𝑑𝑢𝑑𝑣 + 𝑅𝑑𝑣2 = 0 

are orthogonal if 𝐸𝑅 − 2𝐹𝑄 + 𝐺𝑃 = 0 …………(1) 

Let us the Surface be minimal the differential equations giving the asymptotic directions are 

𝐿𝑑𝑢2 +𝑄𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 = 0.  

These direction are orthogonal 

⟺ 𝐸𝑁 − 2𝐹𝑀 + 𝐺𝐿 = 0 

⟺ 
𝐸𝑁−2𝐹𝑀+𝐺𝐿

2(𝐸𝐺−𝐹2)
= 0 

⟺ mean curvature = 0 
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⟺ the surface is minimal. 

4.8.Ruled Surfaces: 

A Ruled surface is generated by the motion of the straight line moving with one degree of 

freedom. The varies position of the line are called generating lines or ruling. 

Example: 

Cones, cylinder, coincides are spherical forms of Ruled surfaces. 

To find the equation of the Ruled Surfaces  

Let 𝐶 be a base curve on a given ruled surface then the surface is determined by, 

(i) the base curve 

(ii) The direction of the generator at the point of the meeting with the curve. 

Let 𝑔̂(𝑢) be the unit vector along the generate at a curved point 𝑄 and 𝐶 and 𝑟(𝑢) be the 

position vector of 𝑄. 

Then 𝑅‾  be the position vector of the general Pt 𝑃 is given by 𝑅‾ = 𝑟‾ + 𝑣𝑔̂. 

where 𝑉 is the parameter which measures the directed distance along the generator from 𝐶. 

To find the metric, unit, normal and the 10m Second fundamental form to a ruled Surface: 

Equation of the Ruled Surface is  

𝑅‾ = 𝑟‾ + 𝑣𝑔̂   ………… (1) 

𝑅1 = 𝑟̇ + 𝑣𝑔‾̇ 

Diff w.r.to 𝑢 is denoted by the suffix 1  

Diff (1) with 𝑟 aspect to 𝑣 

𝑅2 = 𝑔̂ 

𝐸 = 𝑅‾1 ⋅ 𝑅‾1
= (𝑟1̇ + 𝑣𝑔‾̇) ⋅ (𝑟‾̇ + 𝑣𝑔‾̇)

= 𝑟‾̇𝑟‾̇ + 2𝑣𝑔‾̇𝑟‾̇ + 𝑔̇𝑔‾̇𝑣2

𝐺 = 𝑅‾2 ⋅ 𝑅‾2 = 𝑔̂ ⋅ 𝑔̂ = 1

𝐹 = 𝑅‾1 ⋅ 𝑅‾2 = (𝑟‾̇ + 𝑣𝑔‾̇)(𝑟‾̇ + 𝑣𝑔̇). [Diff 𝑔̂𝑔‾̇ = 0 ] 

= 𝛾̇𝑔̂ + 𝑣

= 𝑟‾̇𝑔̂ − ∫𝑑𝑢2 + 2𝑟‾̇𝑔̂𝑑𝑢𝑑𝑣 + 𝑑𝑣2

 

Thus the metric is 

𝑑𝑠2 = 

unit norm: −(𝑟̇ + 𝑣𝑔̇) × 𝑔̂    ……….(2) 

Second Fundamental co-efficients: 
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𝐻𝐿 = [𝑅11, 𝑅1, 𝑅2]

= [𝛾̈ + 𝑣𝑔̈𝛾̇ + 𝑣𝑔̇𝑔̂]

= [𝛾‾̈𝛾‾̇𝑔̂] + 𝑣[𝑔‾̇𝛾̇𝑔̂] + 𝑣[𝛾̈𝛾̇𝑔̂]

+𝑣2[𝑔̈𝑔̈𝑔]

𝐻𝑀 = [𝑅‾12, 𝑅‾1, 𝑅‾2]

= [𝑔‾̈, 𝛾̇ + 𝑣𝑔‾̈𝑔̂]

= [
𝑔̈

𝛾̇
𝑔‾] + 𝑣[𝑔‾̈, 𝑔‾̇, 𝑔̂]

= [𝑔‾̇𝛾‾̇𝑔‾] + 0

 

𝐻𝑁 = [𝑅‾22 𝑅‾1 𝑅‾2] = 0 

Since 𝑅‾22 = 0. 

⇒ 𝑁 = 0 Since 𝐻 ≠ 0.  

Note: 

(i)The Gaussian curvature for a ruled Surface is given by 

=
𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2
 

= −
−[𝑔̇𝛾̇𝑔̂]2

𝐻2(𝐸𝐺 − 𝐹2)

= −
−[𝑔̇𝛾̇𝑔̂]2

𝐻4

 

⇒ Gaussian curvature for a Ruled Surface is ≤ 0. "The Necessary and Sufficient condition 

for a ruled Surface to be developable is [𝑔̇𝛾̇̂𝑔̂] = 0 " parameter of distribution:- 

A function 𝑃(𝜔) defined by, 

𝑝(𝑢) =
[𝑟‾̇𝑔̂𝑔‾̇]

𝑔̇2
  ……….. (1) is called the parameter of distribution of a ruled surface properties 

of parameter of distribution: 

(ii)The parameter of distribution 𝑃(𝑢) is independent of the particular base curve chosen. 

By Replacing 𝛾‾ by 𝛾‾ + 𝑤𝑔̂ then parameter of distribution 

parameter of distribution w. r. to new base curve} =
[𝑟̇,+w𝑔̇,⋅𝑔‾′𝑔̇]

(𝑔‾′)2
 

=
[𝑟̇𝑔̂𝑔̇]

𝑔2
+
𝜔[𝑟‾′, 𝑔̂ ⋅ 𝑔‾′]

𝑔̂2

=
[𝑟̇𝑔̂𝑔̇]

𝑔‾̇2

= 𝑝(𝑢)

 

(iii)The parameter of distribution is independent of choice of the parameter 𝑢. 

Let 𝐼 be taken as parameter instead of 𝑢 so the new 𝑝. 0. 𝐷D(𝑡) is given by 
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𝑃(𝑡) =
[
𝑑𝑟‾
𝑑𝑡 , 𝑔̂,

𝑑𝑔‾
𝑑𝑡 ]

|
𝑑𝑞‾
𝑑𝑡 ]

2

= [
𝑑𝑟‾

𝑑𝑢

𝑑𝑢

𝑑𝑡
, 𝑔̂,
𝑑𝑔‾

𝑑𝑢

𝑑𝑢

𝑑𝑡
] / [

𝑑𝑔‾

𝑑𝑢
⋅
𝑑𝑢

𝑑𝑡
]
2

=
(
𝑑𝑢
𝑑𝑡)

2

/ [
𝑑𝑟
𝑑𝑢 , 𝑔̂,

𝑑𝑔‾
𝑑𝑢]

(
𝑑𝑢
𝑑𝑡)

2

[
𝑑𝑞‾
𝑑𝑢]

2 = 𝑝(𝑢)

 

In particular are length 𝑆 is taken as parameter than the parameter of distribution of a 

generator, 𝑔(𝑆) through the point 𝑟(𝑠) is given by, 

𝑝 =
[𝑟‾′, 𝑔̂ ⋅ 𝑔‾′]

(𝑔‾′)2
=
𝑡̂𝑔̂𝑔‾′

(𝑔‾′)2
 

(iv)𝑃 vanishes identically on a developable Surface, we know that, 

The Gaussian curvature for a Ruled Surface is given by, 

𝑘 =
[−𝑟‾̇, 𝑔‾, 𝑔‾̇]2

𝐻4

𝑘 =
−𝑝2𝑔‾̇4

𝐻4

 

Thus 𝑘 is always negative except along those generators 𝑃 = 0 since 𝑘 = 0 for a developable 

surface we see that 𝑝 vanishes identically on a developable surface. 
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UNIT V 

Differential Geometry of Surfaces: Compact surfaces whose points are umbilics- Hilbert’s 

lemma – Compact surface of constant curvature – Complete surface and their characterization 

– Hilbert’s Theorem – Conjugate points on geodesics. 

