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UNIT |

ANALYTIC FUNCTIONS: Analytic functions — Polynomials — Rational functions — Power
Series.

Chapter 1: Section 1: 1.1-1.4

1.Introduction to the Concept of Analytic Function:
When stepping up to complex numbers we have to consider four different types of functions

) Real functions of real variable
i) Real functions of Complex variable
iii) Complex functions of real variable

iv) Complex functions of Complex variable
To indicate a complex function of a complex variable we use the notation w=f(z).

The notation y=f(x) is used in a neutral manner with the understanding that x and y can be

either real (or) complex.
Definition: Limit
The function f(x) is said to have limit A as x— a.

(i.e.,) lim f(x) = Aiffforeverye > 0
X—a

Their exist a number § > 0 with the property that |f(x)-a|< & for all values of x such that |x-

al<é and x # a.
Note:

1. lim f(x) = Aiff lim f(x) = A
X—a X—a

2. )li_r)rbf(x) = Aiff )ll_r:rb Ref(x) = Re (A) and )11_1‘)[}1 Im f(x) =Im (A)
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Definition: Continuity

The function f(x) is said to be continuous at ‘a’ iff lim f(x) = f(a)
X—a

Note:

1. If f(x) and g(x) are continuous then the sum f(x)+g(x) and the product f(x) g(x) are

continuous.

2. Also, the quotient L® i defines and continuous at a iff g(a) =+ 0.

gx)

3. Iff(x) is continuous, the Re f(x) Im f(x) and |f(x)| are also continuous.
Definition:

lim fe)-f(a)

) , —_ ) x—>a x-a
We define f'(a) = i F@th=f@

h—o0 h
Note:

1.A real function of a complex variable either has the derivative zero (or) the derivative does

not exist.
Proof:
Let f(z) be a real function of complex variable whose derivative exists at z=a.

Suppose, h — 0 through real values then f(a + h) — f(a) is real and h is real.

tw is real .

=~ The quotien

o f'(a) is real.

Suppose, h — 0 through purely imaginary values then f(a + h) — f(a) is real and h is purely

imaginary.

«. The quotient Z*

w IS pure imaginary.
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e
Hence, f'(a) = 0 (Since, 0 is the only number which is real and purely imaginary).

=~ The real function of Complex Variable either has the derivative zero (or) the derivatis does

not exist.

2.The case of complex function of a real variable is reduced to the real case. If we write z(t) =
x(t) + iy(t) and the existence of z'(t) is equivalent to the simultaneous existence of x’(t) and
y'(®).

1.1. Analytic Function:
Definition: Analytic function on holomorphic function:

Let f(z) be a complex function of a complex variable which possess a derivative wherever the

function is defined. Then f(z) is called an analytic function. (holomorphic function)
Note:

1. The Sum and Product of two analytic functions are again analytic.

2. The quotient % of two analytic functions is analytic provided g(z) # 0.

3. If f(2) is analytic then f(z) is continuous.

Proof:
Consider, f(x + h) — f(2) = h, w

p feth) - 1@
h
= limp [lim LT =/
h—-0 |h-x h
= limhf'(2)
= 0.f'(z) = 0
lim G+ ) = £(2) = 0

2 limf(z +h) = f(2)

limf(x + ) f(2) = lim
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=~ f(z) is continuous.

4.1f f(2) is an analytic function then the real and imaginary parts of an analytic function are
harmonic which satisfy the C.R (Cauchy Riemann) equation.

Let f(z) = u(z) + iv(z) be an analytic function = f'(z) exist.

If we choose real values for h, then the imaginary part y is kept constant and the derivative

becomes a partial derivative w.r. to x.

iy = O 0w o
sf@=L=2p 2 (1)

Similarly, if we choose imaginary values for h, (i.e.,) h = ik.

we have,

f+ik) - f(2)
ik

f'(2) = lim

= — lim
1 k-0

1 f(z+ik) — f(2)
k

from (1) & (2)

Z—£ = %Z—;. which is known as C - R equation in complex form.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



, Spta enppEin ‘

NOWLEDGE o

du ou _ v

- R R = ou
Now, equating the real and imaginary part. we get, oy %5y T

(ie.,) Uy =V, and U, = —v,

which is known as C.R. equations in Cartesian form.

To prove: u and v are harmonic.

We know that, the derivative of an analytic function is itself analytic

By this fact, u and v will have continuous partial derivative of all order, and the mixed
derivatives will be equal.

(i.e.,)

0%u 0%x

axy - dy 0x

I
~——
I

y
d (0v ) (617)
X dy \0x
0%v 0%v

Ay = 6(6u>+6(6u>
“ax\ax) "o dy
" ox\ay
:axay_ayax
~Au=0

~ The function u Satisfies the Laplace equation Au = 0 is said to be harmonic.
Similarly, AV =0
=~V is harmonic

Hence, the real and imaginary parts of an analytic function are harmonic which satisfies the

C.R. equation.

5.1 (2)f ? is the Jacobian of u and v with respect to x and y.

Proof: f'(z) = z—z + ig—;- (by (1))
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roi- |2 +(2)
reor= (20 +(32)
_au Ju Jv Jdv

= 9% 9x ' 9x 9x
_au v oJvaou

dx 0y 0x0dy

If' (x)|* = ou  ov

Hence, |f'(z)|? is the Jacobian of u and v with respect to x and y.
Definition: Conjugate Harmonic function:

If two harmonic functions u and v satisfy the C.R equations U, =V, and U, = —V,. Then V

is the conjugate Harmonic function of wu.
Note:

C.R equations can be written as,

0(w) _ 9% 4 6(—.11) = -2 Then we say that u is the conjugate harmonic function of —v.
0x ay ay ox
Converse of Note (4)

The function u+iv determined by a pair of conjugate harmonic functions is always analytic.
(or) The harmonic function u and v Satisfies C - R equations: Then u + iv is an analytic

function.
Proof:
Letz=x+iyand f(z) =u +iv.

Given, u and v are harmonic functions of x and y
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-~ u and v have continuous function first order Partial derivatives.

Applying mean Value theorem on two variable y we get,

Ju Ju
ux+hy+k)—ulx,y)=h—+k—+¢

dx dy
+hy+k L
vix+hy+k) —v(xy) =ho- oy T e

where, the remainders &; and €, — 0 more rapidly than h+ik in the sense that.

&1 &
h+ik h+ik

f(z+h+ik)—f(2) _ f(x+iy+h+ik)—f(x+iy)
h+ik - h+ik

consider,

flx+h+i(y+k)]—f(x+iy)
h + ik
_ ulx+hy+k)y+ivix+hy+k)—[ulxy)+iv(x,y)]

h + ik
_u(x+hy+k)—ulx,y) +i[vix+hy+k)—vixy)]
h h+ik

Ju
h6x+k6 +é& + [ha +ka +82]
h + ik
ou
a)+€1+l[ha +la +82]
h + ik
Ju . dv . .
_a(h+lk)+ﬁ(—k+lh)+€1+l'82
B h + ik
L_[ou h+ ik +av('2k+'h)+ + i ]
kax( ik) 3 [ & t+ig

hgu+k( ov

[6” Bt ik) + 2D (h+ i) + +']
Tk lox (BT H) FHign(htik) +& + i,

10
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_ (h+ik) 8u+,6v+£1+i82]
T Thtik lox 'ox T Th+ik
_6u+,6v+ & ny Ex
“ox 'ox Th+ik  ‘h+ik
po fEtht i) —f) _du ov
o h+ ik ~ox ' lox

=f'(z) ~ f'(2) exists.

=~ f(2) is an analytic function.

Note:

Conjugate of a harmonic function can be found by integration.

For example:

Letu = x2 — y?
u Ju

a = 2x, @ =
0%u 0*u
ﬁ = 2, a—yz = —2
_0%u  0%u
“og + 57 =

s Au =

=~ u is harmonic.
Let v be a conjugate harmonic function of wu.
~ u and v satisfy C. R equations.

'au_av d(’)u_ dv
T ox  dy an dy  Ox

v v
=2 (D =2y s )

11
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Integrating equation (1), | dv = [ 2x dy
~V =2xy+ ¢(x)

Partially Diff with respect to x,

av ,

Pl AR C))
w2y =2y +¢'(x)
~P'(x)=0

¢(x) = constant = ¢
~V=2xy+c

The analytic function f(z) = u + iv

=x2 —y? +i[2xy + ]

=x%2—y2+i2xy+ic

= (x +iy)? +ic
~f(z)=2z%+ic

Problems:
1.Verify C.R equation for the function z2 and z3
Proof:

i) Let f(z) = z2

= (x + iy)2.

f(z) = x? — y? + 2ixy
u=x%-—y?%v=_2xy

au_ 617_2
ox X ox Y
au_ 617_2
ay Y ey

12
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i) Let f(z) = 2°

= (x + iy)®

= 23 + (iy)® + 3x3iy + 3x(iy)?
=x3 —iy3 + 3ix3y — 3xy?

f(2) = x3 = 3xy? —i(y® — 3x2y)

U _ a2 o2 9V _
ax—Sx 3y ,6x—6xy
ou _ _ W _ a2 2
3 6yx,ay—3y + 3x
g

0x dy
du  0v

dy  Ox

Hence, u, = v, and u, = —v,
Hence, the C.R equations for the functions z2 and z3.

2. Show that an analytic function cannot have a constant absolute value without reducing to a

constant.

i.e., An analytic function with constant modulus reduces to a constant.
Solution:

Let f(2z) = u(x,y) + iv(x,y) be an analytic function with constant modulus.

Juz+v?2 =c¢

2

~Nf@) =

~ur+v?=c

13
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partially diff w. r, to x
u ov
ZUE + 2175 =0

u ov
uax+va—0 ............. (D)

partially diff w.r.to y

Eliminate 5 from (1) & (2)

(1) multiply v = w2 Z =
Ox 0x
(2) multiply u = uv + u? ZZ =0

v
(u? +U)6x_0
w2+ 0> =0(0r) =0 ... 3)

Eliminate =~ from (1) & (2)

(1) multiply u = u? —+uv%=0
2) multiplyv = v—+uv@=0
) ply o

14
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From (3) & (4), u? +v? =0 (o) 5= =2 = 0

Suppose, u? + v2 =0
~f@)=0
which is not possible.

.au_av_
Tox  ox

1oy = 9% 0v
Also, We know that f'(z) = e Tl = 0
=~ f(2) is constant.
Hence, an analytic function with constant modulus reduces to a constant.

3.Prove that the function f(z) and f(Z) are simultaneously analytic.

Proof:
Letz =x + iy and f(z) = u(x,y) + iv(x, y) be an analytic function
~ u and v have continuous first order partial derivatives which satisfy C - R equation

.au_(')v&(')u_ dv
Tox dy 9y @ ox

To prove: f(2) is analytic.

LetZz=x—1iy

15
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@ = u(x,—y) + iv(x, —y)
f(2) =u(x,—y) —iv(x,—y)
=uw(x,y) +ivi(x,y)

where u; (x,y) = u(x, —y)

v1(x,y) = —v(x, +y)

Oug _0u o Ows _ _0v (1)
ax - ax ay - ay ------------
6171 — @ 6171 _ @ (2)
ax - ax ay - ax --------------
ou dvy Ou dv
Toprove—=— —=—-— ...
O prove 0x dy 09y 0x G)

Ou; Ou  Ov  Oduy
T ox  dx 0y 0y
Ju;, —0du Odv Oy
dy dy dx  Ox
+ uy & vy Satisfy the C.R. equations.

Also, u, and v, have continuous first order partial derivatives (Since, u and v have continuous
first order partial derivatives).

=~ f(2) is analytic.
Conversely,

Let £(Z) be analytic.

using the first part we get f(2) is analytic.
(i.e.,) f(2) is analytic.
Hence, the function f(z) and f(Z) are simultaneously analytic.

4.Prove that the function u(z)&U(Z) are Simultaneously harmonic.
16
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Proof:

Let U(z) = U(x,y) be a harmonic function.

L 0%U(z) |, 9%U(2) _

0x2 ay? 0

To prove: U(Z) is harmonic.

2%2U(2) n 0%(Uz) _

0x2 dy? 0.

(1) To prove:

Now, U(2) = U(x,—y)

ou(z) _ ou 0*u(z) _ 9*u
ax  ox ax2  9x?
u@) _  ou 0*u(z) _ 9*u
dy  ady ay2  9y?2

P _ ot ot
ay2  9x2 @ 9y?2

~ 0%u(2) +
~ U(2) is harmonic.

Conversely,

Suppose that, U(Z) is harmonic using the first part, U(Z) is harmonic.
=~ U(z) is harmonic

Hence, the function U(z) and U(Z) are Simultaneously harmonic.

Note:

1.Consider, a complex function f(x, y) of two veal variables. Introduce two complex variable

z and Z as follows.

X = %(z +2)&y= %(z — Z) with this change of variable we can consider, f(x,y) as a

function, of z&Z, which we will treat as independent variables. Suppose, f is analytic.
17
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ider, & — 0 0x L or 0y
consider, 9z  dx 9z Ay 0z

=55 G)

_ 1 10f -
=Ziay zidy (using C.R equation in complex form )
”_

0z

of 0

E_

=~ The analytic functions are characterised by the condition

of of ox of dy

9z 0x 0z 6y.6z
=525 )
~0x\2)  0y\2i
10 10
=—.—f+—.—f¢
2idy 2idy

af

--&io

~ An analytic Function is independent of z and a function of z alone.

2.Without wee of integration the analytic function f(Z) whose real port is given harmonic

function U(x, y) can be formed ad follows,

consider, the conjugate function f(z)

By the above note, BJ;(ZZ) =0

i.e.,) f(z) can be considered as function of Z alone

ooy =L TD
- M (*+ Denote the function £z) by f(2))
_fO+ i)+ fx—iy)
- 2

Putx =2 & y==~

18
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u({ 1)_f(%+i%)+
2'2i

_f@+f©
2

z z\ _ f(2)+f(0)
(2,2)=L2O (1)

Assume, f(0)isreal. (= fisreal f = f)

f’(0)+f(0)_f(0)+f(0)
2 - 2
= f(0)

oo U(0,0) =

Substitute in equation (1), we get

u(z Z) _ f(2) +u(0,0)

2’2i 2
Z Z
w f(2) = 2u (E'Z) — (0,0

1.2. Polynomials

Every constant is an analytic function with derivative zero. The function z is also an analytic

function with derivative one.

Since the sum and product of two analytic functions are analytic, it follows that every

Polynomial.

P(z) = ag+ a,z + a,z* + -+ + a,z™ is an analytic function.

It's derivative is p'(z) = a; + 2a,z + -+ hy z™

By the fundamental theorem of algebra. For n > 0 the equation P(z) = 0 has at least one root.

If P(a;) = 0, then we can write, P(z) as P(z) = (z — a,)P;(z) where P,(z) is a polynomial

of degree (n — 1)

19
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=R

KKKKK

Repeating this process, p(z) can be written as 15(2) =z-a)(z—ay)(z—a,)

where ay, @, ...a, are not necessarily distinct. These a; 's are called zeros of the polynomial

P(z).

If exactly h of a/s are coincide then a common value is called the zero of the polynomial P (z)

of order h.
Note:

The order of a zero ' « ' can be deformined by consideration of the successive derivatives of

p(z) for z = a. Suppose, «a is a zero of order h.
Than we can write, P(2) = (z — a)"P,,(z) where P, (a) # 0
Successive derivation yields. P() = p'(a) =. --- = p*=Y(a) = 0. while p™ (a) *# 0.

In other words, the order of a zero equals the order of the First non-vanishing derivative.

Definition: Simple zero

A zero of order one is called a simple zero and is characterized by the conditions p(a) = 0 and
P'(a) # 0.

Theorem 1: (Lucas Theorem)

If all zeros of a polynomial p(z) lie in a half plane, then all zeros of the derivative p’(z) lie in

the same half plane.

Proof:

Letp(z) = an(z —a1)(z — ) - (2 — ay)

Taking log on both sides,

~ logp(z) =loga, +log(z — a;) + -+ log(z — a,)

diff with respectto ' z'
20
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p'(@ 1 n 1 ot 1

p(2) - zZ—0q zZ—ay Z—an

Now, a4, @, ... @, are the zeroes of the polynomial p(z).

Suppose ay, a5, ...ay lieinthe halfplane H. i.e.)) ifa, € H,Vk =1,2,..n

Then Im (“"b_a) <0
Let z ¢ H, then Im (?) >0

Now, Im (Z_bat) = Im (@)

b b
zZ—a a, —a
= m (=) = m (=)
>0
Im(z_bak) >0
(Z)<o @)
From (1) bp((j) _Z_ba1 +z_ba2 " Z_ba
:i b
] Z — ayg
b’ n b n b
Im( pé?)ﬂm(Z Z—a ):Z (m——) <0 (by@)
P k=1 k k=1 k
.. bp'(z)
'Im< Py ) <"
bp' (z)
o) "
= p'(2) #0

z¢&H = p'(z) #0
21
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Taking negation, - p'(z) =0=>z€H
1.3. Rational Functions:

Consider, a rational function R(z) = % given as a quotient of two polynomials. We assume

P(z) & Q(z) have no common factors and hence no common zeros.
R(z) will be given the value oo at zero's of Q(2).
~ R(z) is considered as a function in the extended complex plane.

The zeros of Q(z) are called poles of R(z) and the order of the pore of R(z) = the order of

corresponding zeros of Q(z)
Note:

1.The derivative R’ (z) = 222 (Z)(;;(Z)Q @) exist only when Q(z) # 0.

We note that, R'(z) hat the some poles as R(z) and the order of each pole being increased by

one.

P(z) _ apt+aiz+azi+--+apz"
Q(z)  bo+b1z+byz%+---+bpz"

2.Let R(z) =

be the given rational function.

Then there are exactly n-zeros and n-poles in the finite part of the plane.
Problem 1:

Find the order of the zero (or) a pole at oo

Solution:

Consider, R(1/z)

We write as a rational function R, (z)

(ie.,) R(1/z) = R, (2)

22
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Set R(o0) = R, (0)

IF R,(0) = 0 (or) oo, the order of the zero (or) pole at oo is defined as order of the zero (or)
pole of R,(z) at the origin.

[ Since, the behaviour of R(z) at co is Same as behaviour of R, (z) at the origin].

P(1/2)
Now, R, (2) = R(1/z) = Q(l/;

_ag+a;(1/2) + ay(1/2%) + -+ a,(1/2")
" by + by (1/2) + by(1/22) + - + by, (1/2™)

_ (apz" +ayz" M+t a,) /2"

~ (boz™ + byz™"1 + -+ bm) /z™

o (@oZ" +a;z" 4+ ay)
bOZm + blzm—l + -4 bm

i) If m > n, origin becomes a zero of R, (z) with order m — n.
=~ oo is a pole of R(z) with order m — n.
ii) If m < n, origin becomes a pole of R, (z) with order n — m.

~ oo is a zero of R(z) with order n — m.

iy Ifm=n,R,(2) = ;1—” # 0 (or) . . oo is neither zero nor pole of R(z)

No. of zeros in No. of Total No. of poles in the No. of Total
the finite part | zeros at oo finite point of the poles at
of the plane plane 0
m>n n m-—-n m m - m
m<n n - n m n—m n
m=n n - n m - m

The above table shows that, number of zeros and number of poles in the extended complex

plane are the same and it is equal to greater m and n.

23
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This common number of ceros and poles is called the order of the rational function R(z).
Note:

1. A rational function R(z) with order p has p zeros and P poles and every equation

R(z) = a, where ' a ' is a constant has exactly p ' roots.

2. Every rational function has a representation by Partial fractions.

Assume that R(z) has a pole at infinity we Carryout the division of % until the degree of
remainder is almost equal to that of the: denominator.

The result can be written in the form R(z) = G(z) + H(z) (1), where G(z) is a polynomial
without constant term and H (2) is finite at infinity. The degree of G (z) is the order of the pole
at infinity and the polynomial G (2) is called the Singular part of R(z) at infinity. Let the distinct
Finite poles of R(z) be denoted by Sy, B, -+ 4.

The function R (Bj + i) is a rational function of & with a pole at € = co.

By use of the decomposition (1) we can write R (Bj + i) = Gj(&) + H;(e) (on with a change

of Variably

1 1
R@) =6 (Z - 51') tH (Z - ﬁ,-)

Here, G; (—2 1;3 ) is a polynomial in Py 13 with out constant term, called the Singular port of R(2)
—Bj —Bj

The function H; <L> is finite for z = B;.

J

Consider, the expression R(z) — G(2) — Y5, G; (L>

Z—RJ'

This is a rational function which cannot have poles other than £, B, ... B4 &,
24

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



At z = B; we find that the two terms which becomes o have a difference H; (L) with a

J

forite

limit and the same is true at oo.
= (2) has neither any finite poles nor a pole at in fixity.

=~ The above rational Function reduces to a constant. If this constant is absorbed in G (z).

we obtain, R(z) = G(z) + Z?=16j< ! )

Problem 2:

Use the method of the text to developer

4

- VA - - -

i) =N partial Fraction.
Solution:

- Z4

i) Let R(z) = p

The poles are got by, z3—1 =10
=>z3=1
=z=1w w?
2By =1,B = w, Bz = w?
~G(2)=z

Consider, R(B; + 1/e) =R(1+ 1/¢)

. (+1/9)"
S (1+1/8)3 -1
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_1+4Q/e)+6(1/e") +4(1/e3) +1/&*
1431 /8)+3(1/ex) +1/e3 -1
(e*+1—e3+6c2+4e+1)/e*
- 32+ 3e+1/¢3
et + 43+ 62+ 4e+1
- £(3e24+ 3+ 1)
-'-R(ﬁ1+1/e)=84+483+6€2+48+1
363+ 3e2+¢

L Gy(1+1/8) = 1/
1
~Gi(2) = 3(z— 1)
(w+ 1/e)*
- w+1/e)3 -1
w* +4w3(1/e) + 6w?(1/e?) + 4(1/3)% + (1 /%)
- w3 +3w2(1/e) +3w(1/e?) +1/e3 -1
w+4(1/e) + 6w?(1/£%) +4w(1/3) + 1/&*
- 1+ 3w?(1/e) +3w(1/e2) +1/e3 -y
we* + 4¢3 + 6w?e? + 4we + 1/&*
3w?e? + 3we +1/¢3

wet + 13 + 6w?%e? +dwe + 1
S3w2e3 + 3we? + ¢

k(B +1/¢) =

1-¢
Gz(w + 1/8) = E

z=w+1/¢e
B 1
- 3w(z—w)
z—w=1/¢.
1
€= .
Z—w

consider, R(B; + 1/¢) = R(w? + 1/¢)
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@i/t [t
(w2 +1/e)3 -1 < R(Z)_z3—1>

@+ 4(3) @ + 6 (55) ()7 + 4GP + 1/

(w?)3 +3(1/8)(w?)? +3(1/e?)(w?) +1/e3 -1
w2+ 4 (3) + 6(1/ew +4 () - w? + 1/e*

1+3(1/)w +3 () w2 + ()~ 1
w? - e* + 4€3 + bwe? + 4ew? + 1/e4
- Bwe? +3w?-e+1/¢€3
R(By +1/6) = w?e* +4e3 + 6we? + 4ew? + 1
Bwed +3w?e? + ¢

£ 3
[ z=w?+1/¢
1 ) 1
E—Z w*, E_Z—WZ]
G
3(2) 3(2—(1)2)

~R(z) = G(2) + G1(2) + G,(2) + G3(2)
1 w
(z—1) * 3w(z — w) " 3(z — w?)

R(z)=2+3

1
z(z+1)2(z+2)3

i) Let R(2) =
The poles are got by, z(z + 1)?(z + 2)3 = 0.
52z=0& (z+1)2=0&(z+2)3=0

2z=0&z=-1,-1, &z=-2,-2,-2

Bl = O,ﬁz = _1'33 = _1'34 = _Z'ﬁS = _2'186 =-2

1

G(2) = o eenys ‘Consider, R(By +1/¢) = R(0 +1/¢)
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1
W/e(@ + 1 () +2)

OE TGz )

1

OO D) G g )

1
—1 2 IN/1 6 12
Gra)+5)(Gra++8)
~ 1
=1 6 12 8 2 12 24 16 1 6 12 _ 8
(Hateatetmteatmtatmtatents)
86
R 1/¢) =
(B +1/8) = T g 4 25:7 + 3867 + 2867 + 8¢°
1
~G1(1)e) = g&
z=1/¢

1
~Gi(2) = g, = 1/z.