Chapter 5: Sections 5.1 to 5.7 

 

5.1. Compact Surfaces Whose Points are Umbilics: 

Theorem 1: 

The only compact surfaces of class ≥ 2 for which every point is an umbilic are spheres. 

Proof:- 

Let 𝑠 be a compact surface of class ≥ 2 for which every point is an umbilic 

(i.e.,)points at which 
𝐿

𝐸
=
𝑀

𝐹
=
𝑁

𝐺
 

Let 𝑃 be any point on ' 𝑠 '. 

Let 𝑉 be a co-ordinate neighbourhood of 's' containing ' 𝑃 '. in which part of 𝑆 in represented 

parametrically by 𝑟‾ = 𝑟‾(𝑢, 𝑣) 

Since every point of ' 𝑣 ' is an umbilic. 

⇒ Every curve is lying in 𝑣 must be a line of curvature, 

Hence, from Rodrigue's formula, at all pts of 𝑣 is, 𝑘𝑑𝑟‾ + 𝑑𝑁 = 0  …………..(1) 

Where, 𝐾 = normal curvature of ' 𝑆 ' in the direction 𝑑𝑟‾. 

From (1) 

 ⇒ 𝑑𝑁‾ = −𝑘𝑑𝑟‾
 ⇒ 𝑁‾1 = −𝑘𝑟‾1 & 𝑁‾ 2 = −𝑘𝑟‾2
 ⇒ 𝑁‾12 = −𝑘2𝑟1 − 𝑘𝑟‾12 𝑎𝑛𝑑 𝑁‾21 = −𝑘1𝑟‾2 − 𝑘𝑟‾21

 

But we have that, 𝑁‾12 = 𝑁21 & 𝑟‾12 = 𝑟‾21 

∴ −𝑘2𝑟‾1 − 𝑘𝑟‾12 = −𝑘1𝑟‾2 − 𝑘𝑟‾21
 ⇒ −𝑘2𝑟‾1 = −𝑘1𝑟2       [∵ 𝑟‾12 = 𝑟‾21]

 ⇒ 𝑘2𝑟‾1 − 𝑘1𝑟2 = 0

 

Since 𝑟1, 𝑟2 are L.I 

⇒ 𝑘1 = 𝑘2 = 0 

∴ 𝑘 is constant. 

Integrate (1), (for 𝑘 ≠ 0 ) 

(1) ⇒ ∫  (𝑑𝑁‾ + 𝑘𝑑𝑟‾) = 0. 

dr)  ∫  𝑑𝑁 + 𝑘 ∫  𝑑𝑟‾ = 0 

(i.e.) ∫  𝑑𝑁 = −𝑘 ∫  𝑑𝑟‾ (∵ 𝑘 ≠ 0) 

(i.e.) −𝑘−1 ∫  𝑑𝑁 = ∫  𝑑𝑟‾ 

(i.e.) −𝑘−1𝑁 + 𝑎‾ = 𝛾‾ 
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where 𝑎‾ = 𝑎 constant vector (or) 𝛾‾ = 𝑎‾ − 𝑘−1𝑁     ………..(2) 

⇒ ' 𝑉 ' lies on the surface of a sphere of center ' 𝑎 ' and radius 𝑘−1. 

Integrate (1), for (𝑘 = 0) 

(1)
 ⇒ ∫  𝑑𝑁‾ + 𝑘𝑑𝑟‾ = 0

 ⇒ ∫  𝑑𝑁‾ = 0
 

⇒ 𝑁‾ = 𝑏‾     ………….. (3) 

⇒ ' 𝑣 ' lies on a plane. 

∴ from (2) & (3) ⇒ 𝑟‾ = 𝑎‾ − 𝑘−1𝑏‾  

The neighborhood of any point the surface is spherical (or) plane local pant of the theorem. 

Associate with each point ' 𝑝 ' on the surface a neighbourhood  ' 𝑣 ' having the above property. 

The set of all neighbourhood 's 𝑣𝑝 covers 𝑠 & from the compactness we deduce that ' 𝑠 ' is covered by 

a finite sub-cover formed by 𝑣𝑖, 𝑖 = 1,2…𝑁. 

consider two over lapping neighbourhood′s 𝑣𝑖 , 𝑣𝑗 

from the previous local argument, 

⇒ 𝑘 is constant in 𝑣𝑖 and also in 𝑣𝑗. 

By considering the value of ' 𝑘 ' at pt's in 𝑣𝑖 ∩ 𝑣𝑗. 

⇒ 𝑘 takes the same value over the whole of the surface. 

Moreover, this value can't be zero. Otherwise, the surface would contain a 

Straight line & would not be compact. 

Hence the surface must be a sphere 

5.2. Hilbert’s Lemma: 

In a closed region 𝑅 of a Surface of Constant tue Gaussian curvature without umbilics, the principal 

curvatures take their extreme values at the boundary. 

Lemma 1:  

If at a point ‘𝑃0 ' of any Surface, the principal curvatures 𝑘𝑎 , 𝑘𝑏 are such that either (i) 𝑘𝑎 > 𝑘𝑏. ' 𝑘𝑎 ' 

has a maximum at ' 𝑃0 ' & ' 𝐾𝑏 ' has a minimum at 𝑃0. 

(or) (ii) 𝑘𝑎 < 𝑘𝑏 , ' 𝑘𝑎 ' has minimum at ' 𝑃0 ' & ' 𝐾𝑏 ' has a maximum at 𝑃0. 

Then the Gaussian curvature 𝑘 cannot be tue at ' 𝑃0 '. 

Proof: 

Suppose that the lemma is false  

(i.e.) Assume that there is a point, ' 𝑝0 ' at which the principal our value, have distinct extreme. values, 

one maximum and the other minimum with 𝑘 at ' 𝑝0 ' is strictly true. 

Taking the lines of curvature as parametric curves, we know that, the principal curvatures are, 

𝑘𝑎 =
𝐿

𝐸
            ……… . . (1)  
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&   𝐾𝑏 =
𝑁

G
     ………… (2) 

Also we know that , when the lines of curvature are chosen as parametric curves, the Codazzi 

relations expressed in terms of 𝐸, 𝐺, 𝐿, 𝑁 & their derivatives are. 

𝐿2  =
1

2
𝐸2 [

𝐿

𝐸
+
𝑁

𝐺
]    …………. (3) 

𝑁1  =
1

2
𝐺1 [

𝐿

𝐸
+
𝑁

𝐺
]  …………. (4) 

Now, 

Diff (1) with respect to ' 𝑣 ' (partially) 

𝜕𝑘𝑎

𝜕𝑣
=
𝜕

𝜕𝑣
(
𝐿

𝐸
) 

=
𝐸𝐿2 − 𝐿𝐸2

𝐸2
 

=
𝐸 [
1
2𝐸2

[
𝐿
𝐸 +

𝑁
𝐺
]

𝐸2
− 𝐿𝐸2[ by equation (3)] 

=

𝐸2𝐿
2
+
𝐸𝐸2𝑁
2𝐺

− 𝐿𝐸2

𝐸2
 

=

𝐸𝐸2𝑁
2𝐺

−
1
2
𝐿𝐸2

𝐸2
 

𝜕𝐾𝑎
𝜕𝑟

=

𝐸2
2
[
𝐸𝑁
𝐺 − 𝐿]

𝐸2
 

=
𝐸2
2𝐸2

[
𝐸𝑁 − 𝐺𝐿

𝐺
] 

=
𝐸2
2𝐸
[
𝐸𝑁 − 𝐺𝐿

𝐸𝐺
]          [∵ 𝐾𝑎 − 𝐾𝑏 =

𝐿

𝐸
−
𝑁

𝐺
 

𝜕𝑘𝑎
𝜕𝑣

=
𝐸2
2𝐸
[𝑘𝑏 − 𝑘𝑎]    ……………(5) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,
𝜕𝐾𝑏
𝜕𝑢

=
𝐺1
2𝐺
[𝐾𝑎 −𝐾𝑏]       ……………(6) 

Since, the principal curvatures, 𝑘𝑎  and 𝑘𝑏 have extreme value at ' 𝑃0 ', 

we have, 

𝜕𝑘𝑎
𝜕𝑣

= 0 & 
𝜕𝑘𝑏
𝜕𝑢

= 0 at ' 𝑃0
′ 

Sub in (5) & (b) 
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(5) ⇒=
𝐸2
2𝐸
[𝑘𝑏 − 𝑘𝑎]

 ⇒ 𝐸2[𝐾𝑏 − 𝑘𝑎] = 0,      (∵ 𝑘𝑎 ≠ 𝑘𝑏).

 ⇒ 𝐸2 = 0 [∵ 𝑘𝑏 − 𝑘𝑎 ≠ 0].

 &    (6)  ⇒ 0 =
𝐺1
2𝑄
[𝐾𝑎 −𝐾𝑏].

 ⇒ 𝐺1[𝐾𝑎 − 𝑘𝑏] = 0        (∵ 𝑘𝑎 ≠ 𝑘𝑏).

 ⇒ 𝐺1 = 0

 

Diff  equation (5) with respect to ' 𝑣 '. 

 

𝜕2𝑘𝑎
𝜕𝑣2

 =
1

2𝐸
[𝐾𝑏 −𝐾𝑎]𝐸22 +

𝑑

𝑑𝑣
[
1

2𝐸
(𝐾𝑏 − 𝐾𝑎)]𝐸2

 =
1

2𝐸
[𝐾𝑏 − 𝑘𝑎] ⋅ 𝐸22   ……… . . (7)            [∵ 𝐸2 = 0].

 

Similarly,  
𝜕2𝐾𝑏

𝜕𝑢2
=

1

2𝐺
[𝐾𝑎 −𝐾𝑏]𝐺11     ………….(8) 

∴ There are now two possibilities, either (i) 𝑘𝑎 has a maximum (𝑘𝑎 > 𝑘𝑏). 

then 𝑘𝑎 − 𝑘𝑏 > 0 

⇒
𝜕2𝐾𝑎

𝜕𝑣2
≤ 0 & 

𝜕2𝐾𝑏

𝜕𝑢2
≥ 0.    ……….. (9) 

(or) (ii) 𝐾𝑎 has a minimum (𝑘𝑎 < 𝐾𝑏) 

then 𝑘𝑏 −𝐾𝑎 > 0 ⇒
𝜕2𝑘𝑎

𝜕𝑣2
≥ 0       and      

𝜕2𝑘𝑏

𝜕𝑢2
≤ 0   …………(10) 

∴ using (10) in (7) [𝑘𝑏 − 𝑘𝑎 > 0  &
𝜕2𝑘𝑎

𝜕𝑣2
≥ 0] 

we get, 

(7) ⇒ 𝐸22 ≥ 0 

& using (9) in (2) [∵ 𝑘𝑎 − 𝑘𝑏 ≥ 0 & 
𝜕2𝑘𝑏

𝜕𝑢2
≥ 0]. 

(8) ⇒ 𝐺11 ≥ 0 

The Gaussian curvature 𝐾 is. 

𝐾 =
−1

2𝐻
{
𝜕

𝜕𝑢
(
𝐺1
𝐻
)+

𝜕

𝜕𝑣
(
𝐸2
𝐻
)} .

 =
−1

2𝐻
{𝐺11

1

𝐻
+ 𝐺1

𝜕

𝜕𝑢
(
1

𝐻
) + 𝐸22

1

𝐻
+ 𝐸2

𝜕

𝜕𝑣
(
1

𝐻
)}

𝐾 =
−1

2𝐻
{𝐺11

1

𝐻
+ 𝐸22

1

𝐻
}            [∵ 𝐺1&𝐺2 = 0].

 

𝐾 =
−1

2𝐻2
{𝐺11 + 𝐺22} at ' 𝑃0

′.         ………… (11) 

We know that 𝐺11 ≥ 0 & 𝐸22 ≥ 0.  

⇒ 𝑘 = negative (or) zero. 

This is contraction to our assumption. 

∴ k cannot be tie at ' 𝑃0 '. 
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5.3.Compact Surfaces of constant Gaussian or Mean Curvature: 

Remarks: 

1. A compact surface must passes a 'highest point’ and at this point the curvature is necessarily 

non-negative. 

⇒ 𝐴 compact surface cannot have constant negative curvature. 

2. A compact surface cannot have constant zero curvature, for otherwise it would contain 

straight lines which would contradict the compactness 

Theorem 1: 

The only compact surface with constant Gaussian curvature are spheres. 

Proof: 

Let ' 𝑠 ' be a compact surface with constant positive Gaussian curvature ' 𝑘 '. 

Since ' 𝑆 ' is compact. 

∴ There is a point ' 𝑝0 ' at which the maxi value of the principal curvature is attained. 

Since the product of the principal curvatures (ii) The Gaussian (curvature) is constant. 

⇒ The principal curvatures have respectively a maximum & a minimum value at ' 𝑝0 ' with the 

maximum not loss than the minimum. 

∴ from Hilbert's Lemma, 

The two principal curvature must be equal 

(i.e.) At point does either principal curvature exceed √𝑘 

Hence every point of 𝑆 is an umbilic . 

[The only compact surfaces of class ⩾ 2 for Which every 𝑝𝑡 is an umbilic are spheres]. 

⇒ The only compact Surfaces with constant Geaussian curvature are sphere. 

Theorem 𝟐: 

The only compact surfaces whose Gaussian curvature is positive and mean curvature constant are 

spheres 

Proof : 

Let 𝑆 be a compact surface of positive Gaussian curvature and constant mean curvature. 