Consider, R(B; + 1/¢) =R (_1 + i)
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=1+3£+3£2+83—8—3€2—3€3—€4

86

1+ 2 —2e3— ¢t

“R(B,+1/e) =

o Gy(—+1/e) =26 — €2

=~ (r)
- 2(Z)_z+1 z+1

Consider, R(B, + 1/e) = R(=2 + 1/¢)

1
2+ a2+ D+ D2+ D) +2)°
1
1.1 1 3\
=(-2)(E-1)
1

:1—2€+€2—2€+4€2—283
6

€
”R(ﬁ4+1/€)_1—4€+582—283
e3 5g2 17¢
G2+ 1/e)= =5 -5~
-1 5 17

Gy(2) = 2(z+2)° 1(z+2)? 18(z+2)
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~ R(2) = G1(2) + G1(2) + 2G(2) + 3G4(2)

B 1 N 1 +2 ( 2 1 ) 3 ( 1 4 5 4 1
Cz(z+1)%(z+2)3 8z z+1 (z+1)2 2(z+2)2  4(z+1)2 8(z+2)
1 4 2 3 15 51

S R(Z) =

)

1.4. Power series:
Definition: (limit superior)

If A is finite where A = lim sup{a,,} then given € > 0 their exist n,

Such that |An — A| < g,Vn > n,.
Definition: (absolutely convergent)

A series Za,, with the property that }'|a,,| convergesis called absolutely convergent series.
(i.e)) Ya, converges and Y a,, converges then Y a,, is absolutely convergent

Converges uniformly:

The sequence {f;, (x)} converges uniform on E < to every € > 0 their exist an n,
Such that |f,,,(x) — fo(x)| < &, Vm,n = nyand Vx € E

Result:

1.Consider the two series Y. f,, (x) and Y.a,, such that |f,,(x)| < Ma,,, for some constant M for

all sufficiently large n.
The first series Y.f,, (x) is called minorant and the 2™ series is called majorant.

2. Weierstrass’s - M test:

Iflfn(x) + fn+1(x) + et fm+p(x)| < M(an +apq o0t an+p)
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e K
and if the majorant (2"¢ series) ) converges then the minorant (1st series) converges

uniformly.

3. Differentiable at z, : (Derivative at z, )

o) = tim [ =S G
)=

0 Z — Zy
4.1im,,» f,(2) = f(z) = for agiven ¢ > 0, their exist an n such that

lfn(2) — f(2)| <& vn.

Power series:

e The general for of a power series is Y n-,a,z" where ' a,, "and ' z™ ' are complex.
o Y ,a,(z — z,)" represents the power series with respect to the center ' z, ".

e consider the geometric series, 1 + z + z2 + z3 + ---- +z™ + --- -, the portialsum can

be written in the form 1 + z + z2 + -+ + zn~1 = 2=~

1-z
a)If|z] < 1,|z|* > 0asn - oand so Y,p-pz" = i

(i.e.) the geometric series converges if |z| < 1

If|z]| = 1,|z|" > c0asn — o and S0 Y, —,z™ diverges to co.

Hadamard's formula:

1 n 1
7 = lim sup Vlax| (or) R = dm

Aptq
an

R — Radius of convergence ( ROC)
Result:

e The power series Y o—,a,z" convergent if |z| < R. (Interior of a circle) and divergent

if |z| > R. (Exterior of a circle)

e |z| < 1= bounded|z| > 1, unbounded.
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Theorem:1 (Abel’s theorem)

For every power series Y o—,a,z™, there exists a number R,0 < R < oo called the Radius of
Convergence, with the following properties:

(1) The series converges absolutely for every z with |z| < R. If 0 < p < R, the convergence
is uniform for |z| < p

(i) If |z| > R, the terms of the series are unbounded and the series is consequently divergent.
(iii) In |z] < R, the sum of the series is an analytic function. The derivative can be obtained
by term wise, differentiation and the derived series has the same radius of convergence:
Proof:

.1 . n
We know that Hadamards formula is - = M&SUP Jlag|l (1)

R — Radius of Convergence

Claim: R has the required properties

To prove. (i):

claim:1 Y.a,,z™ converges absolutely if |z| < R
(i.e.) To P: X |a, z™| converges.

given: |z| <R

chooseer: |z| < p <R.

= |z| <pand p <R.

|z| 1 1
>—<land —>—
P p R

Now,% > % = lim,,_,, sup 1/la,| (by (1)

By the definition of limit superior, 3 an n, such that

n 1
= |an| <;

(ie) a,|Y" < 1/e
1 n
= lal < ()
|z[\"
= |la,zm| < (?> (Multiplyby | z|™)
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1|

Now (7)11 is convergent.

(i.e.) The geometric series majorant is convergent.

la,z™| < 1
> z |a,z™| converges

= Z a,z" converges absolutely.

claim:2

If0<p <R & |z| <R, then Ya,z™ converges uniformly in |z| < p.
0<p<Rand|z| <R,also|z| < p

choose p’ =:0 < p <p' <R.

=>p<p andp’' <R
p 1 1
=>—,<1and—,>—
P p' R

1 1

o > 5= lim sup %/|a,|( by eqn (1)
n—-o0o

By definition of limit superior,

1
their exist anny= 1/|a,| < o

1
= |an|ﬁ < F

1
= lay| < (p—)

= taz < (E) < (2) ¢ 1<)
n p/ p/ -

n

n
Now, (ﬁ) is convergent. The geometric series majorant is convergent
la,z"| < 1

~ The majorant converges
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Hence By Weierstrass’s - M test, Y.a,,z" converges uniformly.
To prove (ii):
claim:3
If |z| > R, the terms of }.a,,z™ are unbounded and so diverges.
given: |z| > R
choosep 2 |z| >p >R
= |z|>pandp >R
|z| 1 1
=>—>1land —< =
p p R

1 1 .
’ <5 = lim sup Vlay| (by (1))

By definition of limit superior, their exist an ny, 3

Vla,l > 1/p

1
= layln>1/p = la,| > (1/p)"
lz]\"
= |la,z™| > <?> > 1

The series (%)n is unbounded.

= Y.a,z" diverges to co.
To prove (iii):
Claim:4

1
We know that, % = lim supy/|a,| = lim sup |a,|»
n—-oo n—oo

The series Yo, na,z""1 has the same radius of convergence.

Let R’ be the Radius of convergence of 1 (nay)z" 1t

(i.e) % = lim,,_, o, sup/|ay,|

1
(ie) = = limyo supnt/™anln ..., )
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To prove: R = R’
Now, To prove: limj_,,n" =1

Let n'/* = 1 + §,, where g,, > 0
>n=0+§)"
By the Binomial theorem,

S>n= 1+(711)6n+(721)6,%+----+6,’11

n - . .
> 1+ ( 2) 62 (eliminating some term)

n nn—1)
— 2 _ )62
= n 1>(2)6n=>n 1>———8
2
=>—> 52
n n
2
=0, < ”
asn—-»>oo, [—>0
n

=6, > 0asn—-> o
1
snn=1+6,=1+0=1asn—-> o

>nl/M=1asn- o
s~ limnt/m =1

n—->oo

1
~ () = = = limsupla, '™
R n-oo

= lim sup ’i/a_n

n—-oo

= R = R’', convergent in |z|£R.

= Y a,z" 1is convergent in |Z|£R.

Claim: 5

If | Z14R, the sum of the series is an analytic function and the derivative is obtained by term

wise differentiation.
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oo

Let f(z) = Z 42" = Sy (2) ¥ Ry(2) e (2)

n=0

f'(2) = na,z™ 1; where
n=1

Sp(2)=ag+az+az>+ -+ a,_1z"1...........(3)
n-1

= aka
k=0
and R, (z) = Yo apz® oo (4)

Consider the series Yo, na,z" 1.
By claim: 4, this series is convergent in |z| < R.

Let f;(2) = Yn=1napz"!
= f1(2) = lim §;,(2) = (1)
n—-oo

Atz=7,faneg/3>0

1S5, (z0) — f1(zo)| < £/3,Vn

= Sp(z0) — filzy) < g,Vn N )|

(~lz|<a
>—-a<z<a)

f(2)—f(20)
z

Z=Zg

consider — f1(z,), where

|z]| < p < Rand|z,| < p < R. choose p.

Sn(z) + Rn(z) - Sn(zo) - Rn(ZO)
{ Z— 2z,

} — f1(20) (by (2)

Rn(Z) - Rn(zo)
zZ—Zz,

{Sn (Z) - Sn (ZO)

Z_ZO

} + S;(z0) — Sy (z9) + { } — f1(z0)
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= O 4 [51(20) — fulz)] + [ E] 6)

Z—ZO

Ry (2) — Rn(ZO) _ Zlc:;n CLka B Zl?=n akZ(I)c

Z_ZO Z_ZO

Now,

_ Zl?=n ak(zk — Z(I)()

Z_ZO

oo}

= Z an (2% + 2gz*"2 + 227473 — zF1)

k=n

Rn(2) — Rn(20)
Z—Z

(o8]
<)l
k=n

given |z| <p, |z I<p

< |a | ek—l_l_p’pk—z +p2pk—3
- k Fo pk—l]

< Z lag| [p*~ + p*~t + p*=t 4 oo k1] (k-times)

= The series Y5, ka,p*~1 is absolutely Convergent at z = p

Rn(z) - Rn(zo) <
Z— 2z,

-~ their exist an n, =

£/3 i (7)

vn = ny.
By the definition of derivative,

. Sn(z) - Sn(zo)
lim

z-2g zZ — 2,

= 5p(20)

= [2@=5n0) o1 < e/3 (8)

Z—Zg
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£(2) = f(z) .
2=, )| <zt gtz=e
(@) = f(zo)

= lim ————=fi(z
Jim = = i ()

(6)

= f'(zy) = f1(z,) (by the definition of derivative) at z = z,

=~ f is differentiable at z = z,.
since z, is arbitrary,
= f is analytic.

Problems:

1.Find the radius of convergence for the following power series ( Za,,z" )

M Enizt G)EZ (i) Tzt (W) g () 2 ([g<L)

Solution:
() Xn!z"
Here a,, = n!
We know that, %zgg&‘ﬁ:'zgygFE%;ﬁ|

1/R=0=R =

.. zn
(i) X—
1
1: lim an+1 = lim ((n+1) — | n! |
) R n-oo | an n—oo l. n-ooo l(n+1)!
Here a, = = ! 1 1
o =lim| = |=lim| |=—=0
n-oo l(n+1)n! n-ooo l(n+1) o)
~1/R=0>R =00
(iii) XnPz™
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Here a,, = n?

R = lim |2 = 1im ‘—(n+ i
n-oo | a, n—-oo nb
p
)
n—-oo np
p
= lim " (1 +%)
n-o nb

= (1+1/0)? = (14+0)P =1
1/R=1=>R=1

(iv) Yq"°z" Here a,, = g™

1

E= lim

2
q(n+ 1)

2

Apy1
an

= lim

n—-oo

n—oo

qn

n?+2n+1 22 2n+1
. q . q- -a
=lim|(———|=lim |————
n—oo amnz n—oo qn

= lim (g?™*1) converges to 0
n—-o0o

if|q|<1.°.%:0=>R=oo.

() 2"

We know that,

20 = 700 4 gl 4 g2 g

D25 ps

a,z"=n=0=z+z+z%2+2%+

S
I
o

apz" =2z+2z%+ 7%+ -

i[M]s

a0 +az+az?+azzd+=2z2+22+2%+ -
a,=0,a, =1,a,=1,a3;=a,=as=0,a5 =1
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1
R

2. Ya,z™ has radius of convergence R. What is the radius of Convergence of Y.a, z?" and

1ifk =n!
W = {elsewhere - @ lal =1
= lim sup|a,|¥* =1
n—oo

Ya,?zm.

Solution:

Given Y.a,z™" has radius of convergence R.

1. Ya,z*" = Ya,w™ where w = z2

z own = {converges if lw| <R
LWl =

diverges if |w| >R

lw| <R e |z?| <R

((e) converges if |z?|zR

diverges if |z?| > R

Ya,z*" converges if |z| < VR

diverges if |z| > VR

-+ The Radius of convergence R = VR

2.

If f(2) = Y a,z™ then what is the radius of convergence of Y¥n3a,,z" ?

Yazz"

1
we know that e lim sup?/(|a,|)?
n—-oo

= lim sup(|a, )/
n—-oo

1\ 2
= (lim suplan|ﬁ> = (1/R)?
n—-oo
1 1

‘.‘R_:ﬁlesz
1

Solution:
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Method:1

Let R be the radius of convergence of f(z) = Ya,z"

1 . n
v o= rlll_r)x(}osup V@) ()

Let R, be the radius of convergence of ¥n3a, z"

1
hp = lim sup’/|n3a,|
1 n—->oo

1
(ie.) — = lim sup|n3a,|*/™
R1 n—-oo

we know that |z, z,| = |z,]|z,]|
1
o — =1 3 1/n
» = lim sup|n’||a,|

= (Jfimsupln*"|%) (Jim suplay ")

w-k-tlimn'/" =1

n—->0o
1 .
= —=1" lim supla,|** = 1/R
R1 n—-oo

“R =R

Hence radius of convergence of Ya,,z" and ¥n3a,,z" are same.
n n

Method: 2
1 a
~ = lim |2 and
R n-w| a,

Here a, = n3a,
(n+1)%any,
n3a,

(14 1/n)%an,,
m

= — = lim

1 n—->oo

n—-oo n3
1,3 a
= lim (1 +—> . lim [
n—-oo n n—-oo an
a
= 1. lim |22
n—-oo an
1 1
= —=—
R, R
=> R, =R
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3. If Ya,z" and b, z" have radii of converiqer;t R, and R,. Show that the radius of

convergence of ¥, a,, b,z" is atleast R, R,
Solution:

Let R, be the radius of convergence of }a,,2™ and R, be the radius of convergence of

Ybnz"

T n 1 5. . .
= lim,,_,., sup %/|a,| and &= lim,,_,,, sup +/| b,,| consider the series Y.a,, b, z™.

Let R be the radius of convergence of ¥a, b, z".

1
Sk lim sup’y/|a, b,
n—->oo

= lim sup|a,|*" - lim sup|b, |*/"
n—->oo n—->oo
1 11
R R, R,
R = R1R2 OI‘R < R1R2

2z+3
z+1

4.Expand impower of (z — 1), what is its radius of convergence.

Solution:

2z+3
z+1

Let f(2) =
puth=z—1=2>z=h+1

2(h+1)+3 _ (2h+2)+3 _2(h+1)+2+1

f@O=f+ D = N1 = hvz - (e D+1
2[4 1) +1] 1 2h+D+1] 1
T ThiD+l "D+l hEiD+1 Rtz

—2e3(1-5+(3) )
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e K
=~ The radius of convergence is the large disc around 1 in which the function is analytic and -

1 is the only point where the function is not analytic and the distance of -1 from 1is 2. - The
required radius of convergence is R=2.
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UNIT-II:

CAUCHY’S INTEGRAL FORMULA and LOCAL PROPERTIES OF ANALYTICAL
FUNCTIONS: The Index of a point with respect to a closed curve — The Integral formula —
Higher derivatives. Removable Singularities-Taylors’s Theorem — Zeros and poles — The local
Mapping — The Maximum Principle.

Chapter 2: Section 2: 2.1to 2.7

2.1. The index of the point with respect to closed curve:

The index of the point (or) the winding point. The index of the point with respect to closed

curve Gamma by the equation n(y, a) = — [, =

2mi 'Y z—a

Example:
dz .
We know that [ — = 2mi

Where c is a circle with center a, hence n(c,a) = 1
Note: The bounded region is called the interior of ¢, other is called exterior of c.
Properties:

i) n(y,a) is an integer.

i)  n(-y,a)=-n@,a

iii) When a lies outside the circle then n(y,a) = 0

iv) When y is any closed curve then n(y, a) is constant is one region and zero in the
un-bounded region. (or) n(y,a) = n(y,b) ifaand b € same region determined

by y and n(y,a) = 0 if a eunbounded region determined by y.

Proof:

(i) We know that n(y,a) = "

2wl VY z—a
Now K is an integer.
~ n(y,a) is an integer
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(i) n(—y,a) = —n(y,a)

1 dz
Letn(—y,a) = —
2mi yZ—a
-1 dz
=iy e - M)

n(-y,a) = —n(y,a)
iii)  Given a lies outside the circle n(y,a) = 0

To prove that n(y,a) = 0. Let y lies inside of the circle

Then we get, n(y,a) = )

2mi VY z—a
= n(y,a) = 0, V point a outside of the circle.

iv) Let a and b be two points in the bounded region y, such that y does not passes

through a and b.

1 dz
Tl()/,a)=r
mi),z—a
1 dz
7l My
1 dz 1 dz
n(y'a)_n(y'b):2ni,j;,z—a_2ni_];,z—b
1 U‘ dz 1f dzl
2Ti yZ—a Zm'yz—b
= 1 [1 | b)]
=~ llog(z — @) — log(z - )
n(y,a) —n(y,b) = %[log [5” ............... (1)

Since log (g) is never real and less than or equal to zero (< 0) but the index number should

be positive = 0
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OSlog[%] <0

=1 [Z_a =0
ng—b B

(O =n(,a)—ny,b)=0
= n(y,a) =n(y,b)

If a € unbounded region determined by y.

1 dz

n(y,a) =2_T[i ]/Z_Cl

when |a| is sufficiently large and y lies inside of the disc.

“lzl <y <lal
- n(y,a) =0

Note:

As a point set y is closed, bounded and its complements in the extended plane is open.
= Union of disjoint region.

Lemma :1

Let z,, z, be two points an a closed Curve y. which does not passes though the origin denote
that sub arc is z; to z, in the direction of the curve by y; and sub arc from z, to z; by y,
Suppose that z; lies the lower half plane and z, in the upper half plane. if y; does not meet the

negative real axis and y, does not meet the positive real axis. Then n(y,0) = 1.
Proof:
draw the half line L, L, from the origion through z, and z,.

Let {;,{, be the point in which L, and L, intersect. The circle ¢ about

the origin
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, gt

Todis e
IF C is described in the positive sense then arc ¢, from ¢; and ¢, does not intersect the negative

axis. and arc c, from ¢, and {; does not intersect the positive axis.
Let the direct line segment z; to ¢; and from z, to {, be denote by &; and &, respectividy.

introducing the closed curves o; and g, by mathematical simple symbol by positive sign for

positive direction and negative sign for negative direction (or) opposite direction
S0 =Y+t Vva—c— 6

&o, =y, +61—¢1— 6,

We find that n(2,0) = n(c, 0) + n(oy, 0) + n(o,,0) ........... (D

-+ cancellation is opposite direction.

Note that, o, does not meet the negative axis.

Hence origin e unbounded region determined by o, and hence we up obtain n(o;,0) = 0 and

for a similar reason n(a,,0) = 0.= n(y,0) =n(c,00+0+0

=>n(y,0) =n(c,0)=1=n(y,0) =1

Problem:1

Compute n(c,0) where c is curve given by equation z = z(t) = e??™,0 <t < 1.

Solution:

We know that, n(y,a) = L (1)

2miYY z—a
To find: n(c, 0).

y=ca=0,z=2z(t) =e?™

. } sub in (1)
dz = i2mnet?™tdt
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(1) = n(c,0) i

ei27rnt

1 fl i2mne2™t gt
t

=0

1

n(c,0) = j ndt
t=0
= n[tls
=n(1-0)
n(c,0) =n.
Problem:2

Findn(y,a), z=z(t) =e*™*,0<t <2
Solution:
Herea=0,z(t) =z=e**,0<t <2
dz = 4mie*™tdt

1 dz

We know that, n(y,a) =—J — ... (1)

2mi VY z—a

2 amietTitqgt

)= n,0) = %ftzo it

2
=2f dt = 2[t]3
0

n(y,0) =4

2.2. The Integral formula:

Theorem 1: The Cauchy’s integral Theorem

Suppose that f(z) is analytic is an open disc A and Let y be a closed curve in A. For any point

f(2)
Y (z-a)

anotany.n(y,a)f(a) = 2—71“ dz. Where n(y, a) is the index of a with respect to y.

Proof:

48

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Eg“ “w
Let f(z) be analytic function in open disc A

Let Y be a closed curve A.

Let a € A but a does not, lie an y

f@)-f(a)

zZ—a

consider the function F(z) =

This function is analytic at all points except at z = a. does not pole whole

f@) - f(a)

 imG - OF@) =l - 0= g

=f(a) - f(a)

= lim(z—-a)F(z) =0
zZ—-a

= z = a is an exceptional point of F(z)

~ By cauchy theorem [Let F(z) be a function which is analytic inside and an a simple closed

curve C. Then [ .f(z)dz = 0]

f F(z)dz=0

14

(ie) [, 1284z = 0.

(ie) [, 22dz - f(0)f 2= =0

Y z—a

(i.e.) fy gdz = f(a)2min(y,a)

(ie) 5 J, 22 dz = f(a) - n(y,a)

Y z—a

When n(y,a) =1

we get, f(a) = — [ L2 4y

2wi Y'Y z—a
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Problem 3:

dz
compute [, _, & —
Solution:

By Cauchy’s Integral Formula,

hy,a) f(@) =— [ 22az ... (1)

2wi Y'Y z—a
f(2)=1, 2 z—a=z+1=(z+D(z—1)

=z2—i?=2z24+1

:] %zf Ziidz+j zﬁidz

1 A N B
= =
(z+iD)(z—-0) z+i z-—i

1 _A(z-)+B(z+1)
z+D)(z—-0)  (z+iD(z- i)

1=A(z—-i)+B(z+1i)

putz = i

1=0+2Bi

>B ==
2i

Putz=—i=1=A4A(-2))+0=1=—24i

=>A=-1/2i.
111 +1f 1
zZ+1  2i(z+i) 2i) (z-1)
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dz -1 dz 1 dz
.o f m —_ Efl2|=2 E-I_Zlel:Z ; ........... (2)

f(@)=1z+i=z—(-i0)
>a=-i

~a=—iliesinside c:|z| =2

~n(c,—i) =1
fl@=f-n=1

- By Cauchy Integral Formula,

- 2__7'[11 (le> -flz|=2 Z—d—(Z—l)

—47i? = f L
|

z|=2 Z = (_l)
dz
=47 = .f|Z|=2 m ............ (3)
a=i = —4n = le|=2 % ........... 4)

Sub equation (3) (4) in (2).

f dz 4 4
=2 221 oA

dz

= ——=0
,Z2+1

|z|=

Problem 4:

cosz

compute f|z|=1 prp

Solution:

By Cauchy’s Integral formula,
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f(2)

n(y,a)f(@) =5~ | -—-dz

f(z) =cosz,z—a —z(z—4)
a

— =04
7= 0

1 A B
(Z—O)(Z—4)=Z—O+Z—4
1 B(z—4)+B(z—0)
G-0z-4  @-0@z-4

putz = 4

1=0+4B
=>B=1/4
z=0
1=14A
=>A=-1/4

COSZ
+1/4f

2T A

B 1 Ccos z
n(c,0)f(0) = _Um ) _4“2] - (2)

=>n(c,0)=0

f(0)=cos0=1

1 1 [o{0 4
)= s

21l z

—8mi = [ Cozszdz

cosz

Similarly, = f

dz = 87i

from (3), (4) Sub in (2)
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:f OS2 . o 8mi—8mi=0
Z(Z—l) Z = OTrl L =

ﬁj coszd ~0
z—4) z=0.

Problem 5:

What is the value of fc ZdTZa if c is a circe and a lies outside c.

Solution:
Given a lies out side c.
~n(c,a)=0

We know that, By Cauchy Integral formula.

d
n@)f@ =5 [ TDas
14

from given, f(z) = 1.
n(c,a) =0

fl@) =1
1 dz

' Zm zZ—a
ﬁnj-
zZ—a

Problem 6:

|dz|
f —lz, la| # p.

z1=p 12 — @

Solution:

given |z| =
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|z|? = e? = zz = p?

Let z = pe'?

. dz
dz=pe19-id6=>d0=i—z
|dz| = |pe’®ide)|
= |plle®]lilld6]
=z(1)(1)|d6|

dz

= ldz| = p—

gl = o dz
|dz| = ip—-
lz—al* = (z—a)(Z=a)

=@z-a)(Z-a

|z — al? =(Z—a)<p72—d>
dz

. f —ip— B f —ipdz
. 2 - 2 _ 74
—ipdz
f|Z|=P m ............ (1)
We know that,
The Cauchy's Integral Formula,
1 [ f@@
n(a)f(@) =g | G2
=>=2min(y,a)f(a) = LZ)dz . (2)
cZ—a
From (1),
—ie
Let, f(2) = —ar
_ _ —ie _ —ie
f(a)_pz_d'a_pz_az

n(c:|z| = p,a) = 1. Subin (2),
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2T dz
A f |z|— c|z|2
p |z|=p
j ldz1  2mp
zl=p 12 —al*  p? —a?
Problem 7:
] |z — 1]|dz|
|z|=1
Solution:
givenc:|z| =1 171 =r
z=rel?,

z=(1)e®
dz = e"'e - ido
|dz|= |e®®|]i]|d6]| = |1]]1|d6)

le®| = |cos @ + isin@| = |dz| = |dé|
=Jcos?0 +sin28 0<6<2m
=1

lil=vo+1=+i=1
z-1)?=z-1D(E-1)
=(z-1D(z-1)

— (eie _ 1)(8—1'9 _ 1)

— (eiee—ie _plf _ o-if 4 1)
=(1—cosf —isinf —cosf +isinf + 1)
= (2 — 2co0s0)

= 2(1 — cos @) = 2[2sin? 6/2]
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|z —1]|% = 4sin? §/2
= |z—1| =2sin6/2

21
j |z — 1||dz| = 2] sin 6/2d6
|z]=1

0
_ [—cos 0/2] T

1/2 |,

2.3. Higher derivatives:
Theorem: 1 (Cauchy’s representation formula for the derivative)

An analytic function f(z) in a region as derivatives of all orders which are also analytic in

the same region Q.
Proof:

We know that, Cauchy’s Integral formula,

f(2) = %fygdi ................ (1)

L

Choose, |Az| is small.

Such that f'(z) = Alimow
Z—

z + Az lies between v.

1
Now, f(z + 82) = f(2) = .=/, C—(fz(f—)Az) a7
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- 27171' U Z—fz@—) Az fv o l

anUﬂf@)h -]

—Z—Z+Z+AZ d
27‘[1,[ 1© [(Z —A2)((— 2)

Zﬂlff(() [(( z)(( Az)] @

(+)Az on both sides,

fe+ ) —f(2) _ 1f f@©
- 2mi ), (T

Az “D@-z-19)%

1 f®
fy o dg on both sides,

f(Z+AZ) fl@ 1 f©
2mi ), (C—2)?
f [ 1
an-ﬂm e
.[’ [ (—z—(+z+ Az d
~ 2mi f© [(T—2)2({—z—Az) ¢
Az

Zm,f f© (Z—Z)Z(Z—Z—AZ)] %

fE)
Zm,l- (C—2)2((—z—Az2) %

dg

i

Taking modules on both sides,

, |f(Z+AZ—f(Z) L[ SO .
) 2ni ), = 2)?
_ |27 f@®
B Zm'j;, (C—2)2(C—z—Az) dZ|
IAZI IF @l
prl Ayl QRN (2)
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Let M = max of f(4)
Let § = the mean distance of points ¢, on y from z
Since f(Q) is an analytic an y.

He should be continuous on y.

S |fQI<Mony e ... (3)
[C—2z| > 6
= ! <l
|C—z| &
LI 4
= =2 = 52 U € 3

> |0—z—Az| = [({—2z) — Az|
> |(C—2)| — |Az| = 6 — |Az|

1 1
<
S SaTa e (5)

We know that, fy |dr| = | = length of a curve y
Sub (3), (4), (5) & (6) in (2).

fe+Az)—f(z) 1 f@®

Az 2w ) (T—2z)?

|Az| ml
2w §%2(6 — |Az])
- 0asAz—-0

dZ| <

~ lim
Az—0

f(z+Az) - f(2) 1f f(©)
Az v

(i.e.,) f’(Z) _ if £(9dg — O

2mi * Y ((—z)2

15t derivative

= f'(2) =

1 j’ f(©dg
2mi J, (¢ — 2)?
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: d

T 2mi ), (T—2)3

ff(2) =

n! j f(©dt
271 v (T — z)nt1

Evaluate 1:

f sin z dz

|Z—1|=2 (2_1)2 .

Solution:

We know that, f™(a) = 2”_'f f(2)dz

Tl Y (Z_a)n+1

2mi n _ f(Z)dZ
5@ = | G

n+l1=2=>n=1

C:lz—1]=2 (vcilz—al=7)

a=1
f(z) =sinz
f'(z) =cosz

f'(1) = cos1 = f'(a)

. f'(a)2mi sin zdz
“0= 1! N fV (z—1)2

_ (cos1)(2mi) _ [ sinzdz
N f 17

N f sin zdz 2 1
—— = 2mi(cos
v (z—1)?
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Lemma 1:

Suppose that ¢ (?) is continuous an arc v. Then the function E,(z) = |

In each of the region determined by v and the its derivatives is F, (z) = nF,;,(2).

Proof:

To prove that F(z) is continuous

Let z, be a point not an v. and Choose neighbourhood |z| — z, I< 8.

So that it does not meet a.
By restricting z to the smaller neighbor |z — z,| < §/2.
~we find that [{—z| > §/2Vt ey

PO [ PO
y(Z_Z) y(Z_ZO)

Now. =f¢“ﬂ@i ek

f¢“h{2@T5PS

Taking modulus on both sides,

Fi(2) — Fi(z0) =

IF(2) = Fu(zo)l = | f, 6(2) [ 52| g

PQUAD] v (1)

|F1(2) — F1(z9)| < |z — z,] fy = zlli=zq|

.(3)

—>—jsanalytic F,(z).
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and Letfy|dq =1....... 4)

[ = length of the are y.
Already we know that,
IC— 20l > 6

1 Lo (5)
:|§—20| <

Sub (2)(3)(4) & (5) in ().

~ ()=

l
|F1(Z)+F1(Z0)| 2|Z_Z0| <€

52

Tak =—,

BT = ol
2mi _
52

= |Fi(2) = Fi(zp)| < ¢
= F,;(z) is continuous of z,.
From (1) we get,

i[O =IO _

z-0

F1(z) — F1(zo) _ f $(Ddg
@

zZ— 2z, —z)(C— zp)

_ F(2) = F1(20) Y ¢ (Q)dt
ST 2o h) Gea@-20
N ¢(0)d¢
= F(z0) = .];, (G —20)(C— 2o)

¢(0)dg
v (€ — 2p)?

Fi(z) = F5(z,)
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o
&

The General case by induction on n. we have already proved for n = 1.

We shall assume that the result is true for n = (n — 1).

. (n-1)
(i.e.,) We assume that F;,_,(z) e F_1(2)
To prove that: (2) - E,(z) = nF,.1(2).

¢ (9)d?g ¢ (9)dg

Fy(2) — Fa(z0) = fy el

By - G=) [
v C—2)"1(C—-2) ((—2) v (G — zp)"

By {(c —2) +(z- zo>} [ 2O«
y (C—2)""1(C— 2) C—2) v (C—zp)™
(€= 2)¢(dt +f (z=2)¢(Qdl [ ¢(Qdg
y (C—2)"(C — 2) Y C—2)"(C— 2o) y (€= zp)"

Fa(2) = Fy(20) =

-| C=2d@d5__ [ PQdS [ (z = 2)$(Q)dg
, C=2)"C—2) J, @=z)" ) (C—2)"((~ z)

$(0)dt
z)" (G — zo)

IS Nl )
14

-z PO+ (- Z")fy =

B S e e ) QL
‘fy oz QR+ Z")fy(c—z)n(z—zo)'
B e ) P

‘fy (- i@z POXTE Z°)fy<z—z>n<<—zo>

[ a®>— b3 = (a—b)(a*+ ab + b?)
Q=2 ' =@ —2)"' = (Q—20)(C— 2T —2)"? + (T~ 20)" > — 2).
+@—z)" '+ (@ -2 .. C—2)"?]

I, @-20)[G-20)" 2+ (@-20) "3 (G-2)+ (-20) "L @G- 203 . (G-2)" 2| p (@)
B -2 1(g—2)"

_ S
+ (2~ 20) |, ony

62

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Fa@~Fa(zo) _ by (620" 2+ @G20)" 3 G-2) - e 2]¢(od< R IGL:
-z @-2)" 1 -z)" ¥ @-2)™(@~20)

getting lim z — z,. Both side we get,

FI(zg) = ] (C—2)" 2 + (T— 2)™ 2 + - (n — 1) time ¢pLdl N f : ¢ (QdT

, ((— z4)2n 1 , Q=21
(n=1) (- 2)"? Pt
J g sow |

¢(9)d? ¢@dg
_1)f(< j(z ['ZO_Z]

— Zo)n+1 _ Zo)n+1
= (n — 1)Fp41(20) + Fn41(20)
> F(2)=Mm—14+1) Fpy (2).
Fy(z) = nFpy1(2)

Theorem 2: (Morera’s Theorem (or) Converse part of Cauchy s Theorem)

If £(2) is defined and cts in region Q. and if fy f(z)dz = 0,V closed curves y in Q.Then f(z)

is analytic in Q analytic in Q.
Proof:

Let us closed curve y in the region Q.

By hypothesis
AMBNA
= f(z)dz + f(z)dz=20
AMB ANA
f(z2)dz = — f(z)dz
AMB BNA

= f(z)dz

ANB

=~ The value of the integral fyf(z)dz independent of path joining A to B

Let z, represent A and z represent Let us choose the straight line segment joining A to B.
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= wewrite. [ f(z)dz = F(z)

z+Az

Now, F(z +Az) = [ e f@dz ()

Such that.

z + Az lies in side the region Q.

@)~ ()= F@+82) —F(2) = [ f(2)dz - [} f(z)dz

z+Az Zg
F(z+Az)—F(z)=f f(z)dz+j f(2)dz

zZ+Az
S G
~(2)-1)=>
-~ AZ on both side
F(z+Az)—F(z) 1 ("%
e LG

F(z+ A= —F(2)
=
Az

1 z+Az
“f =5 | Q&= fe)

B 1 fZlAZ p Az
5] fOR- L@

1 zZ+Az 1 zZ+Az
-5) roa-g| o
W (CECIP

Taking modulus on both sides,
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F AZ) — F 1 Z+AZMZ
(2 I =1 IRV I

Az

z+Az

<+ If@ = f@NdT ~|z—-7 <= 1f(2) - f(Ql <¢]

€ z+Az

<

<o j a1
&€

<% [q]z4=

£
<— Az —
AZ[Z+ z—Z]
< £ A

AZ( 2

<g

F(z+ Az) — F(2)
=

Ay —f@))<e
. F(z+A2)-F(2) )
LetAz— 0 Al;r_r)l0 Ay - Al;r_r)lof(z) <c¢
=>F'(z)—f(z)=0asAz—- 0
= F'(2) = f(2)

F(2) is analytic

= F'(2) = f'(2)

= f(z) is analytic

Theorem 2:

Cauchy's inequality (or) Cauchy's Estimate Theorem

If f(2) is analytic with in and an a circle c. givenby | z — al = r. lies inside A and if |f(2)| <

M for any z on C. Then |f™(a)| < nr'—:?

Proof:

We know that Cauchy’s higher derivative,
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n! f(@dg
2mi ), ((—z)n*1

ff(2) =

Putz=a&y =z
S fr(a) = n! f(z)dz

2mi ), (z — )™+

f(z)dz
2mi f (z —a)rt?
|f (2)|dz

— 2mi |Z — a1

= |f"(a)| = , s lil=1

dz

= on yn+1
[ given If(Z)I <

n' m

= = STl [27r]
_n! m-y

- yn+1

n'm

-r-TL

Entire Function:

A function which is analytic in every finite region of the complex plane is called an Entire

function.

Example :- f(z) = eZ.

Theorem: 3 (Liouville’s Theorem)

A function which is analytic and bounded in the whole plane must reduce to a constant (or)
If a function f(z) is analytic for all finite value of z and is bounded then f(z) is a constant.
Proof:

Let a be any point of the plane.
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Let ¢ be the circle with Centre at a and radius 7.

We know that,

Cauchy's Integral formula, f'(a) = fy (zf(z))z ............ (1)

2mi

Given, f(z) is bounded fz.

(ie.,) |f(z2)| <M, vz. Taking modulus for equation (1) on both sides,

L f @ = | f, 225 d]

2mi
1 If(2)1
21 f]/ I(z—a)?| |dZ|
M
2m Y2 |z—a)?

_m
= fydz—2

2mr?

= |f'(a)l <§ SN 7))

<= dz

This is true for any circle with radius r.
We know that, the complex plane is a circle with infinite radius.
Hence we can take lim,._,,, on both sides,
(2) = lim, L |f'(a)| < limr_)oog - 0.
(ie.,) f'(a) = 0. ¥ point in the z-plane
= f'(z) = 0.
= f(z) = constant
Corollary: 1 (Fundamental Theorem of Algebra)

If P(z) is polynomial of degree n, n > 1. With real and complex coefficient. Then the equation

p(z) = 0 as at least one root. (or)

Every polynomial in z of degree n > 0. must have at least one zero.
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Proof:

Let f(z) be a non constant polynomial.

(i.e.,) Let f(2) = ag + a;z + a,z* + --- + a,z™ where a,, # 0.

Suppose that f(z) is non zero (or) never zero in the whole plane then we can say that f(z) is
analytic in the whole complex plane and - %

Since f(z) # 0.

|f(Z)| = |a0 +a,z+ a2Z2 + .+ anznl

. Ao+ a1z + ayz* + -+ a,_,z"
= |a,z™| 1+

a,z"
—0as|z| 5
—0as|z| 5

L
f (@)

ﬁ is bounded in the wholeplare. (ie) %Z) is analytic and bounded in the whole complex

plane. - Liouville’s theorem, le) is constant.

= f(z) is constant. Which is a contradiction

= our assumption that f(z) # 0 iswrong. - f(z) as atleast one zero.
2.4. Local Properties of Analytic Function:

Definition: Singularities

A point z = a is said to be a singularity of the function f(z) if f(z)z is not analytic at

Types of singularities:
1. Removable Singularity
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2. lsolated Singularity

3. Poles singularity

4. Essential singularity
1.Removable singularity
Let f(z) be an analytic function in a region except at z = a and if
lim,,,(z—a)f(z) = 0. Then z = a is said to be Removable singularity of f(2).
Theorem 1:

Suppose that f(z) is analytic in a region Q' obtain by omiting a point a from the region Q.
(ie.,) Q' = Q —{a}. Anecessary and sufficient condition that their exist for analytic function
Q. which co-inside with f(z) in Q is that lim,_, (z —a)f(z) = 0 (or)

Necessary & Sufficient condition that their exist a unique analytic function F(z) in Q. That

f(2) in Qis that z = a is removable singularity and of f(z).

(ie.)lim, ., f(z —a)f(2) = 0.

Their exist unique analytic function F(z) in Q Such that F(z) = f(z),vze Q. iffz=aisa

removable singularity of f(z).

Proof:

Necessary part:

Given their exist an analytic function in  and which same as f(z) in Q'.
To prove that : z = a is a removable singularity of f(z).

(i.e.,) To prove that lim,_,, (z — a)f(z) = 0.

Given F(z) is a analytic in Q and F(z) is also analytic at a.
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= F(z) is continuous at z = a.

(ie.,) lim,_,F(z) = F(a).

(i.e.,) Given € > 0. Their exist § > 0.
Such that, |[F(z) — F(a)| < ¢
Whenever 0 < |z —al| < 6.

Now, z +# a

S |f(z2)—F@)]| <€ .covvvveninnnn. (1)

Whenever 0 < |z — a| < §. and this z € Q.
(i.e)limf(z) = F(a)
z—a
~lim(z—a)F(z) =0, f(a)
z—-a
=lim(z—a)f(2z) =0.
z—-a
~ z = a is the removable singularity of f(z).
Sufficient part:
Given z = a is a removable
Singularity of f(z)
= z = a is singularity and exceptional point of f(z) with
lim(z—-a)f(z) =0
zZ—-a
To Prove that: their exist a unique analytic function F(Z) in Q.

(i.e.,) Toshowthat F(z) = f(z) Vz € Q'

Its sufficient to prove that F(z) isanalyticat z = a
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Let c be a circle about a.

Now, f'(z) is analytic on Q" and

¢ be a circle in Q.
~n(c,z) =1Vz # a.

Thus a condition of Cauchy formula Satisfied.

f F(©dg
¢ @G-z’

271'1.
= f(z)isanalyticinQ'and z # ainc

=~ F(z) is also analytic in c. where c € Q'.

=~ f(2) is continuous an c.

fc f(?) f is analytic in any region determind by c.
2, ’;?)df is analytic in every point does not lie in C.

f(@ag .

In particularly, [, —=— =

is analytic on Q for z = a.

: me [QdS s analytic in Qforz = a. ........... (3)

¢ (@2

From (2) & (3).

Let us define in New function F —.

Py fQ)d ,V z # a in analytic in Q'
F(Z):JZm c(C—12)

| 1 f(()div_ . Ivtic in O

k_Zrti Q-2 Z = a in analytic in

~F(z)=f(z)Vz € Q. where z # a

Vz# ain'c'&analyticin ('

......... )
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(le) F(z) = f(2),vze Q.
To prove that the unique of F(z)
Let F(z) and G (z) be two function satisfying the condition of theorem.
~ F(z) and G(z) are analytic
FF(z) = f(2),vz € Q'

&G(2) =f(2),Vzed
=>F(2)—-f(z)=0

&G(z)—f(z2) =0,vze Q'
=>F2)—f(z)=G(2z)—f(z),Vze Q'
= F(z) =G(z),Vze )

Problem 1:

Prove that Z = a is a removable singularity of f(z) = 22¢-2)

z—a

Proof:

fla)y =222 (1)

putz =ain (1)

M =f) =T =0
= f(z) is not analytic at z = a.
= z = a isaasingularity of f(2)
sin(z — a)

lim(z —a)f (2) = lim(z - G)W

=sin0 = 0.
= lim(z—-a)f(z) =0
zZ—-a
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~ z = a in a Removable singularity of fz )
Problem 2:

z—sin z
23

Prove that:- z = 0 is a Removable Singularity of f(z) =

Proof:
fR) =" (1)
Putz=01in(1)

(D=f()=""=o
= f(z) isnot analyticat z = 0

= z = 0 issingularity for f(z) ............... (2)

Z—sinz
~lim(z—a)f(2) =lim(z—-a)———
zZ-a z-0 Z

3 3 T
1 z3 z°
—-EE Z—-Zi'gTi'gTi'
_1'23 z°
~z3|31 5!
_23'1 z°
~z3|31 5!
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1 2z°

31 5
Putz =0,
0 _1_1
f()—3!—6
Zz—sinz
— 3 le-'/:O
“f@={ 72
g ifZ=0

=~ The singularity z = 0 of the function f(z) is removed

From (2) & (3)
z = 0 is Removable singularity for f(z)

Problem 3:

Prove that Z = 0 is Removable Singularity of f(z) = —

Proof:

eZ—1

zZ

f(2) =

patz = 0in (1)
1-1
(1)=>f(2)=T
0

0
f(@) = o

= f(z) isnot analyticat z = 0
= z = 0 is singularity for f(z).

e?—1

VA

lim (z - a)f (2) = lim(z - 0)
lim(z—-a)f(z) =0
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e?—1 1] z?
f&)=—; =§?+i+a+“y*
1[z z?
itz ” l

2: z

=§_1+z
Z

=1+z

Putz=0= f(0) =1,

z = 0 is Removable singularity for f(z)
Theorem 2:

Taylor's Theorems for all analytic function

If f£(2) is analytic in region Q containing a. Then it’s possible to write f(z) in term of powers

of z — a as follows

~f(2) =f(a) +f,1(!a) (z—a) +f”2(!a) (Z—a)? + ...
...---+fn_—1(a)(z— A" + f,(2)(z — a)™

(n—1)!
where f,,(z) is analytic in region Q.
Proof:
Given, f(z) is analytic in region € containing a.

Now consider the function F (z) = —f(zz:i(“)

which is analytic in Q. execpteat z = a.
= F(z2) is analytic in Q.
Q' =Q—{a}
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(i.e.) z = a is singularity of F(z)
(ie) lim,,F(2) = f'(a)
From the above we choose

F(z)=f'(a)forz=a

ii_r)rcll(z —a)F(z) = ii_r)rtll(z - a)%ﬁ(a)
= f(a) - f(a)
ii_r)rcll(z —a)F(z2) =0 ............. 3)

From (1) & (3) z = a is Removable

Singularity for the function F(2)

Let F(2) is analytic in Q'

Q' =Q—{a}

and a is Removable singularity of F(z)

We know that, (above theorem). F(z) is analytic in a region Q.

The Necessary & sufficient condition that their exist unique analytic function F(z) in Q
Suchthat F(z) = f(z),Vz € Q' iff z = a isremovable singularity of f(z) ......... 4)

= their exist unique analytic function f;(z) in Q. and F(2) = f,(2),Vz € Q'

f@)-f(a)
= Consider the function, f; (z) = { z=a P EFA (5)
fil, z=a

(i.e) % is an analytic in a region ( expected at z = a [(ie)z # a]

But f;(z) = f{(a) at z = a. Since f{ (a) is constant.
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~ fi Isanalytic at z = a.
= f; is analytic in a region Q. from (5).

H(@)(z—a)=f(2) - f(a)
=f(2) - f(a) + 1(2)(z - a)

fi(2) = fi(a) + (z - a)f>(2)

f1(2)-f1(a)
where, f,(2) = {  za , ZFa
f2(a), z=a

Similarly,

f2(2) = fo(a) + (z — a)f3(2)

fn-1(2) = fr-1(a) + (2 — @) fn(2)

fa(2) = fu(@) + (2 = @) fn41(2)

f@)=f(a) +(z - a)fi(2)

=f@+ (z-a)lfi(a) + (z - ) f2(2)]
f@+fi@@z-a)+z-a)’f(2)
f@+fi(@z-a)+ (- a)?[fz(a) + (z - a)f3(2)]
=f(@+fil@(z—-a)+ (z-a)’f(a) + (z - a)’f3(2)

Continuing like this we get,

f@=f(@)+(z-afi(a)+ (z—a)ifi(a)+ ... +(Z =) f1(Z2) s

Diff (6) with respectto' 'z' n times.

S ffM2)=04+0+--+n!f(2)
= f1(2) = nfa(2)

putn =1,f(z) = %

putn = 2, f,(2) =% putz =a,

fn
putn =n, fo(z) =2
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we get,

file) = Z2)
fol@ =52

r Sub in (6)

ey
fula) = 120

M@=t
ey TE-9 (@)

®) f@O=f@+@-22+@-a2l P+
Corollary 1: (Representation of Reminder form)
Express f,,(z) as a line integral.

Proof:

Let c be a circle with center at a contain in a region Q.

Since £, (z) is analytic through out c.

~ We can use Cauchy’s integral formula.

a3
L O (1)

fa(2) = 2

2mi
By the Taylor's Theorem, we can write, f(z) as.

f’( ) f" (a) @)z -a)

n—1
+(Zz—a)——+ ... + D + (z — )" £ (2).

f@O=f@+(z-a

f'(a) (a) 2 (@) n-1 [ (@)
fO-f@-z-a) - C—a)’ == (z—a)
:fn(z):{ 2t (n—1D!

(z—a)"

'(a " n-1.4
[ro-r@-t-of @@ gay- L@
G-

putz =¢, fn(x) =
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Sub (2) in (1)

1 f 1 [ @ f@ G- af @
2mi ). G- |C-a" C-o" -l
Q-0 @ G-
G-om2t - DIG-a"
_ 1] 1 f Q@ f@  f@  f'@
21 ). @-D) G- G-a" @-o G-arra

fa(2) =

dg

L () l
EECER D] i
1 f(© dt 1 f(@dg 1 f'(a)dg
falz) = zmjc =G -ay Zm'fc =G -ay zmjc =G —-ay
1 1 (a)
....—Zm,fc DT B o (3)
d
f(z) = thif @ _];gc()c_z R —E,(a) —Fp_1(a) . ce. ... .. Fi(@) oo ce e (D)
1 A B

Now, Tnia —ao TTa e 4)
1 =AC—a)+B((—2)
Putl =a,

1=A(0)+ B(a—2)
= B = 1

a—=2zZ
put¢ =z
1=A(z—a)+ B(0)
1 1 _
:A_(z—a)'B_a—Z ......... sub in (4)
1 1 1

TG0 z-a(-2  @-20(-a)
1 1

T Z-0@-2 GZ-al-a
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1 — 1 [ 1 N 1 ]
E2@Ga (- l@-2) Ga

dag
Now, Fa(a) = j (c—z)(c—a) (z—a)U -2 ). G-o
1 . .
= = )[Zm — 2mi]
+hla) = f = z)(z—a) =0
Fi(a) =0=F/(a) =0
We know that , E,(a) = nF,,1(a)
putn =1,
Fi(a) = 1F;(a)
0=F,(a) > F,(a) =0
Putn = 2,
F,(a) = 2F5(a)
0=2F;(a)=F;(a) =0
= F;(a)=0
Sub all in (4)
) 1 f(©)dg o
SORIAORS Iy e el !
(ie) fu(z) = =, —LO=_

2mi Y € (s—2)(s—a)™

2.5. Zeros and Poles:

Definition: The zeros of an analytic function:

If a function f(z) = (z — a)*f,(z) where k is positive integer. and f; (a) # 0.

Then a is said to be zeroes of order (or) multiplies of k.
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Note:
1. If F(z) is analytic in the neighbourhood of a point z = a.
fn

then f(z) = Y5 a,(z — a)™. where a,, = s

s f(2)=ag+ (z—a)a, + (z— a)?a, + -

2. fay=a,=a,=--=ay,-1=0,a,, #0.