Denote 𝐾𝑎  & 𝐾𝑏 be large and smaller principal curvatures respectively, 

Since ' 𝐾𝑎 ' is continuous & ' 𝑆 ' is compact. 

There is a 𝑃0 ' at which 𝐾𝑎 attains its maxi value. 

Since the mean curvature is constant. 

⇒ 𝑘𝑏  attains its minimum value at 𝑃0. 

[ If there is a point 𝑃 different from ' 𝑃0 ' Such that 𝑘𝑏 at 𝑃 is Smaller than 𝐾𝑏 at 𝑃0 then 

𝐾𝑎  at 𝑃 is greater than 𝑘𝑎  at 𝑃0. 

Since the mean curvature is a constant 



 

177 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

This is contraction to the maximality of 𝐾𝑎 at  

Now, we have the relation 𝑀𝑎 > 𝑀𝑏  everywhere. 

If 𝑘𝑎 > 𝑘𝑏 at ' 𝑃0 ' then 𝐾 ≤ 0. 

(by Hilbert's Lemma). 

This is contraction to our assumption that the Gaussian curvature 𝑘 is tie. 

∴ 𝑘𝑎 = 𝑘𝑏 at 𝑃0
′ 

∴ The mean curvalue (𝜇) =
𝐾𝑎+𝐾𝑏

2
 

= 𝑘𝑎  (or) 𝑘𝑏 

Hence at every point ′S′ the mean curvature given by 𝜇 =
𝑘𝑎+𝑘𝑏

2
. 

[ If there is a point ' 𝑃 ' on ' 𝑆 ' different from 𝑃0 Such that 𝐾𝑎 at ' 𝑃 ' > 𝑘𝑏 at 𝑃. 

then 𝜇 = 𝑘𝑎 at ' 𝑃0 ' ≥ 𝑘𝑎 at ' 𝑃 ' > 𝑘𝑏 at 𝑃 

≥ 𝐾𝑏 at 𝑃0 = 𝜇 

This is contraction.] 

∴ The Gaussian curvature 𝑘 = 𝑘𝑎 ⋅ 𝑘𝑏 = 𝜇
2 a constant. 

Hence 'S' is a compact Surface with constant the Gaussian curvature 

∴ by know theorem ⇒ ' 𝑆 ' is a sphere. 

5.4.Complete Surfaces: 

Metric Space 

A set of points ' 𝑆 ' carries the structure of 𝑎 metric space when there is a real-valued 𝑓𝑛. 

𝜌: 𝑆 × 𝑆 → 𝑅, with the properties. 

(i) 𝜌(𝐴, 𝐵) = 0 ⇔ 𝐴 = 𝐵 

(ii) 𝑃(𝐴, 𝐵) = 𝑃(𝐵, 𝐴) 

(iii) 𝜌(𝐴, 𝐶) ≤ 𝜌(𝐴, 𝐵) + 𝜌(𝐵, 𝐶), ∀𝐴, 𝐵, 𝐶 of 𝑆. 

Note:- 

If 𝑆 is connected then any two points can be joined by arc-wise connected paths. 

Remark:- 

The surface can be regarded as a metric space. 

Proof: 

Assume that the surface 𝑆 is connected. 

 ⇒ any two pts. can be joined by arc-wise connected paths. 

If 𝛾 is any path joining 𝐴 to 𝐵, then this path can be divided into a finite no. of segments 

∴ Each segment lies entiverly in one co-ordinate neighbourhood & adjacent co-ordinate 

neighbourhood is 
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 ∴  The length of 

 The segment 

} = ∫√𝐸𝑢̇2 + 2𝐹𝑢̇𝑣̇ + 𝐺𝑣̇2𝑑𝑡  

where the co-ordinate are 𝑢 = 𝑢(𝑡) & 𝑣 = 𝑣(𝑡) 

∴ The length of 𝛾 = the sum of the lengths of its segments. 

Now, we define, 

distance function 𝜌 = 𝜌(𝐴, 𝐵) = The greatest lower bound of the lengths of all arc-wise connected 𝐶 

'paths joining 𝐴 to 𝐵. 

This 𝜌(𝐴; 𝐵) Satisfies the conditions (i) (ii) & (iii) 

⇒ The surface can be regarded as is positive definite a metric space. 

Cauchy Sequence: 

A sequence of point’s {𝑥𝑛} on the surface is said to form a Cauchy sequence if 

given a positive real no. ' 𝜖 ' an integer ' 𝑛0 '. 

Such that 𝜌(𝑥𝑝, 𝑥𝑞) < 𝜀, 𝑝, 𝑞 both exceed 𝑛0. 

If {𝑥𝑛} converges to a limit ' 𝑥 ' then the sequence. {𝑥𝑛} is a Cauchy sequence. 

Complete metric space: 

If the surface is such that "Every Cauchy sequence converges". Then the metric space is said to be 

complete. 

Example: 

Give an example to shows that not all surfaces are complete. 

Solution: 

Let the surface formed by the two-dimensional Cartesian plane of pairs of real no.'s (𝑥, 𝑦). when the 

origin is removed. 

The distance function  ′𝜌 ' is the Euclidean distance function defined by, 

𝜌(𝐴, 𝐵) = √(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 

When (𝑥𝐴, 𝑦𝐴), (𝑥𝐵 , 𝑦𝐵) are the rectangular, co-ordinate of point's 𝐴&𝐵. 

The sequence of points {(
1

𝑛
, 0)} is seen to be 𝑎 cauchy seq. Which does not converge in the Surface. 

∴ Surface is not complete. 

Note that, the two points (𝑎, 0), (−𝑎, 0), (𝑎 > 0) Cannot be joined by a geodesic (Straight line) lying 

entirely on this surface. 

5.5.Characterization of Complete Surfaces: 

Theorem 1:  

To prove that the following properties are equivalent. 

a.) Every Cauchy sequence of points of 𝑠 is convergent. 

b) Every geodesic can be prolonged indefinitely in either direction or else it forms a closed curve 
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c) Every bounded set of points of ' 𝑠 ' is relatively compact. 

Proof: 

                                       

Figure 1. 

To prove that (𝑎) ⇒ (𝑏) 

given (a) every Cauchy sequence of points of 𝑠 is convergent.   ………..(1) 

To prove that 

Every geodesic can be prolonged indefinitely in either direction (or) else it forms a closed curve. 

If 𝛾 is a closed curve, then every geodesic can be prolonged indefinitely in either direction (or) it 

forms closed curve. 

If 𝛾 is not a closed curve and if 𝑝(𝑥) is some point on 𝛾 . 

then there is same no ' 𝑙 ' such that 𝜈 can be prolonged for distance (measured along 𝛾) <1 But, cannot 

be prolonged for distances > ℓ 

Now, consider the sequence  of points {𝑥𝑛} lying on 𝛾 at distance from 𝑝( along  𝛾) is 𝑙 [1 −
1

𝑛
]. 

Evidently {𝑥𝑛} is a Cauchy sequence (by (1)) converges to some point 𝑄 on  𝛾 whose distance from 

𝑃 is precisely ' 𝑙 ' 

If {𝑥𝑛
′ } in another Cauchy sequence, such that 𝜌(𝑥1 , 𝑥𝑛

′ ) → ℓ then {𝑥𝑛
′ } → 𝑄′. 