Then f(z) is said to have a zero of order m at z = a.

3. The zero is said to be simple if m = 1.

Zeros Definition:
The zero of an analytic function f(z) is value of z for which f(z) = 0.
Definition: Isolated singularity:

If z=a is a singular point of a function f(z) and if their exist a neighbourhood of z = a
containing no other singular point of a f(z). Then z = a is said to be an isolated singularity
point of f(z).

if how ever f(z) has infinite of singular point in every neighbourhood of z = a. Thenz = a is

non-isolated singular point. But it is a limit point of the set of singular point of f(z).
Definition: Poles

If lim,_, f(z) = o then z = a is pole of f(z)

Poles of an analytic function

An isolated singularity a of f(2) is said to be poles of order k if f (z) = (z — a)™* fi. (a) where
fi(a) # 0. and f(2) is analytic.
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Note:

1. Anisolated singularity a of f(z) is called a poles of f(z). If lim,_,f(z) = o
(ie.,) f(a) = oo.

2. The limit point of zeros of an analytic function is a singular point of the function.

3. Ifthere are n time terms in principle part of f(z) then pole is of order n.

4. pole of order 1 is called simple pole.

5. If z=asapole of f(z) then z = a is zero of% also the function g(z) = % asa

removable singularityat z = a :
6. Suppose that f(z) is analytic function. and g(z) = f G)

(@) g(z) asazeroat z = 0. Then f(z) is a said to have a zero at z = oo.

(b) If g(z) is, has pole at z=0 then f(z) is said to have a pole at z = co.
(c) If g(x) asaremovable singularity at z = 0.than f(z) is said to have a removable singularity

atz o«
D) If lim,_, f (2) exist finitely then z = a is a removable singularity.
Essential Singularity:

If lim,_,, f(z) does not exist then z = a is an essential singularity. Note that, a principle part

is an infinite series of negative power series.

Essential singularity of a function

Let f(z) be defined in a region Q consider the condition.
() lim,_4|z — al®|f(2)] = 0,a = real.

(ii) lim,_q|z — a P|f(2) |= o0, B = real
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(a) If neither condition (i) nor condition (ii)ﬁ

holds for any real « then z = a is called essential singularity of f(z).

(b) If condition (i) holds for all « then function f(z) is identically is zero.

(c) There exist an integer h such that condition (i) holds for Va > h and condition

(ii) holds Va < h.

Note:

(1) The limit point of poles of a function is called non-isolated essential singularity of that

function

(2) The limit point of zeros of a function is called isolated essential singularity of that
function.

(3) The poles of an analytic function are isolated.

(4) The zeros of an analytic function are isolated.

(5) If f(2) has a pole at z = a then |f(z)| = oo as z — a in any manner.

Meromorphic Function:

An analytic function whose only singularities in the finite plane are poles is called a

meromorphic function.
Entire Function (or) Integral function:

A function which is analytic everywhere in the finite plane is called an entire function (or)

integral function.
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Rational function:

If the only singularities of an analytic function including the point at infinity are poles then the

function is a rational function.
Note:

1. A function which as no singularity in the finite part of the plane (or) at oo is a rational

function.

2. The function which is analytic in the whole plane and as a

non-essential singularity at co reduce to a polynomial.
3. Any function which is meromorphic in the extended the plane is rational.
Theorem 1:

If £(2) is analytic in region Q and f(a) to grether with all derivatives F¥ (a) vanish in €. then
f(z) =0inQ.

Proof:

We know that, Taylor’s Theorem,

! " _ 1
f(2) =f(a)+ ! 1(!(1) (z—a)+ f 2(!a) (z—a)® + .. +f—gll — 1§?) (z—a)"?
FE@DEZ =" o (1)

Where f,,(z) is analytic in the region Q.

By hypothesis, f(a) and all derivatives f" (a) vanishes in Q.

~ ()=
f@@)=z-a)" fu(2)
> =1z—-a) (2] e e e e (2)

Let C be a circle, with centre at a and radius y containing the (0.
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[ @
O K e ek

: : 1 |f(©Il4ag]
Taking modulus on both sides, = |f,(2)| < - Je ol (3)

Since f(Q) is andytic in Q.
= f(&) is continuous on ¢ in Q. Let M = max|f({)|,Vg € c.

SNf@QIsM, VvIelC ... (4)
c:|C—al=r
=>|[(—a|l*=1r" SN )|

Let
|{—z[=10-a+a—z|
2 |{—a|l—|z—a

C—z|=>r—|z—al IR ()

Sub (4) (5) & (6) in (3)

1 M|d{]

-B) =L@ < ﬁfc r'[r — |z —al]
1 m d

< 2mrnfr—| z — ai]-l-c .

< Mr
Syr(r—lz—al)

2= al" @) < e
=|Z—a Z)| =
fn( ) ,rn[,r_lz_al]

< [lz ; al]n [r —r|rzlr— al]

— 0asn — oosubin(2).
~2)=>|f(@)|=0VvzeC.
= f(z) = 0,Vz = inside of c.
~f(z)=0inQ [~c€Q]

Let A = The set of point of z such that f(z) =0&Q=AUB

(ie)A={z/ f(z)=0}&Q0=AUB
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where B = {z/ f(z) # 0}

To claim: A is an open set.

we know that A = {z/f (z) = 0}

Let z, be any arbitrary point of A.

. their exist r > 0. Such that, S,.(z,) c A.

Since we have already proved f(z) = 0, Vz inside of ¢ with radius » > 0.

~ A is contained in some open sphere contained at some aribitary point z,.

~ A is an open set.

To claim:- B is an open set

We know that B = {z/f(z) # 0}

clearly, f(B) = {f(z) # 0} is an open set.

[+ F is continuous iff f~1(G) is an open set, whenever G is an open].
~ B is an open set.

~ Q=AU B. Where A & B are disjoint open set.

Since nonempty connected open set is region.

= ) is connected. ['every region is connected]

Given f(a) = b,

~a€A,B+¢
>50=AUB=A4

~ f(z) = 0 inside of region Q.
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Theorem 2: (Uniqueness Theorem)

If f(z) and g(z) are analytic in Q and if f(z) = g(z) on a set which as an assumption

accumalation point in Q. Then f(z) is identically equal to g(z) for all z in Q.
[(i.e) f(2) = g(2),Vz € Q]

Proof:

Consider h(z) = f(z) — g(z) isanalyticanQ  ............. (1)

Since given f(z) & g(z) are analytic in Q.

From given f(z) = g(2),Vz € S.

~h(z)=0VzES. — (¥

~ Every z in S is a zeros of f(z).

Let a € Q be a limit point. (accumulation point) of S.

Then the function h(z) can be extended

By a Taylors the theorem about a.

h'(a)(z—a) h"(a)(z— a)? @) (z —a)" !
1! + 2! o (n—1)!

LN )

~ h(z) = h(a) + + hn(2)(z

Since h(z) is continuous at z = a. and h(a) = 0.
Since z = a is a limit point of zeros of h(z).

~(2)=>
h'(a) h"(a)(z—a) ) h*1(a)(z — a)" 2

h(z) = (z—a) T + T + -+ =D +h,(2)(z—a)*?

h(z) = (z—a) ¢(2)
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h(a)_l_h (a)(z—a)_l_-“_l_—
1! 2! (n—-1)!

where ¢(z) = [

Since Every z in S is zeros of h(z)
Every z in S is also a zeros of ¢ (2).
~(z)=0,z€S.
= ¢(z) is continuous at z = a and p(a) =0 ......... (4)
Since z = a is a limit point zeros in ¢ (z).
»Putz = aineqn (3)
we get,
$(@) = h'(a) + -+ hn(a)(a — a)"*
$(@)=h(a)+0+0+0+[(4)]
= 0 = h'(a) subin (2). [ (4)]
2 (2) =

h'(@)(z - @)’

h(z) =0+0+ >

+ -+ h,(2)(z—a)?

Repeating this process we get, h"'(a) =0, h"'(a) =0
~ h(z) is analytic on Q and all derivatives

hY(a) = 0. since (1) & (5)]
~=>h(z)=0inQ
= f(z)—g(z)=0inQ
= f(z) = g(2) in Q

D=+ ha(@)(z - @)

Theorem 3: (Singular part (or) Principle part of the function)

Express a function f(z) as the sum of two parts of which one is Singular part and the bother

one is regular part.
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Proof:

Let z = a be a pole of order h for Function f(z).

Then in the neighborhood of z = a we can write, f(z) = % .............. (1)

where f},(z) is analytic at a. and f;,(a) # 0.

By Taylors theorem,

M@ =B, +(Z—-a)By_1+(z—a)*Bp_p + .t (z—a)" B, + (z — a)"¢(2)

.......... )
Where ¢(z) is analytic in the neighbourhal of h.
Sub (2) in (1)
~ (D)=
f@) ==gw[Bn+ (2 = @Bpoy + (2= a)°Byy + -+ (2= )" "By + (2 — )" $(2)]
[ et s e b et (Zi)l] +¢(2) 3)
The part,
B B Bax B
z-—a)" @Z-a)t 1 (z—a)t? (z—a)t

is called singular part (or) principle part of f(z) in the neighbourhood of the pole z = a of

order h.
[Note:

In The case of an isolated singularity at z = a. we can use Lawrence series for f(z)

(ie)f(@)=lag+a(z—a)+a,(z—a)*+ - +a,(z—a)" -+ + ]
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L . T +“Kb"m
(z—a) (z—a)? (z—a)"

0<r <|z—all

Case :1
Suppose that by, = b, = -+ — b, = —= 0.

Thenf(z2) =ay+a;(z—a)+a,(z—a)* +-+a,(z—a)* -+

we define F(z) = a, then z = a is called removable singularity of f(z)
Case: 2
Suppose that.

b1=b2="'=bn_1=0, bhio
n<l|z—al<n

Thenf(z2) =ag+ a1(z—a) + ay(z— a)? + -+ a,(z—a)* + ..._|_oo+[ bh ]

(z-a)t

Then z = a is called a poles of order h.
Hence the singular part continuous only a finite number of terms in ﬁ

Case: 3

Suppose that, The singular part does not terminate then

by by by
1 5 cee T
z—a (z—a) (z—a)™

+.00 forrm <|z—a|<m

Is an essential singularity of f(z).
Theorem 4: (Weierstrass’s Classical Theorem)

An analytic function comes arbitrary closed to any complex value in every neighborhood of an

essential singularity.

90

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Proof:

Let z = a be an essential singularity of f(z).

Suppose that the theorem is not true.

(i.e.) their exist complex value 4,6 > 0.

Such that, |f(z) — A| <« ¢, for|z—a| <86.

where, z = a is an essential singularity of f(z).
(ie)|f(2) —A|>efor|z—a| <6 ..o, (1)
for any real a < 0.

we have

lim|z — a|*|f(z) — A| = lim|z — a|“%¢.
zZ—-a zZ—-a

&
> — = 00,

0

(ile) lim, 4|z — a|®|f(z) —A| = o

~ z = a cannot be an essential singularity of f(z) .......... (2)
Forany g > 0.

lim|z — alf|f(2) — Al = lim|z — alfe > ¢(0) = 0

(i.e) lim, g |z—alf|f(z) = Al =0 .......... (3)

Hence, z = a cannot be an essential singularity of f(z) — A and so

lim|z—al|lA| =0 ........(4)
zZ—-a

= lim|z — al®|f(2)| = lim|z — a|?|f(2) — A + 4|
zZ-a zZ-a
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<lim|z — a|P|f(2) — A| + lim|z — a|P|A
Z—-a Z—a

ygcll|z—a|ﬂ|f(z)| e (5)

~ z = a is not an essential Singularity of f(2)

From (2) & (5) this a contradiction to our assumption.
~|f(z) —Al<egfor|z—al <6

Theorem 5:

Show that any function which is meromorphic in the extended plane is rational (or) the quotient

of two polynomials.
Proof:
Let f(z) be any meromorphic function

Let, z;12, — 2y, be poles of order m,, m, ar- —m, respectively for f(z).

f(z) we can write f(z) = 40— (1)

(z-21)™1(z-22)"2——(z—-2}) "k

where p(z) is analytic V z.
=>p2)=f@)[z—al™[z—a]™ ..[z—a]™ .............. 2

Since p(z) is analytic.

~ By Taylor's Theorem,

We can write,
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but z =§ in (3)

we get

P(7)-3 o
=;?—Z
P(%>=a +%+%+

clearly z = oo is a pole of p(2).
= ¢ =0isapoleof P(1/7)
= (4) has Finite no. of non-zero terms.

= (3) has finite no. of non-zero terms = p(z) is polynomial in z

~)=fl2) = p°1y 2% — rational function Hence proved.

2.6. The Local Mapping:
Theorem 1:

Let z; be the zeros of the function f(z) which is analytic in disc A. and f(z) does not vanish
identically each-zero being counted as many times as its order indicates then for every closed

y curve in A which does not passes through a zero.

_ f' (Z)
Z”(”' %) = 2mi f(z)

J

where sum as only a finite no. of terms is not equal to zero.

Proof:
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Given that f(z) is analytic function is open circular disc A and f(z) # 0 in the discA.
Let ¥ be a closed curve in A.
Let us suppose that f(z) has only finite no. of zeors in A.

(ie)Let z,z,..—z, be the finite no. of zero of f(z) Inside A,
each zero being counter according to its degree of multiplicity.

(i.e.) Each zero is repeated has many times has its order indicates.
Since zy, z, -+- z,, zeros of f(z) and f(z) in analytic.

-~ We can write,

f(@)=(z-2)(z—2) - (2—-2,9(2)

Where g(z) is analytic and not null in A.

=~ Talking log on both sides

~ logf(2z) =log(z — z;) +log(z — z,) + -+ + log(z — z,) + logg(2) (1)

Diff (1) with respectto 'z ',

fo_ t 1 4.4 160 ©))

f(z) z-z1 z-z, z-z,  g(2)

multiply by % & Integrate on both sides,

1 (f'(2 1 1 1 1 1 1
f dz = f dz + f dz+-~-+—,f dz
2ni ), f(2) 2ni ), z — 24 2mi ), z — 7, 2ni ), z — z,

1 r4d®
), 28z e (3)

Hence g(z) is analytic and not null in A.
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= g'(z) is analytic.

!
= 29 s also analytic as

g9(2)

gz)+0

= By Cauchy's Theorem.

] 9@ dz = 0 where 9@ is analytic
14

9(2) 9(2)

~(3)=

1 @, 1 1 N L ro1

i yf(Z)dZ_2_7'[l'fyz—Z1dZ+2_T[l',[yZ—Z2dZ+m+2_ﬂ'i ),Z—anz
1 d

=Z n(y,zj) R ) ['.'n(y,a)zﬁjyz_zal

J
Thus we have proved theorem. If f(z) has a finite no. of zeros. Then eqn (3) is true. if f(z)
has infinitely many zeros in A
Then for any closed curve D, A we can find a smaller disc A’
such that y < A" < A. Now, there are only a finite no. of zeros of f(z) in A’
Otherwise if there are infinitely many zeros of f(z) in A'.
= Bolzano Weierstrass’s theorem.
They would have a accumulation point in the closure of A’. and at this is impossible.
(i.e.) we can find an infinite sequences of zeros.
(i.e.) {z,} be a zeros of f(2).

Such that,
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z, = Z, (accumlation point) as n — oo.
(ie) f(zo) = fllimyo (z,)]:

= lim f (z)

=0
Thus the zero z, of an analytic function is not isolated.
This is contradiction.
~ A" contain only a finite no. of zeros apply equation (3) to the disc A’
= The zeros outside of the disc A ' n(y,z) = 0.

and Hence not contributed the Sum R.H.S. of equation (3) is written

L@,
el ¥ 2 =2 n(y,z) oo, (*)

Remark:1
() The function w = f(z) maps y an to a closed curve T in the w plane
put w = f(z)

=>dw = f'(2)dz
dw
> @) =—

. , 1L '@, _
in above theorem equation(*) = %I o dz=7Y n(y, Zj)

(ii) If a & b lies in the same region determined by I'. Then,

z n(y, (@) # n(T, b)
~n(y,a) =n(l,b)

Thus f(z) takes values a & b equally many times inside y.
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Theorem 2:

Suppose that f(z) is analytic at z,. f(z) = w, that f(z) — w, as a zero of order n at z,. If
€ > 0 is sufficiently small then their exist § > 0, such that v a with |a — w,| < §. The equation

f(z) = a as exactly n roots in the disc |z — z,| < «.

Proof:

Let us choose € > 0. Such that f(z) is define and analytic in |z — z,| < ¢

=~ Z, IS the only zero of f(z) — w, of order n in the neighborhood ....... (1)
Let y be acircle |z — zy| < € and let T is image under the mapping w = f(2).
(i.e.) Tisaclosed curve.

Sincew, €y = f(z,) & Tor

Hence w, is in complements of I’

= their exist neighborhood,|lw — w,| < 6 and for every &

lw —wy| < & all the values of a are taken same no. of time inside y.

But since f(z) = w, as exactly n co-inside in roots inside y.

~ f(2) = a also exactly n roots and every value of a taken n-times.

(i.e.) Every value a € |w — wy| < &, is taken ' n ' no. of times by f(z) inside y .
(i.e.) f(z) = a as nroots in the disc |z — z,| < ¢ is understood.

(or)  (Another Proof)

Let y be a circle [z — zy| < € and f(2) is analytic and define for |z — z,| < ¢ and given that
f(20) = wo.

. f(z) — wy as a zeros of a vardar inat = 0
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= 5 ¢

KKKKK

Let the image of y center f(z) be the closed curve T in the w plane.

if (@
Now 2ni 'y f(2)

dz = Total no. of zeros of f(z) — w,

=n

Their exist a neighborhoods |a — w,| < § of w, contain whole inside T.

1 f'(2) g = 1 f'(z2)dz
“2ni) F@ —a™ T 2mi ) F@) —wo
> n(y,a) =nl,wy) =n

(i.e.) The function takes all values in the neighborhood of the point w, equaltly many times

inside T.

~ f(z) — wy as exactly n roots does every value of a is taken n times inside y.
Corollary:1

A non-constant analytic function a maps open set onto open sets.

Corollary: 2

If f(z) is analytic at z, why with f'(z,) # 0 it maps in the neighbourhood of Z, conformly

and topologically onto region.
2.7. Maximum Principle:
Theorem: 1 (Maximum Modulus principle (or) Maximum principle)

If £ (z) is analytic at non-constant in a region €. Then its obsolutly value |f(z)| as no maximum
inQ. (or)

If f(z) is non-constant defined and continuous an closed bounded set E and andytic an the

interior of E. Then Maximum of |f(z)| on E ss assumed only and theundary of E.

Proof:
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Given, E is closed and bounded = E is compac{.
Assume that |f(z)| as a maximum value on E, say at z, € E. (interior point of E').

Given f(z) is non-constant and analytic

~f(2) = f(z)] < e if|z—zy| <6.

(ie) If @I = 1f @I < |f(2) — f(zp) I< ¢

= |f(2)] is continuous.

If z, is an interior point. Then |f(z,)| is the maximum of |f(z)| in |z — z,| < § containin E.

But it is impossible unless f(z) is a constant in the compliment of the interior of E' containing

Zy.

The continuity |f(z)]| as its maximum on the whole boundary of that compliment and this

boundary is non-empty and is contained in the boundary of E.

Thus the maximum of |f(z)| is always obtain only or the boundary of E.

(or) Analytical Proof:

Let ¢ be the boundary of the region, assume that |f (z)| as its Maximum at a point
Zy € Q [z, is an interior of point Q ].

Where z, lies inside of c. draw the small circle y.

vilz—2zy| =71
|f(zo)] = M = maximum value ........(1)

=~ from the circle y we get,

Z—Z =ret?, 0<0 <2H
=z =z, +re’
=dz =reidf .......... ()
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By Cauchy's Integral formula,

1 f(2)dz
2ni ), z =z
1 (%" f(zo + 7€)

2mi ), yet

1 (% .
= Ej f(z0 + relg)dé?.
0

f(z0) =

yei®pdo.

= 1f @)l < = ;" |f (20 +7€)]db .......... 3)
Since, |f(z,)] is a maximum value.

“|f(zo + re®)| < If(zo)I, for single value of ' 6 .
By continuity of f(z),

«|f(zo + re®)| < 1f(20)] on a whole finite are

= mean value of |[f(z, + rei)| on &,y < |f(zo)I

= %fozn |f (2o + 7e)|dO < If ()] evvveennn
sub (4) in (3)
=B =|f(z0)| < |f(z0)|

This is contradiction

~ |f(2)| must reduce to a constant and is equal to |f(z,)| for all sufficiently small circles

|z — z,| = r and hence in the neighbourhood of z,.
=~ If follows easily that f(z) must reduce to a constant.

This is a =><= to over assumption

(i.e.) our assumption that | f(z)| has is maximum at an interior point is wrong,

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Hence |f (z)| is Maximum only on the boundary of Q.

Theorem 2: (Schwartz Lemma)

If £(2) is analytic |z| < 1 and statisfies the condition |f(z)| < 1 and f(0) = 0. Then
() |f(@)| < |z|, forsome z # 0 and |f'(0)| < 1

(i) If|f(2)| = |z| (on) If |f'(2)| = 1then f(2) = cz.

Where c is a constant whose absolute value is 1 .

Proof:

Let us define the function

f)
=1z “7°
£1(0), ifz=0
=2
= |f|(zz|)| [ f(2) I< 1 onthe circle |z| =y < 1]
1
<
1
_1
Y

(ie) i@l = S

By Maximum modulus principle, for |z| < r = |fi(2)| < 1
= |@| <1
Z
= |f(2)| = |z|

Ifz=0.
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Then |f'(0)| < 1
i) if |[f(2)| = |z|
f(#)

VA

= =1

ie)l® _
(i.e.) =

~ f(2) = czwhere |c| =1
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UNIT -1

THE GENERAL FORM OF CAUCHY’S THEOREM and THE CALCULUS OF
RESIDUES: Chains and cycles- Simple Continuity - Homology - The General statement of
Cauchy’s Theorem - Proof of Cauchy’s theorem - Multiply connected regions — The Residue
theorem - The argument principle.

Chapter 3: Section 3: 3.1t03.8

3. General form of Cauchy’s Theorem:

3.1. Chains and cycles

Definition: Chains

An arbitrary formal sum of finite number of finite collection y; + y, + - + y,, which need not
be an are. Satisty the equations.

j f(2)dz = fylf(z)dz+j;/2f(z)dz+---+f f(2)dz

Yn

are called chains. A formal suma,y; + a,y, + -+ + a,¥,. Thearcsy; + y, + -+ + y,, is called
chains.

Addition of two chain:

The sum of two chains is design define in the obvious way by just a position it’s clear that the
additive property of line integral remains valued for arbitrary of sum of two chains.

Identical chains:

Two chains are identical < they yield (give) the same line integral for all functions f(z).
Set:

The following operations do not alter the identity of chains.

(i) Permutation of two arcs

(i) Sub division of an arc.

(ill) Fusion of sub arcs into a single are

(iv) Reparametrization of an arc.

(v) collection of opposite arcs

Sub conditions:

(1) For a positive integer n. we write nv = v +v + --- + n times
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(i) =y = The -re arcof y.

(iii) =ny = =y — 7y, ... ... m times.

Thus every chain is expressible in the form a,y4, a,y, ... a, ¥, Where a4, a, ... a,, are integers.
The zero chain (or) void chain is a chain in which all a; = 0.

Cycle:

A cycle is a chain which is represented as a sum of closed curve.

Result:

For chains in a region we have.

(1) The integral of an exact differential over a cycle is zero.

(if) The index of a point with respect to cycle as in the case of a single closed curve.

(iii) If y; and y, are two cycles then n(v; + y,,a) = n(uy, a) + n(v,, a)

3.2. Simple Connectivity:

Definition:

A region is simply connected if it's complement with respect to the extended complex plane is
connected.

Note:

(1) A region is simply connected if it has no poles.

(2) We always take a region in the extended complex plane.

Theorem 1:

A region Q is simply connected iff n(y,a) = 0, for all cycles y in Q & for all points * a * which
does not belong to Q

Proof:

Necessary Part:

Given Q is simply connected.

To prove that n(y,a) = 0.V cycles. y € Q & Va ¢ Q

Given Q is simply connected

= ( is connected & contains oo

agQ=>a€c

= a € unbounded region determined by y.

>n(y,a)=0,VyinQ&Vaé¢ Q.

Sufficient Part:
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Given n(y,a) =0, f cycle y in Q & all points a ¢ Q.

~a€f

To prove that

The region Q simply connector For this proof, the complement n is Connected.

Assume that Q is not simply connected

= complement Q is not connected

~WecanwriteQ =AUB

Where, A & B are non-empty, disjoint closed sets.

Let one of these sets are unbounded. (Since its contains oo ) & the other is bounded

= Let A be the bounded set and a € A

Let § = The shortest distance between A and B. - § > 0.

Cover the whole plane with a net of squares Q of side < §/v/2.

Let us choose the squares such that ' a ' lies at the centre of a square, where a € A.

The boundary of Q is denoted by 0@ consider, the cycle y = }}; 0Q;

Where the sums ranges over all the squares Q; in the net which have a point in common with
"A". Since ' a 'is contained in one & only one of the squares.

sn(y,a) =1

Clearly, y does not meet B. But if the cancellation are carried out its clear that y does not meet

A. Since, we can omit common sides of squares in y. Each common side is travelled in opposite

direction.
~Y@&AUB=Q
>y e
Also,a€ AcQ=AUB
>aé¢ )

Thus, their exist a cycle y in Q and a point a € Q such that n(y,a) =1 # 0.
Which is a contradiction to given hypothesis.
=~ Our assumption is wrong

=~ Q is Simply connected.

Note: If this is a cycle in Q. Such that n(y,a) = 0. For some a outside of Q. Then ﬁ is

.. 1 dz
analytic in Q. Then — [ — = n(y,a) # 0.
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3.3. Homology:

Definition:

A cycle y is an open set Q is said to be homology to zero with respect to Q
ifn(y,a) =0,va € Q. (ie.)a & Q

In symbols, we write y ~ 0 (mod Q) (or) y ~ 0
Note:

Dyri~r2©rn-r2~0

(i) Homologous can be add and subtract.

(il y ~ 0(modQ) = y ~ 0 (modQ') Q' D Q
3.4. General Statement of Cauchy’s Theorem:
Theorem 1:

If is analytic in Q, then fyf(z)dz = 0 for ever cycle y which is homologous to zero in
In a different formulation, we are claiming that if is such that fyf(z)dz = 0 holds for a certain

collection of analytic functions, namely those of the form 1/(z-a) with a not in Q, then it holds
for all analytic functions in Q

In combination with theorem 1 (Previous section 3.3) we have the following corollary
Corollary: 1

If f(z) is analytic in a simple connected region Q then fyf(z)dz =0, for all
cycle iny in Q.

Corollary: 2

If f£(z) is analytic and # 0 in a simply connected region ( then it is possible to define Single
valued analytic branches of log f (z) and n\/ﬁ in Q.

3.5. Proof of Cauchy’s Theorem:

Theorem 1:

If f(2) is analytic in Q. Then fyf(z)dz = 0. For every cycle y which is Homologous to zero
in Q.

Proof:

Case: (i)
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We assume that € is bounded but otherwise arbitrary given § > 0. we cover the plane of net
of square of side § and we denote by Q;, j € J be the closed squares in the Q Since Q is
bounded.

= J is finite for sufficiently small §. We can make J is a nonempty set.

The union of squares Q;,j € ]

Consists of closed regions oriented boundaries makes the cycle.

[V8 is a sum of oriented line segments which are sides of exactly one aj]

N8 =Yg 0Q; . )

We denote by Q the interior of the unions U¢; Q;.

Let y be a cycle which is homdogaus to zero. we choose § is So small that y is contained in
Qs.

Consider the point { € Q — -+ Q.

(le.,) € Qand ¢ & Qs

It's belongs to at least one @ which is not in Q;. There is a point & € Q
which is not in Q.

It is possible to joint ¢ and ¢ by a line segment. Which lies in Q - does not meet Q.

Since yis consider as a point set is contained in Qg.

It's follows that n(y, ) = 0 = n(y, {,)

In particular, n(y,{) = 0,V points { on 6 .......... )
Then by Cauchy integral formula for higher derivative
z),fi=]

1 f@dg _ (JOI T
2mi - .
i Jaq (—z 0, f] s

Z lies also interior of V&
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1 f(©d¢

Then f(z) =5 5 -z

1 @
jyf(z)dz_jyzm s i-2 %

B 1 [ f(Qdz
_ng_m, Eer

RN P
= ||z ) 7| r0
-/ [_—1 I L]f@)d(
NrS 2mi 6(Z—()
= —noor@a
\/g
[ r@dz=o01ne.) =0
Y

for all cycles y which is homologous to zero, if y is bounded

Case 2:

If Q is unbounded, we replaced the Q' by intersection Q with disc |Z| < R which is large,
enough to contain y and point ' a ' in the complement of Q are lies in the disc.

In either case (n(y,a)) =0

So that y ~ 0(mod Q")

¥y ~ 0 (mod Q)(Q' c Q)

This theorem is valid for arbitrary Q, if Q is unbounded. ~ n(y,a) =0,a ¢ Q'.

. a € outside of the circe ' ¢ ".

3.6. Multiply Connected Regions

Definition: Multi connected Region

A region which is not simply connected is called a multi-connected.
(i.e.,) The region which one contains poles then it’s called multi-connected region

Finite Connectivity:

A region Q is said to have finite connectively, n if the complement of Q has exactly n-

complement.
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Infinite Connectivity:

The region Q is said to have the infinite connectivity if the complement has infinitely many
components

The Calculus of Residues

3.7. The Residue Theorem:

Definition:

The Residue of f(x) at an isolated singularity ' a ' is a unique complex number R which makes

f(z)— ﬁ the derivative of a single valued analytic function inanannulus 0 < |z —a| < §

Theorem 1: Cauchy’s Residue Theorem

Let f(z) be an analytic except for isolated singularity * a; " in the region Q.

then, [ f(2)dz = $;n(y, a;) ZRZS C]; @

For any cycle y which is homologous to zero in  and does not pass through any of the point
aj.
Proof:

Case (i):

Let there be only a finite number of isolated

Singularities a4, a, ... a, in Q.

The region ) obtained by excluding the point ' a; * will be denoted by Q ".
(ie.) ¥ =Q—{a },{a,} - {an}

Let y be a cycle in Q which is homologous to zero with respect to Q

Let ¢; be a circle with centre a;, the radius is > 0. Consider the circle,
r=y-> n(na)g
v
n(l,a,) =nly,a,) —n [Z n(y, aj)cj,ak]
=n(y,a;) — z n(y, a]-)n(cj, ak)
Jj

= n(y, ay) — n(y, ax)n(ck, ax)
[n('-‘ n(c;, ak) =0 forj # k]

= n()/, ak) - Tl()/, ak) =0.
~n(l,a,) =0
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Leta & Q.
~n(l,a)=n(y,a)—n [Z n(y, aj)cj, a]
=n(y,a) — Z n(y,a)n(c;, a)]
=0-0 [+ homologous to zero. = y ~ 0(modQ) = n(c;, a) = 0]
n(l,a) =0 ~Tisacyclein Q
Which is homologous to zero (mod Q) which does not pass through the a;°

By Cauchy's theorem,

]Ff(z)dz =0

f f(2)dz =f f(z2)dz=0
r y-In(y.aj)c;

= fy f(z)dz = Ln o ij(z)dz
[ r@z = | cf@ra)

= z n(y, aj).];.f(z)dz
L L fy fdz = nra)s [ fod

1
=Z n(%aj)ﬁpjcj [f f(z)dz = P
J €j
= Z n(y, a)R;

J
1
[where R; = ﬁf f(z)dz]

Case (ii):
There are many infinitely isolated singularities in Q.

The set of all points ' a * which n(y,a) = 0 is open and contains all points outside of large

circle.
The complement is consequently a compact set and hence, it cannot contain more than

finite number of isolated singularities a ;’s - n(y, aj) #0
Only for a finite number of Singularities, a;s.
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=~ Case (i) applies

Definition:

The residue of f(z) at the point o is R, = ;—;fc f(2)dz

where, c is simple closed contour enclosed all the finite singular point of f(z).

Theorem :1

If a function £ (z) is analytic except at a finite number of singularities including the singularity

at co. Then prove that the Sum of the Residue of f(z) at the singularities is zero.

Proof:
Let C be a simple closed contour exclosing all the finite number of Singularities of f(z)

- By Residue's theorom,

J. f(@)dz = 2mi[Ry + Ry + -+ Ryl ........... (1)
we know that Re, = — [ f(2)dz .......... )
+@=

1 1
R1 +R2 +"'+Rn + R —%'];f(z)dz—%j;f(z)dz
=0
3.8. The Argument principle:
Theorem:1

If £(z) is meromorphic function in Q in the zero's a; and the poles by. Then

1 !
r@ dz = Z hjn()/, a]-) — Z Pyn(y, by)
i K

2ni ), f(2)
For every cycle y which is homologous to zero in Q and does not passes through any of the
zeros (or) poles. (or)

If £ is meromorphic in a region Q with finite number of zeros & poles in Q What are the

singularities of ’;(—(ZZ)) in Q and compute the Residues of this function at all the singularities in Q.

Proof:

Let z = a; be a zeros of order h; for meromorphic function f(z) in the region Q Then in the

neighbourhood of a;. we can write,
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f@=(z-a)"¢;@) oo (1)
Where ¢, (z) is analytic ¢;(a;) # 0
=~ Taking log on both sides

~ (1) =

log f(2) = hjlog(z — a;) + log ¢;(2)
Diff with respect to z

f'(2) 1 b;(2)
= h; +
f@ (z-a) ¢;©@
~ z = a; is simple pole of r ( ) and residues h;, its true for each a; of f(z)

Let z = by, be the poles of order P, for f(z) in the region Q. Then in the neighbourhood of b,

we can write
f(2) = (Z_Zz)pk gk(2) )

where, g, (z) is analytic in Q and g, (z) # 0.

=~ Taking log on both sides
(2) = log f(z) = —Pilog(z — by) + log g (2)
Diffw.rto'z"'

f'(2) _ —Pk _I_g’k(Z)
f(@) (@E-b) g2

. z = by, is a Simple poe o

ff ()) with Residues - Py, it is true for each b, of f(2).

~ Applying the Residues theorem, we get,

L (@, _N N
5 : f(zZ) dz =; hjn(y, aj) - ; P.n(y, by)

Where, each zeros and poles are counted according to meets degree of multiplicity.

Corollary: 1

If f(z) is analytic within & on a simple closed contour ¢ and f(z) is non zero on ¢ Then,

f'(2) _
fc f(z)d =N-P

Where, N is a number of zeros of f(z) inside ¢, and p is a number of poles of f(z) inside C.

27

Proof:
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By previous theorem

2—;[ %dz =Y nlc,q), =% nle,b)my e, (1)
We know that,
from given where c is a simple closed curve and also a; and by lies inside c.
~n(c,a;) =1andn (c,by) =1
- Sub in (1), we get,

1 "(z
o C];((Z))dz=z lj_z my

=l +L+)=(my+my+-)

1 f®
2mi ). f(2)
Corollary: 2

dz=N—-p- (¥

If £(z) is analytic with a simple closed contour ¢ except at a finite number of poles inside cx
if f(z) is non-zerb on c. Then,

1 (@
2mi ). f(2)

dz = N = Number of zero's of f(z) inside ' ¢ ".

Proof:

Since f(z) is analytic & it has no Singularities (or) poles.
~ P = number of poles = 0

=~ By (corollary 1) (*)

1 (f'(2)
:ﬁ ] f(Z) dz=N-0
= Number of zeros of f(z) inside C
Theorem: 2

The another proof of the Argument principle

If (i) f(2) is analytic on a simple closed contour C.
(i) f(2) is meromorphic inside ¢

(iii) £( (2) has no zeros on c.

Then,

1
N-—-P =§AC arg f(z2)
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Where, N = number of zeros of f(z) inside ¢

p = number of poles of f(z) inside c.
A, arg f(z) = The change in argument of f(z) as az describes c.
Proof:
By corollary

_ 1 (f®@
P omi)e F@)

= 5= llog()].

N —

dz

1
= o4 [log f(2)]

1 .
=5 Aclloglf (2)] + iarg f(2)]

1 .
= [0+ iAarg f(2)]

1
= % [lAcargf(Z)]

N-—-P= ! A
—P = [Aargf(2)]

Theorem: 3 (Rouche's Theorem)

Let y be homologous to zero in Q and Such that n(y, z) is either zero or one for any point z
not on y. Suppose that f(z) and g(z) are analytic in Q and satisfy the inequality |f(z) —
g@)| <|f(2)|ony. Then f(z) and g(z) have the same number of zero's enclosed by y .
Proof:

We know that,

()If f(2) and g(z) are analytic within & on a Simple contour y.

(i) If (2] > |lg(2)| ony
Thun f(2), f(2) + g(z) have the Some number of zeros inside %.
Step 1:

To prove that f(z) has no zeros on y . If possible for some point' a ' no y
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f(a) =0.
~ By(ii) = |f(2)| > 1g(2) |
= |f(0)] > |g(a)]
= 0> |g(a)l
=1g(a)| <0
This is a contradiction. - f(z) has no zeros ony
Step: 2
To prove that, f(2) + g(z) has no zeros ony. Suppose that f(z) + g(z) hasazero'a 'ony.

~ f(a) +g(a) =0

= f(a) =-g(a)
= |f@l=1-g@]l
= |f(@)] =1g(a)l

This is a contradiction [ |f(2)| >| g(2)]] - f(z) + g(z) has no zeroson y.

Step: 3

Let N; & N, be the number of zero's of f(z) + g(z) and f(z) inside y respectively. Since
f(2),9(2), f(2) + g(z) are analytic within & on y.

=~ Number of poles of f(z) + g(z) inside y = 0 and also, Number of poles of f(z) inside y =

0. .. The argument principle

1
Ny —0=—-—Ayarg(f(2) + g(2))

8N, — 0= %Ayargf(z).
1
Ny =Ny = [4,arg(f(2) + 9(2)) — Ayarg f(2)]
1
= >—[aarg[f[1 + g/f]] - Ayarg ]

1
= o [Ayargf +Aarg[1+ g/f] - Ayargf]
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Step: 4
To prove that iAV arg[1+g/f] =0.

Letw=1+g/f

w—1=g/f=w-1|=|g/f]
=>w-1<1

~ w =1+ g/f lies inside the circle with center at 1 and radius 1.

~argw = arg(1+g/f)

Returns to the same value after z describes y.
~Ayargw=0=Aarg[1+g/f]=0
Subin (1), N, —N,=0=N, =N,

=  Number of zeros of } _ number of zeros
f(2) + g(z) insidey)  of f(2) inside y

Step: 5
proof of Main Theorem:
Give |f(2) — g(@)| < If (2],

=19@) - f@|<If(2) |
If (@] >19(2) — f(2)| ony

where G(z) = g(z) — f(2)

~ By (A)
=  Number of zeros of } _ number of zeros
f(2) inside y — of f(2) + g(2)inside y

=Number of zeros of f(z) + g(z) — f(2) inside y
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= Number of zero's of g(z) inside y.
Residues:

Theorem 1:

If fc,- (f(z) - %) dz is of zero period then the constant R; which is the co-eff of ﬁ is

called the residue of f(z) at z = q;.

Proof:

Let f(z) be an analytic function in Q except for a finite no. of singularities a,, a, ... a,,.
Let Q' be the region obtained by excluding the pts. q;

(ie.) Q' =Q—{a;} - {a,}.

Let c; be a circle about a; of radius §; Let P; = fcjf(z)dz. which is the period of f(z)
Let f(z) be a particular function with a period 27i.

. d .
(i.e.,) fc]_ ﬁ = 2mi, and ¢;: |z — aj| = §;

Let R] = P—j,,

21l

fc,- (f(z) - ffa) dz = fc,- f(z)dz — R, fcj - izaj

Theorem 2:

If f(2) is analytic in Q" = Q — {a} where a is an isolated singularity then their exist a unique

complex no. R such that f(z) — % in the derivative of an analytic function in Q.
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Proof:

Since f(z) has an isolated singularity at z = a

=~ we can find a b>0.such that f(x) is analytic inthe annulus 0 < 1z—a I< §

Let c bethecirclec:|z—a| =1, where1 < §
- 1
Write R = z—mfcf(z)dz .............. (1)

Now, we consider,

L(f(z)—%) dz = fcf(z)dz—jczp(_iza
dz

=ff(z)dz—2nip -.-fz_a= 2mi

=fcf(z)dz—jcf(z)dz
= 0.

= f(2) - £ s derivative of an analytic function in the annulus 0 < |z — a| < §.
Z—a

To prove that: The uniqueness of R

If sufficives to show that [ o f(@dz = f ., f(2)dz

where c;,c, aretwocircles0 < |[z—a| < l;,i =1,2 ...

Since f(z) is analytic in 0 < |z — a| < §. f(z) is analytic in every closed curve T in this
region.

(i.e.,) by Cauchy’s Theorem,

ff(z)dz= 0 v (2)
r

choosing, points P,q on ¢y, ¢,
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=R

Consider the closet curve I' composed of ¢, (from p to p in the anticloctwiso sense) and the

straight line gp.

Lf(z)dz= Ll f(z)dz+qu f(z)dz+f_c2 f(z)dz

0= Ll f(z)dz—jc2 f(z)dz+fqp f(z)dz

f(z)dz = j f(2)dz
Cq Cy

(ie.) fcf(z)dz is independent of the radius of the circle.
~ R is a uniquely determined complex number.

Results:

Type-1 Poles of f(z) = % aregen. by Q(z) =0

(i.e.,) Pr=0.

Type-11: Res f(z) = coefficient ofﬁ inthe z = a of f(z) is
Laurent expression of f(z) is power of (z — a)

Method of Finding:

The following are the various method of calculation of residue under situation.

Method: 1

Res f(z) can be calculated directed by evaluating % 1] Sf(2)dz.
zZ=a T

Choosing a suitable small circle ¢ around z = a.
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Examples:

2z+1
z2-z-2"

1. Find the Residue of f(z) =

Solution:

_ 2z+1
f(Z)—Zz_Z_2

poles of f(2) :

z2—2z-2=0
(z+1D(z-2)=0

~ z = —1,2 are poles.

A B 2z+1
Z+1+Z—2_(Z+1)(Z—2)
A(z=2)+B(z+1)=2z+1
putz = 2,

5
=>5=38=B=7, Putz=—1
1/3  5/3

D=0t

Res. of f(z) :
atz = —1,

Res f(z) = L f(z)dz

z=-1 21 J

= eri fcl (3(z1+ Ot 3(25— 2)) dz

where c; in the circle centre -1 and radius 1 .
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RN .
“2ni|3). @+ D 3) 2= EDI=

= Zim E 2win(c; — 1) + §2nin(cl, 2)]
Zlie_sl f(z)=1/3.
Similarly,lzkfzs f(z) =5/3
z=2

2. Find the poles of following function and Residue at this poles

z+1
z2-2z7"

Solution:

z+1
z2 —2z

f(2) =

poles of f(2) :

z2—-2z=0
=z(z—2)=0

= z = 0,2 are poles.

[Let

z+1 A
z(z-2) z

+- B

z-2
>A(z—-2)+B(z)=z+1
putz =2,2B=3=>B=3/2

Putz=0,-2A=1=>A=-1/2.

. _ -1/2 3/2
” f(Z) Tz + (z-2)

sub in (0)]

1
2mi

Res. of f(z) atz =0, Res f(z) = fcl f(2)dz
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=—f 2l dz (1)

T 2mide z(z-2)

I A lf 3
~ 2mi 22" " 2mi), 2z -2

cqilz—d=1

1 [-1 1d+3f iy
“omi|2 ), 27 2) 72

C1

17 1 3
=—|-Z2mi = 2min(cy, 2
il 2 mn(cl,O)+2 min(cy, )]

Res £ =3

Similarly, Res f(z) = 3/2.
Model - II:

If z— a isasimple pole of f(z).
then,

(@Res f(2) = lim,o (2~ O)f (2)

L P@) _ P(a)
(b) 522 f(Z) - llmZ—’a Q,(Z) - Q’(a)

Problem 1:

1
2245246

1. Find the residue of f(z) =
Solution:

Let f(2) = ——

z2+5z+6
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poles of f(2) :

z°+5z2+6=0
(z+3)(z+2) =0

~ polesare z = —2,-3
Res. of f(z)atz = —2

Res f(z) = lim(z — a)f (2)

= lim (z + 2) -
z—=2

(z+3)(z+2)

1
= i
er{lz (z+3)
=—-1
at z = -3,
R = li 3
s f@) = Jim G+ D65
B 21@3 (z+2)
= -1
Problem 2:
1-— 2z
@) =22
Solution:
1 —e??
f2)=—;
2z  (22)*
1—[1 +f+T+"']
|2z N 477 N 8z3 N
f(#) = z*  2z%  6z%
= [2 RN ]
— 1z3 " z2 3z 3
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Res. of. f(z) atz = 0.

Res f(2) = co-eff. of = in f(2)

=—4/3

Problem 3:

f(z) = tanhz

Solution:

f(z) = tanhz = czi:hhé) _ Z((Z
poles of f(z) :

coshhz = 0.
= cosh hz = cos(Zn + 1)m/2
cosiz = cos(2n+ 1)m/2

[cosix = coshx
sin ix = isinh x]

iz=02n+1)r/2
Pole z = %(Zn + m/2
iz=02n+1)r/2

pole: z = %(Zn + 1) /2

P(z) sinhz 11d b b
0@z sinhz [d(cosh z) — sinh z]

.[ Res 1 P(2)
Res of f(2): [Z & (@) =lim, .7 (Z)]
atz = %(Zn + 1)m/2

Res f(z) =pestanhz =lim1 =1
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z=—i2n+n/2 z=—-i2n+ )n/2

Problem 4:

f(2)=

sin? z

Solution:

z-—i(2n+ )m/2

_ P

£(2) 1 1 2
Z) = — > = = —
sin? z %(1_(:0522) 1—cos2z

poles of f(2) :

1—-cos2z=0
cos2z=1
COS 2Z = cos 2nm
2z = 2nm
z=nm,n=0,=+1,+2..

are simple pole

P(zy 2 1
Q'(z) 2sin2z sin2z

Res of f(2) :
P
Res f(z) = lim Q'(2)
~ Resf(z) = Zl_i,rr?n sin Bz
Z =Nt
1
T o
=0
Exercises:
1.Evaluate [ c Zzzzzjlz dz

- 2(2)
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Where (i) c inthecircle |z —1| =1

(i) C Inthe circle |z| = 2

2 _ tz = COS z
f(z) =cotz = s
3 ) sin z
. =tfanz =
f(Z) d COS z
+1
4.f(2) = 5

5.obtain the residue of e?((z — a)(z — b) at its poles in both the cases a # b&a = b

6. compute fonlog sin 6 d@ using residue calculus.

Model-111

If z = a isapole of order

Res f(Z) = lirnz—>a (mil)!
Problem 1:

2z
f(2)= Z-1)?
Solution:

2z
f@ =y
poles of f(2):

z-1)?*=0=>z=11
z = 1 inapole of order 2.

Res of f(2) :

m for f(z) then,

D™ (z - @)™ f (2)]
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) o
z=1, Res f(z) = lim mDm_l[(z —a)"f(2)]

1 eZZ
=1i — D! — 2~ =
= BB} T D I(z 1) = DZ] wherem = 2

= lime?? - 2
z-1

= 2¢e2

Problem 2:

1O = ma =y

Solution:

1O = ma—oyr

Poles of f(z) :

zZ"(1-2)"=0
zZm=0,(1-2"=0

z = 0 is a pole of order m.
z = 1 isapole of order n
Res of f(2) :

atz = 0.

1 1
—lim—_  pm-1 _oym___ -
Bes f@ =lm P |G~ O g =
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=1 1 Dm—l 1
~ 2% (m - 1)! (1-2)"

= myg& (-D™n(n + 1) - (m — 1) times (z — 1)""™~D (=1)?(—1)™"!

=#(n+1—1)(n+2—1)---(n+m—1—1)

(m—1)!
(-D"1
= mn(n+ D(n+m-=2).
atz=1,
Bsi f(@) = EE} (n—1)! DTz = 1)" zm(1—2)"
-G D DD

1
= —|lirr11 (—D*"(—m)(—m —1) ...(n — 1) times z~™m""*1

(n—1)!

= ! 1m(-1m-1? 1 2
_(n—l)!(_ D™ 'm@m+1) - (m+n—2).

When is the differential f(z)dz exact in a region. (or)

Prove that fyf(z)dz with continuous of depends only on the end points of the y .

f is the derivative of an analytic function in Q.

Proof:

f(2)dz = f(2)[dx + idy]
= f(2)dx + if (z)dy

fyf(z)dz depends only on the end points of y

A function F(z) in Q such that
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0F (2)

%F(z) = f(z) and =if(z) [+ Theorem(1)]

dy
i 10
(ie.,) 7@ F(z) =f(2)
d
(ie.) — i@F(z) = f(2).
J0F(z)

e = %F(Z)(Zf(Z))
Thus (i) F(z) Satisfies cauchy Riemann eqgns.
(i) Given that f(z) is continuous
= Z—i and g—; are continuous in Q.
From (i) and (ii) F(z) is analytic function F(z)
Problem 3:
Compute fyxdz where y is the directed line segment from0to 1 + i.