Now, the sequence 𝑥1, 𝑥1
′ , 𝑥2, 𝑥2

′ , 𝑥3, 𝑥3
′ ⋯ is also a Cauchy sequence, tending to both 𝑄&𝑄′ 

∴ 𝑄 = 𝑄′ 

∴ their exist a unique and point 𝑄 distant 𝑙 from P along 𝛾 . 

Now, Consider a coordinate need of 𝑆 which contains 𝑄 

 At 𝑄, there is uniquely determined a direction ' 𝑡 ' which is the direction of the geodesic - 𝛾 which 

starts at 𝑄. 

In this coordinate neighbourhood. There is a unique geodesic at 𝑄 which has the direction (-t) 

⇒ a continuation to our hypothesis (equation (1)) 
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∴ Our assumption is wrong. 

⇒ 𝛾 is closed curve. 

∴ (𝑎) ⇒ (𝑏) 

To prove that (𝑏) ⇒ (𝑐). 

Given every geodesic can be prolonged indefinitely in either direction or else it forms a closed curve        

……….(2) 

To prove that : Every bounded set of points of ' S ' in relatively compact. 

Consider a point ' 𝑎′ of ' 𝑠 '. 

and geodesic arcs which start at ' 𝑎 '  

Now we define, Initial vector of a geodesic arc starting at ' 𝑎 ' to be the tangent vector to tr's arc at ' 𝑎 

'. which has the Same Sense as the geodesic & whose length is equal to the length of the geodesic arc. 

Since ' 𝑆 ' has the property (b), 

⇒ Every tangent vector to 𝑆 at ' 𝑎 ', its length is the initial vector of some geodesic arc Starting at ' 𝑎 ' 

which is uniquely determined. 

∴ This arc may eventually cut itself (or) if it forms port of a closed geodesic, may ever cover part 

itself. 

Let 𝑆𝑟  be the set of points 𝑥 of 𝑆𝑟  which distance from ' 𝑎 'does not exceed 𝑟. 

(i.e.) 𝜌(𝑥, 𝑎) ≤ 𝑟. 

and let 𝐸𝑟 be the set of points ' 𝑥 ' of 𝑆𝑟  which can joined to 'a' by a geodesic are whose length is 

actually equal to 𝑃(𝑥, 𝑎). 

(i) To prove that : The set of points 𝐸𝑟 is compact. 

Let {𝑥ℎ}, ℎ = 1,2… be a sequence of points of 𝐸𝑟 

& Let 𝑇ℎ  be the initial vector of a geodesic an of length 𝑃(𝑎, 𝑥ℎ) joining ' 𝑎 ' to ' 𝑥ℎ '. 

Then the sequence of vectors {𝑇ℎ} regarded as a sequence of points in two-dimension Euclidean space 

admits at least one vector of accumulation 𝑇 More over, 

This vector ' 𝑇 ' is the initial vector of a geodesic arc whose extremity ∈ 𝐸𝑟& is a 𝐹‾ accumulation of 

the sequence {𝑥ℎ}. 

⇒ 𝐸𝛾 is compact 

(ii) To prove that : 𝐸𝑟 = 𝑆𝑟  

𝐸𝑟 = 𝑆𝑟  is true when 𝑟 = 0 

Also 𝐸𝑟 = 𝑆𝑟 is true for 𝑟 = 𝑅 > 0, then it is certainly true for 𝑟 < 𝑅. 

Now, every pt of 𝑆𝑘 is the limit of a sequence of ft𝑡 whose distance from ' 𝑎 ' < 𝑅. 

By equation, these points ∈ 𝐸𝑅 and since 𝐸𝑅 is closed 

⇒ Their limit ∈ 𝐸𝛾 

∴ 𝐸𝑟 = 𝑆𝑟  is valid for 𝑟 = 𝑅. 
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∴ 𝐸𝛾 = 𝑆𝛾 completely, it is merely to show that it holds for 𝑟 = 𝑅, then it still holds for 𝑟 = 𝑅 + 𝑆, 

𝑆 > 0  

⇒ Because it would then be possible to extend The range of validity of 𝐸𝑟 = 𝑆𝑟 to an arbitrary extent 

by an appropriate no. of extensions of the range by an amount ' 𝑆 '. 

To prove that : to any point ' 𝑦 ' such that 𝑥(𝑎, 𝑦) > 𝑅 There is a pt 𝑥 such that 

 𝜌(𝑎, 𝑥) = 𝑅 &  𝑃(𝑎, 𝑦) = 𝑅 + 𝑃(𝑦, 𝑥) 

we define, 

𝑃(𝑎, 𝑦) = The lowest bound of the lengths of arcs from ' 𝑎 ' to ' 𝑦 '. 

⇒ We can join a to 𝑦 by a curve 𝛾 whose length is less than 𝜌(𝑎, 𝑦) + ℎ−1, for any int ' ℎ '. Let 𝑥ℎ = 

The last point of this curve∈  𝐸𝑅(= 𝑆𝑅) 

[𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡, 𝑃(𝐴, 𝑐) ≤ 𝜌(𝐴, 𝐵) + 𝜌(𝐵, 𝑐)]

 ∴ 𝑃(𝑎, 𝑦) ≤ 𝜌(𝑎, 𝑥𝑛) + 𝜌(𝑥𝑛, 𝑦)
 

(i.e.) 𝑃(𝑎, 𝑦) ⩽ 𝑅 + 𝑃(𝑥𝑛, 𝑦) 

Since 𝜌(𝑎, 𝑥𝑛) = 𝑅 

⇒  𝑃(𝑥𝑛, 𝑦) ≥ 𝜌(𝑎, 𝑦) − 𝑅 − (∗) 

Since,  the arc length of 𝛾 from 'a' to ‘ 𝑦 ' = arc length from 𝑎 to 𝑥𝑛 t arc length from 𝑥1 to y . we 

have, 

𝑃(𝑥𝑛, 𝑦) ≤ arc(𝑥𝑛 , 𝑦) 

(i.e.)

𝜌(𝑥𝑛, 𝑦) ≤ arc(𝑎, 𝑦) − arc(𝑎, 𝑥𝑛)

 ≤ 𝜌(𝑎, 𝑦) + ℎ−1 − arc(𝑎, 𝑥𝑛)

 ≤ 𝑃(𝑎, 𝑦) + ℎ−1 − 𝑅

 

Now let, ℎ → ∞ 

∴ {𝑥ℎ} will have at least one point of accumulate 𝑥 with the property. 

𝜌(𝑥, 𝑦) ≤ 𝜌(𝑎, 𝑦) − 𝑅 ⟶ (∗∗) 

Comparing (*) & (**) we get, 

𝑃(𝑎, 𝑦) = 𝑅 + 𝑃(𝑦, 𝑥) 

∴ The existence of a point ′𝑥 'satisfying 𝜌(𝑎, 𝑥) = 𝑅. 

𝜌(𝑎, 𝑦) = 𝑅 + 𝜌(𝑦, 𝑥) 

To prove that: Every bounded set of points of 𝑠 is relatively compact. 

we know that, the two points 𝑥, 𝑦 are not for apart, then the point ' 𝑦 ' in the extremity of one end only 

one geodesic arc of origin 𝑥 and length of 𝜌(𝑥, 𝑦). 