Proof:
Equationof y isy < x

[_.y—O_x—O]
"1-0 1-0

~ dy = dx.

<

xdz=f x (dx + idy)
14

(dx + idx)

Il
<

f x(1+10)
14
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1
Problem 4:

Compute [ z™ (1 — z)™dz, where m and n are positive integers.

|z|=2
Proof:

Here y :|z|=2 is a simple closed curve f(z)=z" (1 — z)™ is analytic everywhere and hence

analytic inside in all y

By Cauchy’s Fundamental theorem,

fy f(z)dz=0

f z"(1-2)"dz
|z|=2

Note:
If every cycle y belong to Q in the line combination of the cycle y4, y,, ....... V-1
Y=C1Y1tC Vo2t .o.nn. +tCn_1Yn-1

We obtain for any analytic function in Q

fy f(z)dz=j; f(z)dz

1V1tC2 Va2t .o +Cn-1¥n-1
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Where p; = fy_ f(z)dzi=1ton-1

This integrals depend only on the function and not on y

They are called the modulus of periodicity and differential of the f dz the period of indefinite

integral.

131

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



UNIT-IV:

Evaluation of Definite Integrals and Harmonic Functions: Evaluation of definite integrals
- Definition of Harmonic function and basic properties — The Mean value property - Poisson
formula.

Chapter 4: Section 4: 4.1to 4.4

4. Evaluation of Definite Integrals and Harmonic Function:

4.1. Evaluation of Definite Integrals:

Type: 1

Evaluate foan(sin 0, cos 8)d6 where R(sin 8, cos 0) is a rational function of sin 6 and cos 6.
(or)

Explain a general method of Evaluating foan(cos 0,sin 8)d6. where R is a rational function
of two real variables.

Proof:

Putz=e® (or)|z|=1,0<0<2rm

. dz
=>dz = eleidB.,dH ZT
el

dz
= df = -
iz

Letz = e

= cosf + isin 8
1
Ezcos@—isin@
1 1 1 1
cosH=—[z+—] and sin 8 =—,[z——]
2 V/ 21 V/

Contour in ¢;|z| = 1.

-fan'e ede—le[ 1]1[+1]dz
--0 (sinf,cos 0) —C ZiZ Z'ZZ Al
:21Tl[R1+R2+ '''' ]

Problems:

1.Evaluate foni a>1

a+cos 6’
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Solution:

__(2m  df _ T do
Let! = [, Mww_zh;ag ......... (D)
To find | ; [+ f(2m —0) = f(0)]
Letc:|z| =1

putz=e"%, 0<6<2m

dz = e®ido
dz

do = >
and also,
1 1
cosf = 5 [z + >

Ly Lpom az
o g

_1f 1 dz
T 2i 1[z2+1] z
C“f[ z ]

1 dz

1 1 dz
~ 2 CZaz+zz+17
27
1 2z dz
T 2i J20z+z2+1 z
2 dz
T 2i c2az+z2+1
= = [2mi(R; + By + )

=2n(Ry+ Ry + - =)] ......... @)
To find Residues (R4, R,, ...)
Given the poles are
z2+2az+1=0
_ —2atV4a® -4
2

B —2a+2Va?-1
B 2

=—a++Va? -1

Z
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~zp=—a+Va?-1

} are simple poles

Zz=_a_Va2_1
oz = —1]la+ |Wa? — 1|
=a++a?-1
|z,| > 1

= z, lies outside of ¢

Z1,7, are the roots of z2 + 2az+ 1 =0

1
o lez = I = 1
= lez = 1

= |z12,] =1
= |z4llz;] =1
= |z = —
! |Zz|

> |zl <1
= zq lies out inside of "¢ '
To find Ry:
We know that,
R, = Resz=21 f(2)
lim (z — z,)f (2)
Z—>Zq

1
= ) G-
= lim ;
z-2Zq (Z—ZZ)
R, = !
Z1— 2
Ry = ; Sub in (2)
2va? -1
2=
[ - j‘” do
o a+cos@
I = 27‘[[ ! ] —
2va? -1 va? -1
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dx

a+sin? x

2 Evaluate ["?

Solution:

T/2  dx fn/z

Let J .

0 a+sin? x

/2 2d6
_]0 2a+1—cos26

a+

put 20 = ¢

= 2d0 = d¢

When, 86 =0=>¢ =0
O=n/2=>¢p=m

dae

2

/2 2.do
nfo 2a+ 1 —cos26

_f” d¢
~Jy 2a+1—cos¢

_j” 2dep/2
~Jy 2a+1—cos¢

_Llpm __do
=300 Tarieesg e (1)

Where ¢ = 0to 21

Letc:|z| =1
z=e'®
dz = e®id¢
dz
=>d¢ = E

and also cos ¢ = [z n ﬂ

~ (D)=

TE o dx /2 2d6
"; m:j; 2a+1—cos26
_1.1-271' dd)
_20 2a+1—cosf
_1f 1 dz
=5 =

€2a+1 7[ +7]

_1f dz

2). . [4az +2z—2z%—1]
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1 2zdz
=2fciz[4az+22—zz—1]
-1 dz
) 22— 2z(1 + 2a) + 1]

-1
= —[2miR + Ry + ] e (2)
To find Residues:
To poles are,
z2-2QRa+1)z+1=0 Y ¢}
_2Qa+1)+4Qa+12 -4
Z= 2
_2Q2a+1)+2/(a+1)2-1
B 2

=QRa+1D++J4a? +4a+1-1
=2a+1+2Ja*+a

z=Q2a+1)t2{a?+a

-~ The roots are

z;=Q2a+1)+2{Ja’+a
z,=QR2a+1)—-2ya*+a

sz > 1

= z, lies outside of c.

We know that, (from (3))
Z1Z5 =1
|21z, =1
nllzzl =1 =zl =7
|z,| <1

= z, lies inside of ¢

~TofindR, :
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R2 = ReSz—>Zz f(Z)

1

= lim (z —

Jim (2 =2) S =)
- Zl—>r;12 (Z - Zl)
_ 1 _ -1

Z;— 21 4Jal+a
“R,=———— Subin(2).

2 4vVa? +a @)
L2 >

Tz dx -17. ¢ -1
[ e )
o a-+sin“x [ 4Ja2 + a

s
T
3. Prove that [, 5212;920 do ==
Solution:
Lot I = .[2” cos? 36
o O —4cos26
oy Lt co; 2(36)
- o S—4cos26
i60
=RP-[T o —do ... (1)

Takec:|z| =1 (or)

z=e® 0<0 <2

dz = e?ido
dz
= df = -
iz

also, cos 6 = 1 [z + 1]
2 z

And ei6? = [619]6 =z

Let cos 28 = 2cos? 0 — 1

Il
[\
N| =
/-~
N
+
N | =
N———
]
[
—_

N —= N
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_1],2,1 _
Z[Z +z2]+1 1
1l 2, 1
Hz+d] )
I—RPlj 1+ z° dz
2 C5—1[1(22+12)]lz
° Plj 1+ z° dz
2ic5 2[z“z-lz-l z
—RPl 14 z° 4
TN A e Y
72 z
1 z(1+ z%)dz
_p.p ( )

2i c 522 —2z% -2
b -1 z(1+2°)
=R-P (zi) fC 27%-522+2 dz
-1 )
=R.p(z) 2T (Ry4+ Ry + ) e 3)

poles are given by,

2z%*—5z2+2=0
2z%(z°-2)—-1(z?-2)=0
(z2-2)(2z°-1)=0

z2 = 2z> =1

1
z=+/2 ZZ=§:>z=i

sl -

The simple poles are

=L 2, =L alone lies inside of ¢
V2’72 T 2

Tofind Ry,R, :
R; = Resf(2)

Zy

[ where P(2) = z + z7
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Q(2) = 2z* —5z2 + 2
z+2z7
= lim

s 1 823 —10z
\/E
. z(1+ z%)
Zimi 2z(4z2%2-75)
V2
_ (1+ 2%
= o1z 2(422 — 5)

1+ (1//2)¢

2[4(%>2—5l
1+% _9/8

8 (%) _10
-3

16

R1=

Similarly, R, = —13—6 subin(3)

@ =1=RP(3)2m [ -
()
-er ()
3
~ 8
Type: 1l

Integral of the form [ p(x) dx , where

(i) deg Q(x) = deg P(x) + 2
(ii) Q(x) # 0 for any real x.
(iii) P(x) and Q(x) are polynomial in x.

Proof:
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Taking the contour c:T'U L

[:z| =R
P(2) P(2) p
zZ = VA
c Q(2) TUL Q(2)
P(2) P(z)
= dz+ | —=dz
r Q(2) L Q(2)
P(2) R P(2)
= dz + d
0@ T ) e
Taking limg_,,
P(2) ® P(x)
dz=0+ dx
Q=) —w Q(%)
Result 1:
limzf(z) =0
= lim | f(z2)dz=0
R—> o0 H
Result 2:
P(2)
lim dz=0
R-oo FQ(Z)
Since degree of Q(z) = deg of P(z) + 2
Result 3:
@ Zf x)dx if f(x) is even
[ rooax={2), T 7@
—® 0 if f(x) is odd
Problem:
0 xZ-x+2
1.Evaluate f—oo 1102249
Solution:
Take the contour C:TUL
Where I': |z| = R
and L:[—R,R].
Consider,

f z2—7z+42 4 _j‘ z2—7+2 4 +f x2—x+2 4
7+ 1022497 T ) 2+ 1022+ 9" T | v 10a2 + 9
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z[z% — z + 2]

Hmzf () = e  T022 4 9
zz%[1— l + %]
= hm
z2

=0
. z2-z+42 _
limzoen Jr orzrs 47 = 0

Taking limy_,, in (1) and using (2).
~ ()=

j z2—z+2 4 _O+j°° x*—x+2
cZ 410224977 T ) X102 +97"

poles are given by

x*+10x2+9=0
x*+x2+9x2+9=0
x2(x2+1)+9(x2+1)=0
x2+9)x*+1)=0
x+D)x—-Dx+3)(x—-3i)=0

~ x = *3i, i are Simple poles.

Among these poles, only x = i and 3i are lie inside ' ¢ .

To find R; & R,:

P(z
~“ Ry = Resf(z) = lim ——~ (2)
z>1 Q (2)
_1 z?—z+2
- zl—r>rll 473 + 20z
— i+ 2
413 + 201
_ —-1—-i+2
T —4i+20i
R — 1—1i
17 160
.. . P(2)
Similarly, R, = Res,_3; f(2) = lim,_3; ——
Q' (2)
R — 7 + 3i
27480
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Sub R, &R, in (3)

~(3)=
] z2—7+2 dz =2 .[1_i+7+3i]
cz*+10z2+9 S BT 48i
_, _[3—3i+7+3i]
= T 48i
3 [10
~ T2
B 5w
=0
o) x2dx
2.Evaluate [ —————
Solution:
Letc:TUL
where T:|z| =R & L = [-R,R]
Consider,

42 42 R 42

,[Cz4+522+6dZ=,[;24+5x2+6dz,]-_Rz4+522+6dZ
= 2mi[Ry + Ryl e (1)

Taking limg_,., in (1)

z? ® x?
~ (1 —————dz =0 ————d
():}fc Z4 52246 +f_oox4+5x2+6x
=2mi[Ry + Ry + -]
[ limzf(z) =0
Z—00

im [ 2% 4,20
i) 0™ T

=~ poles are given by
x*+5x2+6=0
x*+3x2+2x2+6=0
x?[x?+3]+2[x*+3]=0
(x?24+3)x*+2)=0
x?=-2,x2=-3

x = +V2i,x = +V3i

are simple poles.

Among these poles, x = v2i & /3i only lies inside c.
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Tofind R, &R, :
Ry =Res, 7 f(2)
. P(2)
= lim

z—\/21 Q, (Z)
ZZ

= lim ——————
z—lﬁlii 473 + 10z

_ oy
4(20)3 + 10(V20)
_ Ve
V2i[4(V2)? + 10]
o V2i
—8+10

V2i

Ry =

—V/3i
2
~Sub R, &R, in(2)
© z? V2i —/3i
j_oo o7 gz = 2mi [Tl
= mi2[V2 — V3]
= —n[vV2 — V3]
= n[vV3 — V2]

Similarly, R, =

..f°° z? 4 _1.I‘°° z? 4
")y z*+522+6 72 —wZt+522+6 z

= %[m/g— V2]

=5 V3- V2]
3.Evaluate fooo 4d_x -
x*+1 242
Solution:
Let C:TUL
whereI':|z]| =R & L = [—R,R]
Consider,
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J‘ dz _f dz +j‘R dz
czt+ 1 Jezt+1l ) gzt 41

= 2mi[Ry + Ry, + +-..]

Taking limg_,., in (1)
() =
] dz _ O+f°° dx
czZt+1 o Zt+1

poles are given by

x*+1=2>x*=-1
x*=cosm

Generally,

z* = cos[2k + nm
74 = ei[2k+1]7t’ k = 0,1,2
i(2k+1)7t
z=e 4
Nz = ein/4 ei37t/4 ei57t/4 ein/4
7 = ein/4—&ei3n’/4—
alone lies inside c.

To find R, &R,

Ry = Z=Re%§/4f(z) - 4[eim/4]3
B 1
- 4[esin/4]

- [e—i37r/4]

e e S i S Bl ol Mt B

[cos3m/4 — isin 3 /4]
[cos 135° — isin 135°]
[cos(180° — 45°) — isin(180° — 45°)]

[—cos45° — isin 45]
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Similarly,
R, = Res,_, sin/s f(2)
_ 1
z—>el~£’li}f/4 473
1

_ 1
- 4[e9i7t/4]

— _e—9i7t/4 — le—i[Sn/4+n/4]
4

(RN N [ SN

= —[cos(360 + 45) — sin(360 + 45)]

[ s 4
= —|COS— —ISIn—
4 4

e Ll

_1[1 iy 1]
“alvzT 'z
1
Ry,=—=[1—1i
2 4\/5[ l]
Sub R; & R, ineqn (2)

) °°dz_2_—11_ 11_
():,f_w—x4+1_ T[l[m( +l)+m( —l)

_ 2T

—x—i+x—1i

_ —2i]

m[
mi
zﬁ[
_T

V2

We know that,
f°° 1 p _1j'°° 1 p
o 7 +17°72) 2 +1 "

_1(71)_ T
C2\W2/ 242
o] sin x

4.Prove that f_oo x2+4x+5

dx = ?sin z
Solution:

Take the contour C: TUL

where I': |z| = R

&L:[-R,R]
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consider,

] sinz d j sinz dz + f sinz d
cZ2+4z+5 0 ) 22+4az+57 7 ) 2Zv4z+5""

. j Ime™ 4
m=| ——dx
2o x2+4x+5

eix
=1 —d
m,[ X2 +4x+5%
poles are given by

—4++16—-4x5x1
2
—4++/-4
2
—4 +V4i?

2
-4+ 2i

2
=2+
=(-24+)(-2-10)
Among these poles x = (—2 + i) only lies inside c.
To find R, &R, :-
Ry = Res, -2+ f(2)
- 1 P(z)
= o) Q'(2)
. elz
z—>(1—r£1+i) 2z+ 4
pi(=2+D)
T2(—2+0)+4
e—2i+i?
T 2i+2i+4
e—1—2i
21
~ ()=
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T
= Img [cos 2 — isin 2]
Taking only the imaginary part,

—e[ sin 2]

_7'[ .
= —sin 2.
e

Type IlI:

Integral of the form f_woo sin mxf (x)dx (or) ffooo cosmxf (x)dx. where (i) m = 0
(i) lim,_,, f(z) = 0, (iii) f(z) does not have poles on real axis.

proof:

Letc=TUL
[z] =
= upper semicircle
L=[-R,R]
Consider, [ .e™?f(z)dz = 2mi[Ry + Ry + ]

Jordan's Lemma:

Z—00

lim f(z) = 0 = lim f eM™?f(z)dz =0
o Jp

where I': |z| = R = upper Semicircle.
Problem 1:

Cosx

1.Evaluate (a) f dx where a real

© cos mx Te~ma m>0
(0) fO xz+a2 T 2a a>0,
©f, —dx = "ez_m where m > 0.
Proof:
Letc=TUL

Where I': |z| = R (upper Semicircle)
L =[-R,R]
Consider,
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eimz eimz R
—dz+ f_R

Je 72 =1

poles are given by,

elmx

dx =2mi[R{ + Ry + -] ... (1)

72 x2+a?

z2+a?=0
=72 =—q
= z = +ai

Take a > 0,

2

=~ The simple pole z = i a alone lies inside’ ¢

[where a < 0, The Simple pole z =-ai alone lies inside ' ¢ '].
To find R:

We know that,

R, = Res f(2)
_ i P(z)
~ 228 0'(2)

imz
e

= lim
z-a; 2Z
eimai emai

=== .2

2ai 2ai 2ai
clearly,

li _t .
zl—>r2> z2+a?
imz
(by Jordan's Lemma)

Sab(2) in (1),

eimz R oimx e—ma
—dz+f —dx=2m'[ ]
frzz + a? _gr X*+a? 2ax

Taking lim & using R — oo in equation (3)

- We have. 0 + [ SSTXIEIE gy = T g-ma

—© x2+a? a

(b) equating real parts in (4)
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f‘” cos mx T
2 2 -
e X?+a a

® cosmx T
22| S —Zdx=—e™™m
0o X*+a a

To get (a)
putm = 1in(5)
a2 gy = Lema L (5)

0 x2+q2

To get (a)
puta = 1in(5)

~(5)=>
j°° cosmx T
0

X2+1%772

— e—m

Note:
Equating imaginary parts in (4) we get.

© sinmx
[,

w X2+ a?
Problem 2:
Evaluate (a) f x;':;x dx = %e‘a. where a > 0
(b) [, Sdx =Zea,
Proof:
Letc =TUL
Where I': |z| = R (Semi circle)
L = [-R,R]
consider,
zsin zmz z sinmz R x sinmx
fczu—az‘”: Lm‘“Lm”
=2mi[R; + Ry, + -] ...l (1)
poles are given by,
z2+a?=0
72 = —q2
z=Zai
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Take,a >0
= The simple poles z = ai alone lies inside ' ¢ ".
To find Ry
R, = Resf(2)
zZ=a;
_ i £&)
e Q')

ze mz

2ai
Clearly,

. Z
e

By Jordan is Lemma, = lim 2 dz=0 ... 3)

Sub (2) in (1)
eimz R xeimx e~ ma
,frzz+a2dz+.f_Rx2+a2dx:m[ Y ]
= mi[e ™4%]

Taking lim & using R — o ineqn (3).

We have, 0+ foo x(cos mx+isin mx) dx = ﬂi[e_ma]

—o0 x2+a?

Equating imaginary parts,

o  xsinmx _
) — dx = me™™¢

- x<+a (4)
foo xsin mx x = Ee—ma ............

0 x2+a2 2

To get (a): put m = 1in (4),

f‘” xsinxd T
———dx=—e
o X?+a? 2

To get (b):- putm = a,a = 2in (4)

00 xsin ax _ T __2q
and [, ., dx=7e

150

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



cos xdx T
(3) f_oo (x2+a?)(x2+b2) - (a?2-b?)

xsin x [ ]
(x +)(x2 +) -3

*  cosmx

o (x2+a?)?
Type-1V:

dx = 4—613(1 + ma)e™ ™%, where m > 0,a > 0.

Integral of the form ffooox”f(x)dx where f(z) has finite number of poles on the real axis
Let z = a be a simple pole of f(z) withe residue k.

Let AB: |z —al =71,a < arg(z—a) <p

Then lim,_,, f@f(z)dz = ik(f — a).

Problems:

1.Prove that [, %% dx = x=2[ 2 x"f(x)dx

proof:

consider [ . er dz

poles are given by, z = 0.

which is a simple pole lying on real axis.
C=TUL,UYyUL,

where I': |z| = R in the upper Semi-circle (half-plane)
Y: |z| = r in the upper half-plane

L; =[—R,—1]
L, = [r,R].

iz
Clearly 87 is analytic inside and on ¢

By Cauchy’s Theorem.

[
[o] [ -

A eliz —r elX elz R eix _
(l.e.,)fr7d2+f_Rde—fy7d2+fy —dz=0 ... (1)

By Jordan's Lemma,
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hm——O:hmf —dZ—O

Z50 Z R0
k= Reszzoe—lz = lim P
z Q)
eiz 0
==l
(ie.,) K =1,
By Result,
iz
}/1_r)r(1) : 7dz =ik(f —a)
=i(1) (r—0)
SIT e 3)

Taking lim and r - 0in (1) and using (2) & (3) we get,
=O+f_ —dx—m+f —dx—O

o elx ]
—dx =in
—o X

® cosx + isinx )
————dx=in
—oo X

Equating Imaginary parts.

® sinx
dx =1
co X

© xsinx .
dx =dx
— 00
© sinx
2 dx =1
0o X

wainxd T
o X = —
o X 2

(2) Prove that (a) f

x—rrcotpn(0<p<1)

[ee] xp _
(0) [y rdx =57 (0<p<1)
Proof:
[e%] Zp—l
consider f dz
o 1—2z

The polesare z=0and 1 — z = 0.
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(ie.,) z=0and z = 1 are simple poles WhICh I|e on the real axis.

C=FUL1U)/1UL2 U)/z UL3

P-1

Z - ...
— s analytic inside and on C.

- By Cauchy's theorem,
zP~1
] S —dz=0

[l

m)]l_zdr+fR1_xdx—£ﬁl_Z

1- -1y xp 1 d 1+T2 Zp—l
+ X —
- 1—x 17 1—2z

By Lemma,

zP~1
limzf(z) =limz-
Z—>00 Z—00 1 _
7P
= i
zl—>rg> 11—z
=0(0<p<1l

= lim | f(z2)dz=0
R-> o0 T

=0

(2)

zP~1
= lim dz=0
R-> o0 T —7Z
By result
zP~1
i _ _
hlzn)0 . _Zdz ik, [ —a)
V1
zp~1
k; =R
1 esT
-l 2 (- 2
~ 250 xp1 'Q'(z)>
zP~1
k; =0, li dz=0..........
1 yllgr}) 11—z z
zP~1
li dz = ik,(B —
Jm —, 4z = ik (B
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k, = Res -
4P-1
= lim(z - 1) -z
_( 1)1P 1
k2 == —1
P-1
T121£n)0 ) dz=i(-1)(r—0)=-mi ....e......(3)

Taking Rlim and r; = 0 and r, = 0 in (1) and using (2) and (3) we get,

0 xp—l 1xp—1 . ooxp—l
O+j 1= dx—0+f0 1_xdx—(—m)+j1 1_xdx—O

-[.E

Inl; :putx = —x
dx——dx

Il_f S )pl( dx)

j = 1)” NGl
0 1+x

ooxp—l .
dx+f0 1_de——L7r—> (-4)

© P—1/,P—-1
(le)Il_f %dx

1+x
Sub in (4)
© (=1)P-1xP-1 o , P-1
——dx + f dx = —in
0 1+x o 1—x
multiply (-1) = (=D)L, -, = in

oo xP—1
where I5 = [ ’;?dx

(cosm+isinm)PI; — I, = in
(cospr +isinpn)l; — 1, =imr  ........... ®))
Equating Imaginary part and Real part in (5)
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I.P:sin Pl , ol =

sinpm
R.P:cosPrl; —1, =0
T

. ol I
cosppm sin pm 3

[+
dx = mcotpm
o 1—x

lo
E dx
1+x

5.Evaluate [ 0°°

Proof:

logz
1+2z2

poles are given by,

consider f(x) =

14+2z%2=0
z2=-1

z = [i are simple poles.
z = 0 is a branch point of log z
Letc=TUL,UyUL,

z = i alone lies inside ¢

. P(2)
Ry = Res,=; f(2) = lim Q'(2)
i logz
T 2z
_logi
20
B loge™™/?
- 21
irr/2loge
21
R, =m/4

By Residue Theorem,

[i = cosm/2 + isinm/2 = e™/?]

ff(Z)dZ= 2i(Ry + Ry + )
c
£+£1+L+£2=2ni(n/4):?

R
log z log x logz log x i 2
[ 222 dz + B2 dx— |22 dz+ | 2L dx=" ... (1)
I 1+z2 1+x2 y1+z2 . 1+x2 2
-R
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logz

Where lim z f(z) = lim z
Z—00 Z—00

1+2z2
. logz 2z?
A% Tz 1422
- logz z2
= lim lim
zoo0  z  zow 1+ z2
. logz i z2
T e 7 ez2(l+ 1/22)
y logz 1
gt z 0+1
= lim £
z—oo 1

limzf(z) =0

lim . E2dz=0 ... )
. 1 .
lim I, fzzz dz = ik (B — @)

=ik(m—0)=ikm ............ 3)
where k = 12133 f(2)

=lim(z - 0)f(2)
zZ—

_ 1 logz
Tzl 14 22
putz=1/t,asz—-> 0=t > o

o i Llog(1/0)
REECTEn 1/t2
llogl —logt
lim —————
t—oo t (tz + 1)

k= —0 (as in (A))

Sub in (3) lim |, 202 =0 e (4)

1

Taking limR — oo, — 0 in (1) and using (2) and (1)
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putx = —t = dx = —dt

* log(—t) j“’ logx im?