⇒ their exist  a continuous function 𝑠(𝑥) > 0 such that if 𝑃(𝑥, 𝑦) < 𝑠(𝑥) 

the point ' 𝑦 ' is the extremity of the unique geodesic arc of length 𝜌(𝑥, 𝑦) joining 𝑥 to 𝑦. Moreover,  

the continuous function 𝑠(𝑥) attains 𝑎 tie mini value on the compact set 𝐸𝑅 and we take ' 𝑠 ' to be this 

minimum 

If 𝐸𝑟 = 𝑆𝛾 is true for 𝑟 = 𝑅 
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and if 𝑅 < 𝜌(𝑎, 𝑦) ≤ 𝑅 + 𝑠, then 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑖𝑠𝑡𝑠 𝑥 ∈ 𝐸𝑅. 

Such that 𝜌(𝑎, 𝑥) = 𝑅, and 𝜌(𝑥, 𝑦) = 𝜌(𝑎, 𝑦) − 𝑅 ≤ 𝑆. 

Consequently, 

their exists a geodesic arc 𝐿′ of length𝜌(𝑎, 𝑥) joining 𝑎 to 𝑥. 

and a geodesic arc 𝐿′′ of length 𝜌(𝑥, 𝑦) joining 𝑥 to 𝑦. 

The composite arc formed by L' & L" joins 'a' to ' 𝑦 ' and has as its length 𝜌(𝑎, 𝑦). 

⇒ This composite arc is a geodesic arc & 𝑦 is joined to ' 𝑎 ' by a geodesic arc whose length is equal to 

the distance of ' 𝑦 ' from ' 𝑎 '. 

∴ 𝑦 ∈ 𝐸𝑅+𝑆 

and the range of validity of 𝐸𝑟 = 𝑆𝛾 is extended from 𝐸𝑅 to 𝐸𝑅+𝑆. 

⇒ Any two points of 's' can be joined by a geodesic are whose length is equal to their distance. 

Suppose, we use given, a bounded set of pts 𝑀 on 𝑠 

5.6.Hilbert's Theorem: 

Theorem 1: 

A complete analytic surface, free from singularities, with constant negative Gaussian curvature cannot 

exist in three-dimensional Euclidean Space.  

Proof: 

 

Figure. 2 

Let ' 𝑝 ' be a point on the surface ' 𝑆 ' & Let ' 𝑄 ' be the Set of all paths of ' 𝑆 ' which begin at ' 𝑝 '.  

we divide the set 𝑄 into classes, putting into each class the totality of paths that arc homotopically 

equivalent. 

Let 𝑆′ is an equivalence class of path on 𝑆 .Define a natural mapping 𝜙 of the set 𝑆′ on the 𝑆. (ie) 

𝜙: 𝑆 → 𝑆′ ). 

If ' 𝐴 ' is a point on 𝑆 ', then all the equivalent paths in 𝑆 belonging to 𝐴 must end in the Same point ' 𝑎 

' & 𝑎 = 𝜙(𝐴). 

[Note: The set of points 𝑆′ can be considered as forming a surface called the "universal covering 
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Surface"]  

"The universal covering surface = 𝑆’ has the following properties. 

1. The natural mapping of 𝑆′ on 𝑆 is a continuous open mapping. Moreover, 𝜙 is a locally 

homeomorphic mapping. (i.e.) for every point A of 𝑆′, their exist a neighbourhood e u* 

Such that the mapping 𝑝 is homeomorphic on the neighbourhood 𝑢∗. 

[The universal covering surface 𝑆′ of a Surface 𝑆 is always simply connected. 

(i) ⇒ 𝑆 & 𝑆′ are locally homeomorphic. 

∴ All the local properties of the spaces are automatically true for the Space S'] 

2. The differential geometric structure on 𝑆 induces a differential geometric structure on 𝑆′ 

we assume that, a surface 'S' exists having the required properties. Consider an arbitrary geodesic line 

on the surface S and take an arbitrary point 'o' on as origin. this geodesic If ‘S' denotes the arc length of 

this geodesic measured from 'o'. The completeness of 's' ensures that the geodesic can be continued in 

both directions from - ∞ to +∞. It is possible that the geodesic will ultimately cross itself have the same 

point on 'S' will have two different S – values. 

5.7. Conjugate points on geodesics: 

Theorem 1:  

If P and Q are two points of a geodesic which can be embedded in a field of geodesic, then the 

arc PQ of the geodesic is shorter than any other arc which joins P to Q and lies entirely in that 

region of the surface covered by the field. 

Proof: 

The geodesics of the family are the curves v=constant , with 𝑣 = 𝑣0 as the geodesic, and let the 

curves u=constant be geodesic parallels orthogonal to them, so chosen that the metric reduces 

to the form  

𝑑𝑠2 = 𝑑𝑢2 + 𝜆2𝑑𝑠2. 

If the coordinates of P and Q are (𝑢1, 𝑣0), (𝑢2, 𝑣0) with 𝑢2 > 𝑢1, the length of the geodesic 

arc PQ is (𝑢2 − 𝑢1). 

Let C be an arbitrary curve passing through P and Q, is given by the equation 𝑣 = 𝜙(𝑢) 

where 𝜙(𝑢1) = 𝑣0, 𝜙(𝑢2) = 𝑣0. Then the arc length of C is  

 𝑙 = ∫ {1 + 𝜆2 (
𝑑𝜙

𝑑𝑢
)
2

}

1/2𝑢2

𝑢1

𝑑𝑢  

Evidently 𝑙 exceeds 𝑢2 − 𝑢1, unless 𝑑𝜙/𝑑𝑢 = 0 when 𝐶 is the given geodesic.  

However, it is most unlikely that the region 𝑅 of the geodesic field extends over the entire 

surface 𝑆, so the previous argument is in general inapplicable to complete surfaces. For 
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example, the surface of a sphere cannot be covered by a geodesic field because ny two great 

circles intersect in two points of the sphere. Moreover, if 𝐴, 𝐵 are any two non-antipodal points, 

that geodesic arc which is he longer part of the great circle joining 𝐴, 𝐵 is evidently not the 

hortest distance from 𝐴 to 𝐵.  

Theorem 2: 

When the surface 𝑆 has negative curvature every. where, the length of a geodesic which joins 

any two points 𝐴, 𝐵 is aluays less than the lengths of neighbouring curves through 𝐴 and 𝐵. 

Proof: 

Let one system of parametric curves be the geodesics normal to the given geodesic 𝐴𝐵, and the 

ther system be the orthogonal trajectories. Let 𝑢 denote the ength of the geodesic normal 𝑃𝑄 

from 𝑃 to 𝐴𝐵, and let 𝑣 denote the length 𝐴𝑄. The line element of the surface becomes 

𝑑𝑠2 = 𝑑𝑢2 + 𝜆2𝑑𝑣2,
 where 𝜆(0, 𝑣) = 1, 𝜆1(0, 𝑣) = 0.

 

In terms of these parameters the Gaussian curvature is given by 

𝐾 = −𝜆11/𝜆,  so that  𝜆11 = −𝜆𝐾. 

The function 𝜆 may thus be expanded as a power series in 𝑢 in the form 

𝜆 = 1 − 𝐾
𝑢2

2
− 𝐾1

𝑢3

6
+ 𝑂(𝑢4) 

where 𝐾 and 𝐾1 are evaluated with 𝑢 = 0. 

A neighbouring curve 𝐴𝑃𝐵 which differs very little from 𝐴𝐵 will have an equation of the 

form 𝑢 = 𝜙(𝑣), where 𝑢 will be small. The length of this curve will be 

𝑙 = ∫  
𝐼

𝐴

{𝜙′2 + 𝜆2}1𝑑𝑣 = ∫  
𝐵

𝐴

{1 + 𝜙′2 − 𝐾𝜙2 −
1

3
𝐾1𝜙

3}
1

𝑑𝑣 

where terms of the fourth order are neglected. We now assume that 𝜙′ never becomes infinito 

and is thus of the same order of smallness as 𝑢. With this assumption the difference between 𝑙 

and the geodesic are length 𝑠 may be written 

𝑙 − 𝑠 =
1

2
∫  
𝐵

𝐴

{𝜙′2 −𝐾𝜙2 −
1

3
𝐾1𝜙

3} 𝑑𝑣 

Now the sign of the variation of the are length will be given by the sec2 nd-order terms, 

provided that these do not vanish identically. If only these terms are retained the equation 

becomes 𝑙 − 𝑠 =
1

2
∫  
𝐵

𝐴
  (𝜙′2 − 𝐾𝜙2)𝑑𝑣     ……………(1) 

Now, if 𝐾 is always negative, the integrand is always positive and so 𝑙 > 𝑠. This proves the 

required result. 
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The remainder of this section will consider the analogous problem when 𝐾 is not always 

negative. Since the metric is of the form 𝑑𝑠2 = 𝑑𝑢2 + 𝜆2𝑑𝑣2, it follows that the arc length of 

the orthogonal trajectory taken between the geodesics 𝑣 and 𝑣 + 𝛿𝑣 is given by 𝜆𝛿𝑣. 

Alternatively, 𝜆𝛿𝑣 is the length of the segment of the normal from a typical point of the 

geodesic 𝑣 cut off by the geodesic 𝑣 + 𝛿𝑣. If 𝑣 and 𝑣 + 𝛿𝑣 are regarded as constants, then the 

arc length 𝜆𝛿𝑣 will vary with the arc length 𝑢 of the geodesic 𝑣. If 𝑝 = 𝜆𝛿𝑣, from  

𝜆11 = −𝐾𝜆 it follows that 𝑝11 = −𝐾𝑝, (i.e.) 𝑑2𝑝/𝑑𝑢2 + 𝐾𝑝 = 0 

a differential equation which was first obtained by Jacobi in 1836. Consider the solution of this 

differential equation which vanishes at the point 𝐴, and suppose that this solution vanishes 

again at the point 𝐴1 on the geodesic, while maintaining a constant sign in the interval 𝐴𝐴1. 

Then all the geodesics which leave 𝐴 in a direction infinitesimally near to the direction of 𝐴𝐵 

will intersect 𝐴𝐵 again in the point 𝐴1 or in points infinitesimally near 𝐴1. Now if 𝐵 lies 

between 𝐴 and 𝐴1, it follows that the geodesic segment 𝐴𝐵 is shorter than any neighbouring 

curves joining 𝐴 and 𝐵. The point 𝐴1 is called a conjugate point of 𝐴 along the geodesic A,𝐵. 

Theorem 3:  

In order that the geodesic distance 𝐴𝐵 should be the shorlest distance, it is necessary and 

sufficient that 𝐵 lics between 𝐴 and its conjugate point 𝐴1. 

The sufficiency has been proved above. We now outline a proof of the necessity using a 

lemma due to Erdmann. 

consider the problem of finding a curve 𝑦 = 𝑦(𝑥), which pasees hrough two pints 

(𝑥1, 𝑣1), (𝑥2, 𝑧2), has a discontinuity of slope on the lome 𝑥 = 𝑥3, and is stact that the integral 

𝐼 = ∫  
𝑇1

𝑥1

𝑓(𝑥, 𝑦, 𝑦′)𝑑𝑥 

assumes an extreme value (see Fig. 3). 
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                                                            Fig.3 

Let  𝑦+
′ = lim

𝛿→0
 𝑦′(𝑥3 + 𝛿); 𝑦−

′ = lim
𝛿→0
 𝑦′(𝑥3 − 𝛿) 

where 𝛿 is positive. Then Erdmann's lemma states that for an cxtreme value, in addition to the 

equation of Euler, it is necessary that 

𝑓+𝑦′ = 𝑓−𝑦′ 

where 𝑓+𝑦′ = 𝑓𝑦′(𝑥3, 𝑦3, 𝑦+
′ ), 𝑓−𝑦′ = 𝑓𝑦′(𝑥3, 𝑦3, 𝑦−

′ ). 

To prove the lemma, we note that the variation of the integral over the curves 𝑦(𝑥) and 𝑦 +

𝜖𝜂(𝑥), where 𝜂(𝑥1) = 0, 𝜂(𝑥2) = 0, is given by 

𝐽(𝑐) = ∫  
𝑥2

𝑥1

𝑓(𝑥, 𝑦 + 𝜖𝜂, 𝑦′ + 𝜖𝜂′)𝑑𝑥 +∫  
𝑥2

𝑧1

𝑓(𝑥, 𝑦 + 𝜖𝜂, 𝑦′ + 𝜖𝜂′)𝑑𝑥 

it being assumed that the 'corner' still moves along the line 𝑥 = 𝑥3. In the usual manner, it 

follows that a necessary condition is 𝐽′(0) = 0. This reduces to 

∫  
𝑥2

𝑥1

(𝑓𝑦 −
𝑑

𝑑𝑥
𝑓𝑦′) 𝜂𝑑𝑥 +∫  

𝑥1

𝑥2

(𝑓𝑦 −
𝑑

𝑑𝑥
𝑓𝑦′) 𝜂𝑑𝑥 + 𝜂3(𝑓−𝑦′ − 𝑓+𝑦′) = 0. 

From this it follows that, in addition to Euler’s equation  

𝑓𝑦 − 𝑑𝑓𝑦′
′ 𝑑𝑥 = 0, it is necessary to have 𝑓+𝑦′ = 𝑓−𝑦′, and the lemma is proved. 

We now return to the proof of Theorem 3. From equation (1). it follows that the geodesic 

distance 𝑠 is a manimum provided that 

𝛿2(𝑠) = !∫  
1

−1

(𝑢′2 − 𝐾𝑢2)𝑑𝑢 

is non-negative. Now, if 𝛿2(𝑠) ≥ 0 for all 𝑢, it follows that the curve 𝑢 = 0 must make the 

integral 
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∫  
𝐵

𝐴

(𝑢′2 − 𝐾𝑢2)𝑑𝑣 

minimum. It is easily verified that, except for notation, the Euler equation corresponding to 

this is Jacobi's differential equation. 