]0 Tz C9OF . T+ ¥ =73

®log(—1) + logt ® logx im?

] -1+ gdt+f 82 =2

0 1+t o 1+x 2

® Jogel™ ® logt ® logx im?
] & 2dt+f —gzdt+f dex=—
o 1+t o 1+t o 1+x 2

]°° in dt+2f°° logxd _im?
o 1+1¢2 o 14227772

@
f %Y 4x=0 oo (5)
0

dx

x1/3
+x2

6. Evaluate f0°° -

Proof:

z/3  P(2)

consider f(z) = 7 0

poles are given by,

14+2%2=0
z?=-1

z = %i are simple poles
z/3 is a inane valued function and z = 0 is a branch point.

The simple pole z = i alone lies inside C
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Ry = Res,; f(2)
Z1/3

- 1211)13 1+ z2
i '3 p(2)
N2z T 2(2)

i1/3
T 20

(ein/2)1/3
20
ein/s

21

By Residue Theorem,

int/
jcf(z)dz = 2mi <82i6>

R1=

=me™° .........(1)
1/3
i) = ey
74/3

= limz 1
zme Zz(l.+'E§)

_ 743
::llan'_________i_‘:: 0

. Zl/3
lim z —
R-ooo 1+z

lim f, f(2)dz = ik (B - )
=ik(m—0)==ikm ............. 3)
Where k = Res,_, f(2)

1/3

dz=0 .o, )

:y—%(z_o)1+zz

140
Zz1/3

1+z2

Sub in (3), ]l/i_r% fy dz=0 ... (4)

Taking limR — oo, — 0 in (1) and using (2) & (4), we get,
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. fo x1/3 J . foo x1/3
+ x—0+
—e 1+ x? o 1+x?

0 .1/3 © .1/3
j a dx+j X dx = mein/
w 1+ x2 o 1+x2

Putx = —t = dx = —dt
) (—t)1/3 foo x1/3 ]
————(—=dt) + dx = me'™/®
]0 1+(—t)2( ) o 1+x?
® (_1)1/3¢£1/3 ®  41/3 '
()—zdt+f Sdx = me'™/
0 1+t o 1+x

® x1/3 .
] T [(—1D)Y3 + 1]dx = mei™/®
0

I [(e"”)l/3 + 1] = mre'™/®

I[eT/3 + 1] = mei™/®

I[cosm/3 + isinm/3] = me™/®

I[(1 + cosm/3) + isinm/3] = m[cosm/6 + isinm /6]

R-P: 1[1+1/2]=ig

2
~I=m/\3
I-P:Il\/z—gl=n-1/2

I=mn/V3

o Jog(1+x2)
0 de,O <a<l1

7. Evaluate [

Solution:

log(1+22)
Lita

Consider f(z) =
Singularities of f(z) are given by,
zZHe=0>2z=0

Which lies on red axis.
c=TULUyUL,

f(z) is analytic inside and on C.

By Cauchy Theorem,
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f f(z)dz =0

L+L+L+L2=°'

log(1 + z? ¥ log(1 + x2 Y log(1 + z2
jog( Z)dz+j og( x)dx_f ogl+2z%

Zl+a' x1+a Zl+a

-y

log(1 + z?)

lim z f(z) = lim z iva
Z— 00

Z—00

log(1 + z2)
mz————

Z—00 A
log[z? (iz + 1)]

= lim Z

Z—00 A

log[z?] + log(1/z% + 1)
m

Z—00 A

- 2logz+1log(1/z%+ 1)
= lim

Z—00 zx

1/z
a-1

= 2 lim
Z—00 AZ

=2(00+0=0
Jim Jp f@dz=0 ... ()

_ f log(1 + z?)
lim | ——
r—0

Zl+0(

+lim Zialog(l/z2 +1)
Z—00

dz = ik(f — a)

= ik(m — 0)
= KT e, 3)
k = Resf(z)

_ log(1 + z2)
-t (=0 2

log(1 + z2)
m ————————————————————

z-0 ze

(2= (2»)?%/2+(z2%)3/3
= lim

z-0 zZe

=0,(v0<a<1)

R1og(1 + x?2
+j log(+x%)

x1+a
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. . log(1+z2
sub in (3), lim |, el gz =0
Taking limR — oo, r — 0 in (1) and using(2) &(4) we get,
% log(1 + x? *log(1 + x2
o4 [ LB g [Tlorltx)
0

x1+a’ x1+a

x=0

— 00

put x = —t = dx = —dt

]0 log(1 + (—t)?) (—dt) + foo de =0
. 1+

o (_t)1+0(
® log(1+ t?) * log(1 + x?)
0 (_1)1+at1+a j(; x1+a x=0

1 0<a<1]
—I+I=O[‘- +1=#0, (e™) #1,
(D (-1 (e m) ()"
-1
I[W+1]=O=>I=O
Type- 1l
1.Evaluate | _ Oo(z—zdx a real
Solution:

Consider the contour C = TUL.
Where I': |z| = R (upper Semi-circle)

L =[—R, R]
fC TUuL (Zz+a2)3 f +f
ZZ R X
— [‘mdz-l_f—R mdx ............ (1)
zZ
A
= 0.
= lim ff(z)dz=0
|z]—>c0 r
Sub in (1).

Taking limg_, o,

_ z2 « x
I%l_)rg) fc —(zz FPE dz =0+ f_ —(x2 e dx

= 2i(Ry + Ry + =+ ) eeeerinn, )
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poles are given by,

(z2+a®)3*=0
(z%> + a?) = 0 thrice,
z? = —a? thrice,
7z = ~ai thrice.

Among these poles,

Z = ia alone lies inside c and it is a pole of order 3. [ take a > 0]

Ry = Res,_q, f(2)
2

= lim 1D3‘1(z —ia)? z
z-ai 2 (z+ia)3(z —ia)3
1

== lim D?(z*)(z + ia) 3
2 zZ—-al

1
=5 lim D[2z(z + ia) ™3 + z%2(—3)(z + ia)™*]
zZ—la

1
=3 lim 2[1(z + ia) ™2 + z(=3)(z + ia)™*] — 3[2z(z + ia)~* + z?(—4)(z + ia) ]
z-la

1 3ia 3| 2ia  4(ia)?

- (Qia)® QRia)* 2|QRia)* (2ia)s

_ 1 3 3 [ 1 ] 4 6 1

~ —8ia® 16(—ia)® 16l(-ia)3l " 32(—ia)3

4-6-6+6 -2

~ —32ia® = —32ia3

1

= R= 16
Sub in (2),
foo s omi
o (X2 +a?)3 x=em [16ia3]

_ s
~ 8a3
© 2
2. Evaluate : __xdx T
(x2+9)(x2+4)> 200

Solution:
Letc =TUL
Consider,

fc(z2+;)2€z22+4)2:fr+£

162

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Taking limy_, o

x2dx

] j AL fm
Row ) (Z2+9)(Z2+4)7 L2+ 92 + 4)?

- 27Tl(R1+R2 +) .......... (1)
Poles are given by,

(z2+9)(z2+4)? =0
z2 = —=9,7z% = —4 twice
z = +3i, z = +2i twice
Among these poles.
z = 3i (of order 1) and

Z = 2i (of order 2) lies inside C.

Ry = Res;—3; f(2)
2

Z
=i =30 DG =30 (2 + 47
(30)?
= (6)(=9 + 4)2
—9
~ 6i(25)
-3

R1 = ﬁ
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R, = Res,—y; f(2)

1
= lim -~ D?"! l(z — 2i)?

z-2i 2!
_ 1D z2
N1 I(z2 +a)(z+ 2i)zl

(224 a)(z+2D)%(22) — 2%[22(z + 20)% + (2% + 9)2(2 + 20)

= lim -

z->2i (z2 + a)?(z + 20)*
_ (=4 +9)(—16)(4i) + 4[4i(—16) + (—4 + 9)2(41)]
a (—4 + a)2(256)

(z2+9)[(2+2)(z—2D]?

—320i — 96i
25(256)
—416i

25 x 256
—13i

~ 200
—3  13i

R,+R,=———
1t R =567 200
_12i—13i
200

=i

"~ 200

Sub in (1)

® x?%dx _
.[;oo (xz T 9)(x2 T 4)2 = an(Rl + RZ)

= 2mi(—i/200)
2T

~ 200
T

~ 100

.f°° x2%dx _1f°° x? 4
")y @2 +a? 2) G2+ az+az

1, n
=5 (700)
_ T
~ 200
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Harmonic Functions:
4.2. Definition and Basic Properties:

Any real valued function U(z) or U(x,y) defined and single valued in a region ( is said to be
harmonic in Q if it is continuous with its partial derivatives of first two orders and satisfies

the laplace's equation,

Vu = V2u(x,y) =0

0%u N 0%u _ o
0x2  0y?

0°u 0%*u

= Ty

0

A Harmonic function is also called a potential function.

Note:

2 2
Tt 1 2% — 0 takes the form

In polar co-ordinates the Laplace equation Ty

0 ou 0%u
rYr—\1r,— — =0
6r( 'ar) T 002

Properties:
(1) Prove that the Sum of two harmonic function is a harmonic function.

Proof:

Let u; (x, y) and u, (x, y) be any two harmonic function in Q.
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Let u(x,y) = uy (x,¥) + ua(x,y)

0’u  0*u 02 0?

322 + 377 = 3x2 (u; +uy) + 37 (uy +uy)

0%uy N 0%u, 0%u, N 0%u,

d0x? = dx?  0dy?  0y?

=0+0 [+ u; & u, are harmonic |
=0

~ U = Uq + u, Is harmonic.

(2) Prove that a constant multiple of a harmonic function is also harmonic function.

Proof:

Let u be any harmonic function in Q and Let ¢ be any constant.
Letp = cu

¢ 0%¢ _ d%(cu) 92

d0x? = 0dy? 0x? +6y2 (cw)
0%u 0%u

% ¢ = cu is harmonic.
(3) Prove that a simplest harmonic function is ax+by
Proof:

Let u = ax + by
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ax 'axz_o

ou 0%u

oy~ "oy
0’u d*u
ﬁ+a—}]2_0+0=

is called harmonic function.
~ u = ax + by is harmonic.
(4) Prove that a simplest harmonic function is e*sin y

u(x,y) = e*siny

ou ?u
55 = € siny = o5 =esiny
ou ’u
@—e cosyza—yz——e siny
Ae**siny — e*siny = 0
Au = V?u = 0.

is called harmonic function.

(5) prove that a function log r is harmonic where r > u.

Proof:
u(r,0) =logr
ou 1 du 0%u

ar 73007 502

~ logr is harmonic.

(6) Prove that the function alogr + b is harmonic
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Proof:

u(r,0) = alogr+»b

Ju a
ar r
a—u=0=>az—y=0
a0 002
0 ou\ 0%u 0 a
ra(r )t = e () o
=r-%(a)
=7.0
=0

=~ alogr + b is harmonic.

(7) Prove that the argument 6 is harmonic function.

Solution:
u(r,0) =6
au_oau_l azu_o
or _ ae T 902
au( 6u>+62”_ d o)+ 0
el U e vr A w G
= 0. . 8isharmonic.
Theorem 1:

If u = u(x,y) is a harmonic in a region Q. Prove that f (z) = U, — iU, is analy tic in Q.
Proof:

Letf(z) =u+iv

f(x) =u, —iu, e (1) [+ given ]
U=Uy, V=1, N )|
clearly,
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ux = uxx
Uy = Uyy
Uy = —Uyx

from (4) & (5)

u and v satisfy Cauchy Riemann equation ............... (6)
From (3) & (6)

f(z) = u+iv =u, —iu, isanalytic in Q

[Result:

f(2)dz= (ux - iuy)(dx + idy)
= (u dx + uydy) + i(—uydx + u,dy)

_ou ou g —
R.Pof f(2)dz = 5, 4x +ay dy = du

If u has a conjugate function v, then the imaginary part of f(z)dz.

(ie.,) LPof f(z)dz = —u,dx + u,dy
= v,dx + v,dy [V isconjugate harmonic of u ]

=dv [ Uy = V), Uy = —vx]
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''''''

=K

In general, however there is no single value conjugate function and in the circumstance it is

better not to use the notation dv.
Instead,

aud +6ud
dy x 0x y

*du=—
Called * du the conjugate differential of dv.

f(z)dz=du+1ix*du

j d f o %% 0
* du = ——dx+—dy =
v y 0y dy

for all cycles 2 which are homologous to zero in Q.

Proof:

.[ f(2)dz = 0 [+ f is analytic in (1].
Y

f du+i*xdu=0

14

fdu+if xdu =0
y y

0+ if * du = 0[~ du = ex act diff and v is closed ].
14
for all cycles 2 which are homolog us to zero in ()

Theorem: 2

If u, and u, are harmonic in a region € then prove that f,,ul * du, —u, * du, = 0 for every

cycle y which is homologous to zero in Q.
Proof:

Given u, and u, are harmonic in Q.

170

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Let * du, and * du, be the harmonic conjugate differential of u, and u, respectively

SO du1 = dv1 and * duz = de ............. (1)

u; *du, —u, * du; = u,dv, — u,dv,
= u,dv, + (v duy, — vidu, — u,dv,)
= u,dv, + v;du, — (vdu, + uydv,)
Uy * duy — Uy *dyy = u dv, + viduy, — d(Uyvy) e . (2)

Let fl(Z) = U + iv1

f2(2) = u; +iv,

o fy(z) = du, + idv,

(@) f; (2) = (uy + ivy)(du, + idv,)

= (u,du, — v,dv,) + i(u,dv, + vidu,)
~Im[fi(2)f; (2)] = wdu, + v,du,

Sub in (2), and Integrate over v.

j g * dity — up * dty = f Imf,(2) - £} (2)dz — f d(upvy)
Y Y Y
=0-0
=0

Hence, fy Imf,(z) f,(z) =0 [by Cauchy's Theorem]
[+ Im part of an analytic function is analytic] and fyd(uz, v,) =0

[ d(u,, vy) is exact diff].

Result:

If u is harmonic prove that fy *du =0

Proof:

If u; and u, are harmonic in Q then fyuidu2 —uydu, =0 [+ above theorem]

Take u; = 1 and u, = u = harmonic
fyl*du—uxd(l) =0= (i.e.,)fy*du = 0]
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e

KKKKK ower

[Show in detail that the arithmetic mean of harmonic functions over concentric circles |z| = r

is a linear function of logr deduce mean Value properly of harmonic functions in a disc |z| <

R]
4.3. The Mean-value property:

The arithmetic mean of a harmonic function over concentric circles |z| = r is a linear function

oflogr, %fIZIﬂ
mean is a constant.
Proof:
TakeQas0 < |z| <p

Take u; = logr which is harmonic
Take u, = u = harmonic function is (.
Takey =¢; — ¢,

Where c;:|z| =, and ¢yt |z] =1,
where r; < 1,

Now, y = 0 (mod Q)

By the previous theorem,

jul*duz—uz*du1=0
Y

f logr *du —u*d(ogr) =0 ...........(1)
C1—C2

We know that (by result) on circle |z| = r
sdu=r1 249

or
*d(logr) =1 %logrd@
Sub (2) in (1),

f I % 6 9 (logr)d6 = 0
- o0gT T u rar(ogr) =

f 1 % 16 9 logr)de
ogr-r-—df —u-r—(logr
¢1(om)lzl=r4 or or

ou

0
5 dl —ur - E (logr)do

=f logr-r-

€2 (or)|z|=13

udf = a logr + B and if u is harmonic in a disc, « = 0 and the arithmetic
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ou 1
10g7‘1fC17‘1§d9 — fcluyl -ZdH

ou 1
= logr, fCZ rza—rda—fczu-yzgde ............. )
Hence, if u is a harmonic function in the annulus

n<lzl=r<n
n<r<n

From (3) we get,
le|=r udf — 10grf|z|=y r- %d@ = constant = f'(say) .......... 4)
Since u is harmonic in Q.

j xdu =0, Vcycler=0(modQ) [+ Result]
1

j 0 o =0
r-—do =
c1=c, or
.[ aude_f 6ud0
c "or ™ T c " or
2

1

= rg—zdﬁ = constant = a' (say) ...........(5)
|z|=r

Sub (5) in (4)
fIZI=r udf —logy -a’ = f'.

f udf =logr-a’ +f’
|z|=y

divide by 2m, — [

pll udf = %logy + %
A.-mofuover|z|=y =alogy+8 ............. (6)
= Linear f,,. of logr.

Il part:

To prove that : @ = 0 if u is harmonic throughout the disc |z| < r.
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a’ 1 du
r—-do [+ (5)]

Q=E=E|Z|=r or
_1 d _1 dv[w xdu=d
C2m "o vl xdu=dvl

|z|=r |z|=r
= % (0) [+ dvis exact diff ]
a=0 ... (7)
1 Part:
If u is harmonic in Q. Then prove that A.m of u over |z| = r = constant.
Proof:

Sub (7) in (6)
udf =0-logy +f

lz]=y
=p

= constant

2

(i.e.,) Arithmetic mean of u over |z| = r = f = constant

Theorem 1:

Maximum Principle for Harmonic Function

A non-constant harmonic function has no maximum modulus in its region of definition
consequently the maximum value on a closed bounded Set E is taken on the boundary of E.
(or)

In u(z) is a non-constant harmonic function in the region ( then prove that |u(z)| has no
maximum value in €.

Proof:

Part-1

Let u(z) be a hon-constant harmonic function in the region Q.

To Prove that: max|u(z)| is not obtained at any point in Q.

Proof:

Suppose the theorem is false. then their exist z, € Q such that |u(z,)| is maximum ...... (1)
consider y: |z — z,| = r lying in Q.

wz—zp=re%, 0<6<2n

z = z, + re'? is any point on y

By mean value property of harmonic function u(z).
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1 (%" .
u(z,) = —f u(zy +re'?)dd
0

21
uzo)l < o [7" | u(zo + 7e®)[1d6]  ............. )
From (1), [u(zo + 7e®)| < lu(zg)l  oooovve. (3)

To prove that |u(z, + re?)| = [u(zy)|
Suppose the inequality (<) in (3) is true for a single value of 6.
= By continuity,

The inequality in (3) is true on an arc

(ie.,) |u(zo + re)| < lu(zo)l onanarcofy ............ 4)
From (2)

lu(zg)l < AMof |u(zg+7e® | ony ............. (5)
From (4)

AM of [u(zy +re®)| < lu(zo)l  .oooooeennn, (6)

Sub (5) in (6)

lu(ze)| < [u(zy)l

This contradiction prove that our assumption

lu(zy +1e%)| < lu(zo)l iny.

This is true for all y = 0.

=~ |u(z)| is a constant and equal to |u(z,)| is a nod of z,.

~ u(z) is a constant in a neighbourhood of z, and hence in Q.

This contradiction proves that max|u(z)| is not attained at any point z, in Q.

Part - 11

Let E be a closed bounded set

Since U(z) is harmonic, it is continuous and hence maximum modulus u(z) is taken at Some
point of E.

By, Max|u(z)]| is not attained at any interior point of E

~ Max |u(z)| is attained at some point on the boundary of E :

Theorem 2: (Minimum Principle for Harmonic Function)

A non-constant harmonic function has no minimum modulus in its region of definition

consequently the minimum on a closed set E is taken an the boundary of E.
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Proof:

Let u(z) be a harmonic function in a region Q then,

V(z) = —u(z) is harmonic in Q

Applying Max. principle to v(z) = —u(=2).

we get, Minimum principle for u(z)

4.4. Poisson's Formula:

Theorem: 1 (Poisson's Formula for Harmonic Function)
If (i) u(z) is harmonic for |z| < R and

(i) u(z) is continuous for |z| < R

1 R?—|a|?
2nY|z|=R |z-a|?

then, u(a) = u(z)dd, V]a| <R.

Proof:
Let u(z) be Harmonic for |z| < R.

we know that,
R(R{+a)

the linear transformation Z = S({) = TReag e (1)
Maps |{| <1onto|z| <R
when ¢ = 0,
R(0+a) Ra
zZ = —Fr = 7 =a=>z=a
¢ =0correspondsto z = a ... ... cev oo . (2)

Since u(z) is harmonic for |z| < R.
u(S({)) is harmonic in || < 1 [+ (1)]
We know that,

2
u(z,) = ij- " u(z +re®?)do
o 2m ),

1 2 '
u(0) = %_]‘ u(2)df [~ zy =re®,zy=0=r = 0]
0

1
u(a) = %Ll:l u(s(())d(arg(()) SR €]

From (1),
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zZ(R+a{)=R(R{+a)
ZR — Ra = R?*{ — za{
R(z—a)={(R? —az)
_R(z—-a) s
(= RZ—az) T (5)
in the inverse transformation of (1)
Now,
Kl=1=¢=1-¢"
= log{ = iloge = i¢. 1
Taking differentials

ld = id
7 ( =id¢g
1d
“w=17
d
d(argp) =d¢p = —i?z ()

taking log in (5),

log{ =log(R(z — a)) —log(R? — az)
=logR + log(z — a) — log(R? — az)

Taking differentials,

LA =0+ -dz ——*(-a
Ed( = 0+Z_adz Rz—dz( a)dz

® ~\,—a " RZ—az Z e ie e (7)
Now, |z| = R = z = Re'?

dz = Re'%id@

dz = zid0 .............(8)

Sub (8) in (7)

@ _ (A a \.

= (o+5)izdd 9)

Sub (9) in (6)

a

d(arg{) = —i (Z s + RZ_ dz) izdf

_( VA 4 za >d9
" \z—a R?2-az

Z za
=( +— >d9 [+ R? = |z|? = zZ]
z—a 2zZ—az

177

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



zZ

— (—a + %a) A0 oo (10)

zZ—

R2—|a|2

Sub (10) in (4)  u(@) = 57 f_,_, w(S))

Corollary:1 (Another form of Poisson Formula)

dO e (11)

|z—al?

Prove that u(a) = [ ,,_Re (=) u(z)de.

21
Proof:
z+a 1[z+a [(z+a z+7Z
Re< >=— + ['.'Rez: ]
zZ—a 2 z—a Z—a 2
11z+a zZ+a
= — + = _]
2lz—a zZ+a
liz+a)Z-a)+ (z—-a)(Z+a)
21 (z—-a)(Z—-a)
_ 1 'zz_—zd+az_—ad+zz_+zd—az_—ad]
21 (z-—a)(Z—-a)
_ 1[Iz = lal® + |z|* — |a|?
2| |z — al?
_1, R~ |af’ 12
=5 Z—af? vr e e (12)
Sub (12) in (11)
1 Z+a
u(a) = —f Re( )u(z)d@ N )|
277: |Z|=R - a
Corollary:2
Poisson Formula for Harmonic function in Polar Co-ordinates
i) _ 1 (2w R2—r2 i0
Prove that u(re'®) = — I RZ—Zchos(9—¢)+r2u(Rel )dé
Proof:
In equation (11) [previous Theorem]

circle |zl =R=>z=Re?,0<6 <2n

Leta =re’® = |a| =r.
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R2_|a|2_ R2_r2
z—a|?  (z-a)(Z-a)

[ |Cl|2 — 1,.2]

R2 _ ,r.2
~ (Re® —rei®)(Re® — re %)
R? —r?
~ RZ—Relre 9 —re'PRe 10 + 12
R? —r?
" RZ—rR[e{0-9) + ¢-i(0-9)] + 12
R2_y2
e s ves S (14)
Sub (14) and z = Re' in (11)
. 1 (% R? —12 ,
) =— Re®)ds. ... 15
u(re') 271,[0 RZ—Zchos(9—¢)+r2u( e?) (15)

Note:
(11), (13), (15) are three different forms of Poisson formula for Harmonic functions
Corollary:3 (Derive Schwarz's Formula)

We know that, the another form of Poisson formula.

u(a) = i Re (Z * a)u(z)d@
\z|=R zZ—a

2r -
_R 1 j‘ (z + a) 40

u(a) = Re 21 ), \z—a u(z)
Consider [{| =1

( — ei@

d¢ = e'? -id6

d¢

E =df

Changing a by z and z by ¢,

u(z) = Re (% -]|-6|=R (%)u(()d@)

u(z) = Re (%LFR (%)u(()d@)

The expression in the bracket in an analytic function of z.

If follows that u(z) in the real part of f(2),
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S

[ Note that u(z) = 0, and u(z) is harmonic then if possible to find v(z) harmonic function.
Such that f(z) = u(z) + iv(z) is analytic]

Where C is an arbitrary real constant.