Assume now that the geodesic distance 𝐴𝐵 still gives the shortest distance with 𝐵 lying 

beyond 𝐴1, i.e. 𝛿2(𝑠) ⩾ 0, and we hope to arrive at a contradiction. By hypothesis there is a 

solution of Jacobi's differential equation (and therefore of Euler's equation) which vanishes at 

𝐴, and has its next zero at 𝐴1. If 𝑢 = 𝜙(𝑣) is such a solution, then, of course, so is 𝑢 =

𝜖𝜙(𝑣) for an arbitrary constant 𝜖. 

Now define a new function 𝑢̃ which coincides with 𝑢 = 𝜙(𝑣) from 𝐴 to 𝐴1, and is identically 

zero from 𝐴1 to 𝐵. The next step in the argument is to prove that such a function 𝑢̃ is a 

'corner' solution of the problem of giving 𝛿2(𝑠) an extreme value. 

Since ∫  
𝐴1

𝐴
𝑢𝑢′′𝑑𝑣 = [𝑢𝑢′]𝐴

𝐴1 − ∫  
𝐴1

𝐴
𝑢′2𝑑𝑣 = −∫  

𝐴1

𝐴
𝑢′2𝑑𝑣, 

where 𝑢 = 𝜙(𝑣), it follows that 

∫  
𝑛

𝐴
(𝜋′2 −𝐾′𝑢‾2)𝑑𝑣 = ∫  

𝐴1

𝐴
(𝑢′2 −𝐾𝑢2)𝑑𝑣 = −∫  

𝐴!

𝐴
𝑢(𝑢′′ + 𝐾𝑢)𝑑𝑣 = 0, 

since 𝑢′′ +𝐾𝑢 = 0. 

Since 𝑢̃ satisfies the condition 𝛿2(𝑠) = 0, and can be chosen as near to the curve 𝑢 = 0 as we 

please since 𝜖 is arbitrary, it follows that 𝑢 = 0 gives 𝛿2(𝑠) its minimal value. Moreover, 𝑢 

must be a 'corner' solution of the problem of finding a minimum of 𝛿2(𝑠). From Erdmann's 

lemma, 𝑢+
′ = 𝑢−

′ = 0. But this is impossible because there is no non-trivial solution of the 

equation 𝑢′′ + 𝐾𝑢 = 0 

which vanishes simultaneously with its derivative. This gives If8 required contradiction, and 

the theorem is completely proved. 

Jacobi's theorem will now be used to prove the following interesting theorem due to Bonnet. 

Theorem 4:  

If along a geodesic the Gaussian curvature exceeds a positive constant 1/𝑎2, then the curve 

cannot be the shortest distance between its extremities along an are length exceeding 𝜋𝑎. 

The main lemma used in the proof of this result is a standard theorem from the theory of 

differential equations due to Sturm This theorem is stated below without proof, but a very 

simple and elegant proof can be found in Darboux (1896). 

STURM'S Theorem.  

Consider the two distinct differential equations 
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𝑑2𝑉

𝑑𝑥2
= 𝐻𝑉,

𝑑2𝑉

𝑑𝑥2
= 𝐻′𝑉 

where for all values of 𝑥 in the range considered, 𝐻′(𝑥) ⩾ 𝐻(𝑧). Then, if 𝜙(𝑥) is a solution 

of the first equation hating two consecutive zeros at 𝑥0 and 𝑥1, a solution of the second 

equation which has a zero at 𝑥0 cannot hate another zero in the closed interval [𝑥0, 𝑥1]. 

As a corollary we have: 

If for all values of 𝑥 in the range considered, 𝐻′(𝑥) ⩽ 𝐻(𝑥), and if 𝜙(𝑥) is a solution of the 

first equation having two consecutive zers at 𝑥0 and 𝑥1, then any solution of the second 

equation which has a zero at 𝑥0 must hare at least one other zero in the inverval [𝑥0, 𝑥1]. 

Consider Jacobi's differential equation (𝑑2𝑝/𝑑𝑣2) + 𝐾𝑝 = 0, which is of the type considered 

by Sturm. Let 𝑝 be a solution of thas equation, and let 𝑟0, 𝑣1 be two consecutive zeros 

corresponding to the points 𝐴 and 𝐴1. It follows from Jacobi's theorem that the arc 𝐴𝐵 will be 

the shortest distance between 𝐴 and 𝐵 if and only if 𝐵 lies between 𝐴 and 𝐴1. 

Suppose now that the Gaussian curvature along the line 𝐴𝐴1 always exceeds the positive 

constant 1/𝑎2, so that 𝐾 ⩾ 1/𝑎2. The solution of the equation 

𝑑2𝑝

𝑑𝑣2
= −

𝑝

𝑎2
 

which vanishes for 𝑣 = 𝑣0 is 

𝐶sin 
𝑣 − 𝑣0
𝑎

 

and its next zero after 𝑣0 is just 𝑣0 + 𝜋𝑎. It follows that if the are length 𝐴𝐵 exceeds 𝑎, then 

𝐵 will not lie between 𝐴 and 𝐴1, and the theorem is proved. 

An analogous result is the following: 

Theorem 5: 

 If at all points of a geodesic the Gaussian curvature is less than 1/𝑏2, the curve is necessarily 

of shorter length than neighbouring curves along an are length at least equal to 𝜋𝑏. 

The proof follows easily from the hypothesis 𝐾 ⩽ 1/𝑏2, and the fact that the interval between 

consecutive roots of the equation 𝑑2𝑝/𝑑𝑣2 = −𝑝/𝑏2 is 𝜋𝑏. As this cannot be smaller than the 

interval between consecutive roots of the previous equation, it follows in this case that if they 

are length 𝐴𝐵 is less than 𝜋𝑏, then 𝐵 will certainly lie between 𝐴 and 𝐴1, thus giving the 

required result. 

Suppose now the surface 𝑆 is compact, and has the property that 𝐾 ⩾ 1/𝑎2 everywhere. If 𝐴 

and 𝐵 are any two points on 𝑆, there is a geodesic joining 𝐴 to 𝐵 which is of shorter length than 
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the neighboring curves.  

It follows from Theorem 4. that the maximum distance between 𝐴 and 𝐵 cannot exceed 𝜋𝑎. 

This proves the following: 

Theorem 6: 

If on a compact surface 𝑆 the curvature everywhere exceeds 1/𝑎2, the maximum distance 

between any two points cannot exceed 𝜋𝑎. 

Exercise 1: 

Prove that the Gaussian curvature at any point on the ellipsoid 
𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1 

is given by 
𝑝4

𝑎2𝑏2𝑐2
 where 𝑝 is the distance of the centre from the tangent plane. 

Show that if 𝑎 ⩾ 𝑏 ⩾ 𝑐, every geodesic arc of length greater than 𝜋𝑎𝑏/𝑐 cannot be the shortest 

distance between its extremities; but every geodesic arc of length less than 𝜋𝑏𝑐/𝑎 is necessarily 

shorter than the neighbouring curves joining its extremities. 

 

 

 

Study Learning Material Prepared by 

Dr. S. KALAISELVI M.SC., M.Phil., B.Ed., Ph.D., 

ASSISTANT PROFESSOR, 

DEPARTMENT OF MATHEMATICS,  

SARAH TUCKER COLLEGE (AUTONOMOUS),  

TIRUNELVELI-627007. 

TAMIL NADU, INDIA. 

 

 

 