Theorem 2: (Maximum Principle on Harmonic Function)

A non-constant harmonic function has no maximum modulus in the region of definition
Consequently the maximum value on a closed bounded set E is taken on boundary of E.
Proof:

Part - |

Let u(z) is non-constant harmonic function in the region Q

To prove that Max |u(z)| is not obtained at any in Q

Since u(z) in continuous, |u(z)| is also continuous in the given closed and bounded. region Q
and hence attains its bounds.

(ie.,) [u(@)| <M, forallze Qand M >0 ........... (1)

If possible,

Let |u(z)| attain its maximum value M at some interior point, z, € Q.

(ie.) lu(z)l=m ............. )

Construct a circular disk |z — z,| < r contained in Q

By Mean value property,

we have,
1 (" .
u(zy) = %L u(z, +re'?)do
1 (%" .
uzo)] = |- f u(zo +re‘9)d9|

1 21
— i0
< an; |u(z0 +re )|d9

T 2m
From (1) and (2),

we have |u(z)| < |u(z)| on the circular disc |z — z,| = y.

1 [ .
~u(zy)| < —f |u(zO + re‘9)|d9
0

we have z = z, + re'?
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lu(zo + re®)| < lu(zl ooooeenne. 4)
from (3) & (4), we get

21T

1 .
lu(zy)| = EL |u(z, + re®?)|deo

(ie) 2nluz)] = [, |u(zo +re'®)|do
(i.e) f02”|u(z0)|d9 = f02n|u(zo +ret?)|do

(ie) fozn[lu(zo)l — |u(zo + re®®)|]do = 0

Since the integral is continuous and non-negative,

we obtain, [u(zo)| — |u(zy + re®)| =0

(i.e.) [u(zo +1e)| = lu(zo)

(i.e.) [u(2)| = lu(zy)| for z onthe circular disc |z — z,| = r
=~ By continuity,

|u(z)| = constant

(i.e.) u(z) = constant.

This is contradiction.

~ |u(z)| cannot attain its maximum in the interior of Q

(i.e)) |u(2)] attains its maximum value only on the boundary.
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UNIT -V

Harmonic Functions and Power Series Expansions:

Schwarz Theorem - The reflection principle Weierstrass’s Theorem — The Taylor’s Series —

The Laurent series.
Chapter 5: Section 5.1 - 5.5

5.1. Schwarz's Theorem
Theorem serves to express a given harmonic function through its values in a circle.
But the R.H.S of formula.

@ =1/2n [ R” lal
ula) = T —_—
|z|=R |Z_a|2

u(z)do

has a meaning as soon as u is defined in |z| = R.

The equation is, does it have the boundary value u(z) on |z| = R

Now choosingR =1 3u —= P, ina+vc

Now we define Poisson integral of u[P,(2)].

Poisson Integral of U(P,(2))

Let U(0) be piecewise continuous function in 0 < 8 < 2, |z| = R = 1, we define

elf+z

Py(2) = 1/2nf02”Re( )U(Q)d@ is called Poisson integral of U ]

Note:

elf_z

(1) we observe that P, (z) is not only a function of z but also a function of the function U;
~ B,(z) is called functional

(2) The functional is linear functional,

ForP,+v =P, +Py

Pcy = CPy, for constant C;.

(3) Moreoveru > 0= PB,(z) =2 0;

Because of this property Py is said to be positive linear functional]

(4) Now P;; = ¢ where c is constant from this property

together with the linear and positive character of the functional, it follows that any inequality

m<USM=>m<P;, <M
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Theorem: 1 (Schwarz Theorem)

The function Py (z) is harmonic for |z| < 1 and lim,_, ,ie, Py (z) = U(6,) provided that U is

colts at 6,

Proof:

First, we have to

Prove that Py (z) is harmonic

21 ei@ + z
Re( >U(0)d9

elf —z

P,(z) = 1/2711

0

1 (%" (e 4+ 2
— Re— ( >U(9)d0

i0 _
2m J, e A

The expression in the product in Analytic function for |z| < 1
We know that,

The real and imaginary part of the analytic function is harmonic.
If follows that, P, (z) is a real part of the Analytic function.

~ Py (2) is harmonic for |z| < 1

Now we have to prove,

lim,_ i0 Py (2) = U(6,) without loss of generality.

We may assume that

U6, =0

Now Prove that lim__ s, Py(2z) =0

z-e
(i.e.,) we have prove |Py(2)| < &, whenever |z — e¥o| < &

For this,

Let c; and ¢, be 2 complementary ares of the unit circle |z| = 1
Let us choose |u(8)| < &/2............ (1) ife? e c,

Now we define

U@ ife?ec

Uu,(0) = .
1(6) { 0 ifefP€ec,
U@ ifeec,

U,(0) = .
2(6) { 0 ifefec

Then u(8) = u,(6) + u,(0), v0,
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P, =P, +P, =Pu +u,
Thus B, =B, + Py, e (2).
Now,

i0 i0 _i6 _ =
Re (e + z) R (e + z)(e z)

el —z (e —2z)(e ¥ —2)

1—2z69 + ze 0 — z7

= Rel (e — 2)? l
1—|z|?
~ Jei® — 2|2

which vanishes |z] = 1 and e®® = z

21 ei@ +z
Re <—> U, (6)d6

eld —z

Now,

Py (z) = 1/27Tf
0
Py (2)=0ifz = e e,
(i.e.,) It is continuous.
Py (z) = 0asz — e e,
(ie.,) lim B, (z2) =0
Z_)eleo 1
€ .
= |P,(2)| < L for|z—e®| <8 i (3)
By (1),
lu(@)| < ¢/2,ife’ € C,
2 |UL(0)] < g/2,ife® € c, and |z] < 1.
= Since, |B,(2)| <e/2if|z| <1 .o 4)
From (2),we have P,(z) =P, (2z) + B,(2)
IP.(2)| < |R, ()| + [P, ()] [+ (3) & (4)]
e € .
SE-I_E: g, for |Z—e‘9| <6 |zl <1
= |P,(2)| < e whenever |z — e | < § |z| = 1
= lim B,(z) =0.

z—elfo
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5.2. The Reflection principle:

Theorem 1:

Let Q*be the part in the upper half plane of a symmetric region Q and let o be the part of the
real axis in Q. Suppose that V (x) is continuous in Q* U o, harmonic in Q*and zero on o. then
v has a harmonic extension to Q.which satisfies the symmetry relation v(2) = —v(z)

In the same situation, if v is the imaginary part of an analytic fun f(z) in Q*then f(z) has an
analytic extension which satisfies f(z) = f(2)

Proof:

Let us construct the fun V(z) which is equal to v(z) in Q*. 0 on ¢, and equal to —v(Z) in the
minor image of Q*.

we have to show that v is harmonic on o for a point x, € o consider a disc with center x,
contained in Q.

Let P, denote the poisson integral with respect to this disc formed with the boundary values
V.

The difference V - Py, is harmonic in the upper half of the disc. It vanishes on the half circle
(by Schwarz theorem) and also on the diameter, because V tends to zero by deft and vanishes
by symmetry.

The maximum and minimum principle implies V = B, in the up on half disc and the same
proof can be repeated for the lower half.

we conclude that v is harmonic in the whole disc, and is particular at x.

For the remaining part of the theorem,

Let us consider once again a disc with center on o.

We have already extended v to the whole disc, and v has a conjugate harmonic Function —u,
in the same disc which we may Aarmolize.

So that uy = Re f(z) in the upper half consider,

vo(2) = uo(2) — uo(2)

% = 0 on the real diameter.

v Ju ov
Also 2 =2—2= =
dy ady dx

6v0 . 6170

=~ The analytic function oy vanishes on the real axis and hence identically
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=~ U 1S a constant and this constant is clearly zero we have proved that u,(z) = uy(2).

The construction can be repeated for arbitrary disc u, concedes in the over lapping discs
The definition can be extended to all of Q and the the follows.

Example 1:

If f(z) is analytic in the whole plane and real axis, purely imaginary on the imaginary axis,
show that f(z) is odd.

Solution:

By hypothesis.

Q is symmetrical about the real and imaginary axis.
~ f(2) =f(2)and f(2) = —f(=2)

L @ =2
f(2) = —f(-7) vz

(ie.) f(2) = =f(=2)
~ f(z) is odd.
Example 2:

If £(2) is analytic in |z| < 1 and satisfies |f| = 1 on |z| = 1, show that f(z) is rational.
Solution:

By the maximum principle |f(z)| < 1 for|z| < 1

The inverse of |z| < 1 is |z| > 1 & hence by reflection principle f(z) has an analytic
continuation to the whole extended plane

Show that if zand z* are conjugate with respect to |z| = 1, then so are f(z) and f(z*)
Now f(z) can have only a finite no of zeros in |z| < 1

Moreover if can have no zero in |z| > 1

Forif f(z) =0in|z| > 1then f(z*) = 0 & |z*| = 1 while f(2) is analytic in |z]| < 1.
Also if |zy] > 1 and z, is a pole of f(z), then f(z,) = oo, which implies f(z;) = 0.
(ie.,) zyisazeroof f(z) &|z*| < 1

which means that f(z) can have only a finite number of poles in |z| < 1.

Thus f(z) has only a finite no. of poles in the extended plane.

Hence f(2) is rational.
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Power Series Expansions:

5.3. Weierstrass's Theorem:

Theorem 1:

Suppose that f,, (z) is analytic in the in the region Q,,, and that the seq {f,,(z)} converges to a
limit fun f(2) in a region , uniformly on every Compact subset of Q.Then f(z) is analytic
in Q. Moreover f,, (z), converges uniformly to f'(z) on every compact Subset of (.

Proof:

LetQ=0Q,UQ, U ...

Then proof based on integral formula.

1 £
fa(2) = 5— G-

where cisacircle |(—a| =7

dg

&|z—a| <r(|z—a|=p)
Taking limit on both sides,
| [ lim f,,(§)d
C

€-2)

lim f,(2) = o—

Since f,,(z) is uniformly cogs on every compact subset Q of f(z).

- we have
1 [ f(Qdg
f(2) =il =2

Since C is a arbitrary point.
=~ By apply the cauchy Integral formula, - f(z) is analytic in Q
To prove : f,, (z) convergent to f'(z) on every compact subset of Q.

Now we consider,

s 1 fu(Q)dl
fn(2) = 2mi ). (Q— z)?
Also,
.« 1 [ f(Qdg
f'@) = 2mi ), (C—2)2
1 (L@ -
R = 1) = g [ OO

Taking modulus on both sides
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i@~ f' @] < 5 f 2L g

Since £, (z) convergences uniformly to f(z) on every compact sub set of Q
we have to,

Every € > 0, their exist a positive integer n,

() —f(x)|<e n>0, VzecC

Now, [(—z| = |(—a+ a— Z|

2 |¢—al—|z—a

2y —p
1 1 1 1
<—and— < ——
[g-z] ~ r-p 1g-z2 = (y—p)?
~ ()=

1 £
Fi@ =@ = 3o | a8

£t
— S 4LTIT
(r —p)?
T r2(1—p/r)?

&

S 2

y(1—p/7)
—>gasy —> ©

1
S_
27

~ fa(z) convergences uniformly to f'(z) where

|z—a|<p<T.

Since any compact subset of Q can be covered by a finite no.of closed disc
Convergence uniformly on every compact subset.

5.4. Taylor's Series:

Theorem 1:

If f(z) is analytic in a region ( containing z, then the representation.

Fo) = oy + LR S )

is valid in the largest open disc of center z, contained in Q.

Proof:
Let c bethecircle |z —z, I=p
S.T the closed disk |z — z,| < p contained in Q Since f(z) is analytic in the region Q

containing z. We can write,
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By Taylor’s theorem,

' _ " _ 2 n _ n
f(2) = f(zo) + ! (Z)S Zo) 4 [ @o)z=20)" . 4 [@)@E=20)7 | Foir(2)(z — 24)P+1

2! n!

forr(2) = — [ Lo« __ )

2mi V€ (t—z)1(t—2)

Where ' ¢ 'is the circle

lt—zol=p oo 3)
Their exist the closed disk || —z, |< P contained in Q.
Let max|f(z)| = ponc. (or)
Max |f(t)]=uonc ........... 4)
from (2)
|frnr1 (@) = 2mi ), (- Z])c((:):iio)n+1
L[ __If©llde]

T 2m ), |t = z|[t — z|"*?

Let u denote the max on |f(t)| on ¢

1 [0
@I 5 |

pn+1|t_Z|

[t —z|= |t —zo + 25 — 2|
> [t —zo| — |z — 2]
=p—lz -zl

|dt] ... ... (5)

1 1
PR |
t—z]” p—lz— 2z

1 U
Z)| < —
s (D) < f P ey

|dt]

<! # f|dt|
S =Tz =z .
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< 1 f U 2
Son) p o —Tz—z) P
1
<k !
= 2 pnt ( |Z—Zo|)
p\l-——
p
U
1z — zp1
+1(1 =2 %20-
p" (1 p )
multiply by = (z — z,)"*?!
|Z—Zo|n+1 u
o \n+1 < .
=z = 2e)" 1 (D] < pnt1 (1 _ |z —Zo|)
p

U

==

2mp

|fn+1(z)| <

(2 = 2)™* e (2)] < [(Z ;Z°)]

[Now consider,

opendisk adisk |z —z,| <r <p

n+1
|Z—Zo| |Z—Zo|

p p
= |f(2)(z—2zy)""'| > 0asn - oo

—>0asn—- o

<1=>I

Since |z —zy| < p — 0asn — oo.

0S|Z_ZO|
p

~ Sub in (1) we get,

"(zo)(z—z "(z0)(z — zy)? "(z,)(z — zy)"

f(O)i' 0)+f (0)(2' 0) +f (O)El' 0) 4 e

This is known as Taylor’s Series.

<1

f(2) = f(zy) +

5.5. Laurent Series:

Theorem 1:

If f(2) is defined analytic in the annulus region R; < |z — a| < R,. Then f(z) can be written
inthe form f(2) = Yp_ o Ap(z — a)™

-1 f(@dg
Where A, = 2mi Yl¢-al=y ((-a)"*?

Proof:
Consider the circle having the center at z = a and radius y their exist R; <y <R,

Define f;(z) and £, (z) as follows,
190

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



1
f2) = — f©®

21t ¢ or)jz-al=y §— Z

dg

_ -1 F@dy
f2(2) = 52 he_a)=y -z

By Cauchy Theorem,

e (2) forRy <r < |z—ajclearly, Ry <r <R,

The value of the integral (1) and (2) do not change w. r.to '’

~ f1(2) & f,(z) are uniquely define they represent analytic in |z — a| < R, and

|z — a| > R, respectively.

By Cauchy integral Theorem,

f(2) = f1(2) + f2(2)

Which is analytic in the annulus R, < |z —a| < R,

Now we consider, the Taylor is development of F;:
1 1

(—z (—a+ta-—z

_ 1
T (C-a)—(z—a)
B 1
N
C—a) _1 {—a)
-1
1 zZ—a
G- 1_(9—61))
1 [ z—a /[z—a\? _
- [ e (Y e i
11 (z-a) (z—-a)?
St ()
) _ 1 f(@©)dt
~h(2) = 271 )y = 2)
=[Ol ] g
270 ) jg_q|=y C—-a) (C—a)?

_ 1 fQdg | (z-a f@dg
T 2mi fIZ—aI=V C-a) + <2ni) fli—a|=r T-a)? +

zZ—a

(—a

<1

191

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



LD =) Az —a)"
n=0

_ 1 f(©dg
where 4, = — 1] (—al=y GoaymiT

To find the development of f(z):

we consider the transformation z =a + i =a+1/T

This transformation carries |z — a| = r into |{’| = 1/r with negative orientation.

This transformation can be applying the circle with negative orientation
f2(2) = f2(a+1/2")
-1 fa+1/3)(=1/@@)?)dg
- 2mi )2y (1/T —1/2")
1 fla+1/0)1/3%dy
21 iz yy G
-1 z'f(a+1/7)d7 (7 —2')
" 2mi ey ¢
Now we consider
1 1
-z (1-2'/7)

_ 1(1 _Z_')‘l
G ¢

L 1.z +(Z—’)2+
¢-z ¢ @ (@)

!

c

o) = — e f(a+1/<)[ SO ]dz
Y amidg, € AN (OERN(OEIN
_1 1)2
=5 <|=1/rf(a+1/Z) (Z' (Z)3 ....ld(
_ 1 2
=50 ey f(a+1/§)<,2 d<+( m>f|<f|=1/rf(a+ 1/ (Og
~ Z B, (z)"

-1 fla+1/7) .,
Where B, = ﬁfli’lﬂ/y e di
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<=a+1/z'=<—a=1/<':»c'=z%

— __1 ! I N2

@G- a)?

1 fQEG—ay
2mi {—a)=r (C—a)?

s 1 f@©

no 27Tl |z_a|=r (c - Cl)_n+1

=3 an ()

n=1

dg

dr

dg

n

dg

n

[ee]
= A_,(z—a)™
n=+1

—0o0

Exercises:
1.Prove that the Laurent development is unique.
Let f(2) = Xm-_o B, (z — zy)™ is analytic in the annulus region, where r, < |z — z,| < r; be

the expansion of f(z). Obtain in any mainor than the series is identical with Laurent series

for f(2).

Proof :

Let f(2) = XYmoo Bz —2zg)™ oo, (1)

bethe L — S of f(2) about z, in7, < [z — 25| <1y
_ 1 f()

Thenan = — oyt

wherec: |t —zy| =7, 1 <r<n
Given expansion of f(2) is f(2) = Ym=—co Pn(Zz —2)™ .ooiiiiiiin. (2)

To prove that B, = a,,
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1 f(t)dt

a, = -
"o2mi ), (t — zy)ntt
c 0

1 1 -
@ 2ni,[c (t — zy)n+? Z m (t = zo)™dt

(t-z)™
= 3% o Pn . = Z‘)’nﬂ ............. (3)

2mi

[Integrating term by term.

= the Series is uniformly convergent]
C:lt—zol =y
t—zy=re,0<0<2n
dt =re®id6

Now sub in (3),

2n (re“g) .
if;
= o Z f (relg)"“re (do
27 (relﬂ)
T2 Z ,f (re‘e)"
igym "
In = o Z f (re®®)” "de

m——oo
Z .I- ym-n L(m n)BdH
27'[ e
= L3 o Pr™ [T el (4)
case (i)
whenm # n
2m pli(m-n)o 2m
. i(m—-n)B —
...’; e do l o=y l
0
— 1 [ei(m—n)Zn —e0
i(m—n) ]
= ! 1-1
~i(m—n) [ ]
=0 ... (5)
case (ii)
Whenm =n
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2 2
f elm=mody = f do
0 0

=27m
Sub (5) & (6) in (4),

1 (o]
an =5 Z P rmn(21)

m=—oo

1
=E[O+O+---+Pnr°(27r)+0+0--']

1
= E PnZTL'
a, = B,
[ TO — 1]
Sub in (2) The given series (2) becomes Laurents series,
Hence the Laurents series of f(z) is unique.

2. Show that the Laurent development of (e? — 1)1 at the origin is of the form

o)

+ Z (_1)k—1 %ZZR—l

1

N| =
N| =

Where the numbers B, are known as the Bernoulli numbers calculate B,, B,, B;

Proof:
Consider the fun f(z) = 1
f(2)= 2
(1+z+ﬁ+--->—1
B 1
- z | z?
Z(1+?+§+'”>
(@) =

z2(9(2))
The singularities of f(z) is given by,

nef—1=0=>e%=
z=0,i2nm,n=0,+1,+2 ...
=0,i2m, i4m, ...

Consider the analus region is 0 < |z| < 2w

Now consider the fun ﬁ which is defined an analytic in 0 < |z| < 2@
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1
9(2)
>1= g(Z)[CO + C1Z + CzZ2 + ]

=C0+C1Z+C222+

z 73
L={1+5+5+ (co+ 1z + 2% + )

Comparing the co-efficient on z

Co
:O=E+C1
—c,
== o
-1
T
co-effofzzz0=%+cz+%
-1 1
O=T+C2 +g
1
0—62—12
1/12= ¢,
co—effofz3=>0=c3+%+%+%
=c;+1/24—-1/12+1/24

0=C3

co-effofzt=20=c, +2+2 424 %
21 31 41 sl

Y L
— G 72 48" 20
0=c,+1/720
= ¢, =—1/720
Similarly,

coeffof 2520 =cg + 2+ 24242420
2! 3! 4! 5! 6!

0:C5
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1 1 1 1

) —1_= 2 4.
‘9 1T2E 7 Tt t
7Z) =
f(2) 20
_ 1 1 N 1 1 3 4
2z 27127 720”7
= 1)k-1 By 2k-1
f@=--5+) (D'ogz
k=1
Comparing L.H.S = R.H.S
k=1 B, _ 1 B — 1
TR T2 T T
k=2 Bl 1 g 1 30
=2 3 T70° 8=
3.Expand the Laurents Series:
Then function is ———— is valid in
(z—-1)(z-2)
() lz] <1
(i1<|z] <2
(iii) |z| >2 (iv)0< |z—1| < 1
Proof:
_ 1
f(2) = (z—-1D(z-2)
1 1
T z=2 z-1
Case (i) - |z| < 1
_ 1 1
1@ =50y “a=2
1 1

T1-z 2(T-1z/2)
1
f@)=0-2"-501~-2/2)""

1
= (1+Z+ZZ+~~)—§(1+Z/2+(z/2)2+~~-)
f(z2)=1/2+2z(1-1/2%)+2z*(1 —1/23) + -
The series is valid when |z/2| < 1,]|z| < 1
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lz| < 2,|z] <1
Case(ii): 1< |z|] <2

€)= 1 1
(Z)_Z—Z z—1

_ 1 1
T —2(1-2/2) z(1-1/2)
= _71(1 —z/2)7! —%(1 —1/2)7!
=—1/2(1+2/2+ (2/2)* + (z/2)* + ---)
—1/z(1+1/z+ (1/2)*> + --)

This expansion is valid

when |z/2| < 1,]1/z| < 1

lz| <2,|z| > 1
1<zl <2

Case( iii): |z| > 2
1 1
D=3 &1
1 1
- z(1—-2/2) B z(1—-1/z)

1
= (1-2/07 = 1/2(1-1/2)""

= %(1 +2/z+ (2/2)* + (2/2)3 + )

1 1 1
f(z)=;(z—1)+;(1+1/z+(1/z)2+---)+Z—4(8—1)+---

This expansion is valid
when |2/z| <1 =2 < |z|
~lzl > 2

Case(iv)::0< |z—1| <1

1 1
f(z):Z—Z_Z—l

Lett=z—7 =>t+1=20<]|t| <1.
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1
A== T te= 1D
1
“Zt1-0o

=—-1/t(1+t+t*>+-)
_1 5
=;(1+(Z—1)+(Z—1) +)

This expansion is valid. when |t| < 1,t # 0
~z—1#0and0< |z—-1| <1

4. What is the co-eff of z”7 in the Taylor's development of tan Z.

Solution:
f(z) =tanz
tanz = ¢,z + 23 + ¢c3z° + -+
sin z
cosz %t 23 +c32° + -
3 95
2T,

=1z + 2% + c32° + -+

z2 z*
1+ﬁ+ﬂ+m

3,5 -
Z——+—=4 =<1 +§+E+--->(clz+c223+c325+---)

co-effofz=¢, =1

co—effof z2 =0

c
co—effofz23 = —1/6 =c, +—

2!
Cz = _2/3
C2
co —effof z°> = 1/120 = ¢, o7
21
=120
C2
co—effofz7:>1/7!=c4=5
12
1540 4~ 72
141
Cp=——
5040

199

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Study Learning Material Prepared by

Dr. S. KALAISELVI M.SC., M.Phil.,, B.Ed., Ph.D.,
ASSISTANT PROFESSOR,

DEPARTMENT OF MATHEMATICS,

SARAH TUCKER COLLEGE (AUTONOMOUYS),
TIRUNELVELI-627007.

TAMIL NADU, INDIA.

200

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



	UNIT-I:
	ANALYTIC FUNCTIONS: Analytic functions – Polynomials – Rational functions – Power Series.
	UNIT-II:
	CAUCHY’S INTEGRAL FORMULA and LOCAL PROPERTIES OF ANALYTICAL FUNCTIONS: The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives. Removable Singularities-Taylors’s Theorem – Zeros and poles – The local Mapping – ...
	UNIT I
	ANALYTIC FUNCTIONS: Analytic functions – Polynomials – Rational functions – Power Series. (1)
	UNIT-II: (1)
	CAUCHY’S INTEGRAL FORMULA and LOCAL PROPERTIES OF ANALYTICAL FUNCTIONS: The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives. Removable Singularities-Taylors’s Theorem – Zeros and poles – The local Mapping – ... (1)

